

Denergies PARIS

IRSEN INSTITUT DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

Faire avancer la sûreté nucléaire

Comparative study of methods for estimating a permeability profile across the Opalinus Clay at the Mont Terri rock laboratory (DB Experiment)

25th Earth Science Meeting

Caen October 26th 2016 <u>C. Yu</u>, M. Al Reda, J.-M. Matray, G. Berthe, J. Gonçalvès, D. Jaeggi

The Deep Borehole (DB) experiment

- Drilling of a 250 m deep inclined borehole and installation of a multipacker system (7 double packer intervals with P and T sensors)
- Goal: develop and validate a methodology for assessing the containment properties of a thick argillaceous unit using the Opalinus Clay as an example.

25th Earth Science Meeting - Caen - October 26th 2016

Steel casing

Ø 177 mm

165.2 mm

Ø 21.59 cm rotary drilled with water

E

0

with Pearson water

Cemented

annulus

Permeability evaluation at different scales of investigation

Methods based on pore structure model, Darcy's law combined to Poiseuille law, poro-elastic deformation due to tidal load, interpretation of the pressure response to an hydraulic load (in situ test or laboratory scale permeameter)

Different sample volumes

=> interrogation on the results comparability

Petrophysical mesurements

In situ hydraulic tests and permeameter tests

Pressure time series and tidal identification

Petrophysical model

25th Earth Science Meeting - Caen - October 26th 2016

IRSN

Intrinsic permeability and hydraulic conductivity

25th Earth Science Meeting - Caen - October 26th 2016

IRSN

In situ hydraulic tests

Numerical interpretation using nSIGHTS and MultiSIM

25th Earth Science Meeting - Caen - October 26th 2016

In situ hydraulic test results

Compilation of K-values obtained by in situ hydraulic tests Shaly facies versus sandy facies (not affected by the EDZ)

Steady state method

Darcy's law-based formula

Klinkenberg correction for gas slippage

(no correction for liquid permeability)

IRSI

Results of permeameter tests

Spectral analysis on pore pressure time series

Models based on the bulk deformation effects due to earth tides in the poroelastic water-filled porous medium

Specific storage (Bredehoeft, 1967): $S_s = \frac{|\Delta \varepsilon|}{|\Delta h|}$

 $|\Delta\epsilon| = 2 \cdot 10^{-8} \text{ m}^3/\text{m}^3$ Amplitude of the volumetric strain fluctuations related to the M_2 semi-diurnal earth tide (Melchior, 1978)

Effective dynamic porosity (Jacob, 1940): $\widetilde{\omega}_{dyna} = \frac{E_W S_s B}{\rho g}$

Computed using MUSTAT (Bailly et al., 2014)

Vertical effective hydraulic conductivity (Boldt-Leppin et al., 2003)

•
$$\widetilde{K}_{v}^{Ampl.}(f_{M_{2}}) = \widetilde{S}_{s}(f_{M_{2}}) \frac{\pi (z_{1}-z_{2})^{2}}{(f_{M_{2}})^{-1}} \left[ln \left(\frac{A_{z_{1}}(f_{M_{2}})}{A_{z_{2}}(f_{M_{2}})} \right) \right]^{-2}$$

$$\widetilde{K}_{\upsilon}^{\Delta \varphi}(f_{M_2}) = \widetilde{S}_s(f_{M_2}) \frac{\pi}{(f_{M_2})^{-1}} \left[\frac{(z_1 - z_2)}{\Delta \varphi(f_{M_2})} \right]^2$$

Spectral analysis results

					24	7.5 m	227 II	P 19	9 165 1/15 1	15 10	97.3 m	0 m
Data from 01/09/2014 to 10/03/2015												
Sf. Fm. OPA Pw. Fm. Hp.												Hp.
	11	12	12-3		13		14		15		16	17
Δh (cm)	0.852	1.73	1	.86	1.28		1.73		1.70		1.32	0.649
S _s (m ⁻¹)	2.35·E-06	1.16E-06	1.0	8E-06	1.28	E-06	1.73E-06		1.70E-06		1.53E-06	3.08E-06
	1 vs 2	12 vs 1	2-3	-3 12-3 v		13 vs 14		14	14 vs 15		5 vs 16	16 vs 17
$\widetilde{\omega}_{dyng}$	0.09	0.24	4 0.1		11	13	.33		0.12	1.2	0.08	0.79
$\omega_{water\ loss}$	0.14	0.14 0.15		0.1		0	.10	0.14			0.12	0.14
$\widetilde{K}_{v}^{Ampl.}$	4.78∙E-0	4.78·E-08 2.50E-		1.40	E-07	2.8	8E-07	5.0	5.66E-05		38E-07	3.89E-08
$\widetilde{K}_{n}^{\Delta \varphi}$	7.17·E-0	7 1.02E	-05	3.32	E-06	5.8	1E-06	4.	11E-06	1.8	80E-05	7.33E-08

Consistent values for specific storage and effective porosity

Method unappropriate to estimate hydraulic conductivity (overestimation of several orders of magnitude)

K measurements comparison

- Global consistency between the results obtained from BDB-1 borehole and data acquired at the rock laboratory level.
- Order of magnitude for OPA permeability ~10⁻¹³ 10⁻¹² m s⁻¹, with higher values in the shaly facies compared to the sandy facies. No clear difference is highlighted by numerical interpretation of hydraulic tests in the fault zone.
- Tidal analysis is unappropriate to compute hydraulic conductivity in this study but gives consistent values for specific storage and effective porosity.
- The acquisition of advective transport parameters will enable a future fluid flow modelling accounting for coupled transport processes.