
HAL Id: hal-02869240
https://hal.science/hal-02869240

Submitted on 15 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random projections for quadratic programs
Claudia d’Ambrosio, Leo Liberti, Pierre-Louis Poirion, Ky Vu

To cite this version:
Claudia d’Ambrosio, Leo Liberti, Pierre-Louis Poirion, Ky Vu. Random projections for quadratic
programs. Mathematical Programming, inPress, 183, pp.619-647. �10.1007/s10107-020-01517-x�. �hal-
02869240�

https://hal.science/hal-02869240
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Random projections for quadratic programs

Claudia D’Ambrosio · Leo Liberti ·
Pierre-Louis Poirion · Ky Vu

Received: date / Accepted: date

Abstract Random projections map a set of points in a high dimensional space
to a lower dimensional one while approximately preserving all pairwise Euclidean
distances. Although random projections are usually applied to numerical data, we
show in this paper that they can be successfully applied to quadratic program-
ming formulations over a set of linear inequality constraints. Instead of solving
the higher-dimensional original problem, we solve the projected problem more ef-
ficiently. This yields a feasible solution of the original problem. We then prove
lower and upper bounds of this feasible solution w.r.t. the optimal objective func-
tion value of the original problem. We then discuss some computational results on
randomly generated instances, as well as a variant of Markowitz’ portfolio prob-
lem. It turns out that our method can finds good feasible solutions of excessively
large instances.

Keywords nonlinear programming · polynomial optimization · large-scale
optimization · approximation · Johnson-Lindenstrauss Lemma

1 Introduction

The goal of this paper is to show that Random Projections (RP) applied to
Quadratic Programming (QP) problems subject to linear inequality constraints

This paper has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sklodowska-Curie grant agreement n. 764759 “MINOA”.

Claudia D’Ambrosio and Leo Liberti
CNRS LIX École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
E-mail: {dambrosio,liberti}@lix.polytechnique.fr

Pierre-Louis Poirion
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
E-mail: pierre-louis.poirion@riken.jp

Ky Vu
Dept. of Mathematics, FPT University, Hoa Lac Hi-Tech Park, Hanoi, Vietnam
E-mail: kyvk2@fe.edu.vn

2 Claudia D’Ambrosio et al.

yield a QP with fewer variables, the solution of which is an approximate solution
for the original QP. We consider the following QP formulation:

P ≡ maxx x
>Qx + c>x
Ax ≤ b,

}
(1)

where x is a vector of n decision variables, Q is a symmetric n× n matrix, c ∈ Rn,
A is m× n and b ∈ Rm.

We make three assumptions about Eq. (1):

1. We assume that Ax ≤ b defines a full dimensional polytope.
2. We assume we are given the radius R of a ball containing the polytope Ax ≤ b.
3. We assume that all the rows of A are unit vectors. This assumption, however, is

without loss of generality (w.l.o.g.): we let µi = ‖Ai‖, where Ai is the i-th row

of A; we then replace each Ai by Ai
µi

and bi by bi
µi

; this yields ∀i ≤ n Ai
>x
µi
≤ bi

µi
,

which satisfies the assumption.

We remark that Assumption 3 might affect the problem input adversely, yielding
instances that end up being difficult to solve for numerical instability reasons.
No assumption is made on Q, which may be positive/negative semidefinite or
indefinite, unless otherwise stated in some parts of the paper. In the following, all
norm symbols ‖ · ‖ will be assumed to refer to the `2 norm ‖ · ‖2, unless otherwise
stated.

QP is now a ripe field with many applications (e.g. portfolio optimization,
constrained linear regression, monopoly policy determination and many more [6,
18]). If we assume that all the data are rational, then the decision version of Eq. (1)
is NP-complete [19].

RPs are random matrices which are used to perform dimensionality reduction
on a set of vectors while approximately preserving all pairwise Euclidean distances
with high probability. The goal of this paper is the applicability of RPs to bounded
QPs such as those of Eq. (1). Specifically, we will define a projected version of
Eq. (1) and prove that it is likely to have optimal objective function value close to
that of the original QP. We also perform a computational verification of our claim,
and discuss the extent to which our theoretical results can be applied in practice.
More precisely, our approach can find feasible points for QPs that are too large
to be solved in a given computational set-up. For very large scale QPs that take
very long to solve, these feasible solutions can be used as starting points for the
original QPs. This yields solutions for these QPs in less time overall.

RPs are usually applied to numerical data in view of speeding up algorithms
which are essentially based on Euclidean distances, such as k-means [3] or k-
nearest neighbours [8,9,2]. Since, according to the Johnson-Lindenstrauss lemma
[10], RPs provide good approximations of Euclidean distances, it is perhaps not so
surprising that they should work well in those settings. The focus of the present
work is the much more suprising statement that a Mathematical Programming
(MP) formulation is approximately invariant (as regards feasibility and optimality)
to randomly projecting the input parameters. Similarly to our previous work on
Linear Programming (LP) [24], but using different projection and proof techniques,
the results of this paper are independent of the solution algorithm used to solve the
formulations. While RPs have already been applied to some optimization problems,

Random projections for quadratic programs 3

these are usually unconstrained minimizations of `2 norms and/or assume small
Gaussian or doubling dimension of the feasible set [26,16]: two assumptions we do
not make.

With respect to the paper [23], we remove the need for a ball constraint,
thus providing a generalization to any QP satisfying the assumptions 1-3 above.
While the QP formulation considered here differs from the formulation of [23] by a
single constraint, the bounds and proof methodologies are considerably different,
e.g. Thm. 2. Moreover, Prop. 1 is more streamlined, the bounds in Lemma 3 are
improved, the bounds derived for convex QPs in Sect. 4.1 are new. We propose
new sparse random projections in Sect. 5.1, and the computational experiments
are also new.

We note that, by considering the case Q = 0, our result also yields a RP
technique for LPs in canonical form max{c>x | Ax ≤ b}. By considering the dual,
one can easily show that one obtains a projected formulation for LPs in standard
form. By inspection, this projected formulation turns out to be exactly equal to
the one discussed in [24]. Thus, the restriction of the results in this paper to the LP
case yields a new analysis for the projected formulation of [24], under somewhat
different assumptions.

The rest of this paper is organized as follows. In Sect. 2 we define RPs, the
projected QP, and the solution retrieval operation. In Sect. 3 we introduce some
basic properties of RPs. In Sect. 4 we prove our main results about approximate
optimality of the projected QP. In Sect. 5 we discuss computational results.

2 The projected problem

RPs are simple but powerful tools for dimension reduction [26,16,25,24,12]. They
are often constructed as random matrices sampled from some given distribution
classes. The simplest examples are suitably scaled matrices sampled component-
wise from independently identically distributed (i.i.d.) random variables with sub-
gaussian distributions [22]: e.g. N(0, 1), uniform on [−1, 1], or Rademacher ±1
distributions. One of the most important features of a RP is that it approximately
preserves the norm of any given vector with high probability [20]. In particular, let
P ∈ Rd×n be a RP every component of which is sampled from N(0, 1/

√
d) (where

1/d is the variance). Then, for any x ∈ Rn and ε ∈ (0, 1), we have

Prob

[
(1− ε)‖x‖2 ≤ ‖Px‖2 ≤ (1 + ε)‖x‖2

]
≥ 1− 2e−Cε

2d, (2)

where C is a positive universal constant (in fact a more precise statement should be
existentially quantified by “there exists a constant C such that. . . ”).

Perhaps the most famous application of RPs is the Johnson-Lindenstrauss
lemma [10]. It states that, for any ε ∈ (0, 1) and for any finite set X ⊆ Rn there is
a mapping F : Rn → Rd, where d = O(ln |X|/ε2), such that

∀x, y ∈ X (1− ε)‖x− y‖2 ≤ ‖F (x)− F (y)‖2 ≤ (1 + ε)‖x− y‖2. (3)

Such a mapping F can be realized as the linear operator represented by the matrix
P above. The existence of the correct mapping is shown (by the probabilistic
method) using the union bound. Moreover, the probability of sampling a correct

4 Claudia D’Ambrosio et al.

mapping can be made arbitrarily high. In practice, we found that there is often
no need to re-sample P in algorithmic applications: even if a sampled P does not
satisfy Eq. (3), the pairs x, y for which Eq. (3) is false are very few, which makes
it unlikely that the resulting error will significantly impact the outcome.

2.1 The randomly projected QP

Let P ∈ Rd×n be a RP. We want to “project” each vector x ∈ Rn to a lower
dimensional vector Px ∈ Rd. Consider the following projected problem:

max {x>(P>PQP>P)x+ c>P>Px | AP>Px ≤ b}.

By setting u = Px, c̄ = Pc, Ā = AP>, Q̄ = PQP>, we can rewrite it as

max
u∈ Im(P)

{u>Q̄u+ c̄>u | Āu ≤ b}, (4)

where Im(P) is the image space of P . Since P is (randomly) generated with full
rank with probability 1, it is very likely to be a surjective mapping. Therefore,
we assume it is safe to remove the constraint u ∈ Im(P) and study the smaller
dimensional problem:

RP ≡ max
u∈Rd

{u>Q̄u+ c̄>u | Āu ≤ b}, (5)

where u ranges in Rd. As we will show later, Eq. (5) yields a good approximate
solution of Eq. (1) with high probability.

2.2 Solution retrieval

When we solve RP we obtain a solution in the projected space Rd. In this section
we discuss the issue of solution retrieval, i.e. how to exploit the projected solution in
order to derive a reasonable solution for the original problem P. It turns out that
feasibility is not an issue, as feasibility in the projected problem implies feasibility
in the original problem.

Proposition 1 Let P ∈ Rd×n be a RP. For any feasible solution u of the projected

problem (5), P>u is also feasible for the original problem in Eq. (1).

Proof Let u be any feasible solution for the projected problem (5) and take x̂ =
P>u. Then we have Ax̂ = AP>u ≤ b. 2

The approximate optimality of P>u will be established in Sect. 4.
For a feasible and bounded MP formulation F we let v(F) be the optimal ob-

jective function value of F.

Proposition 2 v(RP) ≤ v(P).

Proof Let u∗ be an optimum of RP. Let x′ = P>u∗. As remarked above, x′ is
feasible for P. Now observe that the objective function value of P at x′ is

(x′)
>
Qx+ c>x′ = u∗

>
PQP>u∗ + (Pc)>u∗ = u∗

>
Q̄u∗ + c̄>u∗ = v(RP).

Since P,RP are maximization problems, the result follows. 2

Random projections for quadratic programs 5

Since P is in maximization form, we remark that Prop. 2 does not prove that RP

is a relaxation of P. We make this statement explicitly in order to mark a notable
difference with our analysis of RPs and LPs in [24].

3 Basic properties of random projections

In this section we introduce three results that are going to be used later on in the
paper. Lemma 1 shows that RPs approximately preserve scalar products. Lemma 2
shows that RPs approximately preserve double-sided inequalities. Lemma 3 shows
that RPs approximately preserve quadratic forms. Throughout the paper, Mi de-
notes the i-th row of the matrix (or vector) M ; for a product between matrices
A,B, for example, we use the notation (AB)i. Vectors (even when they are ex-
tracted from rows of matrices) may be used as row or column vectors depending
on whether they multiply from the left or from the right.

Lemma 1 Let P ∈ Rd×n be a RP satisfying Eq. (2) and let 0 < ε < 1. Then there is

a universal constant C such that, for any x, y ∈ Rn,

〈x, y〉 − ε‖x‖ ‖y‖ ≤ 〈Px, Py〉 ≤ 〈x, y〉+ ε‖x‖ ‖y‖

with probability at least 1− 4e−Cε
2d.

A proof of this lemma can be found in [24, Eq. 7 and Prop. 1]; we reprove the
result here to make the paper self-contained, and because it is often used in the
rest of the paper.

Proof Let C be the same universal constant as in Eq. (2). By the property in
Eq. (2), for any two vectors u+ v, u− v and using the union bound, we have

|〈Pu, Pv〉 − 〈u, v〉| = 1

4

∣∣‖P (u+ v)‖2 − ‖P (u− v)‖2 − ‖u+ v‖2 + ‖u− v‖2
∣∣

≤ 1

4

∣∣‖P (u+ v)‖2 − ‖u+ v‖2
∣∣+ 1

4

∣∣‖P (u− v)‖2 − ‖u− v‖2
∣∣

≤ ε

4
(‖u+ v‖2 + ‖u− v‖2) =

ε

2
(‖u‖2 + ‖v‖2),

with probability at least 1− 4e−Cε
2d. Apply this result to u = x

‖x‖ and v = y
‖y‖ , to

obtain the desired inequality. 2

Lemma 2 Let P ∈ Rd×n be a RP satisfying Eq. (2), let 0 < ε < 1, and let 1 be the

all-one vector. Then there is a universal constant C such that, for any x ∈ Rn and

A ∈ Rm×n having unit row vectors, we have

Ax− ε‖x‖1 ≤ AP>Px ≤ Ax+ ε‖x‖1

with probability at least 1− 4me−Cε
2d.

Proof Let A1, . . . , Am be (unit) row vectors of A. Then

AP>Px−Ax =

A>1 P>Px−A>1 x. . .

A>mP
>Px−A>mx

 =

 〈PA1, Px〉 − 〈A1, x〉
. . .

〈PAm, Px〉 − 〈Am, x〉

 .

The claim follows by applying Lemma 1 and the union bound. 2

6 Claudia D’Ambrosio et al.

Lemma 3 Let P ∈ Rd×n be a RP satisfying Eq. (2) and let 0 < ε < 1. Then there

is a universal constant C such that, for any two vectors x, y ∈ Rn and a square matrix

Q ∈ Rn×n, with probability at least 1− 8 k e−Cε
2d, we have:

x>Qy − 3ε‖x‖ ‖y‖ ‖Q‖F ≤ x>P>PQP>Py ≤ x>Qy + 3ε‖x‖ ‖y‖ ‖Q‖F ,

where ‖Q‖F is the Frobenius norm of Q and k is the rank of Q.

Proof Let Q = UΣV > be the singular value decomposition of Q. Here U, V are
(n×k)-real matrices with orthogonal unit column vectors u1, . . . , uk and v1, . . . , vk,
respectively and Σ = diag(σ1, . . . , σk) is a diagonal real matrix with positive entries.
Denote by 1k = (1, . . . , 1)> the k-dimensional column vector of all 1 entries. By
adding and subtracting x>U and y>V to the left and (respectively) right terms
around the matrix Σ, and transposing twice each term, we obtain:

x>P>PQP>Py = (U>P>Px)>Σ(V >P>Py)

=
[
U>x+ U>(P>P − In)x

]>
Σ
[
V >y + V >(P>P − In)y

]
.

Therefore,

|x>P>PQP>Py − x>Qy| ≤ |(U>x)>Σ V >(P>P − In)y|

+ |(U>(P>P − In)x)>Σ V >y|

+ |(U>(P>P − In)x)>Σ V >(P>P − In)y|, (6)

since U>xΣV >x = x>Qy. Noting that for every i ≤ k, (ΣV >P>Py)i = 〈P (ΣV >)i, Py〉
and (ΣV >y)i = 〈(ΣV >)i, y〉, by Lemma 1 we have

∀i ≤ k |(Σ V >(P>P − In)y)i| ≤ εσi‖y‖. (7)

Moreover, since Σ is symmetric, we also have

∀i ≤ k |((U>(P>P − In)x)>Σ)i| ≤ εσi‖x‖. (8)

We now apply the Cauchy-Schwartz inequality to the terms on the right hand side
of Eq. (6):

〈U>x ,Σ V >(P>P − In)y〉 ≤ ‖U>x‖ ‖ΣV >(P>P − In)y‖ (9)

〈(U>(P>P − In)x)>Σ , V >y〉 ≤ ‖(U>(P>P − In)x)>Σ‖ ‖V >y‖ (10)

〈(U>(P>P−In)x)>Σ, V >(P>P−In)y〉 ≤ ‖(U>(P>P−In)x)>Σ‖ ‖V >(P>P−In)y‖. (11)

We claim that

‖U>x‖ ≤ ‖x‖ (12)

‖V >y‖ ≤ ‖y‖. (13)

Since the columns of U are orthonormal, UU>x is the projection of x on the
column space of U . Since projected vectors are always shorter, we have ‖UU>x‖ ≤
‖x‖. Now ‖UU>x‖2 = x>UU>UU>x. Again by orthonormality of the columns
of U , U>U is the identity; hence ‖UU>x‖2 = x>UU>x = ‖U>x‖2, which yields

Random projections for quadratic programs 7

‖U>x‖ = ‖UU>x‖ ≤ ‖x‖ as claimed. The argument for V, y is the same. Next, we
use Eq. (12)-(13) and Eq. (7)-(8) to bound Eq. (9)-(11). We obtain:

〈U>x ,Σ V >(P>P − In)y〉 ≤ ε‖x‖ ‖y‖ ‖σ‖ (14)

〈(U>(P>P − In)x)>Σ , V >y〉 ≤ ε‖y‖ ‖x‖ ‖σ‖ (15)

〈(U>(P>P − In)x)>Σ , V >(P>P − In)y〉 ≤ ε2‖x‖ ‖y‖ ‖σ‖, (16)

where σ = (σ1, . . . , σk) and the bound for Eq. (16) was obtained from Eq. (11) by
setting Σ = Ik in Eq. (7)-(8). Finally, we obtain

|x>P>PQP>Py − x>Qy| ≤ 3ε‖x‖ ‖y‖ ‖σ‖ (17)

with probability at least 1− 8ke−Cε
2d. 2

4 Approximate optimality

We now prove that the objective of the quadratic problem in Eq. (1) is approxi-
mately preserved under RPs. To do so, we study the relationship between Eq. (5)
and

RPε ≡ max
u∈Rd

{u>Q̄u+ c̄>u | Āu ≤ b+Rε }. (18)

Let u− be an optimal solution for RP (Eq. (5)) and u+ be an optimal solution
for RPε (Eq. (18)). Denote by x− = P>u− and x+ = P>u+. Let x∗ be an optimal
solution for the original problem P (Eq. (1)). We will bound v(P) = x∗>Qx∗+c>x∗

between v(RP) = x−>Qx− + c>x− and v(RPε) = x+>Qx+ + c>x+, the two values
that are expected to be approximately close to each other.

From here onwards, we introduce an arbitrary δ > 0 which will appear in
statements about arbitrarily high probability: namely, most of our results will
hold with probability 1 − δ (or, occasionally, 1 − 2δ). For this to make sense, we
have to bound the projected dimension d from below, so that 1 − δ is a lower
bound to various expressions tending to 1 exponentially fast. The most stringent
such expression, obtained by union bound arguments, turns out to be 1−4(m4k+

2k + 1)e−Cε
2d, where C is a (positive) universal constant, k ≤ n is the rank of Q,

and ε ∈ (0, 1). The corresponding bound on d is

d ≥ ln(4(m+ 2k + 1)/δ)

Cε2 . (19)

Theorem 1 For any δ > 0, let d, ε, C be as in Eq. (19), and P ∈ Rd×n be a RP. Then

the following holds with probability at least 1− δ:

v(RP) ≤ v(P) ≤ v(RPε) + 3R2ε‖Q‖F +Rε‖c‖.

Proof The constant C is chosen as in Eq. (2). Note that by Prop. 1 x− is feasible
in Eq. (1). By Prop. 2 we have v(RP) ≤ v(P). Moreover, by Lemma 3 and Lemma

1, with probability at least 1− (8k + 4)e−Cε
2d, where k is the rank of Q, we have

the following two double-sided inequalities:

x∗>Qx∗ ≤ x∗>P>PQP>Px∗ + 3ε‖x∗‖2 ‖Q‖F ≤ x∗>P>PQP>Px∗ + 3R2ε‖Q‖F
c>x∗ ≤ c>P>Px∗ + ε‖c‖ ‖x∗‖ ≤ c>P>Px∗ +Rε‖c‖,

8 Claudia D’Ambrosio et al.

since ‖x∗‖ ≤ R (we note that the terms 8k and 4 in the probability estimation
expression is due to the application of the union bound to Lemma 3 and Lemma
1, respectively). Hence

v(P) = x∗>Qx∗ + c>x∗ ≤ x∗>P>PQP>Px∗ + c>P>Px∗ +Rε‖c‖+ 3R2ε‖Q‖F .

On the other hand, let û = Px∗; by Lemma 2, we have

AP>û = AP>Px∗ ≤ Ax∗ + ε‖x∗‖1 ≤ Ax∗ +Rε1≤ b+Rε1

with probability at least 1 − 4me−Cε
2d. Therefore, û is a feasible solution for

problem (18) with probability at least 1− 4me−Cε
2d. Due to the optimality of u+

for problem (18), it follows that

v(P) = x∗>Qx∗ + c>x∗ ≤ x∗>P>PQP>Px∗ + c>P>Px∗ +Rε‖c‖+ 3R2ε‖Q‖F
= û>PQP>û+ c>P>û+Rε‖c‖+ 3R2ε‖Q‖F
≤ u+>PQP>u+ + (Pc)>u+ +Rε‖c‖+ 3R2ε‖Q‖F
= x+>Qx+ + c>x+ +Rε‖c‖+ 3R2ε‖Q‖F
= v(RPε) +Rε‖c‖+ 3R2ε‖Q‖F

with probability at least 1 − 4(m + 2k + 1)e−Cε
2d, which is at least 1 − δ for

the chosen universal constant C (again, the term 4(m + 2k + 1) is due to the
application of the union bound to Lemma 2 and to the result above). Hence v(P) ≤
v(RPε) + 3R2ε‖Q‖F +Rε‖c‖, which concludes the proof. 2

The above result implies that the value of v(P) lies between v(RP) and v(RPε)
(plus some error term). We will now prove that the latter two values are not so
far from each other. In order to achieve this goal, we associate with each set S a
“fullness measure” full(S) > 0, defined as the maximum radius of any closed ball
contained in S.

We now let S be the feasible region of Eq. (1). By Assumption 1 on page 2, S
is full dimensional, which implies full(S) = r > 0 (see Fig. 1). We define S+

ε as
the feasible region of Eq. (18). The following lemma characterizes the fullness of
S+
ε with respect to r. Its proof extensively uses the fact that, for any row vector
a ∈ Rn, we have max‖u‖≤r a

>u = r‖a‖ (the equality condition in the Cauchy-
Schwartz inequality).

Lemma 4 For any δ > 0, let d, ε, C be as in Eq. (19), and P ∈ Rd×n be a RP. Then

S+
ε is full-dimensional with full(S+

ε) ≥ (1− ε)r with probability at least 1− δ.

Proof By Assumption 3, every row Ai of A has unit norm. For some x0 ∈ S, let
B(x0, r) ⊂ S be a closed ball in S of maximum radius r. Then for any x ∈ Rn with
‖x‖ ≤ r, we have x0 + x ∈ S, and hence A(x0 + x) = Ax0 + Ax ≤ b,. This implies
that

∀i ≤ m bi ≥ (Ax0)i + max
‖x‖≤r

Ai x = (Ax0)i + r‖Ai‖ = (Ax0)i + r. (20)

Hence Ax0 + r1 ≤ b or, equivalently, Ax0 ≤ b− r1. By Lemma 2, with probability
at least 1−δ, we have AP>Px0 ≤ Ax0 +Rε1 ≤ b+(Rε−r)1, where R is the radius

Random projections for quadratic programs 9

Fig. 1 Fullness of a set.

in Assumption 2. Let u ∈ Rn with ‖u‖ ≤ (1 − ε)r, then, by the above inequality,
we have:

∀i ≤ m (AP>(Px0 + u))i = (AP>Px0)i + (AP>u)i ≤ bi +Rε− r + (AP>)iu

= bi +Rε− r +AiP
>u.

By the Cauchy-Schwartz inequality we have

∀i ≤ m (AP>(Px0 + u))i ≤ bi +Rε− r + (1− ε)r‖AiP>‖.

By applying Eq. (2) m times and the union bound, we can see that, with probability

at least 1−2me−Cε
2d (which, by definition of δ, is also greater than 1−δ), we have

∀i ≤ m (1− ε)‖Ai‖ ≤ ‖AiP>‖ ≤ (1 + ε)‖Ai‖ = (1 + ε). (21)

We note that −r + (1− ε)r(1 + ε) = r(1− ε2)− r = −ε2r < 0. Hence

AP>(Px0 + u) ≤ b+ (Rε− r)1 + (1− ε)(1 + ε)r1 ≤ b+Rε1

with probability at least 1− δ. In other words, with probability at least 1− δ, the
closed ball B̄ centered at Px0 with radius (1 − ε)r is contained in {u | AP>u ≤
b + Rε1}. Therefore, by definition of S+

ε we have B
(
Px0, (1 − ε)r

)
⊆ S+

ε , which

implies that the fullness of S+
ε is at least (1− ε)r with probability ≥ 1− δ. 2

Now we will estimate the gap between the two objective functions of the prob-
lems Eq. (18) and Eq. (5) using the fullness measure. The next theorem states
that, as long as the fullness of the original polyhedron is large enough, the gap
between them is O(ε). This ensures that the bounds around the objective function
value of Eq. (1) derived in Thm. 1 are not themselves unbounded above and below.

10 Claudia D’Ambrosio et al.

Theorem 2 For any δ > 0, let ε ∈ (0, rR) and d, C be as in Eq. (19). Then with

probability at least 1− δ we have

σ2v(RPε) ≤ v(RP) ≤ v(RPε),

where σ = 1− R
r

ε
(1−ε)2 is assumed positive, r = full(S), and S is the feasible region

of P.

Proof The fact that v(RP) ≤ v(RPε) follows easily because RPε is a relaxation of RP.
We now tackle the nontrivial part of the proof. Let v be the optimal solution of RP
and w of RPε. We are going to prove the theorem by means of a scaling technique
which uses w to derive a solution w̄ feasible in RP. We shall first assume that b > 0
and later we shall prove that this assumption loses no generality. Because w is
feasible in RPε (see Eq. (18)),

∀i ≤ m Āiw ≤ bi +Rε.

Assuming b > 0, this is equivalent to

∀i ≤ m 1

bi
Āiw ≤ 1 +

Rε

bi
. (22)

We divide both sides of the above inequality by 1 + Rε/mini bi (i.e., the max-
imum value of 1 + Rε

bi
over i ≤ m). This allows us to define w̄ = ρw, where

ρ = 1
1+(Rε/mini bi)

(we note that 0 < ρ < 1). From Eq. (22) we deduce that
1
bi
Āiw̄ ≤ 1 ⇒ Āiw̄ ≤ bi for each i ≤ m. In other words, w̄ is feasible in RP (see

Eq. (5)). This yields

ρ2v(RPε) ≤ ρ2w>Q̄w + ρc̄>w = w̄>Q̄w̄ + c̄>w̄ ≤ v(RP) (23)

by optimality.
We now remove the assumption b > 0 by a change of coordinates which will

yield an equivalent system with positive right hand side b̂. By Lemma 4, with
probability 1− δ there is a ball B(u0, (1− ε)r) contained in S+

ε , the feasible region
of RPε. We define new variables u′ = u − u0. Replacing u by u′ + u0 in Eq. (18)
yields

∀i ≤ m Āiu
′ ≤ bi +Rε− Āiu0.

We let b̂ = b− Āu0. Because B(u0, (1− ε)r) is contained in S+
ε , we have:

∀i ≤ m max{Āiu′ | ‖u′‖ ≤ (1− ε)r} ≤ b̂i +Rε. (24)

We now observe that max{Āiu′ | ‖u′‖ ≤ (1 − ε)r} = ‖Āi‖(1 − ε)r for every i ≤
m, since the maximum of Āiu

′ is achieved when u′ is parallel to Āi and on the
boundary of B(u0, (1 − ε)r). By Eq. (2), for all i ≤ m we have ‖Āi‖ = ‖AiP>‖ =
‖PAi‖ ≥ (1−ε)‖Ai‖ (note that the probability of this event was already accounted
for in Lemma 4, Eq. (21); so, conditionally to that assumption, the probability of
its holding in the context of this proof is 1). Since ‖Ai‖ = 1 by Assumption 3, we
conclude that ‖Āi‖ ≥ 1− ε. By Eq. (24) we have ∀i ≤ m (1− ε)2r −Rε ≤ b̂i. This
yields

min
i
b̂i ≥ (1− ε)2r −Rε. (25)

Random projections for quadratic programs 11

After the change of variables, ρ becomes 1

1+(Rε/mini b̂i)
. We can now use the lower

bound in Eq. (25) on mini b̂i and derive σ = 1− R
r

ε
(1−ε)2 . Note that the condition

σ > 0 is equivalent to (1− ε)2r − Rε > 0, which ensures that b̂i > 0 for all i ≤ m.
Moreover, if we consider that (1− ε)2 < 1 for all ε > 0, we can obtain from σ > 0
an upper bound on ε < r

R .

Lastly, we take care of the effect of the variable change on Eq. (23). We let w′

be the optimal solution of RPε after the variable change, so that w = w′ + u0. For
any i ≤ m, we have r(1−ε)2−Rε ≤ b̂i. By definition of σ, we have r(1−ε)2 = Rε

(1−σ) ;

therefore

Rε

(1− σ)
−Rε ≤ b̂i ⇔ σRε ≤ (1− σ)b̂i ⇔ σ(b̂i +Rε) ≤ b̂i.

Again by definition, Āiw
′ ≤ b̂i+Rε for any w′ = w−u0 and w feasible for Eq. (18).

Therefore

Āiσw
′ ≤ σ(b̂i +Rε) ≤ b̂i.

We define w̃ = σw′ + u0 and note that it is feasible since Āiw̃ = σĀiw
′ + Āiu0 ≤

b̂i + Āiu0 = bi. We therefore replace w in Eq. (23) by w′ + u0 and ρ by σ (since
σ ≤ ρ), which yields:

σ2v(RPε) ≤ σ2(w′)>Q̄w′ + σc̄>w′ + u>0 Q̄u0 + c̄>u0 = w̃>Q̄w̃ + c̄>w̃ ≤ v(RP),

which concludes the proof. 2

We remark that the assumption σ > 0 holds whenever 0 < ε < max
(
r
4R ,

1
2

)
.

Corollary 1 For any δ > 0, let ε ∈ (0, rR), σ be as above, and d, C be as in Eq. (19).
Then, with probability at least 1− 2δ, we have

v(RP) ≤ v(P) ≤ 1

σ2
v(RP) + 3R2ε‖Q‖F +Rε‖c‖.

Proof By Theorem 1, with probability at least 1− δ:

v(RP) ≤ v(P) ≤ v(RPε) + 3R2ε‖Q‖F +Rε‖c‖.

On the other hand, by Theorem 2, with probability at least 1− δ:

v(RPε) ≤
1

σ2
v(RP).

The claim then follows by the union bound. 2

4.1 Convex QPs

In this section we assume that Q is negative semidefinite, and hence that the
problem P in Eq. (1) is convex, since it maximizes a concave function subject to
linear constraints.

12 Claudia D’Ambrosio et al.

We first recall a duality result in QP theory [5]. The Dorn dual of the QP P

(Eq. (1)) is as follows:

D ≡ min
y,v
−y>Qy + b>v

A>v −Qy = c

v ≥ 0,

 (26)

where y, v ∈ Rn. Similarly, we define the Dorn dual of the projected problem RP

(Eq. (5)):

RD ≡ min
z,v
−z>Q̄z + b>v

Ā>v − Q̄z = c̄

v ≥ 0,

 (27)

where z ∈ Rd and v ∈ Rn.

Theorem 3 Let ε ∈ (0, 1), d be the projected dimension, C a universal constant,

Q, c,A, k,R be as above, x∗ be a solution of P and (ẑ, v̂) be a solution of RD. Then,

with probability at least 1− 4(m+ 2k + 1) e−Cε
2d, we have

v(RP) ≤ v(P) ≤ v(RP) + E,

where E = 3εR2‖Q‖F + εR‖c‖2 + ε‖x∗‖2 min(‖A>v̂‖1, ‖v̂‖1).

Proof First, by Prop. 2 we have v(RP) ≤ v(P). Now let x∗ be an optimum of P.
Let u′ = Px∗: we are going to show that u′ is approximately optimal for RP. We
define the auxiliary problem

RP′ ≡ max
u∈Rd

{u>Q̄u+ c̄>u | Āu ≤ b+A(P>u′ − x∗) }, (28)

and its Dorn dual

RD′ ≡ min
v≥0,z∈Rd

{−z>Q̄z + (b> +A(P>u′ − x∗))v | Ā>v − Q̄z = c̄}. (29)

By construction, u′ is feasible for RP′, which implies

(u′)
>
Q̄u′ + c̄>u′ ≤ v(RP′). (30)

We now bound the left hand side of Eq. (30) from below using Lemmata 1 and
3 and the right hand side from above using Dorn’s QP duality, with probability

exceeding 1 − 4(2k + 1)e−Cε
2d due to the application of the union bound to the

two lemmata. For the lower bound, we have:

(u′)
>
Q̄u′ + c̄>u′ = (x∗)

>
P>PQP>Px∗ + (Pc)>(Px∗)

≥ (x∗)
>
Qx∗ + c>x∗ − 3εR2‖Q‖F − εR‖c‖

= v(P)− 3εR2‖Q‖F − εR‖c‖.

For the upper bound, by weak duality we have v(RP′) ≤ v(RD′). Let (ẑ, v̂) be an
optimum of RD. Since RD′ has the same feasible region as RD, (ẑ, v̂) is feasible for
RD′. Hence

v(RD′) ≤ −(ẑ)>Q̄ẑ + b>v̂ +A(P>u′ − x∗)v̂ = v(RD) +A(P>u′ − x∗)v̂.

Random projections for quadratic programs 13

By strong duality, v(RD) = v(RP), hence

v(RD′) ≤ v(RP) +A(P>u′ − x∗)v̂.

We obtain

v(P)− E1 ≤ (u′)
>
Q̄u′ + c̄>u′ ≤ v(RP′) ≤ v(RD′) ≤ v(RP) + E2,

where E1 = 3εR2‖Q‖F + εR‖c‖ and E2 = A(P>u′ − x∗)v̂, whence

v(RP) ≤ v(P) ≤ v(RP) + E1 + E2.

We remark that E2 = 〈A>v̂ , P>u′ − x∗〉. By Hölder’s inequality,

E2 ≤ ‖A>v̂‖1 ‖P>u′ − x∗‖∞.

By Lemma 2 applied with In replacing the symbol A in the lemma, every compo-

nent of P>u′−x∗ is bounded above by ε‖x∗‖2 with probability at least 1−4me−Cε
2d,

hence E2 ≤ ε‖x∗‖2‖A>v̂‖1 (∗). We can now re-write E2 as 〈v̂ , A(P>u′−x∗)〉. Again
by Hölder’s inequality, we have

E2 ≤ ‖v̂‖1 ‖A(P>u′ − x∗)‖∞.

Note that ‖A(P>u′ − x∗)‖∞ = maxi |〈Ai, P>u′ − x∗〉| ≤ maxi ‖Ai‖ ‖P>u′ − x∗‖,
where the last inequality is Cauchy-Schwartz. Note also that all the rows of A
have unit norm; again by Lemma 2 applied with In, every component of P>u′−x∗

is bounded above by ε‖x∗‖2 with probability at least 1 − 4me−Cε
2d, hence E2 ≤

ε‖x∗‖2‖v̂‖1. So ew can take the minimum of the two upper bounds for E2, as
claimed. The probability cited in the statement again holds by the union bound.
2

Although the bound in Thm. 3 only applies to convex QPs (convexity is key in
Dorn’s proof [5]), the error appears additively in the bound expression, rather than
multiplicatively as in the case of Thm. 2. This is a more satisfactory situation in
view of Thm. 1.

4.2 Critique of the error bounds

The bounds derived in Thm. 1, Cor. 1, and Thm. 3 all depend on the error term

Ê = Rε(3R‖Q‖F + ‖c‖2).

Let λmax be the largest eigenvalue of Q and cmax = ‖c‖∞. Then ‖Q‖F ≤ λmax
√
n

and ‖c‖2 ≤ cmax
√
n. If we suppose that R, λmax, and cmax are fixed, then Ê =

O(ε
√
n). If we want Ê to be O(1), we need ε = O(1√

n
), which, by the lower bound

on d given in the statement of Thm. 1, implies that d = Ω(n ln(m/δ)), i.e. the
projected dimension should actually be greater than the original dimension for the
bounds to be tight. Our proposed projection framework should therefore perform
better on instances for which ‖Q‖F �

√
n and ‖c‖2 �

√
n.

14 Claudia D’Ambrosio et al.

We now write Ê as a function of v(P). First, we remark that the only purpose
of R is to bound the value of ‖x∗‖2, where x∗ is an optimal solution of P . We can
therefore rewrite Ê as follows:

Ê = 3ε‖x∗‖22‖Q‖F + ε‖c‖2‖x∗‖2.

Letting θ∗ be the angle between x∗ and c, we can rewrite the second term as
ε‖c‖2‖x∗‖2 = ε

cos θ∗ c
>x∗, as long as θ∗ 6= π

2 . For a general QP, however, we can

assume that this holds almost surely. Similarly, let α∗ be the angle between x∗(x∗)>

and Q in the Euclidean space Rn×n with the scalar product 〈A,B〉 = trace(A>B).
This yields:

cosα∗‖x∗(x∗)>‖F ‖Q‖F = 〈x∗(x∗)>, Q〉.

We remark that ‖ · ‖F is the norm associated with 〈·, ·〉 in Rn×n. Again, we
can assume that, for a general QP, α∗ 6= π

2 almost surely. We also have that

〈x∗(x∗)>, Q〉 = (x∗)>Qx∗ and ‖x∗(x∗)>‖F = ‖x∗‖22, which yields:

‖x∗‖22‖Q‖F =
(x∗)>Qx∗

cosα∗
.

Consequently,

Ê =
3ε

cosα∗
(x∗)

>
Qx∗ +

ε

cos θ∗
c>x∗.

For instances where cosα∗ and cos θ∗ have the same sign, we conclude that

Ê ≤ 3εmax

(
1

| cosα∗| ,
1

| cos θ∗|

)
v(P).

We observe that, in this case, Ê is now written multiplicatively w.r.t. v(P), and
that the error coefficient 3εmax

(
1

cosα∗ ,
1

cos θ∗

)
is independent of the dimension.

Although this analysis is only valid if sgn cosα∗ = sgn cos θ∗, and does not
take the multiplicative error factor 1/σ2 into account, it shows that bounds can
be slack if the solution (or its Gramian) defines angles close to π/2 with c (or Q).
It also shows that, for families of instances of increasing sizes where these cosines
are always close to 1, the error Ê should not increase with size. We note that the
algorithms used to randomly generate the instances tested in Sect. 5 do not take
α∗, θ∗ into account, which could contribute to explain the results trend.

5 Computational experiments

Most papers about RPs are entirely theoretical, although several exceptions exist
(e.g. [21,4,24]). RPs are also used in practice in a variety of application settings [3,
15,27,17]. In this section, we discuss computational experiments which showcase
the applicability of the techniques presented above.

All tests were carried out on a 4-CPU machine with 64GB RAM, each CPU of
which has 8 cores (Intel Xeon CPU E5-2620 v4@2.10GHz). We used Python 3.7
as an interface to the QP barrier algorithm from IBM-ILOG CPLEX 12.8 [7] with
default configuration. The QP barrier algorithm in CPLEX was always given the
origin as a starting point (aside from the experiments in Sect. 5.7.2).

Random projections for quadratic programs 15

We fixed ε = 0.1 in all experiments, and used the formula d = 1
ε2 ln(n) to

compute the projected dimension. While our theoretical results require d to be
bounded below by a function of ln(m), the fact that m,n are linked by a polynomial
relationship in most cases of interest (including those studied in this paper) makes
this difference negligible. This choice was made because, after some preliminary
tests, it seemed to strike the better compromise between CPU advantage and
solution quality.

5.1 Sparse RPs

Although we developed our theory for dense Gaussian RPs, in practice one can
decrease computational costs considerably by exploiting sparsity [1,11].

All of the results of this paper actually hold (unchanged) also for sub-gaussian

RPs [22, §9.3.1]. After some preliminary testing with various types of dense and
sparse sub-gaussian RPs, we elected to use d×n matrices where each component is
sampled from N(0, σ̄), where the standard deviation is σ̄ = 1√

dγ
, with some given

probability γ ∈ (0, 1), which defines the density of the RP matrix. Since, to the
best of our knowledge, there is no proof in the literature that these matrices are
valid RPs, we provide one here.

Proposition 3 Given n ∈ N and d = O(1
ε2 lnn), the set of d× n matrices P = (Pij)

where each Pij is sampled from N(0, σ̄) with probability γ, and is equal to zero with

probability 1− γ, provides a valid random projection.

Proof We show that
√
dP has subgaussian isotropic rows with zero mean, i.e. for

each row ρ of
√
dP we have E(ρ>ρ) = In. The first property occurs because each

component of ρ is either zero or is sampled from N(0, 1/
√
γ), which has zero mean

and has tail bounded by a negative exponential function [22, Ex. 2.5.8]. We now
prove isotropy: if i 6= j then E(ρiρj) = 0 because the two components are sam-
pled independently. Now observe that any component of

√
dγP is distributed as

B(γ)N(0, 1), where B(γ) is a Bernoulli distribution with parameter γ. Finally, if
i = j we have

E(ρ2i) = E(ρ2i)− E2(ρi) because E(ρi) = 0

= Var(ρi) =
Var(B(γ)N(0, 1))

γ
.

By independence we have that the variance of the product above is equal to:

Var(ρi) = E[B(γ)]2Var(N(0, 1)) + E[N(0, 1)]2Var(B(γ)) + Var(B(γ))Var(N(0, 1))

= γ2 + γ(1− γ) = γ.

Hence E(ρ2i) = 1 as claimed. Now the result follows by [22, §9.3.1]. 2

The density of the RP was always fixed at 0.2 in all experiments.

16 Claudia D’Ambrosio et al.

5.2 Random instances

Our first computational test is on randomly generated feasible instances of Eq. (1)
with Q negative semidefinite. While our projection technique is independent of the
convexity of the objective function, we make this assumption in order to compute
guaranteed global maxima in acceptable CPU times for comparison purposes. Our
theoretical analysis is also mostly independent of convexity, aside from those bound
results for which convexity is explicitly assumed (e.g. Thm. 3).

We consider three sets of random instances: random, pairs, cuberot. In all of
them, the n × n matrix Q defining the quadratic form is generated starting with
a negative identity matrix −In. With probability given by a prescribed density
parameter dens, we populate the off-diagonal upper-triangular entries with samples
from a uniform distribution on [− 1

n
√
n
, 1
n
√
n

] (the lower-triangular part is copied

from the upper one to make Q symmetric). This yields the negative of a random
sparse diagonally dominant matrix, which is negative definite. Each component of
the vector c defining the linear part of the objective function is sampled from a
uniform distribution on [0, 1] and then scaled by ‖c‖2 to make it a unit vector. The
three instance sets differ in the random generation of A, b defining the feasible set
{x | Ax ≤ b}.

Here are the details about the three generation methods.

1. random: A given number q of vectors Ai are sampled (componentwise) uniformly
from [0, 1]n, sparsified so that each vector has density dens, and scaled so that
their `2 norm is in [0.5, 0.6]; each vector defines a half-space Aix ≤ ‖Ai‖22
containing the origin [14, §2], and having a defining hyperplane which is at
distance ‖Ai‖2 from the origin. Polyhedra sampled this way are not guaranteed
to be bounded, nor is their circumscribing sphere radius easy to compute. The
number of constraints is m = q.

2. pairs: Similar to random, but each vector Ai gives rise to two parallel half-
spaces: Aix ≤ ‖Ai‖22 and Aix ≥ −‖Ai‖22, which, together, define a split contain-
ing the origin. Polyhedra sampled this way are not guaranteed to be bounded,
nor is their circumscribing sphere radius easy to compute. The number of con-
straints is m = 2q.

3. cuberot: Similar to random, but intersected with a randomly rotated hypercube
centered at the origin with half-side length R/

√
n, where R is a given scalar.

These polyhedra are guaranteed to be bounded, and have a circumscribing
sphere radius equal to R. The number of constraints is m = n+ q.

All our randomly sampled polyhedra turned out to be bounded in the direction of
the objective function.

We generated 48 instances for each of the above types, for:

– number of variables n ∈ {1000, 2000, 3000, 4000};
– constraint generation parameter q ∈ {100, 1000};
– generation density dens ∈ {0.1, 0.9};
– circumscribing sphere radius R ∈ {12 , 1, 10}.

To help give an overall idea of how the number of constraints m changes with the
number of variables n, Table 1 reports the number of instances having n variables
and m constraints in each instance set.

Random projections for quadratic programs 17

m
n d random pairs cuberot

6 1000 691 100 200 2100
6 1000 691 1000 2000 3000
6 2000 760 100 200 4100
6 2000 760 1000 2000 5000
6 3000 801 100 200 6100
6 3000 801 1000 2000 7000
6 4000 829 100 200 8100
6 4000 829 1000 2000 9000

Table 1 Number of instances with given number of variables and constraints in each test set.

5.3 Portfolio optimization instances

We consider a realistic variant of the classic portfolio optimization problem [13]. Its
objective function is a scalarized version of risk minimization and return maximiza-
tion. Short-selling is allowed by considering decision variables in [−1, 1] (instead
of the more standard [0, 1]). Furthermore, we limit the investment to q given “in-
vestment areas” (e.g. start-ups, tech companies, emerging countries, micro-credit,
and so on), defined as sets of shares T1, . . . , Tq, each of which may not be allocated
more than τ1, . . . , τq fraction of budget, yielding constraints:

∀p ≤ q
∑
j∈Tp

xj ≤ τp. (31)

The unbiased estimator for a covariance matrix is 1
n−1

∑
j≤n(xj − x̄)(xj − x̄)>

(where x̄ is the sample mean of the xj), i.e. of a random variable Z = X − E(X)
with zero mean and samples zj = xj− x̄. This implies that

∑
j zj = 0, which means

that the rank of the estimator is n− 1. We generate random n× (n− 1) matrices
Y with components sampled uniformly from [0, 1], and corresponding covariance
matrices as Q = Y Y > with rank n − 1. The mean returns are random vectors in
[0, 1]n. The constraints are: −1 ≤ x ≤ 1, −1 ≤

∑
j xj ≤ 1, and Eq. (31).

We generated 24 portfolio instances, for:

– number of variables n ∈ {1000, 2000, 3000, 4000};
– investment areas q ∈ {100, 300, 500, 600, 700, 900}.

Table 2 below gives the number of variables and constraints for our instance set.

ID 1 2 3 4 5 6 7 8 9 10 11 12
n 1000 1000 1000 1000 1000 1000 2000 2000 2000 2000 2000 2000
d 691 691 691 691 691 691 760 760 760 760 760 760
m 2102 2302 2502 2602 2702 2902 4102 4302 4502 4602 4702 4902

ID 13 14 15 16 17 18 19 20 21 22 23 24
n 3000 3000 3000 3000 3000 3000 4000 4000 4000 4000 4000 4000
d 801 801 801 801 801 801 829 829 829 829 829 829
m 6102 6302 6502 6602 6702 6902 8102 8302 8502 8602 8702 8902

Table 2 Number of variables and constraints on the portfolio instance set.

18 Claudia D’Ambrosio et al.

5.4 Results

We discuss results for QPs over random polytopes and portfolio instances sepa-
rately. Our fundamental performance measures are ratios.

The objective function ratio measures the error between the optimal objective
function value f∗ = v(P) of the original problem P and the optimal objective
function value f̄ = v(RP) of the projected problem. This error is scaled so it is
always greater than or equal to zero:

r =
|f∗ − f̄ |
|f∗| .

Clearly, better performances yield r values closer to zero.
The CPU ratio c = CPURP/CPUP measures the ratio between the time taken

to solve the projected instance RP, and the time taken to solve the original one P.
Clearly, better performances yield c values closer to zero.

By “solve”, we mean the following:

– in the case of the original instances, the time taken to pass it to CPLEX, and
solve it;

– in the case of the projected instances, the time taken to project the instance
data, pass it to CPLEX, solve it, and compute the retrieved solution (see
Prop. 1).

5.4.1 Random QPs

We first report aggregate results for r, c,CPUP in Table 3. We immediately note

all random
r c CPUP r c CPUP

mean 0.625 0.44 176.8 0.659 0.47 42.58
stdev 0.197 0.39 310.26 0.144 0.49 43.11
min 0.251 0.07 2.35 0.402 0.07 2.35
max 1.593 1.93 2082.39 0.813 1.93 186.15

pairs cuberot
r c CPUP r c CPUP

mean 0.634 0.43 60.42 0.582 0.43 427.39
stdev 0.174 0.36 59.49 0.249 0.31 434.78
min 0.251 0.07 3.05 0.266 0.09 18.82
max 0.944 1.32 259.07 1.593 1.33 2082.39

Table 3 Aggregate results for QPs over random polytopes.

that the cuberot instances globally take more time than the other classes: this is
due to their large number of constraints.

A finer analysis shows that f∗ < f̄ for two of the cuberot instances with
R = 0.5, due to a solver failure in computing f∗ (this is further discussed in
Sect. 5.7.1 below). If we require R ≥ 1 we obtain the results (for r and c only) in
Table 4. We also observed that sparsity does not significantly impact the r statistic,
but lowers c by around 20% on average.

Random projections for quadratic programs 19

all random pairs cuberot
r c r c r c r c

mean 0.606 0.44 0.660 0.47 0.604 0.43 0.555 0.42
stdev 0.161 0.39 0.144 0.48 0.169 0.36 0.150 0.29
min 0.251 0.07 0.402 0.07 0.251 0.07 0.269 0.09
max 0.902 1.80 0.813 1.80 0.902 1.32 0.726 1.23

Table 4 Aggregate results for r, c for QPs over random polytopes with R ≥ 1.

The results in Tables 3-4 are very good w.r.t. the CPU time (see Fig. 2). The
maximum values of c > 1 (which occur when the time taken to solve the original
problem is smaller than the time taken to solve the projected one) are limited to
the smallest instances, i.e. some instances with n = 1000, where the projection
does not significantly decrease the number of variables. If restricted to instances
with n ≥ 2000, the maximum over c is 0.77. The objective function values of the
projected problems, however, are not very close to those of the original problem.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1000 2000 3000 4000

avg
min
max

stdev

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

1000 2000 3000 4000

avg
min
max

stdev

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1000 2000 3000 4000

avg
min
max

stdev

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

1000 2000 3000 4000

avg
min
max

stdev

Fig. 2 Mean, standard deviation, minimum, maximum values of c versus n, for all instances
(top left), random (top right), pairs (bottom left), cuberot (bottom right).

We now refine the analysis of r. We plot its mean, standard deviation, minimum
and maximum versus n in Fig. 3. The mean of r appears to increase logarithmi-

20 Claudia D’Ambrosio et al.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1000 2000 3000 4000

avg
min
max

stdev

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

1000 2000 3000 4000

avg
min
max

stdev

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1000 2000 3000 4000

avg
min
max

stdev

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1000 2000 3000 4000

avg
min
max

stdev

Fig. 3 Mean, standard deviation, minimum, maximum values of r versus n, for all instances
(top left), random (top right), pairs (bottom left), cuberot (bottom right).

cally with n. Since the projected problem RP has d variables, and d = O(ln(n)),
this seems to imply that the objective function error for this random projection
increases with the number d of variables of the projected problem. For random in-
stances the standard deviation is small. For pairs instance it is large and regular.
For cuberot instances it is large and irregular. We remark that this logarithmic
behaviour is not due to the scaling of r: a similar behaviour can be noted also for
plots of |f∗− f̄ |. In general, the type of concentration of measure phenomena that
are more helpful are those where the error decreases as the number of variables
increases (e.g. [24]). Unfortunately, it seems that the application of RPs to QPs
does not exhibit this property; some possible theoretical reasons are provided in
Sect. 4.2.

5.5 Portfolio optimization with short sells

We first report aggregate results for r, c in Table 5. Again, the results in Table
5 are good w.r.t. c but not r. Again, we refine the analysis of c and r: we plot
their mean, standard deviation, minimum and maximum versus n in Fig. 4-5. We
observe the same behaviour as with random QPs: r appears to be proportional to
the number of variables of the projected problem (see Sect. 4.2).

Random projections for quadratic programs 21

r c CPUP

mean 0.478 0.83 66.78
stdev 0.242 0.42 54.29
min 0.065 0.30 7.36
max 0.744 1.66 157.74

Table 5 Aggregate results for portfolio instances.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1000 2000 3000 4000

avg
min
max

stdev

Fig. 4 Mean, standard deviation, minimum, maximum values of c versus n for portfolio
optimization instances.

5.6 Comparison with the results from [23]

In terms of objective function value, the results in Tables 3-4 are worse than those
obtained in [23]. Although in [23] we do not solve the same problem, perform the
same analysis, use the same random generation techniques, or report the same
metric, a short comparative discussion is pertinent insofar as in [23] we also dis-
cussed results for randomly projected QPs over polyhedra (and a single unit ball
constraint), and the reported results were better.

The main difference is that the results from [23] displayed an infeasibility error
w.r.t. the norm constraint. When the retrieved optima were scaled back to be
feasible w.r.t. the norm constraint, the objective function values corresponding to
the scaled retrieved solutions had errors of similar magnitudes to those reported
here.

22 Claudia D’Ambrosio et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1000 2000 3000 4000

avg
min
max

stdev

Fig. 5 Mean, standard deviation, minimum, maximum values of r versus n for portfolio op-
timization instances.

5.7 Practical usefulness

Based on our computational experiments, our techniques are shown to provide an
effective way to compute a good feasible point. We see at least two scenarios where
our proposed techniques might be helpful: (i) when the QP at hand is so large
that no off-the-shelf solver will be able to provide any output at all; (ii) in order to
provide a good starting point for further improvement. Since the time difference
between solving the projected and the original problem increases with size (in
favor of the projected problem), there is increasingly more time, w.r.t. solving the
original problem, to improve the retrieved solution from the projected problem.

5.7.1 Finding a feasible solution to the original QP

The CPLEX barrier solver failed to solve two among the random instances we
generated. The two instances are:

1. cuberot, n = 3000, m = 7000, dens = 0.9, R = 0.5;
2. cuberot, n = 4000, m = 9000, dens = 0.9, R = 0.5.

These are challenging instances because of their large size: the first has around
3.38M nonzeroes in the lower triangle of Q and around 50M nonzeroes in the
lower triangle of AA>. The second instance has around 5.38M nonzeroes in the
lower triangle of Q and around 84M nonzeroes in the lower triangle of AA>. In
both of these cases, the solver reported primal-dual infeasibility. On the other
hand, the projected instances were solved to optimality and produced a feasible
point for the original instance (by Prop. 2).

Random projections for quadratic programs 23

5.7.2 Speeding up the solver by a good feasible starting point

Some improvement results (the scenario (ii) above) were obtained by running
CPLEX on the original problem using the retrieved solution of the projected prob-
lem as starting point, and a slightly relaxed convergence criterion: for the largest
and densest instances we were able to derive the optimal solution this way (pro-
jection then improvement) in globally less time than with a straight CPLEX solve
of the original problem. The results, in terms of c = CPURP/CPUP (where CPURP

includes the construction of the projected formulation, its solution, the retrieval
of the corresponding feasible point in the original formulation, and the solution of
the original formulation from this point) are given in Table 6.

Instance set n m R c c0.01
cuberot 4000 8100 0.5 0.87 0.63
cuberot 4000 8100 1.0 0.92 0.78
cuberot 4000 8100 10.0 0.89 0.78
cuberot 4000 9000 0.5 0.93 0.80
cuberot 4000 9000 1.0 0.92 0.77
cuberot 4000 9000 10.0 0.80 0.56
pairs 4000 2000 0.5 0.76 0.68
pairs 4000 2000 1.0 0.72 0.63
pairs 4000 2000 10.0 0.79 0.71
random 4000 1000 0.5 0.77 0.70
random 4000 1000 1.0 0.66 0.55
random 4000 1000 10.0 0.78 0.72

Table 6 Performance of projection, solution and improvement.

We also ran tests using the formula d = C
ε2 ln(n) for different values of C between

0.01 and 1.3. The trend shows that the smallest d is, the better. The results of c

for C = 0.01 are shown in the corresponding column (labelled c0.01) of Table 6.
We do not report quality statistics because the improvement phase always

found the same optimum as the original problem (with the same optimal objective
function value), which is unsurprising, since the improvement phase actually solves
the original problem.

5.8 Practical limitations

We would also like to warn readers on two important features of typical QPs which
adversely impact our methodology. Many QPs have a quadratic form based on Q

being a diagonal matrix. Typically such matrices are extremely sparse, whereas
our RP techniques would yield smaller, but denser, projected matrices Q̄, which
make the projected QPs harder to solve. Secondly, many QPs have variable bounds
that most solvers can deal with directly. When projected, however, simple bounds
might turn into dense linear constraints, which impact most QP solvers adversely:
and we have not yet found a QP projection technique that can treat variable
bounds satisfactorily. Thus, many QPs might fail to benefit from our proposed
techniques because their original form is amenable to solver simplifications which
their projected forms are not.

24 Claudia D’Ambrosio et al.

5.9 Different scalings: a conjecture

Based on the intuitive idea that quadratic terms contribute larger errors than
linear ones, we propose to use different scalings for the RP in the quadratic term
and in the linear term. Consider an RP P ∼ N(0, 1√

d
)dn and the projected objective

function
d

n
x>P>PQP>Px+ c>P>Px.

We set u = Px, yielding
d

n
u>PQP>u+ c>P>u.

Motivated by [28, Cor. 7], which suggests that 1
nPP

> ≈ Id with high probability,

we tried to prove that 1
nu
>PQP>u is somehow “close” to x>Qx, and, so far,

failed. We, however, went ahead and computed aggregated results for random
QPs (Sect. 5.2) and portfolio instances (Sect. 5.3), given in Table 7. The plot of

all random pairs cuberot
r c r c r c r c

mean 0.302 0.44 0.094 0.48 0.268 0.41 0.543 0.42
stdev 0.282 0.39 0.059 0.49 0.256 0.35 0.258 0.31
min 0.006 0.06 0.006 0.06 0.052 0.07 0.237 0.06
max 1.596 1.96 0.244 1.96 0.934 1.34 1.596 1.31

Portfolio
r c

mean 0.273 0.86
stdev 0.056 0.41
min 0.121 0.33
max 0.349 1.69

Table 7 Aggregate results for r, c for QPs over random polytopes (left) and portfolio opti-
mization problems (right) with different scaling for the quadratic term.

mean, standard deviation, minimum and maximum versus n for QPs over random
polytopes is given in Fig. 6. The corresponding plot for portfolio optimization is
given in Fig. 7. It is clear that, with the exception of the cuberot instance class,
weighing the quadratic term by d

n is beneficial in practice for the application of
RPs to QPs. In our attempts to derive a corresponding analysis we also tried a
few other different weights, but these failed to deliver results as promising as those
obtained with d

n . Currently, we do not know if these improved results have occurred
by chance, or because of a deeper reason. We leave this as an open question for
future research.

6 Conclusion

In this paper we discussed the application of RPs to QPs. It turns out that it is
possible to solve randomly projected QPs and obtain optima whose value approxi-
mates the optimal value of the original problem, in far less time. Theoretically, the
error bounds for the approximation are not unconditionally good, unfortunately.
Empirically, the scaled objective value difference between original and projected
problem shows a logarithmic increase in function of the number of variables of the
original problem, which is also not good. The CPU time, however, shows a loga-
rithmic decrease. The technique is, however, very useful in cases where the instance
size is so large that the solver fails. In such cases, we show that we can successfully

Random projections for quadratic programs 25

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1000 2000 3000 4000

avg
min
max

stdev

 0

 0.05

 0.1

 0.15

 0.2

 0.25

1000 2000 3000 4000

avg
min
max

stdev

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1000 2000 3000 4000

avg
min
max

stdev

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

1000 2000 3000 4000

avg
min
max

stdev

Fig. 6 Mean, standard deviation, minimum, maximum values of r versus n, for all instances
(top left), random (top right), pairs (bottom left), cuberot (bottom right), using a different
scaling for the quadratic term.

compute good feasible points, and use them as starting point to actually solve the
instance to optimality.

Acknowledgements

We are grateful to two anonymous referees for many excellent suggestions and
insights.

References

1. D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66:671–687, 2003.

2. N. Ailon and B. Chazelle. Approximate nearest neighbors and fast Johnson-Lindenstrauss
lemma. In Proceedings of the Symposium on the Theory Of Computing, volume ’06 of
STOC, Seattle, 2006. ACM.

3. C. Boutsidis, A. Zouzias, and P. Drineas. Random projections for k-means clustering.
In Advances in Neural Information Processing Systems, NIPS, pages 298–306, La Jolla,
2010. NIPS Foundation.

26 Claudia D’Ambrosio et al.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1000 2000 3000 4000

avg
min
max

stdev

Fig. 7 Mean, standard deviation, minimum, maximum values of r versus n.

4. S. Dasgupta. Experiments with random projection. In Proceedings of the 16th Conference
on Uncertainty in Artificial Intelligence, pages 143–151, San Francisco, 2000. Morgan
Kaufman.

5. W. Dorn. Duality in Quadratic Programming. Quarterly of Applied Mathematics,
18(2):155–162, 1960.

6. N. Gould and P. Toint. A Quadratic Programming bibliography. Technical Report 2000-1,
RAL Numerical Analysis Group, oct 2001.

7. IBM. ILOG CPLEX 12.8 User’s Manual. IBM, 2017.
8. P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of

dimensionality. In Proceedings of the Symposium on the Theory Of Computing, volume 30
of STOC, pages 604–613, New York, 1998. ACM.

9. P. Indyk and A. Naor. Nearest neighbor preserving embeddings. ACM Transactions on
Algorithms, 3(3):Art. 31, 2007.

10. W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space.
In G. Hedlund, editor, Conference in Modern Analysis and Probability, volume 26 of
Contemporary Mathematics, pages 189–206, Providence, RI, 1984. AMS.

11. D. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. Journal of the ACM,
61(1):4, 2014.

12. L. Liberti and K. Vu. Barvinok’s naive algorithm in distance geometry. Operations Re-
search Letters, 46:476–481, 2018.

13. H. Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.
14. J. May and R. Smith. Random polytopes: their definition, generation and aggregate

properties. Mathematical Programming, 24:39–54, 1982.
15. S. Paul, C. Boutsidis, M. Magdon-Ismail, and P. Drineas. Random projections for lin-

ear support vector machines. ACM Transactions on Knowledge Discovery from Data,
8(4):22:1–22:25, 2014.

16. M. Pilanci and M. Wainwright. Randomized sketches of convex programs with sharp
guarantees. In International Symposium on Information Theory (ISIT), pages 921–925,
Piscataway, 2014. IEEE.

17. M. Pilanci and M. Wainwright. Newton sketch: A linear time optimization algorithm with
linear-quadratic convergence. SIAM Journal on Optimization, 27(1):205–245, 2017.

Random projections for quadratic programs 27

18. J. Shim. A survey of quadratic programming applications to business and economics.
International Journal of Systems Science, 14(1):105–115, 1983.

19. S. Vavasis. Quadratic programming is in NP. Information Processing Letters, 36:73–77,
1990.

20. S. Vempala. The Random Projection Method. Number 65 in DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. AMS, Providence, RI, 2004.

21. S. Venkatasubramanian and Q. Wang. The Johnson-Lindenstrauss transform: An empirical
study. In Algorithm Engineering and Experiments, volume 13 of ALENEX, pages 164–173,
Providence, RI, 2011. SIAM.

22. R. Vershynin. High-dimensional probability. CUP, Cambridge, 2018.
23. K. Vu, P.-L. Poirion, C. D’Ambrosio, and L. Liberti. Random projections for quadratic

programs over a Euclidean ball. In A. Lodi and et al., editors, Integer Programming and
Combinatorial Optimization (IPCO), volume 11480 of LNCS, pages 442–452, New York,
2019. Springer.

24. K. Vu, P.-L. Poirion, and L. Liberti. Random projections for linear programming. Math-
ematics of Operations Research, 43(4):1051–1071, 2018.

25. K. Vu, P.-L. Poirion, and L. Liberti. Gaussian random projections for Euclidean member-
ship problems. Discrete Applied Mathematics, 253:93–102, 2019.

26. D. Woodruff. Sketching as a tool for linear algebra. Foundations and Trends in Theoretical
Computer Science, 10(1-2):1–157, 2014.

27. J. Yang, X. Meng, and M. Mahoney. Quantile regression for large-scale applications. SIAM
Journal of Scientific Computing, 36(5):S78–S110, 2014.

28. L. Zhang, M. Mahdavi, R. Jin, T. Yang, and S. Zhu. Recovering the optimal solution by
dual random projection. In S. Shalev-Shwartz and I. Steinwart, editors, Conference on
Learning Theory (COLT), volume 30 of Proceedings of Machine Learning Research, pages
135–157. 〈jmlr.org〉, 2013.

