
HAL Id: hal-02869235
https://hal.science/hal-02869235v1

Submitted on 15 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distance geometry and data science
Leo Liberti

To cite this version:
Leo Liberti. Distance geometry and data science. TOP, In press, 28, pp.271-339. �10.1007/s11750-
020-00563-0�. �hal-02869235�

https://hal.science/hal-02869235v1
https://hal.archives-ouvertes.fr

TOP (invited survey, to appear in 2020, Issue 2) manuscript No.
(will be inserted by the editor)

Distance Geometry and Data Science

Leo Liberti

Dedicated to the memory of Mariano Bellasio (1943-2019).

Received: date / Accepted: date

Abstract Data are often represented as graphs. Many common tasks in data
science are based on distances between entities. While some data science
methodologies natively take graphs as their input, there are many more that
take their input in vectorial form. In this survey we discuss the fundamental
problem of mapping graphs to vectors, and its relation with mathematical pro-
gramming. We discuss applications, solution methods, dimensional reduction
techniques and some of their limits. We then present an application of some of
these ideas to neural networks, showing that distance geometry techniques can
give competitive performance with respect to more traditional graph-to-vector
mappings.

Keywords Euclidean distance · Isometric embedding · Random projection ·
Mathematical Programming · Machine Learning · Artificial Neural Networks

Contents

1 Introduction . 2
2 Mathematical Programming . 4

2.1 Syntax . 4
2.2 Taxonomy . 5
2.3 Semantics . 6
2.4 Reformulations . 6

3 Distance Geometry . 7
3.1 The distance geometry problem . 8
3.2 Number of solutions . 9

This research was partly funded by the European Union’s Horizon 2020 research and in-
novation programme under the Marie Sklodowska-Curie grant agreement n. 764759 ETN
“MINOA”.

L. Liberti
LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, France
E-mail: liberti@lix.polytechnique.fr

2 Leo Liberti

3.3 Applications . 11
3.4 Complexity . 12

4 Representing data by graphs . 13
4.1 Processes . 13
4.2 Text . 15
4.3 Databases . 16
4.4 Abductive inference . 17

5 Common data science tasks . 20
5.1 Clustering on vectors . 21
5.2 Clustering on graphs . 24

6 Robust solution methods for the DGP . 28
6.1 Mathematical programming based methods 28
6.2 Fast high-dimensional methods . 36

7 Dimensional reduction techniques . 39
7.1 Principal component analysis . 40
7.2 Barvinok’s naive algorithm . 42
7.3 Random projections . 45

8 Distance instability . 49
8.1 Statement of the result . 50
8.2 Related results . 52
8.3 The proof . 52
8.4 In practice . 53

9 An application to neural networks . 54
9.1 Performance measure . 55
9.2 A Natural Language Processing task . 55
9.3 The ANN . 57
9.4 Training sets . 57
9.5 Computational comparison . 59

10 Conclusion . 61

1 Introduction

This survey is about the application of Distance Geometry (DG) techniques to
problems in Data Science (DS). More specifically, data are often represented
as graphs, and many methodologies in data science require vectors as input.
We look at the fundamental problem in DG, namely that of reconstructing
vertex positions from given edge lengths, in view of using its solution methods
in order to produce vector input for further data processing.

The organization of this survey is based on a “storyline”. In summary, we
want to exhibit alternative competitive methods for mapping graphs to vectors
in order to analyse graphs using Machine Learning (ML) methodologies that
take vectorial input. This storyline will take us through fairly different sub-
fields of mathematics, operations research, and computer science. This survey
does not provide exhaustive literature reviews in all these fields. Its purpose
(and usefulness) rests in communicating the main idea sketched above, rather
than serving as a reference for a field of knowledge. It is nonetheless a survey
because, limited to the scope of its purpose, it aims at being informative and
also partly educational, rather than just giving the minimal notions required
to support its goal.

Here is a more detailed account of our storyline. We first introduce DG,
some of its history, its fundamental problem and its applications. Then we

Distance Geometry and Data Science 3

motivate the use of graph representations for several types of data. Next, we
discuss some of the most common tasks in data science (e.g. classification,
clustering) and the related methodologies (unsupervised and supervised learn-
ing). We introduce robust and efficient algorithms used for embedding general
graphs in vector spaces. We present some dimensional reduction operations,
which are techniques for replacing sets X of high-dimensional vectors by lower-
dimensional ones X ′, so that some of the properties of X are preserved at least
approximately in X ′. We discuss the instability of distances on randomly gen-
erated vectors and its impact on distance-based algorithms. Finally, we present
an application of much of the foregoing theory: we train an Artificial Neural
Network (ANN) on many training sets, so as to learn several given clusterings
on sentences in natural language. Some training sets are generated using tra-
ditional methods, namely incidence vectors of short sequences of consecutive
words in the corpus dictionary. Other training sets are generated by represent-
ing sentences by graphs and then using a DG method to encode these graphs
into vectors. It turns out that some of the DG-generated training sets have
competitive performances with the traditional methods. While the empirical
evidence is too limited to support any general conclusion, it might invite more
research on this topic.

The survey is interspersed with eight theorems with proofs. Aside from
Thm. 8 about distance instability, the proof of which is taken almost verbatim
from the original source [26], the proofs from the other well-known theorems
are not taken from specific sources (this does not mean that the theorem or
their proofs are original). The presented proofs are reasonably short, and, we
hope, easy to follow. There are several reasons for the presence of these the-
orems in this survey: (a) we have not found them stated and proved clearly
anywhere else, and we wish we had during our research work (Thm. 1-4); (b)
their proofs showcase some point we deem important about the underlying
theory (Thm. 7-8); (c) they give some indication of the proof techniques in-
volved in the overarching field (Thm. 6-7); (d) they justify a mathematical
statement for which we found no citation (Thm. 5). While there may be some
original mathematical results in this survey, e.g. Eq. (35) and the correspond-
ing Thm. 5 (though something similar might be found in Henry Wolkowicz’
work) as well as the computational comparison in Sect. 7.3.2, we believe that
the only truly original part is the application of DG techniques to constructing
training sets of ANNs in Sect. 9. Sect. 4, about representing data by graphs,
may also contain some new ideas to Mathematical Programming (MP) read-
ers, although everything we wrote can be easily reconstructed from existing
literature.

In the following, we use formal notations from different fields, which may
be confusing to some readers. The underlying assumption is that sentences are
written as is customary in axiomatic set theory: existential (∃) or universal (∀)
quantification on the left of the sentence by default, brackets for operator prior-
ity disambiguation, standard arithmetic/transcendental operators/functions,
∨ to denote disjunction (“or”), ∧ to denote conjunction (“and”) of two sen-
tences, and ¬ to denote negation of a sentence. Some shortcuts are used to de-

4 Leo Liberti

crease the number of formal symbols and improve readability: “∀a ∈ A∀b ∈ B”
is shortened to “∀a ∈ A, b ∈ B”, and similarly for ∃; if K is an integer and
k is an index, k ≤ K means k ∈ {1, . . . ,K}; specifically, this is used in the
arguments of ∀,∃,

∑
,
∏

quantifiers. The character → is used formally in the
definition of functions (e.g. f : A → B denotes a function mapping elements
of the set A to elements of the set B) or as the relation “implies” between to
logical sentences within a formal language (i.e. A→ B means ¬(A∧¬B)); the
same relation in the meta-language is denoted ⇒ (i.e. A⇒ B means “from A
one can deduce that B”, where the formal deduction is not specified).

The rest of this paper is organized as follows. In Sect. 2 we give a brief
introduction to the field of MP, considered as a formal language for optimiza-
tion. In Sect. 3 we introduce the field of DG. In Sect. 4 we give details on how
to represent four types of data as graphs. In Sect. 5 we introduce methods
for clustering on vectors as well as directly on graphs. In Sect. 6 we present
many methods for realizing graphs in Euclidean spaces, most of which are
based on MP. In Sect. 7 we introduce some dimensional reduction techniques.
In Sect. 8 we discuss the distance instability phenomenon, which may have a
serious negative impact on distance-based algorithms. In Sect. 9 we present an
application of clustering in natural language by means of an ANN, and discuss
how the aforementioned DG techniques can help construct the input part of
the training set.

2 Mathematical Programming

Many of the methods discussed in this survey are optimization methods.
Specifically, they belong to MP, which is a field of optimization science and
operations research. While most of the readers of this paper should be famil-
iar with MP, the interpretation we give to this term is more formal than most
other treatments, and we therefore discuss it in this section.

2.1 Syntax

MP is a formal language for describing optimization problems. The valid sen-
tences of this language are the MP formulations. Each formulation consists of
an array p of parameter symbols (which encode the problem input), an array
x of n decision variable symbols (which will contain the solution), an objective
function f(p, x) with an optimization direction (either min or max), a set of
explicit constraints gi(p, x) ≤ 0 for all i ≤ m, and some implicit constraints,
which impose that x should belong to some implicitly described set X. For
example, some of the variables might be constrained to take integer values
only, or to belong to the non-negative orthant, or to a positive semidefinite

Distance Geometry and Data Science 5

(psd) cone. The standard MP formulation is as follows:

opt
x∈Rn

f(p, x)

∀i ≤ m gi(p, x) ≤ 0
x ∈ X.

 (1)

We note that indices, or sets thereof, appearing in the arguments of quantifiers
such as ∀,

∑
,
∏

cannot depend on the values of decision variables.

It is customary to define MP formulations over explicitly closed feasible
sets, in order to prevent issues with feasible formulations which have infima
or suprema but no optima. This forbids the use of strict inequality symbols in
the MP language.

2.2 Taxonomy

MP formulations are classified according to syntactical properties. We list the
most important classes:

– if f, gi are linear in x and X is the whole space, Eq. (1) is a Linear Program
(LP);

– if f, gi are linear in x and X = {0, 1}n, Eq. (1) is a Binary Linear Program
(BLP);

– if f, gi are linear in x and X is the whole space intersected with an integer
lattice (possibly defined on a subset of the spatial dimensions), Eq. (1) is
a Mixed-Integer Linear Program (MILP);

– if f is quadratic in x, gi are linear in x, and X is the whole space, Eq. (1)
is a Quadratic Program (QP); if f is convex, then it is a convex QP (cQP);

– if f is linear in x, gi are quadratic in x, and X is the whole space or a
polyhedron, Eq. (1) is a Quadratically Constrained Program (QCP); if gi
are convex, it is a convex QCP (cQCP);

– if f and gi are quadratic in x, and X is the whole space or a polyhedron,
Eq. (1) is a Quadratically Constrained Quadratic Program (QCQP); if f, gi
are convex, it is a convex QCQP (cQCQP);

– if f, gi are (possibly) nonlinear functions in x, and X is the whole space or
a polyhedron, Eq. (1) is a Nonlinear Program (NLP); if f, gi are convex, it
is a convex NLP (cNLP);

– if x is a symmetric matrix of decision variables, f, gi are linear, and X is
the set of all psd matrices, Eq. (1) is a Semidefinite Program (SDP);

– if we impose some integrality constraints on any decision variable on formu-
lations from the classes QP, QCQP, NLP, SDP, we obtain their respective
mixed-integer variants MIQP, MIQCQP, MINLP, MISDP.

This taxonomy is by no means complete (see [110, §3.2] and [197]).

6 Leo Liberti

2.3 Semantics

As in all formal languages, sentences are given a meaning by replacing variable
symbols with other mathematical entities. In the case of MP, semantics are
assigned by an algorithm, called solver, which looks for a numerical solution
x∗ ∈ Rn having some optimality properties and satisfying the constraints.
For example, BLPs such as Eq. (19) can be solved by the CPLEX solver
[88]. This allows users to solve optimization problems just by “modelling”
them (i.e. describing them as a MP formulation) instead of having to invent a
specific solution algorithm. As a formal descriptive language, MP was shown
to be Turing-complete [112,124].

2.4 Reformulations

It is always the case that infinitely many formulations have the same seman-
tics: this can be seen in a number of trivial ways, such as e.g. multiplying
some constraint gi ≤ 0 by any positive scalar in Eq. (1). This will produce
an uncountable number of different formulations with the same feasible and
optimal set.

Less trivially, this property is precious insofar as solvers perform more or
less efficiently on different (but semantically equivalent) formulations. More
generally, a symbolic transformation on a MP formulation for which one can
provide some guarantees on the extent of the engendered modifications of the
feasible and/or optimal set is called a reformulation [110,114,113].

Three types of reformulation guarantees will appear in this survey:

– the exact reformulation: the optima of the reformulated problem can be
mapped efficiently back to those of the original problem;

– the relaxation: the optimal objective function value of the reformulated
problem provides a bound (in the optimization direction) on the optimal
objective function value of the original problem;

– the approximating reformulation: a sequence of formulations based on a pa-
rameter which also appears in a “guarantee statement” (e.g. an inequality
providing a bound on the optimal objective function value of the original
problem); an additional desirable property is that, when the parameter
tends to infinity, the guarantee proves that formulations in the sequence
tend to an exact reformulation or to a relaxation.

Reformulations are only useful when they can be solved more efficiently
than the original problem. Exact reformulations are important because the
optima of the original formulation can be retrieved easily. Relaxations are im-
portant in order to evaluate the quality of solutions of heuristic methods which
provide solutions without any optimality guarantee; moreover, they are crucial
in Branch-and-Bound (BB) type solvers (such as e.g. CPLEX). Approximat-
ing reformulations are important to devise approximate solution methods for
MP problems.

Distance Geometry and Data Science 7

There are some trivial exact reformulations which guarantee that Eq. (1) is
much more general than it would appear at first sight: for example, inequality
constraints can be turned into equality constraints by the addition of slack or
surplus variables; equality constraints can be turned to inequality constraints
by listing the constraint twice, once with ≤ sense and once with ≥ sense; min-
imization can be turned to maximization by the equation min f = −max−f
[114, §3.2].

2.4.1 Linearization

We note two easy, but very important types of reformulations.

– The linearization consists in identifying a nonlinear term t(x) appearing
in f or gi, replacing it with an added variable yt, and then adjoining the
defining constraint yt = t(x) to the formulation.

– The constraint relaxation consists in removing a constraint: since this means
that the feasible region becomes larger, the optima can only improve with
respect to those of the original problem. Thus, relaxing constraints yields
a relaxation of the problem.

These two reformulation techniques are often used in sequence: one identifies
problematic nonlinear terms, linearizes them, and then relaxes the defining
constraints. Carrying this out recursively for every term in an NLP [136], and
only relaxing the nonlinear defining constraints yields an LP relaxation of an
NLP [175,178,23].

3 Distance Geometry

DG refers to a foundation of geometry based on the concept of distances in-
stead of those of points and lines (Euclid) or point coordinates (Descartes). The
axiomatic foundations of DG were first laid out in full generality by Menger
[139], and later organized and systematized by Blumenthal [30]. A metric
space is a pair (X, d), where X is an abstract set and d is a binary relation
d : X× X→ R+ obeying the metric axioms:

1. ∀x, y ∈ X d(x, y) = 0↔ x = y (identity);
2. ∀x, y ∈ X d(x, y) = d(y, x) (symmetry);
3. ∀x, y, z ∈ X d(x, y) + d(y, z) ≥ d(x, z) (triangle inequality).

Based on these notions, one can define sequences and limits (through con-
verging distances), as well as open and closed sets (through membership of
limit points in sets). For any triplet x, y, z of distinct elements in X, y is be-
tween x and z if d(x, y) + d(y, z) = d(x, z). This notion of metric betweenness
can be used to characterize convexity: a subset Y ⊆ X is metrically convex if,
for any two points x, z ∈ Y, there is at least one point y ∈ Y between x and z.
The fundamental notion of invariance in metric spaces is that of congruence:
two metric spaces X,Y are congruent if there is a mapping µ : X → Y such
that for all x, y ∈ X we have d(x, y) = d(µ(x), µ(y)).

8 Leo Liberti

The word “isometric” is often used as a synonym of “congruent” in many
contexts, e.g. with isometric embeddings (Sect. 6.2.2). In this survey, we mostly
use “isometric” in relation to mappings from graphs to sets of vectors such that
the weights of the edges are the same as the length of the segments between
the vectors corresponding to the adjacent vertices. In other words, “isomet-
ric” is mostly used for partially defined metric spaces — only the distances
corresponding to the graph edges must be preserved.

While a systematization of the axioms of DG was only formulated in the
twentieth century, DG is pervasive throughout the history of mathematics,
starting with Heron’s theorem (computing the area of a triangle given the side
lengths) [85], going on to Euler’s conjecture on the rigidity of (combinatorial)
polyhedra [68], Cauchy’s creative proof of Euler’s conjecture for strictly convex
polyhedra [42], Cayley’s theorem for inferring point positions from determi-
nants of distance matrices [43], Maxwell’s analysis of the stiffness of frames
[135], Henneberg’s investigations on rigidity of structures [84], Gödel’s fixed
point theorem for showing that a tetrahedron with nonzero volume can be
embedded isometrically (with geodetic distances) on the surface of a sphere
[78], Menger’s axiomatization of DG [140], yielding, in particular, the concept
of the Cayley-Menger determinant (an extension of Heron’s theorem to any
dimension, which was used in many proofs of DG theorems), up to Connelly’s
disproof of Euler’s conjecture [49] in its most general form. A more detailed ac-
count of many of these achievements is given in [117]. An extension of Gödel’s
theorem on the sphere embedding in any finite dimension appears in [126].

3.1 The distance geometry problem

Before the widespread use of computers, the main applied problem of DG was
to congruently embed finite metric spaces (i.e. with all known distances) in
some vector space. The first mention of the need for isometric embeddings
using only a partial set of distances probably appeared in [202]. This need
arose from wireless sensor networks: by estimating a set of distances for pairs
of sensors which are close enough to establish peer-to-peer communication, is
it possible to recover the position for all sensors in the network? Note that (a)
distances can be recovered from peer-to-peer communicating pairs by moni-
toring the amount of battery required to exchange data; and (b) the positions
for the sensors are in RK , with K = 2 (usually) or K = 3 (sometimes).

Thus we can formulate the main problem in DG.

Distance Geometry Problem (DGP): given an integer K > 0 and
a simple undirected graph G = (V,E) with an edge weight function
d : E → R+, determine whether there exists a realization x : V → RK
such that:

∀{u, v} ∈ E ‖x(u)− x(v)‖ = d(u, v). (2)

We let n = |V | and m = |E| in the following.
We can re-state the DGP as follows: given a weighted graph G and the

dimension K of a vector space, draw G in RK so that each edge is drawn as a

Distance Geometry and Data Science 9

straight segment of length equal to its weight. We remark that the realization x,
defined as a function, is usually represented as an n×K matrix x = (xuk | u ∈
V ∧ k ≤ K), which may also be seen as an element of RnK .

Note that we usually write xu, xv and duv for x(u), x(v) and d(u, v). If the
norm used in Eq. (2) is the Euclidean (`2) norm, then the above equation is
usually squared, so it becomes a multivariate polynomial of degree two:

∀{u, v} ∈ E ‖xu − xv‖22 = d2uv. (3)

While most of the distances in this paper will be Euclidean, we shall also
mention the so-called linearizable norms [51], i.e. `1 and `∞, because they can
be described using piecewise affine functions. We also remark that the input of
the DGP can also be represented by a partial n× n distance matrix D where
only the entries duv corresponding to {u, v} ∈ E are specified.

Many more notions about the DGP can be found in [121,118]. Recent
results on the DGP related to graph theory are given in [103,107]; for recent
results on the application to protein confomation see [130].

3.2 Number of solutions

A DGP instance may have no solutions if the given distances do not define a
metric, a finite number of solutions if the graph is rigid, or uncountably many
solutions if the graph is flexible.

Restricted to the `2 norm, there are several different notions of rigidity. We
only define the simplest, which is easiest to explain intuitively: if we consider
the graph as a representation of a joint-and-bar framework, a graph is flexible
if the framework can move (excluding translations and rotations) and rigid
otherwise. The formal definition of rigidity of a graph G = (V,E) involves: (a)
a mapping D from a realization x ∈ RnK to the partial distance matrix

D(x) = (‖xu − xv‖ | {u, v} ∈ E);

and (b) the completion K(G) of G, defined as the complete graph on V . We
want to say that G is rigid if, were we to move x ever so slightly (excluding
translations and rotations), D(x) would also vary accordingly. We formalize
this idea indirectly: a graph is rigid if the realizations in a neighbourhood χ of x
corresponding to changes in D(x) are equal to those in the neighbourhood χ̄ of
a realization x̄ of K(G) [118, Ch. 7]. We note that realizations x̄ ∈ χ̄ correspond
to small variations in D(K(G)): this definition makes sense because K(G) is a
complete graph, which implies that its distance matrix is invariant, and hence
χ̄ may only contain congruences.

We thus obtain the following formal characterization of rigidity [16]:

D−1(D(x)) ∩ χ = D−1(D(x̄)) ∩ χ̄. (4)

Let us parse Eq. (4): for a partial distance matrix Y , D−1(Y) corresponds to
all of the realizations that give rise to Y (which are uncountably many because

10 Leo Liberti

of congruences). Now, let x be a realization of the partial distance matrix Y ,
and x̄ a realization of the metric completion Ȳ of Y (if it exists). Moreover,
χ is a neighbourhood of x and χ̄ is a neighbourhood of x̄ (in the vector space
RnK). Since we know that Ȳ corresponds to a realizable complete graph, its
framework is rigid. So the set D−1(D(x̄))∩χ̄ only contains realizations obtained
from x̄ by means of congruences. Eq. (4) states that the framework realized
by x is rigid if the realizations of the partial distance matrix of x can be
obtained from x only from congruences: in other words, if it “behaves like”
the framework of a complete graph.

Uniqueness of solution (modulo congruences) is sometimes a necessary fea-
ture in applications. Many different sufficient conditions to uniqueness have
been found [121, §4.1.1]. By way of example as concerns the number of DGP
solutions in graphs, a complete graph has at most one solution modulo congru-
ences, as remarked above. It was proved in [119] that protein backbone graphs
have a realization set having power of two cardinality with probability 1. As
shown in Fig. 1 (bottom row), a cycle graph on four vertices has uncountably
many solutions.

Fig. 1 Instances with one, two, and uncountably many realizations.

On the other hand, the remaining possibility of a countably infinite set
of realizations of a DGP instance cannot happen, as shown in Thm. 1. This
result is a simple corollary of a well-known theorem of Milnor [144]. It was
noted informally in [121, p. 27] without details; we provide a proof here.

Theorem 1 No DGP instance may have an infinite but countable number of
solutions.

Proof Eq. (3) is a system of m quadratic equations associated with the in-
stance graph G. Let X ⊆ RnK be the variety associated to Eq. (3). Now

Distance Geometry and Data Science 11

suppose X is countable: then no connected component of X may contain un-
countably many elements. By the notion of connectedness, this implies that
every connected component is an isolated point in X. Since X is countable,
it must contain a countable numbers of connected components. By [144], the
number of connected components of X is finite; in particular, it is bounded
by O(3nK). Hence the number of connected components of X is finite. Since
each is an isolated point, i.e. a single realization of G, |X| is finite. ut

3.3 Applications

The DGP is an inverse problem with many applications to science and engi-
neering.

3.3.1 Engineering

When K = 1 a typical application is that of clock synchronization [174].
Network protocols for wireless sensor networks are designed so as to save
power in communication. When synchronization and battery usage are key,
the peer-to-peer communications needed to exchange the timestamp can be
limited to the exchange of a single scalar, i.e. the time (or phase) difference.
The problem is then to retrieve the absolute times of all of the clocks, given
some of the phase differences. This is equivalent to a DGP on the time line,
i.e. in a single dimension. We already sketched above the problem of Sensor
Network Localization (SNL) in K ∈ {2, 3} dimensions. In K = 3 we also have
the problem of controlling fleets of Underwater Autonomous Vehicles (UAV),
which requires the (fast) localization of each UAV [17,177].

3.3.2 Science

An altogether different application in K = 3 is the determination of protein
structure from Nuclear Magnetic Resonance (NMR) experiments [200]: pro-
teins are composed of a linear backbone and some side-chains. The backbone
determines a total order on the backbone atoms, by which follow some prop-
erties of the protein backbone graph. Namely, the distances from vertex i to
vertices i−1 and i−2 in the order are known almost exactly because of chem-
ical information, and the distance between vertex i and vertex i− 3 is known
approximately because of NMR output. Moreover, some other distances (with
larger index difference) may also be known because of NMR — typically, when
the protein folds and two atoms from different folds happen to be close to each
other. If we suppose all of these distances are known exactly, we obtain a sub-
class of DGP which is called Discretizable Molecular DGP (DMDGP).
The structure of the graph of a DMDGP instance is such that vertex i is adja-
cent to its three immediate predecessors in the order: this yields a graph which
consists of a sequence of embedded cliques on 4 vertices, the edges of which

12 Leo Liberti

are called discretization edges, with possibly some extra edges called pruning
edges.

If we had to realize this graph with K = 2, we could use trilateration [67]:
given three points in the plane, compute the position of a fourth point at known
distance from the three given points. Trilateration gives rise to a system of
equations which has either no solution (if the distance values are not a metric)
or a unique solution, since three distances in two dimensions are enough to
disambiguate translations, rotations and reflections. Due to the specific nature
of the DMDGP graph structure, it would suffice to know the positions of the
first three vertices in the order to be able to recursively compute the positions
of all other vertices. With K = 3, however, there remains one degree of freedom
which yields an uncertainty: the reflection.

We can still devise a combinatorial algorithm which, instead of finding
a unique solution in n−K trilateration steps, is endowed with back-tracking
over reflections. Thus, the DMDGP can be solved completely (meaning that all
incongruent solutions can be found) in worst-case exponential time by using
the Branch-and-Prune (BP) algorithm [120]. The DMDGP has other very
interesting symmetry properties [125], which allow for an a priori computation
of its number of solutions [119], as well as for generating all of the incongruent
solutions from any one of them [149]; moreover, it turns out that BP is a
Fixed-Parameter Tractable (FPT) algorithm, which makes the DMDGP a
FPT problem [122].

3.3.3 Machine Learning

So far, we have only listed applications where K is fixed by the constraints
of physical space. The focus of this survey, however, is a case where K may
vary according to the data: if we need to map graphs to vectors in view of
preprocessing the input of a ML methodology, we may choose a dimension K
appropriate to the methodology and application at hand. See Sect. 9 for an
example.

3.4 Complexity

3.4.1 Membership in NP

The DGP is clearly a decision problem, so one may ask whether it is in NP.
As stated above, with real number input in the edge weight function, it is
clear that it is not, since the Turing computation model cannot be applied. We
therefore consider its rational equivalent, where d : E → Q+, and ask the same
question. It turns out that, for K > 1, we do not know whether the DGP is in
NP: the issue is that the solutions of sets of quadratic polynomials over Q may
well be (algebraic) irrational. We therefore have the problem of establishing
that a realization matrix x with algebraic components satisfies Eq. (3) in
polynomial time. While some compact representations of algebraic numbers

Distance Geometry and Data Science 13

exist [112, §2.3], it is not known how to employ them in the polynomial time
verification of Eq. (3). Negative results for the most basic representations of
algebraic numbers were derived in [22].

On the other hand, it is known that the DGP is in NP for K = 1: as this
case reduces to realizing graphs on a single real line, the fact that all of the
given distances are in Q means that the distance between any two points on
the line is rational: therefore, if one point is rational, then all the others can be
obtained as sums and differences of this one point and a set of rational values,
which implies that there is always a rational realization. Naturally, verifying
whether a rational realization satisfies Eq. (3) can be carried out in polynomial
time.

3.4.2 NP-hardness

It was proved in [168] that the DGP is NP-hard, even for K = 1 (reduction
from Partition to the DGP on simple cycle graphs, see a detailed proof in
[118, §2.4.2]), and hence actually NP-complete for K = 1. In the same paper
[168], with more complicated gadgets it was also shown that the DGP is NP-
hard for each fixed K and with edge weights restricted to taking values in
{1, 2} (reduction from 3sat).

A sketch of an adaptation of the reduction to cycle graphs is given in [203]
for DMDGP graphs, showing that they are an NP-hard subclass of the DGP.
A full proof following a similar idea can be found in [105].

4 Representing data by graphs

It may be obvious to most readers that data can be naturally represented by
graphs. This is immediately evident whenever data represent similarities or
dissimilarities between entities in a vertex set V . In this section we make this
intuition more explicit for a number of other relevant cases.

An unweighted graph represents a binary relation on the entities repre-
sented by vertices: u, v are related if and only if the edge {u, v} is in the graph.
Scalar weights assigned to edges can measure the strength or weakness of the
relation; edge colors encode a discrete attribute of the relation; other numeric
or symbolic weight types are used to encode other relation attributes. Parallel
edges can be used to define different relations on the same set of entities. Edge
weights are often used to represent distance (as in the DGP), similarity (the
larger the weight, the more similar) and dissimilarity (the larger the weight,
the less similar) between pairs of entities. Similarity/dissimilarity weights are
often normalized to range in [0, 1].

4.1 Processes

The description of a process, be it chemical, electric/electronic, mechanical,
computational, logical or otherwise, is practically always based on a directed

14 Leo Liberti

graph, or digraph, G = (N,A). The set of nodes N represents the various
stages of the process, while the arcs in A represent transitions between stages.

Formalizations of this concept may possibly be first ascribed to the orga-
nization of knowledge proposed by Aristotle into genera and differences, com-
monly represented with a tree (a class of digraphs). While no graphical repre-
sentation of this tree ever came to us from Aristotelian times, the commentator
Porphyry of Tyre (3rd century AD) did refer to a representation which was
actually drawn as a tree (at least since the 10th century [184]). Many interest-
ing images can be found in last-tree.scottbot.net/illustrations/, see
e.g. Fig. 2.

Fig. 2 A tree diagram from F. Bacon’s Advancement of Learning, Oxford 1640.

A general treatment of process diagrams in mechanical engineering is given
in [76]. Bipartite graphs with two node classes representing operations and
materials have been used in process network synthesis in chemical engineering
[74]. Circuit diagrams are a necessary design tool for any electrical and elec-
tronic circuit [173]. Software flowcharts (i.e. graphical description of computer
programs) have been used in the design of software so pervasively that one of
the most important results in computer science, namely the Böhm-Jacopini’s
theorem on the expressiveness of universal computer languages, is based on a

Distance Geometry and Data Science 15

formalization of the concept of flowchart [31]. The American National Stan-
dards Institute (ANSI) set standards for flowcharts and their symbols in the
1960s. The International Organization for Standardization (ISO) adopted the
ANSI symbols in 1970 [193]. The cyclomatic number |E| − |V |+ 1 of a graph,
namely the size of a cycle basis of the cycle space, was adopted as a measure
of process graph complexity very early (see [154,60,37,13] and [100, §2.3.4.1]).

An evalution of flowcharts to process design is the Unified Modelling Lan-
guage (UML) [152], which was mainly conceived to aid the design of software-
based systems, but was soon extended to much more general processes. With
respect to flowcharts, UML also models interactions between software systems
and hardware systems, as well as with system users and stakeholders. When
it is applied to software, UML is a semi-formal language, in the sense that it
can automatically produce a set of header files with the description of classes
and other objects, ready for code development in a variety of programming
languages [111].

4.2 Text

One of the foremost issues in linguistics is the formalization of the rules of
grammar in natural languages. On the one hand, text is scanned linearly,
word by word. On the other hand, the sense of a sentence becomes apparent
only when sentences are organized as trees [45]. This is immediately evident
in the computer parsing of formal languages, with a “lexer” which carries
out the linear scanning, and a “parser” which organizes the lexical tokens
in a parsing tree [109]. The situation is much more complicated for natural
languages, where no rule of grammar is ever absolute, and any proposal for
overarching principles has so many exceptions that it is hard to argue in their
favor [147].

The study of natural languages is usually split into syntax (how the sen-
tence is organized), semantics (the sense conveyed by the sentence) and prag-
matics (how the context when the sentence is uttered influences the meaning,
and the impact that the uttered sentence has on the context itself) [148]. The
current situation is that we have been able to formalize rules for natural lan-
guage syntax (namely turning a linear text string into a parsing tree) fairly
well, using probabilistic parsers [131] as well as supervised ML [48]. We are
still far from being able to successfully formalize semantics. Semiotics sug-
gested many ways to assign semantics to sentences [66], but none of these is
immediately and easily implementable as a computer program.

Two particularly promising suggestions are the organization of knowl-
edge into an evolving encyclopedia, and the representation of the sense of
words in a “space” with “semantic axes” (e.g. “good/bad”, “white/black”,
“left/right”. . .). The first suggestion yielded organized corpora such as Word-
Net [143], which is a tree representation of words, synonyms and their seman-
tical relations, not unrelated to a Porphyrian tree (Sect. 4.1). There is still a
long way to go before the second is successfully implemented, but we see in

16 Leo Liberti

the Google Word Vectors [142] the start of a promising path (although even
easy semantical interpretations, such as analogies, are apparently not so well
reflected in these word vectors, despite the publicity [98]).

For pragmatics, the situation is even more dire; some suggestions for rep-
resenting knowledge and cognition w.r.t. the state of the world are given in
[145]. See [191] for more information.

Insofar as graphs are concerned, syntax is organized into tree graphs, and
semantics is often organized in corpora that are also trees, or directed acyclic
graphs (DAGs), e.g. WordNet and similar.

4.2.1 Graph-of-words

In Sect. 9 we consider a graph representation of sentences known as the graph-
of-words [164]. Given a sentence s represented as a sequence of words s =
(s1, . . . , sm), an n-gram is a subsequence of n consecutive words of s. Each
sentence obviously has at most (m − n + 1) n-grams. In a graph-of-words
G = (V,E) of order n, V is the set of words in s; two words have an edge
only if they appear in the same n-gram; the weight of the edge is equal to
the number of n-grams in which the two words appear. This graph may also
be enriched with semantic relations between the words, obtained e.g. from
WordNet.

4.3 Databases

The most common form of data collection is a database; among the existing
database representations, one of the most popular is the tabular form used in
spreadsheets and relational databases.

A table is a rectangular array A with n rows (the records) and m columns
(the features), which is (possibly only partially) filled with values. Specifically,
each feature column must have values of the same type (when present). If Arf is
filled with a value, we denote this def(r, f), for each record index r and feature
index f . We can represent this array via a bipartite graph B = (R,F,E) where
R is the set of record indices, F is the set of feature indices, and there is an
edge {r, f} ∈ E if the (r, f)-th component Arf of A is filled. A label function `
assigns the value Arf to the edge {r, f}. While this is an edge-labelled graph,
the labels (i.e. the contents of A) may not always be interpretable as edge
weights — so this representation is not yet what we are looking for.

We now assume that there is a symmetric function df : A·,f × A·,f → R+

defined over elements of the column A·,f : since all elements in a column have
the same type, such functions can always be defined in practice. We note that
df is undefined whenever one of the two arguments is not filled with a value.
We can then define a composite function d : R×R→ R+ as follows:

∀r 6= s ∈ R d(r, s) =

∑
f∈F

def(r,f)∧def(s,f)

df (Arf , Asf)

undefined if ∃f ∈ F (¬def(r, f) ∨ ¬def(s, f)).
(5)

Distance Geometry and Data Science 17

Next, we define a graph G = (R,E′) over the records R, where

E′ = { {r, s} | r 6= s ∈ R ∧ d(r, s) is defined},

weighted by the function d : E′ → R+ defined in Eq. (5). We call G the
database distance graph. Analysing this graph yields insights about record
distributions, similarity and differences.

4.4 Abductive inference

According to [65], there are three main modes of rational thought, correspond-
ing to three different permutations of the concepts “hypothesis” (call this H),
“prediction” (call this P), “observation” (call this O). Each of the three per-
mutations singles out a pair of concepts and a remaining concept. Specifically:

1. deduction: H ∧ P → O;
2. (scientific) induction: O ∧ P → H;
3. abduction: H ∧ O → P.

Take for example the most famous syllogism about Socrates being mortal:

– H: “all humans are mortal”;
– P: “Socrates is human”;
– O: “Socrates is mortal”.

The syllogism is an example of deduction: we are given H and P, and deduce
O. Note also that deduction is related to modus ponens: if we let A(x) be the
sentence “x is human” and B(x) be the sentence “x is mortal”, and let s be
the constant denoting Socrates, the syllogism can be restated as

[∀x (A(x)→ B(x)) ∧A(s)]→ B(s).

Deduction infers truths (propositional logic) or provable sentences (first-order
and higher-order logic), and is mostly used by logicians and mathematicians.

Scientific induction1 exploits observations and verifies predictions in order
to derive a general hypothesis: if a large quantity of predictions is verified, a
general hypothesis can be formulated. In other words, given O and P we infer
H. Scientific induction can never provide proofs in sufficiently expressive logical
universes, no matter the amount of observations and verified predictions. Any
false prediction, however, disproves the hypothesis [159]. Scientific induction
is about causality; it is mostly used by physicists and other natural scientists.

Abduction [63] infers educated guesses about a likely state of a known
universe from observed facts: given H and O, we infer P. Following [137],

Deductions lead from rules and cases to facts — the conclusions. Inductions lead
toward truth, with less assurance, from cases and facts, toward rules as generaliza-
tions, valid for bound cases, not for accidents. Abductions, the apagoge of Aristotle,
lead from rules and facts to the hypothesis that the fact is a case under the rule.

1 Not to be confused with mathematical induction.

18 Leo Liberti

According to [65], abduction can be traced back to Peirce [156], who cited
Aristotle as a source. The author of [161] argues that the precise Aristotelian
source cited by Peirce fails to make a valid reference to abduction; however,
he also concedes that there are some forms of abduction foreshadowed by
Aristotle in the texts where he defines definitions.

Let us see an example of abduction. Sherlock Holmes is called on a crime
scene where Socrates lies dead on his bed. After much evidence is collected and
a full-scale investigation is launched, Holmes ponders some possible hypothe-
ses: for example, all rocks are dead. The prediction that is logically consistent
with this hypothesis and the observation that Socrates is dead would be that
Socrates is a rock. After some unsuccessful tests using Socrates’ remains as
a typical rock, Holmes eliminates this possibility. Following a few more un-
tenable suggestions by Dr. Watson, Holmes considers the hypothesis that all
humans are mortal. The logically consistent prediction is that Socrates is a
man, which, in a dazzling display of investigative abilities, Holmes finds it to
be exactly the case. Thus Holmes brilliantly solves the mystery, while Inspec-
tor Lestrade was just about ready to give up in despair. Abduction is about
plausibility; it is the most common type of human inference.

Abduction and scientific induction are the basis of learning: after witnessing
a set of facts, and postulating hypotheses for relate them, we are able to make
and then verify predictions about the future. Obviously, abductions can, and
in fact often turn out to, be wrong, e.g.:

– H: all beans in the bag are white;
– O: there is a white bean next to the bag;
– P: the bean was in the bag.

The white bean next to the bag, however, might have been placed there before
the bag was even in sight. With this last example, we note that abductions are
inferences often used in statistics. For an observation O, a set H of hypotheses
and a set of possible predictions P, we must evaluate the probability

∀H ∈ H,P ∈ P pHP = P(O | O,H abduce P),

and then choose the pair (H,P) having largest probability pHP (see a simplified
example in Fig. 3).

When more than one observation is collected, one can also compare dis-
tributions to make more plausible predictions, see Fig. 4. Abduction appears
close to the kind of analysis often required by data scientists.

4.4.1 The abduction graph

We now propose a protocol for modelling good predictions from data, by means
of an abduction graph. We consider:

– a set O of observations O;
– a set I ⊆ H × P of abductive premises, namely pairs (H,P).

Distance Geometry and Data Science 19

white bean beside bag

bag of white beans→bean was in bag

0.
3

white bean field closeby→bean came from field

0.
25

farmer market yesterday→bean came from market
0.1

kid was playing with beans→kid lost a bean

0.15

UFOs fueled with beans→bean clearly a UFO sign

0
.2

Fig. 3 Evaluating probabilities in abduction. From left to right, observation O abduces the
inference H→P.

white bean beside bag

bag of white beans→bean was in bag

0.
3

white bean field closeby→bean came from field
0.25

farmer market yesterday→bean came from market

0.1

kid was playing with beans→kid lost a bean

0
.1
5

UFOs fueled with beans→bean clearly a UFO sign
0
.2

red bean beside bag

0.01

0.01

0.49

0.29

0.2

Fig. 4 Probability distributions over abduction inferences assigned to observations.

First, we note that different elements of I might be logically incompatible
(e.g. there may be contradictory sets of hypotheses or predictions). We must
therefore extract a large set of logically compatible subsets of I. Consider the
relation ∼ on I with h ∼ k meaning that h, k ∈ I are logically compatible.
This defines a graph (I,∼). We then find the largest (or at least large enough)
clique Ī in (I,∼).

Next, we define probability distributions pO on Ī for each O ∈ O. We let
E = {{O,O′} | δ(pO, pO′) ≤ δ0}, where δ evaluates dissimilarities between
probability distributions, e.g. δ could be the Kullback-Leibler (KL) divergence
[101], and δ0 a given threshold. Thus E defines a relation on O if pO, pO

′
are

sufficiently similar. We can finally define the graph F = (O, E), with edges
weighted by δ.

If we think of Sherlock Holmes again, the abduction graph encodes sets of
clues compatible with the most likely consistent explanations.

20 Leo Liberti

5 Common data science tasks

DS refers to practically every task or problem defined over large amounts of
data. Even problems in P, and sometimes even those for which there exist
linear time algorithms, may take too long when confronted with large-scale
instances. We are not going to concern ourselves here with evaluation problems
(such as, e.g., computing means or variances — which can be a daunting task
for extremely large datasets), but rather with decision problems. In particular,
it appears that a very common family of decision problems solved on large
masses of data are those that help people make sense of the data themselves:
in other words, classification and clustering.

There is no real functional distinction between the two, as both aim at par-
titioning the data into a relatively small number of subsets. However, “classifi-
cation” usually refers to the problem of assigning class labels to data elements,
while “clustering” indicates a classification based on the concept of similar-
ity or distance, meaning that similar data elements should be in the same
class. This difference is usually more evident in the algorithmic description:
classification methods tend to exploit information inherent to elements, while
clustering methods consider information relative to pairs of elements. It also
appears that the term “clustering” is used in unsupervised learning, whereas
“classification” is more often used in supervised learning. In the rest of this
paper, we shall adopt a functional view, and refer to either interchangeably.

Given a set P of n entities and some pairwise similarity function δ : P×P →
R+, clustering aims at finding a set of k subsets C1, . . . , Ck ⊆ P (with their
union covering P) such that each cluster contains as many similar entities, and
as few dissimilar entities, as possible. Cluster analysis — as a field — grew out
of statistics in the course of the second half of the 20th century, encouraged
by the advances in computing power. But some early forms of cluster analysis
may also be attributed to earlier scientists (e.g. Aristotle, Buffon, Cuvier,
Linné [83]).

We note that “clustering on graphs” may refer to two separate tasks.

A. Cluster the vertices of a given graph.
B. Cluster the graphs in a given set.

Both may arise depending on the application at hand. The proposed DG tech-
niques for realizing graphs into vector spaces apply to both of these tasks (see
Sect. 9.4.2).

As mentioned above, this paper focuses on transforming graphs into vec-
tors so as to be able to use vector-based methods for classification and clus-
tering. We shall first survey some of these methods. We shall then mention
some methods for classifying/clustering graphs directly (i.e. without needing
to transform them into vectors first).

Distance Geometry and Data Science 21

5.1 Clustering on vectors

Methods for classification and clustering on vectors are usually seen as part of
ML. They are partitioned into unsupervised and supervised learning methods.
The former are usually based on some measure of similarity or dissimilarity
defined over pairs of elements. The latter require a training set, which they
exploit in order to find a set of optimal parameter values for a parametrized
“model” of the data.

5.1.1 The k-means algorithm

The k-means algorithm is a well-known heuristic for solving the following
problem [12].

Minimum Sum-of-Squares Clustering (MSSC). Given an integer
k > 0 and a set P ⊂ Rm of n vectors, find a cover C = {C1, . . . , Ck} of
P such that the function

f(C) =
∑
j≤k

∑
x∈Cj

‖x− centroid(Cj)‖22 (6)

is minimum, where

centroid(Cj) =
1

|Cj |
∑
x∈Cj

x. (7)

It is interesting to note that the MSSC problem can also be seen as a discrete
analogue of the problem of partitioning a body into smaller bodies having
minimum sum of moments of inertia [176].

The k-means algorithm improves a given initial clustering C by means of
the two following operations:

1. compute centroids cj = centroid(Cj) for each j ≤ k;
2. for any pair of clusters Ch, Cj ∈ C and any point x ∈ Ch, if x is closer to
cj than to ch, move x from Ch to Cj .

These two operations are repeated until the clustering C no longer changes.
Since the only decision operation (i.e. operation 2) is effective only if it de-
creases f(C), it follows that k-means is a local descent algorithm. In particular,
this very simple analysis offers no guarantee on the approximation of the ob-
jective function. For more information on the k-means algorithm, see [29].

The k-means algorithm is an unsupervised learning technique [92], insofar
as it does not rest on a data model with parameters to be estimated prior to
actually finding clusters. Moreover, the number “k” of clusters must be known
a priori.

22 Leo Liberti

5.1.2 Artificial Neural Networks

An ANN is a parametrized model for representing an unknown function. Like
all such models, it needs data in order to estimate suitable values for the pa-
rameters: this puts ANNs in the category of supervised ML. An ANN consists
of two MP formulations defined over a graph and a training set.

An ANN is formally defined as a triplet N = (G,T, φ), where:

– G = (V,A) is a directed graph, with a node weight function b : V → R
(threshold at a node), and an edge weight function w : A→ R (weight on
an arc); moreover, a subset I ⊂ V of input nodes with |I| = n and a subset
O ⊂ V of output nodes with |O| = k are given in G;

– T = (X,Y) is the training set, where X ⊂ Rn (input set), Y ⊂ Rk (output
set), and |X| = |Y |;

– φ = (φj | j ∈ V r I) is a sequence of activation functions φj : R → R
(many common activation functions map injectively into [0, 1]).

The two MP formulations assigned to an ANN describe the training problem
and the evaluation problem. In the training problem, appropriate values for
b, w are found using T . In the evaluation problem, a given input vector in Rn
(usually not part of the input training set X) is mapped to an output vector
in Rk. The training problem decides values for the ANN parameters when
seen as a model for an unknown function mapping the training input X to
the training output Y . After the model is trained, it can be evaluated on new
(unseen) input.

For a node i ∈ V we let N−(i) = {j ∈ V | (j, i) ∈ A} be the inward star
of i. For a tensor si1,...,ir , where ij ∈ Ij for each j ≤ r, we denote a slice of s,
defined by subsets Jj ⊆ Ij for some j ≤ r, by s[J1] · · · [Jr].

We discuss the evaluation phase first. Given values for w, b and an input
vector x ∈ Rn, we decide a node weight function u over V as follows:

uI = x (8)

∀j ∈ V r I uj = φj
(∑
i∈N−(j)

wijui + bj
)
. (9)

We remark that Eq. (9) is not an optimization but a decision problem. Nonethe-
less, it is a MP formulation (formally with zero objective function). After solv-
ing Eq. (9), one retrieves in particular u[O], which correspond to an output
vector in u[O] = y ∈ Rk. When G is acyclic, this decision problem reduces
to a simple computation, which “propagates” the values of u from the input
nodes and forward through the network until they reach the output nodes. If
G is not acyclic, different solution methods must be used [14,71,80].

The training problem is given in Eq. (10). We let N be the index set for
the training pairs (x, y) in T (we recall that |X| = |Y |), and introduce a

Distance Geometry and Data Science 23

2-dimensional tensor v of decision variables indexed by N and V .

min
w,b,v

dist(v[N][O], Y)

v[N][I] = X
∀t ∈ N, j ∈ V r I vtj = φj

(∑
i∈N−(j)

wijvti + bj
)
,

 (10)

where dist(A,B) is a dissimilarity function taking dimensionally consistent
tensor arguments A,B, which becomes closer to zero as A and B get closer.
The solution of the training problem yields optimal values w∗, b∗ for the arc
weights and node biases.

The training problem is in general a nonconvex optimization problem (be-
cause of the products between w and v, and of the φ functions occurring in
equations), which may have multiple global optima: finding them with state-
of-the-art methods might require exponential time. For specific types of graphs
and choices of objective function dist(·, ·), the training problem may turn out to
be convex. For example, if: (a) G is a DAG, (b) V = I∪̇O is the disjoint union
of I and O, (c) the induced subgraphs G[I] and G[O] are empty (i.e. they have
no arcs), (d) the activation functions are all sigmoids φ(z) = (1 + exp(−z))−1,
and (e) dist(·, ·) is the negative logarithm of the likelihood function

∏
t∈N

φ(w>xt + bi)
yt(1− φ(w>xt + bi))

1−yt

(where X = (xt | t ∈ N) is the list of input training vectors) summed over all
output nodes i ∈ O, then it can be shown that the training problem is convex
[95,172].

In contemporary treatments of ANNs, the underlying graph G is almost
always assumed to be a DAG. In modern Application Programming Interfaces
(API), the acyclicity of G is enforced by recursively replacing vtj with the
corresponding expression in φ(·).

Most algorithms usually solve Eq. (10) only locally and approximately.
Usually, they employ a technique called Stochastic Gradient Descent (SGD)
[34], which can be applied after the constraints of Eq. (10) have been relaxed
and added as penalty terms to the objective function. This is a form of gradient
descent where, at each iteration, the gradient of a multivariate function is
estimated by partial gradients with respect to a randomly chosen subset of
variables [146, p. 100].

The functional definition of an optimum for the training problem Eq. (10)
is poorly understood, as finding precise local (or global) optima is considered
“overfitting”. In other words, global or almost global optima of Eq. (10) lead
to evaluations which are possibly perfect for pairs in the training set, but
unsatisfactory for yet unseen input. Currently, finding “good” optima of ANN
training problems is mostly based on experience, although a considerable effort
is under way in order to reach a sound definition of optimum [58,204,81,46].

24 Leo Liberti

The main reason why ANNs are so popular today is that they have proven
hugely successful at image recognition [80], and also extremely good at ac-
complishing other tasks, including natural language processing [48]. Many ef-
ficient applications of ANNs to complex tasks involve interconnected networks
of ANNs of many different types [25].

ANNs originated from an attempt to simulate neuronal activity in the
brain: should the attempt prove successful, it would realize the old human
dream of endowing a machine with human intelligence [199]. While ANNs
today display higher precision than humans in some image recognition tasks,
they may also be easily fooled by a few appropriately positioned pixels of
different colors, which places the realization of “human machine intelligence”
still rather far in the future — or even unreachable, e.g. if Penrose’s hypothesis
of quantum activity in the brain influencing intelligence at a macroscopic level
holds [157]. For more information about ANNs, see [170,80].

5.2 Clustering on graphs

While we argue in this paper that DG techniques allow the use of vector
clustering methods to graph clustering, there also exist methods for clustering
on graphs directly. We discuss two of them, both applicable to the task of
clustering vertices of a given graph (Task A on p. 20).

5.2.1 Spectral clustering

Consider a connected graph G = (V,E) with an edge weight function w : E →
R+. Let A be the adjacency matrix of G, with Aij = wij for all {i, j} ∈ E,
and Aij = 0 otherwise. Let ∆ be the diagonal weighted degree matrix of G,
with ∆ii =

∑
j 6=iAij and ∆ij = 0 for all i 6= j. The Laplacian of G is defined

as L = ∆−A.

Spectral clustering aims at finding a minimum balanced cut U ⊂ V in G
by looking at the spectrum of the Laplacian of G. For now, we give the word
“balanced” only an informal meaning: it indicates the fact that we would
like clusters to have approximately the same cardinality (we shall be more
precise below). Removing the cutset δ(U) (i.e. the set of edges between U and
V r U) from G yields a two-way partitioning of V . If |δ(U)| is minimum over
all possible cuts U , then the two sets U, V r U should both intuitively induce
subgraphs G[U] and G[V rU] having more edges than those in δ(U). In other
words, the criterion we are interested in maximizes the intra-cluster edges of
the subgraphs of G induced by the cluster while minimizing the inter-cluster
edges of the corresponding cutsets.

We remark that each of the two partitions can be recursively partitioned
again. A recursive clustering by two-way partitioning is a general methodology
which is part of a family of hierarchical clustering methods [169]. So the scope
of this section is not limited to generating two clusters only.

Distance Geometry and Data Science 25

For simplicity, we only discuss the case with unit edge weights, although the
generalization to general weights is not problematic. Thus, ∆ii is the degree
of vertex i ∈ V . We model a balanced partition {B,C} corresponding to a
minimum cut by means of decision variables xi = 1 if i ∈ B and xi = −1 if
i ∈ C, for each i ≤ n, with n = |V |. Then f(x) = 1

4

∑
{i,j}∈E(xi − xj)2 counts

the number of intercluster edges between B and C. We have:

4f(x) =
∑
{i,j}∈E

(x2i + x2j)− 2
∑
{i,j}∈E

xixj =
∑
{i,j}∈E

2−
∑
i,j≤n

xiAijxj =

= 2|E| − x>Ax =
∑
i≤n

xi∆iixi − x>Ax = x>(∆−A)x = x>Lx,

whence f(x) = 1
4x
>Lx. We can therefore obtain cuts with minimum |δ(B)| by

minimizing f(x).
We can now give a more precise meaning to the requirement that partitions

are balanced: we require that x must satisfy the constraint∑
i≤n

xi = 0. (11)

Obviously, Eq. (11) only ensures equal cardinality partitions on graphs having
an even number of vertices. However, we relax the integrality constraints x ∈
{−1, 1}n to x ∈ [−1, 1]n, so

∑
i≤n xi = 0 is applicable to any graph. With this

relaxation, the values of x might be fractional. We shall deal with this issue
by rounding them to {−1, 1} after obtaining the solution. We also note that
the constraint

x>x = ‖x‖22 = n (12)

holds for x ∈ {−1, 1}n, and so it provides a strengthening of the continuous
relaxation to x ∈ [−1, 1]n. We therefore obtain a relaxed formulation of the
minimum balanced two-way partitioning problem as follows:

min
x∈[−1,1]n

1
4x
>Lx

s.t. 1>x = 0
‖x‖22 = n,

 (13)

where 1 is the all-one vector. We remark that, by construction, L is a diago-
nally dominant (dd) symmetric matrix with non-negative diagonal, namely it
satisfies

∀i ≤ n Lii ≥
∑
j 6=i

|Lij | (14)

(in fact, L satisfies Eq. (14) at equality). Since all dd matrices are also psd
[192], f(x) is a convex function. This means that Eq. (13) is a cQP, which can
be solved at global optimality in polynomial time [181].

By [69], there is another polynomial time method for solving Eq. (14),
which is generally more efficient than solving a cQP in polynomial time using

26 Leo Liberti

a Nonlinear Programming (NLP) solver. This method concerns the second-
smallest eigenvalue of L (called algebraic connectivity) and its corresponding
eigenvector. Let λ1 ≤ λ2 ≤ · · · ≤ λn be the ordered eigenvalues of L and
u1, . . . , un be the corresponding eigenvectors, normalized so that ‖ui‖22 = n
for all i ≤ n. It is known that u1 = 1, λ1 = 0 and, if G is connected, λ2 > 0
[141,32]. By the definition of eigenvalue and eigenvector, we have

∀i ≤ n Lui = λiui ⇒ ui
>Lui = λiui

>ui = λi‖ui‖22 = λin. (15)

Because of the orthogonality of the eigenvectors, if i ≥ 2 we have uiu1 = 0,
which implies u21 = 0 (i.e. u2 satisfies Eq. (11)). We recall that eigenvectors
are normalized so that ‖ui‖22 = n for all i ≤ n (in particular, u2 satisfies
Eq. (12)). By Eq. (15), since λ1 = 0, λ2 yields the smallest nontrivial objective
function value n

4λ2 with solution x̄ = u2, which is therefore a solution of
Eq. (13).

Theorem 2 The eigenvector u2 corresponding to the second smallest eigen-
value λ2 of the graph Laplacian L is an optimal solution to Eq. (13).

Proof Since the eigenvectors u1, . . . , un are an orthogonal basis of Rn, we can
express an optimal solution as x̄ =

∑
i ciui. Thus,

x̄>Lx̄ =
∑
i,j

cicju
>
i Luj =

∑
i,j

cicjλju
>
i uj = n

∑
i>1

c2iλi. (16)

The last equality in Eq. (16) follows because Lui = λiui for all i ≤ n, u>i uj = 0
for each i 6= j, and λ1 = 0. Since u1 = 1 and by eigenvector orthogonality,
letting 1>x̄ = 0 yields c1 = 0. Lastly, requiring ‖x̄‖2 = n, again by eigenvector
orthogonality, yields∥∥∑

i>1

ciui
∥∥2
2

=
〈∑
i>1

ciui,
∑
j>1

cjuj
〉

=
∑
i,j>1

cicj〈ui, uj〉

=
∑
i>1

c2i ‖ui‖22 = n
∑
i>1

c2i = n. (17)

After replacing c2i by yi in Eq. (16)-(17), we can reformulate Eq. (13) as

n min
{∑
i>1

λiyi |
∑
i>1

yi = 1 ∧ y ≥ 0
}
,

which is equivalent to finding the convex combination of λ2, . . . , λn with small-
est value. Since λ2 ≤ λi for all i > 2, the smallest value is achieved at y2 = 1
and yi = 0 for all i > 2. Hence x̄ = u2 as claimed. ut

Normally, the components of x̄ obtained this way are not in {−1, 1}. We
round x̄i to its closest value in {−1, 1}, breaking ties in such a way as to keep
the bisection balanced. We then obtain a practically efficient approximation
of the minimum balanced cut.

Distance Geometry and Data Science 27

5.2.2 Modularity clustering

Modularity, first introduced in [151], is a measure for evaluating the quality
of a clustering of vertices in a graph G = (V,E) with a weight function w :
E → R+ on the edges. We let n = |V | and m = |E|. Given a vertex clustering
C = (C1, . . . , Ck), where each Ci ⊆ V , Ci ∩ Cj = ∅ for each i 6= j, and⋃
i Ci = V , the modularity of C is the proportion of edges in E that fall

within a cluster minus the expected proportion of the same quantity if edges
were distributed at random while keeping the vertex degrees constant. This
definition is not so easy to understand, so we shall assume for simplicity that
wuv = 1 for all {u, v} ∈ E and wuv = 0 otherwise. We give a more formal
definition of modularity, and comment on its construction.

The “fraction of the edges that fall within a cluster” is

1

m

∑
i≤k

∑
u,v∈Ci
{u,v}∈E

1 =
1

2m

∑
i≤k

(u,v)∈(Ci)
2

wuv

where wuv = wvu turns out to be the (u, v)-th component of the n × n sym-
metric incidence matrix of the edge set E in V × V — thus we divide by 2m
rather than m in the right hand side (RHS) of the above equation. The “same
quantity if edges were distributed at random while keeping the vertex degrees
constant” is the probability that a pair of vertices u, v belongs to the edge set
of a random graph on V . If we were computing this probability over random
graphs sampled uniformly over all graphs on V with m edges, this probabil-
ity would be 1/m; but since we only want to consider graphs with the same

degree sequence as G, the probability is |N(u)| |N(v)|
2m [108]. Here is an informal

explanation: given vertices u, v, there are ku = |N(u)| “half-edges” out of u,
and kv = |N(v)| out of v, which could come together to form an edge between
u and v (over a total of 2m “half-edges”). Thus we obtain a modularity

µ(C) =
1

2m

∑
(u,v)∈C2

C∈C

(wuv − kukv/(2m))

for the clustering C.
We now introduce binary variables xuv which have value 1 if u, v ∈ V are

in the same cluster, and 0 otherwise. This allows us to rewrite the modularity
as:

µ(x) =
1

2m

∑
u6=v∈V

(wuv − kukv/(2m))xuv

=
1

m

∑
u<v∈V

(wuv − kukv/(2m))xuv. (18)

28 Leo Liberti

Following [10], we can reformulate the modularity maximization problem to a
clique partitioning problem with the following formulation:

max µ(x)
∀1 ≤ i < j < k ≤ n xij + xjk − xik ≤ 1
∀1 ≤ i < j < k ≤ n xij − xjk + xik ≤ 1
∀1 ≤ i < j < k ≤ n −xij + xjk + xik ≤ 1
∀1 ≤ i < j ≤ n xij ∈ {0, 1},

 (19)

which is a BLP formulation. The weighted variant of this problem yields a
formulation like Eq. (19) where w are the edge weights and ku =

∑
{u,v}∈E wuv

for all v 6= u in V . Another variant for graphs including loops and multiple
edges is described in [39]. We note that, by Eq. (19), maximizing modularity
does not require the number of clusters to be known a priori.

There is a large literature about modularity maximization and its solution
methods: for a survey, see [72, §VI]. Solution methods based on MP are of
particular interest to the topics of this survey. A BLP formulation similar to
Eq. (19) was proposed in [38]. Another BLP formulation with different sets of
decision variables (requiring the number of clusters to be known a priori) was
proposed in [201]. Some column generation approaches, which scale better
in size w.r.t. previous formulations, were proposed in [10]. Some MP based
heuristics are discussed in [40,41,11].

6 Robust solution methods for the DGP

In this section we discuss some solution methods for the DGP which can be
extended to deal with cases where distances are uncertain, noisy or wrong.
Most of the methods we present are based on MP. We also discuss a different
(non-MP based) class of methods in Sect. 6.2, in view of their computational
efficiency.

6.1 Mathematical programming based methods

DGP solution methods based on MP are robust to noisy or wrong data because
MP allows for: (a) modification of the objective and constraints; (b) adjoining
of side constraints. Moreover, although we do not review these here, there are
MP-based methodologies for ensuring robustness of solutions [24], probabilistic
constraints [158], and scenario-based stochasticity [28], which can be applied
to the formulations in this section.

6.1.1 Unconstrained quartic formulation

A system of equations such as Eq. (3) is itself a MP formulation with objective
function identically equal to zero, and X = RnK . It therefore belongs to the
QCP class. In practice, solvers for this class perform rather poorly when given

Distance Geometry and Data Science 29

Eq. (3) as input [104]. Much better performances can be obtained by solving
the following unconstrained formulation:

min
∑

{u,v}∈E

(
‖xu − xv‖22 − d2uv

)2
. (20)

We note that Eq. (20) consists in the minimization of a polynomial of degree
four. It belongs to the class of nonconvex NLP formulations. In general, this is
an NP-hard class [112], which is not surprising, as it formulates the DGP which
is itself an NP-hard problem. Very good empirical results can be obtained on
the DGP by solving Eq. (20) with a local NLP solver (such as e.g. IPOPT
[47] or SNOPT [77]) from a good starting point [104]. This is the reason why
Eq. (20) is very important: it can be used to “refine” solutions obtained with
other methods, as it suffices to let such solutions be starting points given to a
local solver acting on Eq. (20).

Even if the distances duv are noisy or wrong, optimizing Eq. (20) can yield
good approximate realizations. If the uncertainty on the distance values is
modelled using an interval [dLuv, d

U
uv] for each edge {u, v}, the following function

[123] can be optimized instead of Eq. (20):

min
∑

{u,v}∈E

(
max(0, (dLuv)

2−‖xu−xv‖22)+max(0, ‖xu−xv‖22−(dUuv)
2)
)
. (21)

The DGP variant where distances are intervals instead of values is known as
the interval DGP (iDGP) [79,106]. We remark that, with interval distances,
the formultions proposed in this section are no longer exact reformulations of
Eq. (3).

Note that Eq. (21) involves binary max functions with two arguments. Rel-
atively few MP user interfaces/solvers would accept this function. To overcome
this issue, we linearize (see Sect. 2.4.1) the two max terms by two sets of added
decision variables y, z, and obtain

min
∑

{u,v}∈E
(yuv + zuv)

∀{u, v} ∈ E ‖xu − xv‖22 ≥ (dLuv)
2 − yuv

∀{u, v} ∈ E ‖xu − xv‖22 ≤ (dUuv)
2 + zuv

y, z ≥ 0,

 (22)

which follows from Eq. (21) because of the objective function direction, and
because a ≥ max(b, c) is equivalent to a ≥ b ∧ a ≥ c. We note that Eq. (22)
is no longer an unconstrained quartic, however, but a QCP. It expresses a
minimization of penalty variables to the quadratic inequality system

∀{u, v} ∈ E (dLuv)
2 ≤ ‖xu − xv‖22 ≤ (dUuv)

2. (23)

We also note that many local NLP solvers take very arbitrary functions in
input (such as functions expressed by computer code), so the reformulation
Eq. (22) may be unnecessary when only locally optimal solutions of Eq. (21)
are needed.

30 Leo Liberti

6.1.2 Constrained quadratic formulations

We propose two formulations in this section. The first is derived directly from
Eq. (3):

min
∑

{u,v}∈E
s2uv

∀{u, v} ∈ E ‖xu − xv‖22 = d2uv + suv.

}
(24)

We note that Eq. (24) is a QCQP formulation. Similarly to Eq. (22) it uses
additional variables to penalize feasibility errors w.r.t. (3). Differently from
Eq. (22), however, it removes the need for two separate variables to model
slack and surplus errors. Instead, suv is unconstrained, and can therefore take
any value. The objective, however, minimizes the sum of the squares of the
components of s. In practice, Eq. (24) performs much better than Eq. (3); on
average, the performance is comparable to that of Eq. (20). We remark that
Eq. (24) has a convex objective function but nonconvex constraints.

The second formulation we propose is an exact reformulation of Eq. (20).
First, we replace the minimization of squared errors by absolute values, yield-
ing

min
∑

{u,v}∈E

∣∣‖xu − xv‖22 − d2uv∣∣,
which clearly has the same set of global optima as Eq. (20). We then rewrite
this similarly to Eq. (22) as follows:

min
∑

{u,v}∈E
(yuv + zuv)

∀{u, v} ∈ E ‖xu − xv‖22 ≥ d2uv − yuv
∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2uv + zuv

y, z ≥ 0,

which, again, does not change the global optima. Next, we note that we can fix
zuv = 0 without changing global optima, since they all have the property that
zuv = 0. Now we replace yuv in the objective function by d2uv − ‖xu − xv‖22,
which we can do without changing the optima since the first set of constraints
reads yuv ≥ d2uv − ‖xu − xv‖22. We can discard the constant d2uv from the
objective, since adding constants to the objective does not change optima,
and change min−f to −max f , yielding:

max
∑

{u,v}∈E
‖xu − xv‖22

∀{u, v} ∈ E ‖xu − xv‖22 ≤ d2uv,

}
(25)

which is a QCQP known as the “push-and-pull” formulation of the DGP,
since the constraints ensure that xu, xv are pushed closer together, while the
objective attempts to pull them apart [138, §2.2.1].

Contrariwise to Eq. (24), Eq. (25) has a nonconvex (in fact, concave) ob-
jective function and convex constraints. Empirically, this often turns out to
be somewhat easier than tackling the reverse situation. The theoretical justi-
fication is that finding a feasible solution in a nonconvex set is a hard task in

Distance Geometry and Data Science 31

general, whereas finding local optima of a nonconvex function in a convex set
is tractable: the same cannot be said for global optima, but in practice one is
often satisfied with “good” local optima.

6.1.3 Semidefinite programming

SDP is linear optimization over the cone of psd matrices, which is convex: if
A,B are two psd matrices, C = αA + (1 − α)B is psd for α ∈ [0, 1]. Suppose
there is x ∈ Rn such that x>Cx < 0. Then αx>Ax + (1 − α)x>Bx < 0, so
0 ≤ αx>Ax < −(1 − α)x>Bx ≤ 0, i.e. 0 < 0, which is a contradiction, hence
C is also psd, as claimed. Therefore, SDP is a subclass of cNLP.

The SDP formulation we propose is a relaxation of Eq. (3). First, we write
‖xu−xv‖22 = 〈xu, xu〉+ 〈xv, xv〉−2〈xu, xv〉. Then we linearize all of the scalar
products by means of additional variables Xuv:

∀{u, v} ∈ E Xuu +Xvv − 2Xuv = d2uv

X = xx>.

We note that X = xx> constitutes the whole set of defining constraints
Xuv = 〈xu, xv〉 (for each u, v ≤ n) introduced by the linearization procedure
(Sect. 2.4.1).

The relaxation we envisage does not entirely drop the defining constraints,
as in Sect. 2.4.1. Instead, it relaxes them from X − xx> = 0 to X − xx> � 0.
In other words, instead of requiring that all of the eigenvalues of the matrix
X −xx> are zero, we simply require that they should be ≥ 0. Moreover, since
the original variables x do not appear anywhere else, we can simply require
X � 0, obtaining:

∀{u, v} ∈ E Xuu +Xvv − 2Xuv = d2uv
X � 0.

}
(26)

The SDP relaxation in Eq. (26) has the property that it provides a solution
X̄, which is an n × n symmetric matrix. Spectral decomposition of X̄ yields
PΛP>, where P is a matrix of eigenvectors and Λ = diag(λ) where λ is a
vector of eigenvalues of X̄. Since X̄ is psd, λ ≥ 0, which means that

√
Λ is a

real matrix. Therefore, by setting Y = P
√
Λ we have that

Y Y > = (P
√
Λ)(P

√
Λ)
>

= P
√
Λ
√
ΛP> = PΛP> = X̄,

which implies that X̄ is the Gram matrix of Y . Thus we can take Y to be a
realization satisfying Eq. (3). The only issue is that Y , as an n× n matrix, is
a realization in n dimensions rather than K. Naturally, rk(Y) = rk(X̄) need
not be equal to n, but could be lower; in fact, in order to find a realization
of the given graph, we would like to find a solution X̄ with rank at most K.
Imposing this constraint is equivalent to asking that X = xx> (which have
been relaxed in Eq. (26)).

We note that Eq. (26) is a pure feasibility problem. Every SDP solver,
however, also accepts an objective function as input. In absence of a “natural”

32 Leo Liberti

objective in a pure feasibility problem, we can devise one to heuristically direct
the search towards parts of the psd cone which we believe might contain “good”
solutions. A popular choice is

min tr(X) = min tr(PΛP>) = min tr(PP>Λ) =

= min tr(PP−1Λ) = minλ1 + · · ·+ λn,

where tr is the trace, the first equality follows by spectral decomposition (with
P a matrix of eigenvectors and Λ a diagonal matrix of eigenvalues of X), the
second by commutativity of matrix products under the trace, the third by
orthogonality of eigenvectors, and the last by definition of trace. This aims at
minimizing the sum of the eigenvalues of X, hoping this will decrease the rank
of X̄.

For the DGP applied to protein conformation (Sect. 3.3.2), the objective
function

min
∑

{u,v}∈E

(Xuu +Xvv − 2Xuv)

was empirically found to be a good choice [62, §2.1]. We remark that the
equality constraints in Eq. (26) can be used to reformulate the function in
Eq. (6.1.3) to the constant

∑
{u,v}∈E d

2
ij . The reason why Eq. (6.1.3) did not

behave like a constant function in empirical testing must be related to the
fact the current iterate is not precisely feasible at every step of the solution
algorithm. More (unpublished) experimentation showed that the scalarization
of the two objectives:

min
∑

{u,v}∈E

(Xuu +Xvv − 2Xuv) + γtr(X), (27)

with γ in the range O(10−2)-O(10−3), is a good objective function for solving
Eq. (26) when it is applied to protein conformation.

In the majority of cases, solving SDP relaxations does not yield solution
matrices with rank K, even with objective functions such as Eq. (27). We
discuss methods for constructing an approximate rank K realization from X̄
in Sect. 7.

SDP is one of those problems which is not known to be in P (nor NP-
complete) in the Turing machine model. It is, however, known that SDPs can
be solved in polynomial time up to a desired error tolerance ε > 0, with the
complexity depending on 1

ε as well as the instance size. Currently, however,
the main issue with SDP is technological: state-of-the art solvers do not scale
all that well with size. One of the reasons is that K is usually fixed (and small)
with respect to n, so the while the original problem has O(n) variables, the
SDP relaxation has O(n2). Another reason is that the Interior Point Method
(IPM), which often features as a “state of the art” SDP solver, has a rela-
tively high computational complexity [160]: a “big oh” notation estimate of
O(max(m,n)mn2.5) is given in Bubeck’s blog at ORFE, Princeton.2

2 blogs.princeton.edu/imabandit/2013/02/19/orf523-ipms-for-lps-and-sdps/

Distance Geometry and Data Science 33

6.1.4 Diagonally dominant programming

In order to address the size limitations of SDP, we employ some interesting
linear approximations of the psd cone proposed in [129,5]. An n × n real
symmetric matrix X is diagonally dominant (dd) if

∀i ≤ n
∑
j 6=i

|Xij | ≤ Xii. (28)

As remarked in Sect. 5.2.1, it is well known that every dd matrix is also psd,
while the converse may not hold. Specifically, the set of dd matrices form a
sub-cone of the cone of psd matrices [18].

The interest of dd matrices is that, by linearization of the absolute value
terms, Eq. (28) can be reformulated so it becomes linear: we introduce an
added matrix T of decision variables, then write:

∀i ≤ n
∑
j 6=i

Tij ≤ Xii (29)

−T ≤ X ≤ T, (30)

which are linear constraints equivalent to Eq. (28) [5, Thm. 10]. One can see
this easily whenever X ≥ 0 or X ≤ 0. Note that

∀i ≤ n Xii ≥
∑
j 6=i

Tij ≥
∑
j 6=i

Xij

∀i ≤ n Xii ≥
∑
j 6=i

Tij ≥
∑
j 6=i

−Xij

follow directly from Eq. (29)-(30). Now one of the RHSs is equal to
∑
j 6=i |Xij |,

which implies Eq. (28). For the general case, the argument uses the extreme
points of Eq. (29)-(30) and elimination of T by projection.

We can now approximate Eq. (26) by the pure feasibility LP:

∀{u, v} ∈ E Xuu +Xvv − 2Xuv = d2uv
∀i ≤ n

∑
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T,

 (31)

which we call a diagonally dominant program (DDP). As in Eq. (26), we do
not explicitly give an objective function, since it depends on the application.
Since the DDP in Eq. (31) is an inner approximation of the corresponding
SDP in Eq. (26), the DDP feasible set is a subset of that of the SDP. This
situation yields both an advantage and a disadvantage: any solution X̃ of the
DDP is psd, and can be obtained at a smaller computational cost; however,
the DDP might be infeasible even if the corresponding SDP is feasible (see
Fig. 5, left). In order to decrease the risk of infeasibility of Eq. (31), we relax

34 Leo Liberti

Fig. 5 On the left, the DDP is infeasible even if the SDP is not; on the right, a relaxed set
of constraints makes the DDP feasible.

the equation constraints to inequality, and impose an objective as in the push-
and-pull formulation Eq. (25):

max
∑

{u,v}∈E
(Xuu +Xvv − 2Xuv)

∀{u, v} ∈ E Xuu +Xvv − 2Xuv ≤ d2uv
∀i ≤ n

∑
j 6=i

Tij ≤ Xii

−T ≤ X ≤ T.

 (32)

This makes the DDP feasible set larger, which means it is more likely to be
feasible (see Fig. 5, right). Eq. (32) was successfully tested on protein graphs
in [62].

If C is any cone in Rn, the dual cone C∗ is defined as:

C∗ = {y ∈ Rn | ∀x ∈ C 〈x, y〉 ≥ 0}.

Note that the dual cone contains the set of vectors making a non-obtuse an-
gle with all of the vectors in the original (primal) cone. We can exploit the
dual dd cone in order to provide another DDP formulation for the DGP which
turns out to be an outer approximation. Outer approximations have symmet-
ric advantages and disadvantages w.r.t. the inner ones: if the original SDP
is feasible, than the outer DDP approximation is also feasible; however, the
solution X̃ we obtain from the outer DDP need not be a psd matrix. Some
computational experience related to [166] showed that it often happens that
more or less half of the eigenvalues of X̃ are negative.

We now turn to the actual DDP formulation related to the dual dd cone.
A cone C of n× n real symmetric matrices is finitely generated by a set X of
matrices if:

∀X ∈ C ∃δ ∈ R|X |+ X =
∑
x∈X

δxxx
>.

It turns out [18] that the dd cone is finitely generated by

Xdd = {ei | i ≤ n} ∪ {ei ± ej | i < j ≤ n},

where e1, . . . , en is the standard orthogonal basis of Rn. This is proved in [18]
by showing that the following rank-one matrices are extreme rays of the dd
cone:

Distance Geometry and Data Science 35

– Eii = diag(ei), where ei = (0, . . . , 0, 1i, 0, . . . , 0)
>

;

– E+
ij has a minor

(
1ii 1ij
1ji 1jj

)
and is zero elsewhere;

– E−ij has a minor

(
1ii −1ij
−1ji 1jj

)
and is zero elsewhere,

and, moreover, that the extreme rays are generated by the standard basis
vectors as follows:

∀i ≤ n Eii = eie
>
i

∀i < j ≤ n E+
ij = (ei + ej)(ei + ej)

>

∀i < j ≤ n E−ij = (ei − ej)(ei − ej)>.

This observation allowed Ahmadi and his co-authors to write the DDP formu-
lation Eq. (32) in terms of the extreme rays Eii, E

±
ij [5], and also to define a

column generation algorithms over them [4].
If a matrix cone is finitely generated, the dual cone has the same property.

Let Sn be the set of real symmetric n × n matrices; for A,B ∈ Sn we define
an inner product 〈A,B〉 = A •B , tr(AB>).

Theorem 3 Assume C is finitely generated by X . Then C∗ is also finitely
generated. Specifically, C∗ = {Y ∈ Sn | ∀x ∈ X (Y • xx> ≥ 0)}.

Proof By assumption, C = {X ∈ Sn | ∃δ ∈ R|X |+ X =
∑
x∈X δxxx

>}.
(⇒) Let Y ∈ Sn be such that, for each x ∈ X , we have Y • xx> ≥ 0. We
are going to show that Y ∈ C∗, which, by definition, consists of all matrices
Y such that for all X ∈ C, Y • X ≥ 0. Note that, for all X ∈ C, we have
X =

∑
x∈X δxxx

> (by finite generation). Hence Y •X =
∑
x δxY • xx> ≥ 0

(by definition of Y), whence Y ∈ C∗.
(⇐) Suppose Z ∈ C∗r{Y | ∀x ∈ X (Y •xx> ≥ 0)}. Then there is X ′ ⊂ X such
that for any x ∈ X ′ we have Z•xx> < 0. Consider any Y =

∑
x∈X ′ δxxx

> ∈ C
with δ ≥ 0. Then Z • Y =

∑
x∈X ′ δxZ • xx> < 0, so Z 6∈ C∗, which is a

contradiction. Therefore C∗ = {Y | ∀x ∈ X (Y • xx> ≥ 0)} as claimed. ut

We are going to exploit Thm. 3 in order to derive an explicit formulation
of the following DDP formulation based on the dual cone C∗dd of the dd cone
Cdd finitely generated by Xdd:

∀{u, v} ∈ E Xuu +Xvv − 2Xuv = d2uv
X ∈ C∗dd.

}
We remark that X • vv> = v>Xv for each v ∈ Rn. By Thm. 3, X ∈ C∗dd can
be restated as ∀v ∈ Xdd v

>Xv ≥ 0. We obtain the following LP formulation:

max
∑

{u,v}∈E
(Xuu +Xvv − 2Xuv)

∀{u, v} ∈ E Xuu +Xvv − 2Xuv = d2uv
∀v ∈ Xdd v>Xv ≥ 0.

 (33)

36 Leo Liberti

With respect to the primal DDP, the dual DDP formulation in Eq. (33) pro-
vides a very tight bound to the objective function value of the push-and-pull
SDP formulation Eq. (25). On the other hand, the solution X̄ is usually far
from being a psd matrix.

6.2 Fast high-dimensional methods

In Sect. 6.1 we surveyed methods based on MP, which are very flexible, insofar
as they can accommodate side constraints and noisy data, but computationally
demanding. In this section we discuss two very fast, yet robust, methods for
embeddings graphs in Euclidean spaces.

6.2.1 Incidence vectors

The simplest, and most naive methods for mapping graphs into vectors are
given by exploiting various incidence information in the graph structure. By
contrast, the resulting embeddings are unrelated to Eq. (3).

Given a simple graph G = (V,E) with |V | = n, |E| = m and edge weight
function w : E → R+, we present two approaches: one which outputs an n×n
matrix, and one which outputs a single vector in RK with K = 1

2n(n− 1).

1. For each u ∈ V , let xu = (xuv | v ∈ V) ∈ Rn be the incidence vector of
N(u) on V , i.e.:

∀u ∈ V xuv =

{
wuv if {u, v} ∈ E
0 otherwise.

2. Let K = 1
2n(n − 1), and xE = (xe | e ∈ E) ∈ RK be the incidence vector

of the edge set E into the set {{i, j} | i < j ≤ n}, i.e.:

xe =

{
we if e ∈ E
0 otherwise.

Both embeddings can be obtained in O(n2) time. Both embeddings are very
high dimensional. For practical usefulness, it is necessary to post-process them
using dimensional reduction techniques (see Sect. 7).

6.2.2 The universal isometric embedding

This method, also called Fréchet embedding, is remarkable in that it maps
any finite metric space congruently into a set of vectors in the `∞ norm [102,
§6]. No other norm allows exact congruent embeddings in vector spaces [134].
The Fréchet embedding provided the foundational idea for several other prob-
abilistic approximate embeddings in various other norms and dimensions [35,
128].

Distance Geometry and Data Science 37

Theorem 4 Given any finite metric space (X, d), where |X| = n and d is a
distance function defined on X, there exists an embedding ρ : X → Rn such
that (ρ(X), `∞) is congruent to (X, d).

This theorem is surprising because of its generality in conjunction with the
exactness of the result: it works on any (finite) metric space. The “magic hat”
out of which we shall pull the vectors in ρ(X) is simply the only piece of data
we are given, namely the distance matrix of X. More precisely the i-th element
of X is mapped to the vector corresponding to the i-th column of the distance
matrix.

Proof Let D(X) be the distance matrix of (X, d), namely Dij(X) = (d(xi, xj))
where X = {x1, . . . , xn}. We denote d(xi, xj) = dij for brevity. For any j ≤ n
we let ρ(xj) = δj , where δj is the j-th column of D(X). We have to show that
‖ρ(xi)− ρ(xj)‖∞ = dij for each i < j ≤ n. By definition of the `∞ norm, for
each i < j ≤ n we have

‖ρ(xi)− ρ(xj)‖∞ = ‖δi − δj‖∞ = max
k≤n
|δik − δjk| = max

k≤n
|dik − djk|. (∗)

By the triangular inequality on (X, d), for i < j ≤ n and k ≤ n we have:

dik ≤ dij + djk ∧ djk ≤ dij + dik

⇒ dik − djk ≤ dij ∧ djk − dik ≤ dij
⇒ |dik − djk| ≤ dij ;

since these inequalities are valid for each k, by (∗) we have:

‖ρ(xi)− ρ(xj)‖∞ ≤ max
k

dij = dij , (†)

where the last equality follows because dij does not depend on k. Now we note
that the maximum of |dik − djk| over k must exceed the value of the same
expression when either of the terms dik or djk is zero, i.e. when k ∈ {i, j},
since, when k = i, then |dik−djk| = |dii−dji| = dij , and the same holds when
k = j. Hence,

max
k≤n
|dik − djk| ≥ dij . (‡)

By (∗), (†) and (‡), we finally have:

∀i < j ≤ n ‖ρ(xi)− ρ(xj)‖∞ = dij

as claimed. ut

We remark that Thm. 4 is only applicable when D(X) is a distance matrix,
which corresponds to the case of a graph G edge-weighed by d being a complete
graph. We address the more general case of any (connected) simple graph G =
(V,E), corresponding to a partially defined distance matrix, by completing
the matrix using the shortest path metric (this distance matrix completion
method was used for the Isomap heuristic, see [179,115] and Sect. 7.1.1):

∀{i, j} 6∈ E dij = shortest path lengthG(i, j). (34)

38 Leo Liberti

In practice, we can compute the lengths of all shortest paths in G by us-
ing the Floyd-Warshall algorithm, which runs in O(n3) time (but there exist
reasonably fast implementations).

This method yields a realization of G in `n∞, which is a high-dimensional
embedding. It is necessary to post-process it using dimensional reduction tech-
niques (see Sect. 7).

6.2.3 Multidimensional scaling

The literature on Multidimensional Scaling (MDS) is extensive [50,33], and
many variants exist. The basic version, called classic MDS, aims at finding an
approximate realization of a partial distance matrix. In other words, it is a
heuristic solution method for the

Euclidean Distance Matrix Completion Problem (EDMCP).
Given a simple undirected graph G = (V,E) with an edge weight func-
tion w : E → R+, determine whether there exists an integer K > 0 and
a realization x : V → RK such that Eq. (3) holds.

The difference between EDMCP and DGP may appear diminutive, but it is
in fact very important. In the DGP the integer K is part of the input, whereas
in the EDMCP it is part of the output. This has a large effect on worst-case
complexity: while the DGP is NP-hard even when only an ε-approximate
realization is sought [168, §5], ε-approximate realizations of EDMCPs can
be found in polynomial time by solving an SDP [7]. See [116,167] for more
information about the relationship between EDMCP and DGP.

Consider the following matrix:

∆(E, d) =

{
w2
ij if {i, j} ∈ E

dij otherwise,

where d = (dij | {i, j} 6∈ E) is a vector of decision variables, and J = In −
1
n11

>. Then the following formulation is valid for the EDMCP:

min
d,T,X

11> • T

−T ≤ X + 1
2J ∆(E, d) J ≤ T

X � 0.

 (35)

Theorem 5 The SDP in Eq. (35) correctly models the EDMCP.

By “correctly models” we mean that the solution of the EDMCP can be ob-
tained in polynomial time from the solution of the SDP in Eq. (35).

Proof First, we remark that, given a realization x : V → Rn, its Gram matrix
is X = xx>, and its squared Euclidean distance matrix (EDM) is

D2 = (‖xu − xv‖22 | u ≤ n ∧ v ≤ n) ∈ Rn×n.

Distance Geometry and Data Science 39

Next, we recall that

X = −1

2
JD2J (36)

by [57] (after [171] — see [117, §7] for a direct proof3). Now we note that mini-
mizing 11>•T subject to −T ≤ X+ 1

2J∆(E, d)J ≤ T is an exact reformulation
of

min
G,d
‖X − (−1/2)J∆(E, d)J)‖1, (∗)

since 11> • T =
∑
i,j Tij , and T is used to “sandwich” the argument of the `1

norm in (∗). This implies that X = − 1
2J∆(E, d)J iff T = 0 iff 11> • T = 0.

Consequently, if the optimal objective function value of Eq. (35) is zero with
corresponding solution d∗, T ∗, X∗, then tr(11>•T ∗) = 0⇒ T ∗ = 0⇒ (∗) = 0.
We also recall another basic fact of linear algebra: a matrix is Gram if and only
if it is psd: hence, requiring X � 0 forces X to be a Gram matrix. So X∗ is a
Gram matrix and ∆(E, d∗) = D2 is its corresponding EDM by Eq. (36). Lastly,
the realization x∗ corresponding to the Gram matrix X∗ can be obtained by
spectral decomposition of X∗ = PΛP>, which yields x∗ = P

√
Λ: this implies

that the EDMCP instance is YES. Otherwise, if the optimal objective function
value of Eq. (35) is nonzero, then T ∗ 6= 0, which means that the EDMCP
instance is NO (assuming it were YES would contradict optimality). ut

The practically useful corollary to Thm. (5) is that solving Eq. (35) provides
an approximate solution x∗ even if ∆(E, d) cannot be completed to an EDM.

Classic MDS is an efficient heuristic method for finding an approximate
realization of a partial distance matrix ∆(E, d). It works as follows:

1. complete ∆(E, d) to an approximate EDM D̃2 using the shortest-path met-
ric (Eq. (34));

2. let X̃ = − 1
nJD̃

2J ;

3. let PΛ̃P> be the spectral decomposition of X̃;
4. if Λ̃ ≥ 0 then, by Eq. (36), D̃2 is a EDM, with corresponding (exact)

realization x̃ = P
√
Λ;

5. otherwise, let Λ+ = diag((max(λ, 0) | λ ∈ Λ)): then x̃ = P
√
Λ+ is an

approximate realization of D̃2.

Note that both Eq.(35) and classic MDS determine K as part of the output,
i.e. K is the rank of the realization (respectively x∗ and x̃).

7 Dimensional reduction techniques

Dimensional reduction techniques reduce the dimensionality of a set of vectors
according to different criteria, which may be heuristic, or give some (possibly
probabilistic) guarantee of keeping some quantity approximately invariant.
They are necessary in order to make many of the methods in Sect. 6 useful in
practice.

3 Also see math.stackexchange.com/questions/1882130/ for a compact derivation.

40 Leo Liberti

7.1 Principal component analysis

Principal Component Analysis (PCA) is one of the foremost dimensional re-
duction techniques. It is ascribed to Harold Hotelling4 [87].

Consider an n×m matrix X consisting of n data row vectors in Rm, and
let K < m be a given integer. We want to find a change of coordinates for
X such that the first component has largest variance over the transformed
vectors, the second component has second-largest variance, and so on, until
the K-th component. The other components can be neglected, as the variance
of the data in those directions is low.

The usual geometric interpretation of PCA is to take the smallest enclosing
ellipsoid E for X: then the required coordinate change maps component 1 to
the line parallel to the largest radius of E , component 2 to the line parallel
to the second-largest radius of E , and so on until component K (see Fig. 6).
The statistical interpretation of PCA looks for the change of coordinates which

Fig. 6 Geometric interpretation of PCA (image from [194]).

makes the data vectors be uncorrelated in their components. Fig. 6 should give
an intuitive idea about why this interpretation corresponds with the ellipsoid of
the geometric interpretation. The cartesian coordinates in Fig. 6 are certainly
correlated, while the rotated coordinates look far less (linearly) correlated.
The zero correlation situation corresponds to a perfect ellipsoid. An ellipsoid

4 A young and unknown George Dantzig had just finished his presentation of LP to an
audience of “big shots”, including Koopmans and Von Neumann. Harold Hotelling raised his
hand, and stated: “but we all know that the world is nonlinear!”, thereby obliterating the
simplex method as a mathematical curiosity. Luckily, Von Neumann answered on Dantzig’s
behalf and in his defence [54].

Distance Geometry and Data Science 41

is described by the equation
∑
j≤n

(xj

rj

)2
= 1, which has no mixed terms

xixj contributing to correlation. Both interpretations are well (and formally)
argued in [186, §2.1].

The interpretation we give here is motivated by DG, and related to MDS
(Sect. 6.2.3). PCA can be seen as a modification of MDS which only takes
into account the K (nonnegative) principal components. Instead of Λ+ (step
5 of the MDS algorithm), PCA uses a different diagonal matrix Λpca: the i-th
diagonal component is

Λpca
ii =

{
max(Λii, 0) if i ≤ K
0 otherwise,

(37)

where PΛP> is the spectral decomposition of G̃. In this interpretation, when
given a partial distance matrix and the integer K as input, PCA can be used
as an approximate solution method for the DGP.

On the other hand, the PCA algorithm is most usually considered as a
method for dimensionality reduction, so it has a data matrix X and an integer
K as input. It is as follows:

1. let G̃ = XX> be the n× n Gram matrix of the data matrix X;
2. let PΛ̃P> be the spectral decomposition of G̃;
3. return x̃ = P

√
Λpca.

Then x̃ is an n × K matrix, where K < n. The i-th row vector in x̃ is a
dimensionally reduced representation of the i-th row vector in X.

There is an extensive literature on PCA, ranging over many research pa-
pers, dedicated monographs and textbooks [194,94,186]. Among the variants
and extensions, see [59,165,56,8,61].

7.1.1 Isomap

One of the most interesting applications of PCA is possibly the Isomap al-
gorithm [179], already mentioned above in Sect. 6.2.2, which is able to use
PCA in order to perform a nonlinear dimensional reduction from the original
dimension m to a given target dimension K, as follows.

1. Form a connected graph H = (V,E) with the column indices 1, . . . , n of X
as vertex set V : determine a threshold value τ such that, for each column
vector xi in X (for i ≤ n), and for each xj in X such that ‖xi − xj‖2 ≤ τ ,
the edge {i, j} is in the edge set E; the graph H should be as sparse as
possible but also connected.

2. Complete H using the shortest path metric (Eq. (34)).
3. Use PCA in the MDS interpretation mentioned above: interpret the com-

pletion of (V,E) as a metric space, construct its (approximate) EDM D̃,
compute the corresponding (approximate) Gram matrix G̃, compute the
spectral decomposition of G̃, replace its diagonal eigenvalue matrix Λ as in
Eq. (37), and return the corresponding K-dimensional vectors.

42 Leo Liberti

Intuitively, Isomap works well because in many practical situations where a set
X of points in Rm are close to a (lower) K-dimensional manifold, the shortest
path metric is likely to be a better estimation of the Euclidean distance in RK
than the Euclidean distance in Rm, see [179, Fig. 3].

7.2 Barvinok’s naive algorithm

By Eq. (26), we can solve an SDP relaxation of the DGP and obtain an n×n
psd matrix solution X̄ which, in general, will not have rank K (i.e., it will not
yield an n×K realization matrix, but rather an n×n one). In this section we
shall derive a dimensionality reduction algorithm to obtain an approximation
of X̄ which has the correct rank K.

7.2.1 Quadratic Programming feasibility

Barvinok’s naive algorithm [20, §5.3] is a probabilistic algorithm which can find
an approximate vector solution x′ ∈ Rn to a system of quadratic equations

∀i ≤ m x>Qix = ai, (38)

where the Qi are n × n symmetric matrices, a ∈ Rm, x ∈ Rn, and m is
polynomial in n. The analysis of this algorithm provides a probabilistic bound
on the maximum distance that x′ can have from the set of solutions of Eq. (38).
Thereafter, one can run a local NLP solver with x′ as a starting point, and
obtain a hopefully good (approximate) solution to Eq. (38). We note that this
algorithm is still not immediately applicable to the our setting where K could
be different from 1: we shall address this issue in Sect. 7.2.4.

Barvinok’s naive algorithm solves an SDP relaxation of Eq. (38), and then
retrieves a certain randomized vector from the solution:

1. form the SDP relaxation

∀i ≤ m (Qi •X = ai) ∧X � 0 (39)

of Eq. (38) and solve it to obtain X̄ ∈ Rn×n;

2. let T =
√
X̄, which is a real matrix since X̄ � 0 (T can be obtained by

spectral decomposition, i.e. X̄ = PΛP> and T = P
√
Λ);

3. let y be a vector sampled from the multivariate normal distribution Nn(0, 1);
4. compute and return x′ = Ty.

The analysis provided in [20] shows that ∃c > 0 and an integer n0 ∈ N such
that ∀n ≥ n0

P

(
∀i ≤ m dist(x′,Xi) ≤ c

√
‖X̄‖2 lnn

)
≥ 0.9. (40)

In Eq. (40), dist(b, B) = infβ∈B ‖b − β‖2 is the Euclidean distance between
the point b and the set B, and c is a constant that only depends on lognm.

Distance Geometry and Data Science 43

We recall that P(·) denotes the probability of an event. We note that the term√
‖X̄‖2 in Eq. (40) arises from T being a factor of X̄. We note also that 0.9

follows from assigning some arbitrary value to some parameter — i.e. 0.9 can
be increased as long as the problem size is large enough.

For cases of Eq. (38) where one of the quadratic equations is ‖x‖22 = 1
(namely, the solutions of Eq. (38) must belong to the unit sphere), it is noted
in [20, Eg. 5.5] that, if X̄ is “sufficiently generic”, then ‖X̄‖2 = O(1/n), which

implies that the bounding function c
√
X̄2 lnn → 0 as n → ∞. This, in turn,

means that x′ converges towards a feasible solution of the original problem in
the limit.

7.2.2 Concentration of measure

The term lnn in Eq. (40) arises from a phenomenon of high-dimensional ge-
ometry called “concentration of measure”.

We first give an example of concentration of measure around the median
value of a Lipschitz function. We recall that a function f : X → R is Lipschitz
if there is a constant M > 0 s.t. for any x, y ∈ X we have |f(x) − f(y)| <
M‖x−y‖2. A measure space (X , µ) has the concentration of measure property
if for any Lipschitz function f , there are constants C, c > 0 such that:

∀ε > 0 P(|f(x)−Mµ(f)| > ε | x ∈ X) ≤ C e−cε
2

(41)

where Mµ(f) is the median value of f w.r.t. µ. In other words, X has measure
concentration if for any Lipschitz function f , its discrepancy from its median
value is small with arbitrarily high probability. It turns out that the Euclidean
space Rn with the Gaussian density measure φ(x) = (2π)n/2e−‖x‖

2
2/2 has mea-

sure concentration around the mean [21, §5.3].

Measure concentration is interesting in view of applications since, given
any large enough closed subset A of X , its ε-neighbourhood

A(ε) = {x ∈ X | dist(x,A) ≤ ε} (42)

contains almost the whole measure of X . More precisely, if (X , µ) has measure
concentration and A ⊂ X is closed, for any p ∈ (0, 1) there is a ε0(p) > 0 such
that [127, Prop. 2]:

∀ε ≥ ε0(p) µ(A(ε)) > 1− p. (43)

Eq. (43) is useful for applications because it defines a way to analyse prob-
abilistic algorithms. For a random point sampled in (X , µ) that happens to
be in A on average, Eq. (43) ensures that it is unlikely that it should be far
from A. This can be used to bound errors, as Barvinok did with his naive
algorithm. Concentration of measure is fundamental in data science, insofar
as it may provide algorithmic analyses to the effect that some approximation
errors decrease in function of the increasing instance size.

44 Leo Liberti

7.2.3 Analysis of Barvinok’s algorithm

We sketch the main lines of the analysis of Barvinok’s algorithm (see [19,
Thm. 5.4] or [127, §3.2] for a more detailed proof). We let X = Rn and
µ(x) = φ(x) be the Gaussian density measure. It is easy to show that

Eµ(x>Qix | x ∈ Rn) = tr(Qi)

for each i ≤ m. From this fact and the factorization X̄ = TT>, one obtains

Eµ(x>T>Qi Tx | x ∈ X) = tr(T>Qi T) = tr(QiX̄) = Qi • X̄ = ai.

This shows that, for any y ∼ Nn(0, 1), the average of y>T>Qi Ty is ai.
The analysis then goes on to show that, for some y ∼ Nn(0, 1), it is unlikely

that y>T>Qi Ty should be far from ai. It achieves this result by defining the
sets A+

i = {x ∈ Rn | x>Qix ≥ ai}, A−i = {x ∈ Rn | x>Qix ≤ ai}, and
their respective neighbourhoods A+

i (ε), A−i (ε). Using a technical lemma [127,
Lemma 4] it is possible to apply Eq. (43) to A+

i (ε) and A−i (ε) to argue for
concentration of measure. Applying the union bound it can be shown that
their intersection Ai(ε) is the neighbourhood of Ai = {x ∈ Rn | x>Qix = ai}.
Another application of the union bound to all the sets Ai(ε) yields the result
[127, Thm. 5].

We note that concentration of measure proofs often have this structure:
(a) prove that a certain event holds on average; (b) prove that the discrepancy
from average gets smaller and/or more unlikely with increasing size. Usually
proving (a) is easier than proving (b).

7.2.4 Applicability to the DGP

The issue with trying to apply Barvinok’s naive algorithm to the DGP is that
we should always assume K = 1 by Eq. (38). To circumvent this issue, we
might represent an n×K realization matrix as a vector in RnK by stacking its
columns (or concatenating its rows). This, on the other hand, would require
solving SDPs with nK × nK matrices, which is prohibitive because of size.

Luckily, Barvinok’s naive algorithm can be very easily extended to arbi-
trary values of K. We replace Step 3 by:

3b. let y be an n×K matrix sampled from Nn×K(0, 1).

The corresponding analysis needs some technical changes [127], but the overall
structure is the same as the case K = 1. The obtained bound replaces

√
lnn

in Eq. (40) with
√

lnnK.
In the DGP case, the special structure of the matrices Qi (for i ranging

over the edge set E) makes it possible to remove the factor K, so we retrieve
the exact bound of Eq. (40). As noted in Sect. 7.2.1, if the DGP instance is
on a sphere [126], this means that x′ = Ty converges to an exact realization
with probability 1 in the limit of n→∞. Similar bounds to Eq. (40) were also
derived for the iDGP case [127].

Distance Geometry and Data Science 45

Barvinok also described concentration of measure based techniques for find-
ing low-ranking solutions of the SDP in Eq. (39) (see [19] and [21, §6.2]), but
these do not allow the user to specify an arbitrary rank K, so they only apply
to the EDMCP.

7.3 Random projections

Random projections (RPs) are another dimensionality reduction technique ex-
ploiting high-dimensional geometry properties and, in particular, the concen-
tration of measure phenomenon (Sect. 7.2.2). They are more general than
Barvinok’s naive algorithm (Sect. 7.2) in that they apply to sets of vectors
in some high-dimensional Euclidean space Rn (with n � 1). These sets are
usually finite and growing polynomially with instance sizes [182], but they
may also be infinite [198], in which case the technical name used is subspace
embeddings.

7.3.1 The Johnson-Lindenstrauss Lemma

The foremost result in RPs is the celebrated Johnson-Lindenstrauss Lemma
(JLL) [93]. For a set of vectors X ⊂ Rn with |X | = `, and an ε ∈ (0, 1) there
is a k = O(1

ε2 ln `) and a mapping f : X → Rk such that:

∀x, y ∈ X (1− ε)‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2. (44)

The proof of this result [93, Lemma 1] is probabilistic: it shows that an f
satisfying Eq. (44) exists with some nonzero probability.

Later and more modern proofs (e.g. [55]) clearly point out that f can be
a linear operator represented by a k × n matrix T , each component of which
can be sampled from a subgaussian distribution. This term refers to a random
variable V for which there are constants C, c s.t. for each t > 0 we have

P(|V| > t) ≤ C e−ct
2

.

In particular, the Gaussian distribution is also subgaussian. Then the proba-
bility that a randomly sampled T satisfies Eq. (44) can be shown to exceed
1/`. The union bound then provides an estimate on the number of samplings
of T necessary to guarantee Eq. (44) with a desired probability.

Some remarks are in order.

1. Computationally Eq. (44) is applied to some given data as follows: given
a set X of ` vectors in Rn and some error tolerance ε ∈ (0, 1), find an
appropriate k = O(1

ε2 ln `), construct the k × n RP T by sampling each of
its components from N(0, 1√

k
), then define the set TX = {Tx | x ∈ X}.

By the JLL, TX is approximately congruent to X in the sense of Eq. (44);
however, TX ⊂ Rk whereas X ⊂ Rn, and, typically, k � n.

46 Leo Liberti

2. The computation of an appropriate k would appear to require an estimation
of the constant in the expression O(1

ε2 ln `). Values computed theoretically
are often so large as to make the technique useless in practice. As far as
we know, this constant has only been computed empirically in some cases
[183], ending up with an estimation of the constant at 1.8 (which is the
value we employed in most of our experiments).

3. The term 1√
k

is the standard deviation of the normal distribution from

which the components of T must be sampled. It corresponds to a scaling
of the vectors in TX induced by the loss in dimensions (see Thm. 6).

4. In the expression O(1
ε2 ln `), the logarithmic term is the one that counts

for analysis purposes, but in practice ε−2 can be large. Our advice is to
take ε ∈ (0.1, 0.2) and then fine-tune ε according to results.

5. Surprisingly, the target dimension k is independent of the original dimen-
sion n.

6. Even if the data in X is sparse, TX ends up being dense. Different classes
of sparse RPs have been investigated [2,96] in order to tackle this issue.
A simple algorithm [53, §5.1] consists in initializing T as the k × n zero
matrix, and then only fill components using samples from N(0, 1√

kp
) with

some given probability p. The value of p corresponds to the density of T . In
general, and empirically, it appears that the larger n and ` are, the sparser
T can be.

7. Obviously, a Euclidean space of dimension k can embed at most k orthogo-
nal vectors. An easy, but surprising corollary of the JLL is that as many as
O(2k) approximately orthogonal vectors can fit in Rk. This follows by [188,
Prop. 1] applied to the standard basis S = {e1, . . . , en} of Rn: we obtain
∀i < j ≤ n (−ε ≤ 〈Tei, T ej〉 − eiej ≤ ε), which implies |〈Tei, T ej〉| ≤ ε
with TS ⊂ Rk and k = O(lnn). Therefore TS is a set of O(2k) almost
orthogonal vectors in Rk, as claimed.

8. Typical applications of RPs arise in clustering databases of large files
(e.g. e-mails, images, songs, videos), performing basic tasks in ML (e.g. k-
means [36], k-nearest neighbors (k-NN) [91], robust learning [15] and more
[89]), and approximating large MP formulations (e.g. LP, QP, see Sect. 7.3.3).

9. The JLL seems to suggest that most of the information encoded by the
congruence of a set of vectors can be maintained up to an ε tolerance in
much smaller dimensional spaces. This is not true for sets of vectors in low
dimensions. For example, with n ∈ {2, 3} a few attempts immediately show
that RPs yield sets of projected vectors which are necessarily incongruent
with the original vectors.

In this paper, we do not give a complete proof of the JLL, since many
different ones have already been provided in research articles [93,55,90,6,96,
133,9] and textbooks [182,134,97,185]. We only prove the first part of the
proof, namely the easy result that RPs preserve norms on average. This pro-
vides an explanation for the variance 1/k of the distribution from which the
components of T are sampled.

Distance Geometry and Data Science 47

Theorem 6 Let T be a k × n RP sampled from N(0, 1√
k

), and u ∈ Rn; then

E(‖Tu‖22) = ‖u‖22.

Proof We prove the claim for ‖u‖2 = 1; the result will follow by scaling. For
each i ≤ k we define vi =

∑
j≤n Tijuj . Then E(vi) = E

(∑
j≤m Tijuj

)
=∑

j≤m E(Tij)uj = 0. Moreover,

Var(vi) =
∑
j≤m

Var(Tijuj) =
∑
j≤m

Var(Tij)u
2
j =

∑
j≤m

u2j
k

=
1

k
‖u‖2 =

1

k
.

Now, 1
k = Var(vi) = E(v2i − (E(vi))

2) = E(v2i − 0) = E(v2i). Hence

E(‖Tu‖2) = E(‖v‖2) = E
(∑
i≤k

v2i
)

=
∑
i≤k

E(v2i) =
∑
i≤k

1

k
= 1,

as claimed. ut

7.3.2 Approximating the identity

If T is a k×n RP where k = O(ε−2 lnn), both TT> and T>T have some rela-
tion with the identity matrices Ik and In. This is a lesser known phenomenon,
so it is worth discussing it here in some detail.

We look at TT> first. By [205, Cor. 7] for any ε ∈ (0, 12) we have

‖ 1

n
T T> − Ik‖2 ≤ ε

with probability at least 1 − δ as long as n ≥ (k+1) ln(2k/δ)
Cε2 , where C ≥ 1

4 is a
constant.

In Table 1 we give values of ‖s TT> − Id‖2 for s ∈ {1/n, 1/d, 1}, n ∈
{1000, 2000, . . . , 10000} and d = dln(n)/ε2e where ε = 0.15. It is clear that

n
s 1e3 2e3 3e3 4e3 5e3 e3 7e3 8e3 9e3 1e4

1/n 9.72 7.53 6.55 5.85 5.36 5.01 4.71 4.44 4.26 4.09
1/d 5e1 1e2 1.5e2 2e2 2.5e2 3e2 3.5e2 3.9e2 4.4e2 4.8e2

1 2e5 4e5 6e5 8e5 1e6 1.2e6 1.4e6 1.6e6 1.8e6 2e6

Table 1 Values of ‖sTT> − Id‖ in function of s, n.

the error decreases as the size increases only in the case s = 1
n . This seems to

indicate that the scaling is a key parameter in approximating the identity.
Let us now consider the product T>T . It turns out that, for each fixed

vector x not depending on T , the matrix T>T behaves like the identity w.r.t. x.

48 Leo Liberti

Theorem 7 Given any fixed x ∈ Rn, ε ∈ (0, 1) and a RP T ∈ Rd×n, there is
a universal constant C such that

−1ε ≤ T>Tx− x ≤ 1ε (45)

with probability at least 1− 4eCε
2d.

Proof By definition, for each i ≤ n we have xi = 〈ei, x〉, where ei is the i-th
unit coordinate vector. By elementary linear algebra we have 〈ei, T>Tx〉 =
〈Tei, Tx〉. By [52, Lemma 3.1], for i ≤ n we have

〈ei, x〉 − ε‖x‖2 ≤ 〈Tei, Tx〉 ≤ 〈ei, x〉+ ε‖x‖

with arbitrarily high probability, which implies the result. ut

One might be tempted to infer from Thm. 7 that T>T “behaves like the
identity matrix” (independently of x). This is generally false: Thm. 7 only
holds for a given (fixed) x.

In fact, since T is a k × n matrix with k < n, T>T is a square symmetric
psd n×n matrix with rank k, hence n−k of its eigenvalues are zero — and the
nonzero eigenvalues need not have value one. On the other hand, T>T looks
very much like a slightly perturbed identity, on average, as shown in Table 2.

n diagonal off-diag
500 1.00085 0.00014

1000 1.00069 0.00008
1500 0.99991 -0.00006
2000 1.00194 0.00005
2500 0.99920 -0.00004
3000 0.99986 -0.00000
3500 1.00044 0.00000
4000 0.99693 0.00000

Table 2 Average values of diagonal and off-diagonal components of T>T in function of n,
where T is a k × n RP with k = O(ε−2 lnn) and ε = 0.15.

7.3.3 Using RPs in MP

Random projections have mostly been applied to probabilistic approximation
algorithms. By randomly projecting their (vector) input, one can execute al-
gorithms with lower-dimensional vector more efficiently. The approximation
guarantee is usually derived from the JLL or similar results.

A line of research about applying RPs to MP formulations has been started
in [189,188,187,52]. Whichever algorithm one may choose in order to solve
the MP, the RP properties guarantee an approximation on optimality and/or
feasibility. Thus, this approach leads to stronger/more robust results with
respect to applying RPs to algorithmic input.

Distance Geometry and Data Science 49

Linear and integer feasibility problems (i.e. LP and MILP formulations
without objective function) are investigated in [189] from a purely theoret-
ical points of view. The effect of RPs on LPs (with nonzero objective) are
investigated in [188], both theoretically and computationally. Specifically, the
randomly projected LP formulation is shown to have bounded feasibility er-
ror and an approximation guarantee on optimality. The computational results
suggest that the range of practical application of this technique starts with
relatively small LPs (thousands of variables/constraints). In both [189,188]
we start from a (MI)LP in standard form

P ≡ min{c>x | Ax = b ∧ x ≥ 0 ∧ x ∈ X}

(where X = Rn or Zn respectively), and obtain a randomly projected formu-
lation under the RP T ∼ Nn×k(0, 1√

k
) with the form

TP ≡ min{c>x | TAx = Tb ∧ x ≥ 0 ∧ x ∈ X},

i.e. T reduces the number of constraints in P to O(lnn), which can therefore
be solved more efficiently.

The RP technique in [187,52] is different, insofar as it targets the number
of variables. In [52] we consider a QP of the form:

Q ≡ max{x>Qx+ c>x | Ax ≤ b},

where Q is n× n, c ∈ Rn, A is m× n, and b ∈ Rm, x ∈ Rn. This is projected
as follows:

TQ ≡ max{u>Q̄x+ c̄>u | Āu ≤ b},

where Q̄ = TQT> is k × k, Ā = AT> is m × k, c̄ = Tc is in Rk, and
u ∈ Rk. In [187] we consider a QCQP Q′ like Q but subject to a ball constraint
‖x‖2 ≤ 1. In the projected problem TQ′, this is replaced by a ball constraint
‖u‖2 ≤ 1. Both [52,187] are both theoretical and computational. In both cases,
the number of variables of the projected problem is O(lnn).

In applying RPs to MPs, one solves the smaller projected problems in order
to obtain an answer concerning the corresponding original problems. In most
cases one has to devise a way to retrieve a solution for the original problem
using the solution of the projected problem. This may be easy or difficult
depending on the structure of the formulation and the nature of the RP.

8 Distance instability

Most of the models and methods in this survey are based on the concept of
distance: usually Euclidean, occasionally with other norms. The k-means al-
gorithm (Sect. 5.1.1) is heavily based on Euclidean distances in Step 2 (p. 21),
where the reassignment of a point to a cluster is carried out based on proxim-
ity: in particular, one way to implement Step 2 is to solve a 1-nearest neighbor
problem. The training of an ANN (Sect. 5.1.2) repeatedly solves a minimum

50 Leo Liberti

distance subproblem in Eq. (10). In spectral clustering (Sect. 5.2.1) we have a
Euclidean norm constraint in Eq. (12). All DGP solution methods (Sect. 6),
with the exception of incidence vectors (Sect. 6.2.1), are concerned with dis-
tances by definition. PCA (Sect. 7.1), in its interpretation of a modified MDS,
can be seen as another solution method for the DGP. Barvinok’s naive algo-
rithm (Sect. 7.2) is a dimensional reduction method for SDPs the analysis of
which is based on a distance bound; moreover, it was successfully applied to
the DGP [127]. The RP-based methods discussed in Sect. 7.3 have all been
derived from the JLL (Sect. 7.3.1), which is a statement about the Euclidean
distance. We also note that the focus of this survey is on typical DS problems,
which are usually high-dimensional.

It is therefore absolutely essential that all of these methods should be able
to take robust decisions based on comparing distance values computed on pairs
of high-dimensional vectors. It turns out, however, that smallest and largest
distances Dmin, Dmax of a random point Z ∈ Rn to a set of random points
X1, . . . , X` ⊂ Rn are almost equal (and hence, difficult to compare) as n→∞
under some reasonable conditions. This holds for any distribution used to
sample Z,Xi. This result, first presented in [26] and subsequently discussed in
a number of papers [86,3,73,64,162,132,70], appears to jeopardize all of the
material presented in this survey, and much more beyond. The phenomenon
leading to the result is known as distance instability and concentration of
distances.

8.1 Statement of the result

Let us look at the exact statement of the distance instability result.
First, we note that the points Z,X1, . . . , X` are not given points in Rn but

rather multivariate random variables with n components, so distance instabil-
ity is a purely statistical statement rather than a geometric one. We consider

Z = (Z1, . . . , Zn)

∀i ≤ ` Xi = (Xi1, . . . , Xin),

where Z1, . . . , Zn are random variables with distribution D1; X11, . . . , X`n are
random variables with distribution D2; and all of these random variables are
independently distributed.

Secondly, Dmin, Dmax are functions of random variables:

Dmin = min{dist(Z,Xi) | i ≤ `} (46)

Dmax = max{dist(Z,Xi) | i ≤ `}, (47)

and are therefore random variables themselves. In the above, dist denotes a
function mapping pairs of points in Rn to a non-negative real number, which
makes distance instability a very general phenomenon. Specifically, dist need
not be a distance at all.

Distance Geometry and Data Science 51

Third, we now label every symbol with an index m, which will be used to
compute limits for m→∞: Zm, Xm, Dm1 , Dm2 , Dm

min, D
m
max, dist

m. We shall see
that the proof of the distance instability result is wholly syntactical: its steps
are very simple and follow from basic statistical results. In particular, we can
see m as an abstract parameter under which we shall take limits, and the proof
will hold. Since the proof holds independently of the value of n, it also holds
if we assume that m = n, i.e. if we give m the interpretation of dimensionality
of the Euclidean space embedding the points. While this assumption is not
necessary for the proof to hold, it may simplify its understanding: m = n
makes the proof somewhat less general, but it gives the above indexing a
more concrete meaning. Specifically, Z,X,D, D, dist are points, distributions,
extreme distance values and a distance function in dimension m, and the limit
m→∞ is a limit taken on increasing dimension.

Fourth, the “reasonable conditions” referred to above for the distance in-
stability result to hold are that there is a constant p > 0 such that

∃i ≤ ` lim
m→∞

Var

(
(dist(Zm, Xm

i))p

E((dist(Zm, Xm
i))p)

)
= 0. (48)

A few remarks on Eq. (48) are in order.

(a) The existential quantifier encodes the fact that the Xi are all identically
distributed, so a statement involving variance and expectation of quanti-
ties depending on the Xi random variables holds for all i ≤ ` if it holds
for just one Xi.

(b) The constant p simply gives more generality to the result, but plays no role
whatsoever in the proof; it can be used in order to simplify computations
when dist is an `p norm.

(c) The fraction term in Eq. (48) measures a spread relative to an expectation.
Requiring that the limit of this relative spread goes to zero for increasing
dimensions looks like an asymptotic concentration requirement (hence the
alternative name “distance concentration” for the distance instability phe-
nomenon). Considering the effect of concentration of measure phenomena
in high dimensions (Sect. 7.2.2), distance instability might now appear
somewhat less surprising.

With these premises, we can state the distance instability result.

Theorem 8 If Dm
min and Dm

max are as in Eq. (46)-(47) and satisfy Eq. (48),
then, for any ε > 0, we have

lim
m→∞

P (Dm
max ≤ (1 + ε)Dm

min) = 1. (49)

Thm. 8 basically states that closest and farthest neighbors of Z are indistin-
guishable up to an ε. If the closest and farthest are indistinguishable, trying
to discriminate between the closest and the second closest neighbors of a given
point might well be hopeless due to floating point errors (note that this dis-
crimination occurs at each iteration of the well known k-means algorithm).

52 Leo Liberti

This is why distance instability is sometimes cited as a reason for convergence
issues in k-means [75].

8.2 Related results

In [26], several scenarios are analyzed to see where distance instability occurs
— even if some of the requirement of distance instability are relaxed [26, §3.5]
— and where it does not [26, §4]. Among the cases where distance instability
does not apply, we find the case where the data points X are well separated and
the case where the dimensionality is implicitly low. Among the cases where
it does apply, we find k-NN: in their experiments, the authors of [26] find
that k-NN becomes unstable already in the range n ∈ {10, 20} dimensions.
Obviously, the instability of k-NN propagates to any algorithm using k-NN,
such as k-means.

Among later studies, [86] proposes an alternative definition of dist where
high-dimensional points are projected into lower dimensional spaces. In [86],
the authors study the impact of distance instability on different `p norms, and
concludes that smallest values of p lead to more stable norms; in particular,
quasinorms with 0 < p < 1 are considered. Some counterexamples are given
against a generalization of this claim for quasinorms in [73]. In [64], the con-
verse of Thm. 8 is proved, namely that Eq. (48) follows from Eq. (49): from this
fact, the authors find practically relevant cases where Eq. (48) is not verified,
and propose them as “good” examples of where k-means can help. In [132], the
authors propose multiplicative functions dist and show that they are robust
w.r.t. distance instability. In [162], distance instability is related to “hubness”,
i.e. the number of times a point appears among the k nearest neighbors of
other points. In [70], an empirical study is provided which shows how to show
an appropriate `p norm that should avoid distance instability w.r.t. hubness.

8.3 The proof

The proof of the instability theorem can be found in [26]. We repeat it here to
demonstrate the fact that it is “syntactical”: every step follows from the pre-
vious ones by simple logical inference. There is no appeal to any results other
than convergence in probability, Slutsky’s theorem, and a simple corollary as
shown below. The proof does not pass from object language to meta-language,
nor does it require exotic interpretations of symbols in complicated contexts.
Although one may find this result surprising, there appears to be no reason to
doubt it, and no complication in the proof warranting sophisticated interpreta-
tions. The only point worth re-stating is that this is a result about probability
distributions, not about actual instances of real data.

Lemma 1 Let {Bm | m ∈ N} be a sequence of of random variables with finite
variance. Assume that limm→∞ E(Bm) = b and that limm→∞ Var(Bm) = 0.

Distance Geometry and Data Science 53

Then
∀ε > 0 lim

m→∞
P(‖Bm − b‖ ≤ ε) = 1. (50)

A random variable sequence satisfying Eq. (50) is said to converge in probability
to b. This is denoted Bm →P b.

Lemma 2 (Slutsky’s theorem [196]) Let {Bm | m ∈ N} be a sequence of
random variables, and g : R → R be a continuous function. If Bm →P b and
g(b) exists, then g(Bm)→P g(b).

Corollary 1 If {Am | m ∈ N} and {Bm | m ∈ N} are sequences of random
variables such that Am →P a and Bm →P b 6= 0, then Am

Bm →P
a
b .

Proof of Thm. 8. Let µm = E((dm(Zm, Xm
i))p). We note that µm is indepen-

dent of i since all Xm
i are identically distributed.

We claim Vm =
(dm(Zm,Xm

i))p

µm
→P 1:

– we have E(Vm) = 1 since it is a random variable over its mean: hence,
trivially, limm E(Vm) = 1;

– by the hypothesis of the theorem (Eq. (48)), limm Var(Vm) = 0;
– by Lemma 1, Vm →P 1, which establishes the claim.

Now, let Vm = (Vm | i ≤ `). By the claim above, we have Vm →P 1. Now by
Lemma 2 we obtain min(Vm)→P min(1) = 1 and, similarly, max(Vm)→P 1.

By Cor. 1, max(Vm)
min(Vm) →P 1. Therefore,

Dm
max

Dm
min

=
µm max(Vm)

µm min(Vm)
→P 1.

By definition of convergence in probability, we have

∀ε > 0 lim
m→∞

P(|Dm
max/D

m
min − 1| ≤ ε) = 1.

Moreover, since P(Dm
max ≥ Dm

min) = 1, we have

P(Dm
max ≤ (1+ε)Dm

min) = P(Dm
max/D

m
min−1 ≤ ε) = P(|Dm

max/D
m
min−1| ≤ ε) = 1.

The result follows by taking the limit as m→∞. ut

8.4 In practice

In Fig. 7, we show how ε (Eq. (49)) varies with increasing dimension n (recall
we assume m = n) between 1 and 10000. It is clear that ε decreases very
rapidly towards zero, and then reaches its asymptotic value more slowly. On
the other hand, ε is the distortion between minimum and maximum distance
values; most algorithms need to discriminate between smallest and second
smallest distance values.

Most of the papers listed in Sect. 8.2 include empirical tests which illustrate
the impact and limits of the distance instability phenomenon.

54 Leo Liberti

Fig. 7 Plots of ε versus n for the uniform distribution on [0, 1] (above), N(0, 1) (center),
the exponential distribution with parameter 1 (below).

9 An application to neural networks

In this last section we finally show how several concepts explained in this
survey can be used conjunctively. We shall consider a natural language pro-
cessing task (Sect. 4) where we cluster some sentences (Sect. 5) using an ANN
(Sect. 5.1.2) with different training sets T = (X,Y). We compare ANN per-
formances depending on the training set used.

The input set X is a vector representation of the input sentences. The
output set Y is a vectorial representation of cluster labels: we experiment with
(a) clusterings obtained by running k-means (Sect. 5.1.1) on the input sets, and
(b) a clustering found by a modularity maximization heuristic (Sect. 5.2.2).
All of these clusterings are considered “ground truth” sets Y we would like our

Distance Geometry and Data Science 55

ANN to learn to associate to various types of input vector sets X representing
the sentences. The sentences to be clustered are first transformed into graphs
(Sect. 4.2), and then into vectors (Sect. 6), which then undergo dimensionality
reduction (Sect. 7).

Our goal is to compare the results obtained by the same ANN with dif-
ferent vector representations for the same text: most notably, the comparison
will establish how well or poorly different input vector sets can predict cor-
responding ground truth outputs. We will focus specifically on a comparison
of the well-known incidence vectors (Sect. 6.2.1) embeddings w.r.t. the newly
proposed DGP methods we surveyed in Sect. 6.

In our implementations, all our code was developed using Python 3 [163].

9.1 Performance measure

We are going to measure the performance quality of the error of an ANN,
which is based on a comparison of its output with the ground truth that the
ANN is supposed to learn. Using the notation of Sect. 5.1.2, if the ANN output
for a given input x ∈ Rn consists of a vector y ∈ Rk, and if the ground truth
corresponding to x is z ∈ Rk, then we define the error as the loss function:

loss(y, z) = ‖y − z‖2. (51)

An ANN N = (G,T, φ) is usually evaluated over many (input,output) pairs.
Let X̂ ⊂ Rn and Ŷ ⊂ Rk be, respectively, a set of input vectors and the
corresponding set of output vectors evaluated by the trained ANN. Let Ẑ be
a set of ground truth vectors corresponding to X̂, and assume |X̂| = |Ŷ | =
|Ẑ| = q. The cumulative loss measure evaluated on the test set (X̂, Ẑ) is then

loss(N) =
1

q

∑
i≤q

loss(yi, zi), (52)

where Ŷ = {yi | i ≤ q} and Ẑ = {zi | i ≤ q}.

9.2 A Natural Language Processing task

Clustering of sentences in a text is a common task in Natural Language Pro-
cessing. We considered “On the duty of civil disobedience” by H.D. Thoreau
[180,190]. This text is stored in an ASCII file which can be obtained from
archive.org. The file we used for testing is 661146 bytes long, organized in
10108 lines and 116608 words. The text was parsed into sentences using basic
methods from NLTK [27] under Python 3. Common words, stopwords, punc-
tuation and unusual characters were removed, which reduced the text to 4083
sentences over a set of 11431 “significant” words (see Sect. 9.2.1).

As mentioned above, we want to train our ANN to learn different types of
clusterings:

56 Leo Liberti

– (k-means) obtained by running the k-means unsupervised clustering algo-
rithm (Sect. 5.1.1) over the different vector representations of the sentences
in the text;

– (sentence graph) obtained by running a modularity clustering heuristic
(Sect. 5.2.2) on a graph representation of the sentences in the document
(see Sect. 9.2.2).

These clusterings are used as ground truths, and provide the output part of the
training sets to be used by the ANN, as well as of the test sets for measuring
purposes (Sect. 9.1). See Sect. 9.4.1 for more information on the construction
of these clusterings.

9.2.1 Selecting the sentences

We constructed two sets of sentences.

– The large sentence set. Each sentence in the text file was mapped to an
incidence vector of 3-grams in {0, 1}48087, i.e. a dictionary of 48087 3-grams
over the text. In other words, 48087 3-grams were found in the text, then
each sentence was mapped to a vector having 1 at component i iff the i-th
3-gram was present in the sentence. Since some sentences had fewer than 3
significant words, only 3940 sentences remained in the sentence set S, which
was therefore represented as a 3940× 48087 matrix S̄ with components in
{0, 1}.

– The small sentence set. It turns out that most of the 3-grams in the set S
only appear a single time. We selected a subset S′ ⊂ S of sentences having
3-grams appearing in at least two sentences. It turns out that |S′| = 245,
and the total number of 3-grams appearing more than once is 160. S′ is
therefore naturally represented as a 245× 160 matrix S̄′ with components
in {0, 1}.

We constructed training sets (Sect. 9.4) for each of these two sets. Specifically,
each sentence in the text was encoded into a weighted graph-of-word (see
Sect. 4.2.1) over 3-grams, wigh edges {u, v} weighted by the number cuv of
3-grams where the two words u, v appear. Then each graph was mapped into
a realization by using DG methods (see Sect. 9.4).

9.2.2 Construction of a sentence graph

In this section we describe the method used to construct a sentence graph
Gs = (S,E) from the text, which is used to produce a ground truth for the
(sentence graph) type. Gs is then clustered using the greedy modularity
clustering heuristic in the Python library networkX [82].

Each sentence in the text is encoded into a weighted graph-of-word (see
Sect. 4.2.1) over 3-grams, with edges {u, v} weighted by the number cuv of
3-grams where the two words u, v appear. The union of the graph-of-words for
the sentences (contracting repeated words to a single vertex) yields a weighted
graph-of-word Gw for the whole text.

Distance Geometry and Data Science 57

The graph Gw = (W,F) is then “projected” onto the set S of sentences
as follows. We define the logical proposition P (u, v, s, t) to mean (u ∈ s ∧ v ∈
t) ∨ (v ∈ s ∧ u ∈ t) for words u, v and sentences s, t. The edge set E of Gs is
then defined by the following implication:

∀{u, v} ∈ F, s, t ∈ S P (u, v, s, t)→ {s, t} ∈ E.

In other words, s, t form an edge in E if two words u, v in s, t (respectively)
or t, s form an edge in F . For each edge {s, t} ∈ E, the weight wst is given by:

wst =
∑
{u,v}∈F
P (u,v,s,t)

cuv,

with edge weights meaning similarity.

9.3 The ANN

We consider a very simple ANNN = (G,T, φ). In the terminology of Sect. 5.1.2,
the underlying digraph G = (V,A) is tripartite with V = V1∪̇V2∪̇V3. The “in-
put layer” V1 has n nodes, where n is the dimensionality of the input vector
set X. The “output layer” V3 has a single node. The “hidden layer” V2 has a
constant number of nodes (20 in our experiments). The training set T is dis-
cussed in Sect. 9.4. We adopt the piecewise-linear mapping known as rectified
linear unit (ReLu) [195] for the activation functions φ in V2, and a traditional
sigmoid function for the single node in V3. Both types of activation functions
map to [0, 1].

We implemented N using the Python library keras [44], which is a high-
level API running over TensorFlow [1]. The default configuration was chosen
for all layers. We used the Adam solver [99] in order to train the network.
Each training set was split in three parts: 35% of the vectors were used for
training, 35% for validation (a training phase used for deciding values of any
model parameter aside from v, b, w, if any exist, and/or for deciding when to
stop the training phase), and 30% for testing. The performance of the ANN
is measured using the loss function in Eq. (52).

9.4 Training sets

Our goal is to compare training sets T = (X,Y) where the vectors in X are
constructed in different ways. In particular, we consider input sets X(σ, µ, ρ)
where:

– σ ∈ Σ = {S′, S} is the sentence set: σ = S′ corresponds to the small set
with 245 sentences, σ = S corresponds to the large set with 3940 sentences;

– µ ∈M = {inc, uie, qrt, sdp} is the method used to map sentences to vectors:
inc are the incidence vectors (Sect. 6.2.1), uie is the universal isometric
embedding (Sect. 6.2.2), qrt is the unconstrained quartic (Sect. 6.1.1), sdp
is the SDP (Sect. 6.1.3);

58 Leo Liberti

– ρ ∈ R = {pca, rp} is the dimensional reduction method used: pca is PCA
(Sect. 7.1), rp are RPs (Sect. 7.3).

The methods in M were all implemented using Python 3 with some well known
external libraries (e.g. numpy, scipy). Specifically, qrt was implemented using
the Ipopt [47] NLP solver, and sdp was implemented using the SCS [153]
SDP solver. As for the dimensional reduction methods in R, the PCA im-
plementation of choice was the probabilistic PCA algorithm implemented in
the Python library scikit-learn [155]. The RPs we chose were the simplest:
each component of the RP matrices was sampled from an appropriately scaled
zero-mean Gaussian distribution (Thm. 6).

9.4.1 The output set

The output set Y should naturally contain discrete values, namely the labels
of the h clusters {1, 2, . . . , h} in the ground truth clusterings. We map these
values to scalars in [0, 1] (or, according to Sect. 5.1.2, to k-dimensional vectors
with k = 1) as follows. We divide the range [0, 1] into h−1 equal sub-intervals
of length 1/(h−1), and hence h discrete values in [0, 1]. Then we assign labels
to sub-intervals endpoints: label j is mapped to (j−1)/(h−1) (for 1 ≤ j ≤ h).

As mentioned above, we consider two types of output sets:

– (k-means) for each input setX(σ, µ, ρ) we obtained an output set Y (σ, µ, ρ)
using k-means (Sect. 5.1.1) implementation in scikit-learn [155] on the
vectors in X, for each sentence set σ ∈ Σ, method µ ∈M , and dimensional
reduction method ρ ∈ R;

– (sentence graph) for each sentence set σ ∈ Σ we constructed a sentence
graph as detailed in Sect. 9.2.2.

9.4.2 Realizations to vectors

The inc method (Sect. 6.2.1) is the only one (in our benchmark) that can
natively map sentences of various lengths into vectors all having the same
number of components.

For all other methods in M r {inc}, we loop over sentences (in small/large
sets S′, S). For each sentence we construct its graph-of-words (Sect. 4.2.1). We
then realize it in some arbitrary dimensional Euclidean space RK (specifically,
we chose K = 10) using uie, qrt, sdp. At this point, we are confronted with the
following difficulty: a realization of a graph G with p vertices in RK is a p×K
matrix, and we have as many graphs G as we have sentences, with p varying
over the number of unique words in the sentences (i.e. the cardinalities of the
vertex sets of the graphs-of-words).

In order to reduce all of these differently-sized realizations to vectors having
the same dimension, we employ the following procedure. Given realizations
{xi ∈ Rpi×K | i ∈ σ}, where σ is the set of sentences (for σ ∈ Σ) and xi

realizes the graph-of-word of sentence i ∈ σ,

Distance Geometry and Data Science 59

1. we stack the columns of xi so as to obtain a single vector x̂i ∈ RpiK for
each i ∈ σ;

2. we let n̂ = maxi piK be the maximum dimensionality of the stacked real-
izations;

3. we pad every realization vector x̂i shorter than n̂ with zeros to achieve
dimension n̂ for stacked realization vectors;

4. we form the s × n̂ matrix X̂ having x̂i as its i-th row (for i ∈ σ and with
s = |σ|);

5. we reduce the dimensionality of X̂ to an s× n matrix X with pca or rp.

9.5 Computational comparison

We discuss the details of our training sets, a validation test, and the comparison
tests.

9.5.1 Training set statistics

In Table 3 we report the dimensionalities of the vectors in the input parts
X(σ, µ, ρ) of the training sets, as well as the number of clusters in the output
sets Y (σ, µ, ρ) of the (k-means) class. We recall that the number of clusters

Dimensionality of input vectors
µ |σ| = 245 |σ| = 3940

ρ inc uie qrt sdp inc uie qrt sdp
pca 3 159 244 200 3 10 400 400
rp 100 248 248 248 373 373 373 373
original 160 1140 1140 1140 48087 1460 1460 1460

Number of clusters to learn
pca 4 3 11 6 3 8 9 14
rp 4 3 7 5 3 9 16 14

Table 3 Training set statistics for X(σ, µ, ρ) and corresponding output sets in the (k-
means) class.

was found with k-means in the scikit-learn implementation. The choice of
‘k’ corresponds to the smallest number of clusters giving a nontrivial clustering
(with “trivial” meaning having a cluster of zero cardinality, or too close to zero
relative to the set size, only possibly allowing some outlier clusters with a single
element). Some more remarks follow.

– For ρ = pca we employed the smallest dimension such that the residual
variance in the neglected components was almost zero; this ranges from 3
to 244 in Table 3. For the two cases where the dimensionality reduction was
set to 400 (qrt and sdp in the large sentence set S), the residual variance
was nonzero.

60 Leo Liberti

– It is interesting that for µ = uie we have higher projected dimensionality
(248) in the small set S′ than in the large set S (10): this depends on the
fact that the large set has more easily distinguishable clusters (8 found by
k-means) than the small set (only 3 found by k-means). The dimension of
X(inc, pca, S) is smaller (3) than that of X(uie, pca, S) (10) even though
the original number of dimensions of the former (48087) vastly exceeds
that of the latter (1460) for the same reason.

– The training sets X(σ, inc, pca) are the smallest-dimensional ones (for σ ∈
{S′, S}): they are also “degenerate”, in the sense that the vectors in a given
clusters are all equal; the co-occurrence patterns of the incidence vectors
conveyed relatively little information to this vectorial sentence representa-
tion.

– The RP-based dimensionality reduction method yields the same dimension-
ality (373) of X(µ, rp, S) for µ ∈M . This occurs because the target dimen-
sionality in RP depends on the number of vectors, which is the same for all
methods (3940), rather than on the number of dimensions (see Sect. 7.3).

There is one output set in the (sentence graph) class for each σ ∈ Σ.
For σ = S′ we have |V | = 245, |E| = 28519, and 230 clusters, with the first 5
clusters having 6, 5, 4, 3, 2 elements, and the rest having a single element. For
σ = S we have |V | = 3940, |E| = 7173633, and 3402 clusters, with the first
10 clusters having 161, 115, 62, 38, 34, 29, 19, 16, 14, 11 elements, and the rest
having fewer than 10 elements.

9.5.2 Comparison tests

We first report the comparative results of the ANN on

T = (X(σ, µ1, ρ1), Y (σ, µ2, ρ2))

for σ ∈ Σ, µ1, µ2 ∈ M , ρ1, ρ2 ∈ R. The sums in the rightmost columns of
Table 4 are only carried out on terms obtained with an input vector genera-
tion method µ1 different from the method µ2 used to obtain the ground truth
clustering via k-means (since we want to compare methods). The results cor-
responding to cases where µ1 = µ2 are emphasized in italics in the table. The
best performance sums are emphasized in boldface, and the worst are shown
in grey.

According to Table 4, for the small sentence set the best method is inc, but
qrt and sdp are not far behind; the only really imprecise method is uie. For the
large sentence set the best method is qrt, with sdp not far behind; both inc,
uie are imprecise.

In Table 5, which has a similar format as Table 4, we report results on
training sets

T̄ = (X(σ, µ, ρ), Ȳ (σ))

for σ ∈ Σ, µ ∈ M , ρ ∈ R, where Ȳ (σ) are output sets of the (sentence
graph) class. For the small set, inc is the best method (independently of ρ),
with (µ = sdp, ρ = pca) following very closely, and, in general, sdp and qrt

Distance Geometry and Data Science 61

Training set outputs

T
ra

in
in

g
se

t
in

p
u

ts

µ inc inc uie uie qrt qrt sdp sdp sum
ρ pca rp pca rp pca rp pca rp µ′ 6= µ
|σ| 245

inc
pca 0.061 0.042 0.059 0.013 0.094 0.108 0.064 0.025 0.363

inc
rp 0.005 0.010 0.055 0.015 0.104 0.109 0.065 0.025 0.373

uie
pca 0.271 0.052 0.070 0.169 0.233 0.201 0.127 0.111 0.995

uie
rp 0.093 0.026 0.094 0.076 0.191 0.236 0.079 0.117 0.976
qrt
pca 0.082 0.067 0.105 0.047 0.084 0.133 0.071 0.087 0.459
qrt
rp 0.057 0.068 0.059 0.053 0.162 0.073 0.095 0.055 0.387

sdp
pca 0.106 0.063 0.067 0.022 0.106 0.135 0.058 0.034 0.499

sdp
rp 0.095 0.065 0.093 0.021 0.103 0.139 0.074 0.018 0.516

|σ| 3940
inc
pca 0.052 0.013 0.068 0.027 0.106 0.164 0.079 0.161 0.605

inc
rp 0.001 0.000 0.067 0.028 0.106 0.167 0.080 0.159 0.607

uie
pca 0.063 0.022 0.020 0.016 0.124 0.201 0.070 0.127 0.607

uie
rp 0.061 0.023 0.024 0.023 0.131 0.190 0.072 0.126 0.603
qrt
pca 0.063 0.022 0.36 0.023 0.038 0.218 0.079 0.159 0.382
qrt
rp 0.062 0.024 0.047 0.025 0.120 0.035 0.076 0.164 0.398

sdp
pca 0.063 0.021 0.023 0.024 0.126 0.195 0.033 0.149 0.452

sdp
rp 0.059 0.021 0.025 0.024 0.121 0.176 0.083 0.037 0.426

Table 4 Comparison tests on output sets of (k-means) class.

Training set outputs

T
ra

in
in

g
in

p
u

ts µ inc inc uie uie qrt qrt sdp sdp
ρ pca rp pca rp pca rp pca rp
|σ| 245

0.107 0.108 0.196 0.184 0.129 0.151 0.109 0.122
|σ| 3940

0.097 0.098 0.124 0.119 0.136 0.113 0.114 0.106

Table 5 Comparison tests on output sets of (sentence graph) class.

still being acceptable; uie is the most imprecise method. For the large set inc
is againt the best method, with (µ = sdp, ρ = rp) following closely. While the
other methods do not excel, the performance difference between all methods
is less remarkable than with the small set.

10 Conclusion

We have surveyed some of the concepts and methodologies of distance geom-
etry which are used in data science. More specifically, we have looked at algo-
rithms (mostly based on mathematical programming) for representing graphs

62 Leo Liberti

as vectors as a pre-processing step to performing some machine learning task
requiring vectorial input.

We started with brief introductions to mathematical programming and
distance geometry. We then showed some ways to represent data by graphs,
and introduced clustering on vectors and graphs. Following, we surveyed ro-
bust algorithms for realizing weighted graphs in Euclidean spaces, where the
robustness is with respect to errors or noise in the input data. It turns out
that most of these algorithms are based on mathematical programming. Since
some of these algorithms output high-dimensional vectors and/or high-rank
matrices, we also surveyed some dimensional reduction techniques. We then
discussed a result about the instability of distances with respect to randomly
generated points.

The guiding idea in this survey is that distance geometry allows the ap-
plication many supervised and unsupervised clustering techniques based on
vectors to the problem of clustering on graphs. To demonstrate the applicabil-
ity of this idea, we showed that vectorial representations of graphs obtained
using distance geometry offer competitive performances when training an arti-
ficial neural network. While we do not think that our limited empirical analysis
allows any definite conclusion, we hope that it will entice more research in this
area.

Acknowledgements

I am grateful to J.J. Salazar, the Editor-in-Chief of TOP, for inviting me to
write this survey. This work would not have been possible without the numer-
ous co-authors with whom I pursued my investigations in distance geometry,
among which I will single out the longest-standing: C. Lavor, N. Maculan,
A. Mucherino. I have first heard of concentration of measure as I passed by
D. Malioutov’s office at the T.J. Watson IBM Research laboratory: the door
was open, the Johnson-Lindenstrauss lemma was mentioned, and I could not
refrain from interrupting the conversation and asking for clarification, as I
thought there must surely be a mistake; incredibly the result was true, and
I am grateful to Dr. Malioutov for hosting the conversation I eavesdropped
on. I am very thankful to the co-authors who helped me investigate random
projections, in particular P.L. Poirion and K. Vu, without whom none of our
papers would have been possible. I learned about the existence of the distance
instability result thanks to N. Gayraud, who was in the audience during a talk
I gave, and suggested it to me as I expressed puzzlement at the poor quality
of k-means clusterings. João Fontes Gonçalves, a student in my M.Sc. course,
first made the remark following Eq. (6.1.3) (“why are you optimizing a con-
stant?”). I am very grateful to S. Khalife, D. Gonçalves and M. Escobar for
reading the manuscript and making insightful comments.

Distance Geometry and Data Science 63

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous systems.
http://tensorflow.org/ (2015). Software available from tensorflow.org

2. Achlioptas, D.: Database-friendly random projections: Johnson-Lindenstrauss with bi-
nary coins. Journal of Computer and System Sciences 66, 671–687 (2003)

3. Aggarwal, C., Hinneburg, A., Keim, D.: On the surprising behavior of distance metrics
in high dimensional space. In: J.V. den Bussche, V. Vianu (eds.) Proceedings of ICDT,
LNCS, vol. 1973, pp. 420–434. Springer, Berlin (2001)

4. Ahmadi, A., Jungers, R., Parrilo, P., Roozbehani, M.: Joint spectral radius and path-
complete graph Lyapunov functions. SIAM Journal on Optimization and Control (to
appear)

5. Ahmadi, A., Majumdar, A.: DSOS and SDSOS optimization: More tractable alter-
natives to sum of squares and semidefinite optimization. SIAM Journal on Applied
Algebra and Geometry 3(2), 193–230 (2019)

6. Ailon, N., Chazelle, B.: Approximate nearest neighbors and fast Johnson-Lindenstrauss
lemma. In: Proceedings of the Symposium on the Theory Of Computing, STOC, vol.
’06. ACM, Seattle (2006)

7. Alfakih, A., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix com-
pletion problems via semidefinite programming. Computational Optimization and
Applications 12, 13–30 (1999)

8. Allen, G.: Sparse higher-order principal components analysis. In: N. Lawrence, M. Giro-
lami (eds.) Proceedings of the International Conference on Artificial Intelligence and
Statistics, Proceedings of Machine Learning Research, vol. 22, pp. 27–36. PMLR, La
Palma (2012). URL http://proceedings.mlr.press/v22/allen12.html

9. Allen-Zhu, Z., Gelashvili, R., Micali, S., Shavit, N.: Sparse sign-consistent Johnson-
Lindenstrauss matrices: Compression with neuroscience-based constraints. Proceedings
of the National Academy of Sciences 111(47), 16872–16876 (2014)

10. Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., Liberti, L.: Column gen-
eration algorithms for exact modularity maximization in networks. Physical Review E
82(4), 046112 (2010)

11. Aloise, D., Caporossi, G., Hansen, P., Liberti, L., Perron, S., Ruiz, M.: Modularity
maximization in networks by variable neighbourhood search. In: D. Bader, P. Sanders,
D. Wagner (eds.) Graph Partitioning and Graph Clustering, Contemporary Mathe-
matics, vol. 588, pp. 113–127. AMS, Providence, RI (2013)

12. Aloise, D., Hansen, P., Liberti, L.: An improved column generation algorithm for min-
imum sum-of-squares clustering. Mathematical Programming A 131, 195–220 (2012)

13. Amaldi, E., Liberti, L., Maffioli, F., Maculan, N.: Edge-swapping algorithms for the
minimum fundamental cycle basis problem. Mathematical Methods of Operations
Research 69, 205–223 (2009)

14. Anderson, J.: An introduction to neural networks. MIT Press, Cambridge, MA (1995)
15. Arriaga, R., Vempala, S.: An algorithmic theory of learning: Robust concepts and

random projection. Machine Learning 63, 161–182 (2006)
16. Asimow, L., Roth, B.: The rigidity of graphs. Transactions of the AMS 245, 279–289

(1978)
17. Bahr, A., Leonard, J., Fallon, M.: Cooperative localization for autonomous underwater

vehicles. International Journal of Robotics Research 28(6), 714–728 (2009)
18. Barker, G., Carlson, D.: Cones of diagonally dominant matrices. Pacific Journal of

Mathematics 57(1), 15–32 (1975)
19. Barvinok, A.: Problems of distance geometry and convex properties of quadratic maps.

Discrete and Computational Geometry 13, 189–202 (1995)
20. Barvinok, A.: Measure concentration in optimization. Mathematical Programming 79,

33–53 (1997)
21. Barvinok, A.: A Course in Convexity. No. 54 in Graduate Studies in Mathematics.

AMS, Providence, RI (2002)
22. Beeker, N., Gaubert, S., Glusa, C., Liberti, L.: Is the distance geometry problem in

NP? In: Mucherino et al. [150], pp. 85–94

64 Leo Liberti

23. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tight-
ening techniques for non-convex MINLP. Optimization Methods and Software 24(4),
597–634 (2009)

24. Ben-Tal, A., Ghaoui, L.E., Nemirovski, A.: Robust Optimization. Princeton University
Press, Princeton, NJ (2009)

25. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep
networks. In: Advances in Neural Information Processing Systems, NIPS, vol. 19, pp.
153–160. MIT Press, Cambridge, MA (2007)

26. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor”
meaningful? In: C. Beeri, P. Buneman (eds.) Proceedings of ICDT, LNCS, vol. 1540,
pp. 217–235. Springer, Heidelberg (1998)

27. Bird, S., Klein, E., Loper, E.: Natural Language Processing with Python. O’Reilly,
Cambridge (2009)

28. Birge, J., Louveaux, F.: Introduction to Stochastic Programming. Springer, New York
(2011)

29. Blömer, J., Lammersen, C., Schmidt, M., Sohler, C.: Theoretical analysis of the k-
means algorithm: A survey. In: L. Kliemann, P. Sanders (eds.) Algorithm Engineering,
LNCS, vol. 9220, pp. 81–116. Springer, Cham (2016)

30. Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University
Press, Oxford (1953)

31. Böhm, C., Jacopini, G.: Flow diagrams, Turing machines and languages with only two
formation rules. Communications of the ACM 9(5), 366–371 (1966)

32. Bollobás, B.: Modern Graph Theory. Springer, New York (1998)
33. Borg, I., Groenen, P.: Modern Multidimensional Scaling, second edn. Springer, New

York (2010)
34. Bottou, L.: Stochastic gradient descent tricks. In: G. Montavon, et al. (eds.) Neural

Networks: Tricks of the trade, LNCS, vol. 7700, pp. 421–436. Springer, Berlin (2012)
35. Bourgain, J.: On Lipschitz embeddings of finite metric spaces in Hilbert space. Israel

Journal of Mathematics 52(1-2), 46–52 (1985)
36. Boutsidis, C., Zouzias, A., Drineas, P.: Random projections for k-means clustering.

In: Advances in Neural Information Processing Systems, NIPS, pp. 298–306. NIPS
Foundation, La Jolla (2010)

37. Brambilla, A., Premoli, A.: Rigorous event-driven (red) analysis of large-scale nonlinear
rc circuits. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and
Applications 48(8), 938–946 (2001)

38. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner,
D.: On modularity clustering. IEEE Transactions on Knowledge and Data Engineering
20(2), 172–188 (2008)

39. Cafieri, S., Hansen, P., Liberti, L.: Loops and multiple edges in modularity maximiza-
tion of networks. Physical Review E 81(4), 46102 (2010)

40. Cafieri, S., Hansen, P., Liberti, L.: Locally optimal heuristic for modularity maximiza-
tion of networks. Physical Review E 83(056105), 1–8 (2011)

41. Cafieri, S., Hansen, P., Liberti, L.: Improving heuristics for network modularity maxi-
mization using an exact algorithm. Discrete Applied Mathematics 163, 65–72 (2014)

42. Cauchy, A.L.: Sur les polygones et les polyèdres. Journal de l’École Polytechnique
16(9), 87–99 (1813)

43. Cayley, A.: A theorem in the geometry of position. Cambridge Mathematical Journal
II, 267–271 (1841)

44. Chollet, F., et al.: Keras. https://keras.io (2015)
45. Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge, MA (1965)
46. Choromanska, A., Henaff, M., Mathieu, M., Arous, G.B., LeCun, Y.: The loss surfaces

of multilayer networks. In: Proceedings of the International Conference on Artificial
Intelligence and Statistics, AISTATS, vol. 18. JMLR, San Diego (2015)

47. COIN-OR: Introduction to IPOPT: A tutorial for downloading, installing, and using
IPOPT (2006)

48. Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P.: Natural
Language Processing (almost) from scratch. Journal of Machine Learning Research 12,
2461–2505 (2011)

Distance Geometry and Data Science 65

49. Connelly, R.: A counterexample to the rigidity conjecture for polyhedra. Publications
Mathématiques de l’IHES 47, 333–338 (1978)

50. Cox, T., Cox, M.: Multidimensional Scaling. Chapman & Hall, Boca Raton (2001)
51. D’Ambrosio, C., Liberti, L.: Distance geometry in linearizable norms. In: F. Nielsen,

F. Barbaresco (eds.) Geometric Science of Information, LNCS, vol. 10589, pp. 830–838.
Springer, Berlin (2017)

52. D’Ambrosio, C., Liberti, L., Poirion, P.L., Vu, K.: Random projections for quadratic
programming. Tech. Rep. 2019-7-7322, Optimization Online (2019)

53. D’Ambrosio, C., Liberti, L., Poirion, P.L., Vu, K.: Random projections for quadratic
programming. Mathematical Programming B (in revision)

54. Dantzig, G.: Reminiscences about the origins of linear programming. In: A. Bachem,
M. Grötschel, B. Korte (eds.) Mathematical Programming: the state of the art.
Springer, Berlin (1983)

55. Dasgupta, S., Gupta, A.: An elementary proof of a theorem by Johnson and Linden-
strauss. Random Structures and Algorithms 22, 60–65 (2002)

56. D’Aspremont, A., Bach, F., Ghaoui, L.E.: Approximation bounds for sparse principal
component analysis. Mathematical Programming B 148, 89–110 (2014)

57. Dattorro, J.: Convex Optimization and Euclidean Distance Geometry. Mεβoo, Palo
Alto (2015)

58. Dauphin, Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization.
In: Advances in Neural Information Processing Systems, NIPS, pp. 2933–2941. NIPS
Foundation, La Jolla (2014)

59. Demartines, P., Hérault, J.: Curvilinear component analysis: A self-organizing neural
network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks
8(1), 148–154 (1997)

60. Deo, N., Prabhu, G., Krishnamoorthy, M.: Algorithms for generating fundamental
cycles in a graph. ACM Transactions on Mathematical Software 8(1), 26–42 (1982)

61. Dey, S., Mazumder, R., Molinaro, M., Wang, G.: Sparse principal component analysis
and its `1-relaxation. Tech. Rep. 1712.00800v1, arXiv (2017)

62. Dias, G., Liberti, L.: Diagonally dominant programming in distance geometry. In:
R. Cerulli, S. Fujishige, R. Mahjoub (eds.) International Symposium in Combinatorial
Optimization, LNCS, vol. 9849, pp. 225–236. Springer, New York (2016)

63. Douven, I.: Abduction. In: E. Zalta (ed.) The Stanford Encyclopedia of Philosophy,
summer 2017 edn. Metaphysics Research Lab, Stanford University (2017)

64. Durrant, R., Kabán, A.: When is ‘nearest neighbour’ meaningful: A converse theorem
and implications. Journal of Complexity 25, 385–397 (2009)

65. Eco, U.: Horns, hooves, insteps. Some hypotheses on three kinds of abduction. In:
U. Eco, T. Sebeok (eds.) Dupin, Holmes, Peirce. The Sign of Three. Indiana University
Press, Bloomington (1983)

66. Eco, U.: Semiotics and the Philosophy of Language. Indiana University Press, Bloom-
ington, IN (1984)

67. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A., Anderson, B., Belhumeur,
P.: Rigidity, computation, and randomization in network localization. IEEE pp. 2673–
2684 (2004)

68. Euler, L.: Continuatio fragmentorum ex adversariis mathematicis depromptorum: II
Geometria, 97. In: P. Fuss, N. Fuss (eds.) Opera postuma mathematica et physica
anno 1844 detecta, vol. I, pp. 494–496. Eggers & C., Petropolis (1862)

69. Fiedler, M.: Algebraic connectivity of graphs. Czechoslovak Mathematical Journal
23(2), 298–305 (1973)

70. Flexer, A., Schnitzer, D.: Choosing `p norms in high-dimensional spaces based on hub
analysis. Neurocomputing 169, 281–287 (2015)

71. Floreano, D.: Manuale sulle Reti Neurali. Il Mulino, Bologna (1996)
72. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174

(2010)
73. François, D., Wertz, V., Verleysen, M.: The concentration of fractional distances. IEEE

Transactions on Knowledge and Data Engineering 19(7), 873–886 (2007)
74. Friedler, F., Huang, Y., Fan, L.: Combinatorial algorithms for process synthesis. Com-

puters and Chemical Engineering 16(1), 313–320 (1992)

66 Leo Liberti

75. Gayraud, N.: Public remark (2017). During the workshop Le Monde des
Mathématiques Industrielles at INRIA Sophia-Antipolis (MOMI17)

76. Gilbreth, F., Gilbreth, L.: Process charts: First steps in finding the one best way to
do work. In: Proceedings of the Annual Meeting. American Society of Mechanical
Engineers, New York (1921)

77. Gill, P.: User’s guide for SNOPT version 7.2. Systems Optimization Laboratory, Stan-
ford University, California (2006)

78. Gödel, K.: On the isometric embeddability of quadruples of points of r3 in the surface
of a sphere. In: S. Feferman, J. Dawson, S. Kleene, G. Moore, R. Solovay, J. van
Heijenoort (eds.) Kurt Gödel: Collected Works, vol. I, pp. (1933b) 276–279. Oxford
University Press, Oxford (1986)

79. Gonçalves, D., Mucherino, A., Lavor, C., Liberti, L.: Recent advances on the interval
distance geometry problem. Journal of Global Optimization 69, 525–545 (2017)

80. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA
(2016)

81. Haeffele, B., Vidal, R.: Global optimality in neural network training. In: Proceedings
of the conference in Computer Vision and Pattern Recognition, CVPR, pp. 4390–4398.
IEEE, Piscataway (2017)

82. Hagberg, A., Schult, D., Swart, P.: Exploring network structure, dynamics, and func-
tion using NetworkX. In: G. Varoquaux, T. Vaught, J. Millman (eds.) Proceedings of
the 7th Python in Science Conference (SciPy2008), pp. 11–15. Pasadena, CA (2008)

83. Hansen, P., Jaumard, B.: Cluster analysis and mathematical programming. Mathe-
matical Programming 79, 191–215 (1997)

84. Henneberg, L.: Die Graphische Statik der starren Systeme. Teubner, Leipzig (1911)
85. Heron: Metrica, vol. I. Alexandria (∼50AD)
86. Hinneburg, A., Aggarwal, C., Keim, D.: What is the nearest neighbor in high dimen-

sional spaces? In: Proceedings of the Conference on Very Large Databases, VLDB,
vol. 26, pp. 506–515. Morgan Kaufman, San Francisco (2000)

87. Hotelling, H.: Analysis of a complex of statistical variables into principal components.
Journal of Educational Psychology 24(6), 417–441 (1933)

88. IBM: ILOG CPLEX 12.8 User’s Manual. IBM (2017)
89. Indyk, P.: Algorithmic applications of low-distortion geometric embeddings. In: Foun-

dations of Computer Science, FOCS, vol. 42, pp. 10–33. IEEE, Washington, DC (2001)
90. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse

of dimensionality. In: Proceedings of the Symposium on the Theory Of Computing,
STOC, vol. 30, pp. 604–613. ACM, New York (1998)

91. Indyk, P., Naor, A.: Nearest neighbor preserving embeddings. ACM Transactions on
Algorithms 3(3), Art. 31 (2007)

92. Jain, A., Murty, M., Flynn, P.: Data clustering: a review. ACM Computing Surveys
31(3), 264–323 (1999)

93. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space.
In: G. Hedlund (ed.) Conference in Modern Analysis and Probability, Contemporary
Mathematics, vol. 26, pp. 189–206. AMS, Providence, RI (1984)

94. Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, Berlin (2010)
95. Jordan, M.: Why the logistic function? A tutorial discussion on probabilities and neural

networks. Tech. Rep. Computational Cognitive Science TR 9503, MIT (1995)
96. Kane, D., Nelson, J.: Sparser Johnson-Lindenstrauss transforms. Journal of the ACM

61(1), 4 (2014)
97. Kantor, I., Matoušek, J., Šámal, R.: Mathematics++: Selected topics beyond the basic

courses. No. 75 in Student Mathematical Library. AMS, Providence, RI (2015)
98. Khalife, S., Liberti, L., Vazirgiannis, M.: Geometry and analogies: a study and propaga-

tion method for word representation. In: Statistical Language and Speech Processing,
SLSP, vol. 7 (2019)

99. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: Proceedings of
ICLR. San Diego (2015)

100. Knuth, D.: The Art of Computer Programming, Part I: Fundamental Algorithms, 3rd
edn. Addison-Wesley, Reading, MA (1997)

101. Kullback, S., Leibler, R.: On information and sufficiency. Annals of Mathematical
Statistics 22(1), 79–86 (1951)

Distance Geometry and Data Science 67

102. Kuratowski, C.: Quelques problèmes concernant les espaces métriques non-séparables.
Fundamenta Mathematicæ 25, 534–545 (1935)

103. Lavor, C., Liberti, L., Donald, B., Worley, B., Bardiaux, B., Malliavin, T., Nilges, M.:
Minimal NMR distance information for rigidity of protein graphs. Discrete Applied
Mathematics 256, 91–104 (2019)

104. Lavor, C., Liberti, L., Maculan, N.: Computational experience with the molecular
distance geometry problem. In: J. Pintér (ed.) Global Optimization: Scientific and
Engineering Case Studies, pp. 213–225. Springer, Berlin (2006)

105. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance
geometry problem. Computational Optimization and Applications 52, 115–146 (2012)

106. Lavor, C., Liberti, L., Mucherino, A.: The interval Branch-and-Prune algorithm for
the discretizable molecular distance geometry problem with inexact distances. Journal
of Global Optimization 56, 855–871 (2013)

107. Lavor, C., Souza, M., Carvalho, L., Liberti, L.: On the polynomiality of finding
KDMDGP re-orders. Discrete Applied Mathematics 267, 190–194 (2019)

108. Lehmann, S., Hansen, L.: Deterministic modularity optimization. European Physical
Journal B 60, 83–88 (2007)

109. Levine, R., Mason, T., Brown, D.: Lex and Yacc, second edn. O’Reilly, Cambridge
(1995)

110. Liberti, L.: Reformulations in mathematical programming: Definitions and systematics.
RAIRO-RO 43(1), 55–86 (2009)

111. Liberti, L.: Software modelling and architecture: Exercises. Ecole Polytechnique,
www.lix.polytechnique.fr/~liberti/swarchex.pdf (2010)

112. Liberti, L.: Undecidability and hardness in mixed-integer nonlinear programming.
RAIRO-Operations Research 53, 81–109 (2019)

113. Liberti, L., Cafieri, S., Savourey, D.: Reformulation optimization software engine. In:
K. Fukuda, J. van der Hoeven, M. Joswig, N. Takayama (eds.) Mathematical Software,
LNCS, vol. 6327, pp. 303–314. Springer, New York (2010)

114. Liberti, L., Cafieri, S., Tarissan, F.: Reformulations in mathematical programming:
A computational approach. In: A. Abraham, A.E. Hassanien, P. Siarry, A. Engel-
brecht (eds.) Foundations of Computational Intelligence Vol. 3, no. 203 in Studies in
Computational Intelligence, pp. 153–234. Springer, Berlin (2009)

115. Liberti, L., D’Ambrosio, C.: The Isomap algorithm in distance geometry. In: C. Il-
iopoulos, S. Pissis, S. Puglisi, R. Raman (eds.) Proceedings of 16th International Sym-
posium on Experimental Algorithms (SEA), LIPICS, vol. 75, pp. 5:1–5:13. Dagstuhl
Publishing, Schloss Dagstuhl (2017)

116. Liberti, L., Lavor, C.: On a relationship between graph realizability and distance matrix
completion. In: A. Migdalas, A. Sifaleras, C. Georgiadis, J. Papathanaiou, E. Stiakakis
(eds.) Optimization theory, decision making, and operational research applications,
Proceedings in Mathematics & Statistics, vol. 31, pp. 39–48. Springer, Berlin (2013)

117. Liberti, L., Lavor, C.: Six mathematical gems in the history of distance geometry.
International Transactions in Operational Research 23, 897–920 (2016)

118. Liberti, L., Lavor, C.: Euclidean Distance Geometry: An Introduction. Springer, New
York (2017)

119. Liberti, L., Lavor, C., Alencar, J., Abud, G.: Counting the number of solutions of
kDMDGP instances. In: F. Nielsen, F. Barbaresco (eds.) Geometric Science of Infor-
mation, LNCS, vol. 8085, pp. 224–230. Springer, New York (2013)

120. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular
distance geometry problem. International Transactions in Operational Research 15,
1–17 (2008)

121. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and
applications. SIAM Review 56(1), 3–69 (2014)

122. Liberti, L., Lavor, C., Mucherino, A.: The discretizable molecular distance geometry
problem seems easier on proteins. In: Mucherino et al. [150], pp. 47–60

123. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry meth-
ods: from continuous to discrete. International Transactions in Operational Research
18, 33–51 (2010)

68 Leo Liberti

124. Liberti, L., Marinelli, F.: Mathematical programming: Turing completeness and ap-
plications to software analysis. Journal of Combinatorial Optimization 28(1), 82–104
(2014)

125. Liberti, L., Masson, B., Lavor, C., Lee, J., Mucherino, A.: On the number of realiza-
tions of certain Henneberg graphs arising in protein conformation. Discrete Applied
Mathematics 165, 213–232 (2014)

126. Liberti, L., Swirszcz, G., Lavor, C.: Distance geometry on the sphere. In: J. Akiyama,
et al. (eds.) JCDCG2, LNCS, vol. 9943, pp. 204–215. Springer, New York (2016)

127. Liberti, L., Vu, K.: Barvinok’s naive algorithm in distance geometry. Operations Re-
search Letters 46, 476–481 (2018)

128. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algo-
rithmic applications. Combinatorica 15(2), 215–245 (1995)

129. Majumdar, A., Ahmadi, A., Tedrake, R.: Control and verification of high-dimensional
systems with dsos and sdsos programming. In: Conference on Decision and Control,
vol. 53, pp. 394–401. IEEE, Piscataway (2014)

130. Malliavin, T., Mucherino, A., Lavor, C., Liberti, L.: Systematic exploration of pro-
tein conformational space using a distance geometry approach. Journal of Chemical
Information and Modeling 59, 4486–4503 (2019)

131. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing.
MIT Press, Cambridge, MA (1999)

132. Mansouri, J., Khademi, M.: Multiplicative distance: a method to alleviate distance
instability for high-dimensional data. Knowledge and Information Systems 45, 783–
805 (2015)

133. Matoušek, J.: On variants of the Johnson-Lindenstrauss lemma. Random Structures
and Algorithms 33, 142–156 (2008)

134. Matoušek, J.: Lecture notes on metric embeddings. Tech. rep., ETH Zürich (2013)
135. Maxwell, J.: On the calculation of the equilibrium and stiffness of frames. Philosophical

Magazine 27(182), 294–299 (1864)
136. McCormick, G.: Computability of global solutions to factorable nonconvex programs:

Part I — Convex underestimating problems. Mathematical Programming 10, 146–175
(1976)

137. McCulloch, W.: What is a number, that a man may know it, and a man, that he may
know a number? General Semantics Bulletin 26-27, 7–18 (1961)

138. Mencarelli, L., Sahraoui, Y., Liberti, L.: A multiplicative weights update algorithm for
MINLP. EURO Journal on Computational Optimization 5, 31–86 (2017)

139. Menger, K.: Untersuchungen über allgemeine Metrik. Mathematische Annalen 100,
75–163 (1928)

140. Menger, K.: New foundation of Euclidean geometry. American Journal of Mathematics
53(4), 721–745 (1931)

141. Merris, R.: Laplacian matrices of graphs: A survey. Linear Algebra and its Applications
198, 143–176 (1994)

142. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations
of words and phrases and their compositionality. In: C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, K. Weinberger (eds.) Advances in Neural Information Processing Sys-
tems, NIPS, vol. 26, pp. 3111–3119. NIPS Foundation, La Jolla (2013)

143. Miller, G.: Wordnet: A lexical database for English. Communications of the ACM
38(11), 39–41 (1995)

144. Milnor, J.: On the Betti numbers of real varieties. Proceedings of the AMS 15, 275–280
(1964)

145. Minsky, M.: The society of mind. Simon & Schuster, New York (1986)
146. Moitra, A.: Algorithmic aspects of Machine Learning. CUP, Cambridge (2018)
147. Moro, A.: The boundaries of Babel. MIT Press, Cambridge, MA (2008)
148. Morris, C.: Signs, Language and Behavior. Prentice-Hall, New York (1946)
149. Mucherino, A., Lavor, C., Liberti, L.: Exploiting symmetry properties of the discretiz-

able molecular distance geometry problem. Journal of Bioinformatics and Computa-
tional Biology 10, 1242009(1–15) (2012)

150. Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds.): Distance Geometry: Theory,
Methods, and Applications. Springer, New York (2013)

Distance Geometry and Data Science 69

151. Newman, M., Girvan, M.: Finding and evaluating community structure in networks.
Physical Review E 69, 026113 (2004)

152. Object Management Group: Unified modelling language: Superstructure, v. 2.0. Tech.
Rep. formal/05-07-04, OMG (2005)

153. O’Donoghue, B., Chu, E., Parikh, N., Boyd, S.: Operator splitting for conic opti-
mization via homogeneous self-dual embedding. Journal of Optimization Theory and
Applications 169(3), 1042–1068 (2016)

154. Paton, K.: An algorithm for finding a fundamental set of cycles of a graph. Commu-
nications of the ACM 12(9), 514–518 (1969)

155. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Courna-
peau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

156. Peirce, C.: Illustrations of the logic of science, part 6: Induction, Deduction, and Hy-
pothesis. Popular Science Monthly 13, 470–482 (1878)

157. Penrose, R.: The emperor’s new mind. Penguin, New York (1989)
158. Pfeffer, A.: Practical Probabilistic Programming. Manning Publications, Shelter Is-

land, NY (2016)
159. Popper, K.: The Logic of Scientific Discovery. Hutchinson, London (1968)
160. Potra, F., Wright, S.: Interior-point methods. Journal of Computational and Applied

Mathematics 124, 281–302 (2000)
161. Proni, G.: Is there abduction in Aristotle? Peirce, Eco, and some further remarks.

Ocula 17, 1–14 (2016)
162. Radovanović, M., Nanopoulos, A., Ivanović, M.: Hubs in space: Popular nearest neigh-

bors in high-dimensional data. Journal of Machine Learning Research 11, 2487–2531
(2010)

163. van Rossum, G., et al.: Python Language Reference, version 3. Python Software Foun-
dation (2019)

164. Rousseau, F., Vazirgiannis, M.: Graph-of-word and TW-IDF: new approach to ad hoc
IR. In: Proceedings of CIKM. ACM, New York (2013)

165. Saerens, M., Fouss, F., Yen, L., Dupont, P.: The principal components analysis of a
graph, and its relationships to spectral clustering. In: J.F. Boulicaut, F. Esposito,
F. Giannotti, D. Pedreschi (eds.) Proceedings of the European Conference in Machine
Learning (ECML), LNAI, vol. 3201, pp. 371–383. Springer, Berlin (2004)

166. Salgado, E., Scozzari, A., Tardella, F., Liberti, L.: Alternating current optimal power
flow with generator selection. In: J. Lee, G. Rinaldi, R. Mahjoub (eds.) Combinatorial
Optimization (Proceedings of ISCO 2018), LNCS, vol. 10856, pp. 364–375 (2018)

167. Sánchez, A.B., Lavor, C.: On the estimation of unknown distances for a class of Eu-
clidean distance matrix completion problems with interval data. Linear Algebra and
its Applications 592, 287–305 (2020)

168. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. Proceedings
of 17th Allerton Conference in Communications, Control and Computing pp. 480–489
(1979)

169. Schaeffer, S.: Graph clustering. Computer Science Review 1, 27–64 (2007)
170. Schmidhuber, J.: Deep learning in neural networks: An overview. Neural Networks 61,

85–117 (2015). DOI 10.1016/j.neunet.2014.09.003. Published online 2014; based on
TR arXiv:1404.7828 [cs.NE]

171. Schoenberg, I.: Remarks to Maurice Fréchet’s article “Sur la définition axiomatique
d’une classe d’espaces distanciés vectoriellement applicable sur l’espace de Hilbert”.
Annals of Mathematics 36(3), 724–732 (1935)

172. Schumacher, M., Roßner, R., Vach, W.: Neural networks and logistic regression: Part
I. Computational Statistics & Data Analysis 21, 661–682 (1996)

173. Seshu, S., Reed, M.: Linear Graphs and Electrical Networks. Addison-Wesley, Reading,
MA (1961)

174. Singer, A.: Angular synchronization by eigenvectors and semidefinite programming.
Applied and Computational Harmonic Analysis 30, 20–36 (2011)

175. Smith, E., Pantelides, C.: A symbolic reformulation/spatial branch-and-bound algo-
rithm for the global optimisation of nonconvex MINLPs. Computers & Chemical
Engineering 23, 457–478 (1999)

70 Leo Liberti

176. Steinhaus, H.: Sur la division des corps matériels en parties. Bulletin de l’Académie
Polonaise des Sciences Cl. III 4(12), 801–804 (1956)

177. Tabaghi, P., Dokmanić, I., Vetterli, M.: On the move: Localization with kinetic Eu-
clidean distance matrices. In: International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, Piscataway (2019)

178. Tawarmalani, M., Sahinidis, N.: Global optimization of mixed integer nonlinear pro-
grams: A theoretical and computational study. Mathematical Programming 99, 563–
591 (2004)

179. Tenenbaum, J., de Silva, V., Langford, J.: A global geometric framework for nonlinear
dimensionality reduction. Science 290, 2319–2322 (2000)

180. Thoreau, H.: Resistance to civil government. In: E. Peabody (ed.) Æsthetic papers.
J. Wilson, Boston, MA (1849)

181. Vavasis, S.: Nonlinear Optimization: Complexity Issues. Oxford University Press, Ox-
ford (1991)

182. Vempala, S.: The Random Projection Method. No. 65 in DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. AMS, Providence, RI (2004)

183. Venkatasubramanian, S., Wang, Q.: The Johnson-Lindenstrauss transform: An empiri-
cal study. In: Algorithm Engineering and Experiments, ALENEX, vol. 13, pp. 164–173.
SIAM, Providence, RI (2011)

184. Verboon, A.: The medieval tree of Porphyry: An organic structure of logic. In:
A. Worm, P. Salonis (eds.) The Tree. Symbol, Allegory and Structural Device in Me-
dieval Art and Thought, International Medieval Research, vol. 20, pp. 83–101. Brepols,
Turnhout (2014)

185. Vershynin, R.: High-dimensional probability. CUP, Cambridge (2018)
186. Vidal, R., Ma, Y., Sastry, S.: Generalized Principal Component Analysis. Springer,

New York (2016)
187. Vu, K., Poirion, P.L., D’Ambrosio, C., Liberti, L.: Random projections for quadratic

programs over a Euclidean ball. In: A. Lodi, et al. (eds.) Integer Programming and
Combinatorial Optimization (IPCO), LNCS, vol. 11480, pp. 442–452. Springer, New
York (2019)

188. Vu, K., Poirion, P.L., Liberti, L.: Random projections for linear programming. Math-
ematics of Operations Research 43(4), 1051–1071 (2018)

189. Vu, K., Poirion, P.L., Liberti, L.: Gaussian random projections for Euclidean member-
ship problems. Discrete Applied Mathematics 253, 93–102 (2019)

190. Wikipedia: Civil disobedience (thoreau) (2019). URL en.wikipedia.org/wiki/Civil_

Disobedience_(Thoreau). [Online; accessed 190804]
191. Wikipedia: Computational pragmatics (2019). URL en.wikipedia.org/wiki/

Computational_pragmatics. [Online; accessed 190802]
192. Wikipedia: Diagonally dominant matrix (2019). URL en.wikipedia.org/wiki/

Diagonally_dominant_matrix. [Online; accessed 190716]
193. Wikipedia: Flowchart (2019). URL en.wikipedia.org/wiki/Flochart. [Online; ac-

cessed 190802]
194. Wikipedia: Principal component analysis (2019). URL en.wikipedia.org/wiki/

Principal_component_analysis. [Online; accessed 190726]
195. Wikipedia: Rectifier (neurl networks) (2019). URL en.wikipedia.org/wiki/

Rectifier_(neural_networks). [Online; accessed 190807]
196. Wikipedia: Slutsky’s theorem (2019). URL en.wikipedia.org/wiki/Slutsky\%27s_

theorem. [Online; accessed 190802]
197. Williams, H.: Model Building in Mathematical Programming, 4th edn. Wiley, Chich-

ester (1999)
198. Woodruff, D.: Sketching as a tool for linear algebra. Foundations and Trends in The-

oretical Computer Science 10(1-2), 1–157 (2014)
199. ben Judah of Worms, E.: Sodei razayya (XII-XIII Century). [Earliest account of how

to create a Golem]
200. Wüthrich, K.: Protein structure determination in solution by nuclear magnetic reso-

nance spectroscopy. Science 243, 45–50 (1989)
201. Xu, G., Tsoka, S., Papageorgiou, L.: Finding community structures in complex net-

works using mixed integer optimisation. European Physical Journal B 60, 231–239
(2007)

Distance Geometry and Data Science 71

202. Yemini, Y.: The positioning problem — a draft of an intermediate summary. In:
Proceedings of the Conference on Distributed Sensor Networks, pp. 137–145. Carnegie-
Mellon University, Pittsburgh (1978)

203. Yemini, Y.: Some theoretical aspects of position-location problems. In: Proceedings of
the 20th Annual Symposium on the Foundations of Computer Science, pp. 1–8. IEEE,
Piscataway (1979)

204. Yun, C., Sra, S., Jadbabaie, A.: Global optimality conditions for deep neural net-
works. In: Proceedings of the 6th International Conference on Learning Representa-
tions. ICLR, La Jolla, CA (2018)

205. Zhang, L., Mahdavi, M., Jin, R., Yang, T., Zhu, S.: Recovering the optimal solution
by dual random projection. In: S. Shalev-Shwartz, I. Steinwart (eds.) Conference on
Learning Theory (COLT), Proceedings of Machine Learning Research, vol. 30, pp.
135–157. 〈jmlr.org〉 (2013)

