
HAL Id: hal-02869223
https://hal.science/hal-02869223

Submitted on 15 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On an SDP relaxation for kissing number
Jon Lee, Leo Liberti

To cite this version:
Jon Lee, Leo Liberti. On an SDP relaxation for kissing number. Optimization Letters, 2020, 14 (2),
pp.417-422. �10.1007/s11590-018-1239-9�. �hal-02869223�

https://hal.science/hal-02869223
https://hal.archives-ouvertes.fr


Optimization Letters manuscript No.
(will be inserted by the editor)

On an SDP relaxation for kissing number

Jon Lee · Leo Liberti

Received: date / Accepted: date

Abstract We demonstrate that an earlier semidefinite-programming relax-
ation for the kissing-number problem cannot provide good upper bounds. Fur-
thermore, we show the existence of an optimal solution for this relaxation that
cannot be used as a basis for establishing a good lower bound.
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1 Introduction

The kissing number in dimension d ≥ 2 is the maximum number kn(d) of
euclidean unit balls arranged touching a central unit ball in such a way that
the intersection of the interiors of any pair of balls in the configuration is empty.
Formally, it is the maximum n for which there exist x1, x2, . . . , xn ∈ Rd such
that:

‖xi‖2 = 1, for 1 ≤ i ≤ n;

‖xi − xj‖2 ≥ 1, for 1 ≤ i < j ≤ n,

where xi is the point of contact of the i-th surrounding ball with the central
unit ball, for each 1 ≤ i ≤ n.
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Exact values for kn(d) are known only for d = 2, 3, 4, 8, 24; in particular,
the determinations of kn(3) = 12 (see [15]) and kn(4) = 24 (see [12]) are fairly
recent. Calculating other kissing numbers and sharpening lower and upper
bounds is a subject of intense investigation (see [5,14,9,16]).

Lower bounds for kissing numbers (typically via finding good feasible con-
figurations) have been computed using lattice theory (see [6]), as well as us-
ing mathematical-optimization formulations (see [10]) and global-optimization
methods to solve them (see [8]). The main tool for computing upper bounds
(typically via solving relaxations) is Delsarte’s linear program and its numer-
ous variants, including mixed-combinatorial arguments (see [2,12]), general-
izations (see [13]), and semidefinite-programming (SDP) extensions (see [3,
11]).

Following [10,8,9], we formulate the kissing-number problem as the follow-
ing quadratically-constrained optimization problem:

v(n, d) := maxα(KNP)

subject to:

‖xi‖22 = 1, for 1 ≤ i ≤ n;

‖xi − xj‖22 ≥ α, for 1 ≤ i < j ≤ n;

− 1 ≤ x`i ≤ 1, for 1 ≤ ` ≤ d, 1 ≤ i ≤ n;

α ≥ 0,

where n, d ≥ 2 are given integers, α is a scalar decision variable, and x :=
[x1, x2, . . . , xn] is a d× n matrix where the i-th column is xi, representing the
point of contact of the i-th surrounding ball with the central unit ball (for
each 1 ≤ i ≤ n).

The variable α represents the minimum distance between pairs of (con-
tact) points in a configuration. Solving this global-optimization problem and
obtaining an optimal α ≥ 1 yields a proof that kn(d) ≥ n. Likewise, α < 1
implies that kn(d) < n. So if we can solve instances of (KNP), we can calculate
kissing numbers.

Unfortunately current global-optimization software can only tackle (KNP)
for small values of n and d (see [8]) — certainly not for any values that can
improve the current state of knowledge for bounding kissing numbers.

In what follows, we prove a theorem that provides an optimal solution of
the natural SDP relaxation of (KNP) in a closed form. In doing so, we will
see that the associated upper bound is useless and the solution that we find
cannot even be useful to construct good feasible configurations (i.e., as a lower
bound).

2 The useless SDP relaxation

We consider the natural SDP relaxation of (KNP) from [9] (also see [8]).

v(n) := max α(P)
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subject to:

Xii = 1, for 1 ≤ i ≤ n;(1)

− 1 ≤ Xij ≤ 1, for 1 ≤ i 6= j ≤ n;(2)

Xii +Xjj −Xij −Xji ≥ α, for 1 ≤ i < j ≤ n;(3)

α ≥ 0;(4)

X � 0.(5)

We can see the relationship between x in (KNP) and X in (P), by defining
X := x′x, which is then relaxed to the convex constraint X − x′x � 0. But
because x appears nowhere else in (P), there is no further deterioration in
the optimal objective value by instead simply enforcing the convex constraint
X � 0.

The fatal flaw for (P) is that d has disappeared, and so x′x, which has rank
no more than d, is replaced by X, which may have rank as high as n. Still, we
have v(n) ≥ v(n, d), for all d, and so if v(n) < 1, then the kissing number for
all d is less than n. But it is obvious that kn(d) grows with d, so this cannot
happen. Hence, it is clear that v(n) ≥ 1. This already shatters any hope of
determining nontrivial upper bounds for kissing numbers using (P). In fact,
with Theorem 1, we demonstrate that v(n) is precisely 2n/(n− 1).

On the other hand, we could hope that we might derive from an optimal
solution X̃ ∈ Rn×n a good configuration x̃ = [x̃1, x̃2, . . . , x̃n] ∈ Rd×n using
heuristic methods. Valid configurations provide lower bounds to kissing num-
bers. One possible idea is to employ principal component analysis (PCA) (see
[7]) to derive an initial (probably infeasible) configuration and then a local
nonlinear-optimization solver to seek a feasible configuration. We recall that
PCA selects the d coordinates corresponding to the largest eigenvalues of an
n× n matrix. Even this further hope, for (P) to be useful in the computation
of lower bounds, is shattered by our proof of Theorem 1, which establishes
that the associated optimal solution X̃ that we find for (P) has rank n − 1,
and, fatally for the heuristic based on PCA, the multiplicity of the largest
eigenvalue of X̃ is n− 1.

Theorem 1 For all n ≥ 2, v(n) = 2n/(n− 1).

Proof For the purpose of writing (P) in a canonical form, we define some
matrices in Rn×n. For 1 ≤ i, j ≤ n, we let Eij ∈ Rn×n be all 0 except for a 1
in position (i, j).

With these matrices in hand, we can recast (P) in a type of canonical form
as:

max α(P′)

subject to: dual var.

〈Eii, X〉 = 1, for 1 ≤ i ≤ n; ui

〈+Eij + Eji , X〉 ≤ 2, for 1 ≤ i < j ≤ n; yij

〈−Eij − Eji , X〉 ≤ 2, for 1 ≤ i < j ≤ n; zij
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〈−Eii − Ejj + Eij + Eji , X〉+ α ≤ 0, for 1 ≤ i < j ≤ n; wij

X � 0, α ≥ 0.

Using the dual variables indicated above, the dual of (P′) is

min
∑
i

ui + 2
∑
i<j

(yij + zij)(D′)

subject to:
n∑

i=1

uiEii +
∑
i<j

[(yij−zij)(Eij+Eji)+ wij(−Eii−Ejj+Eij+Eji)] � 0;

∑
i<j

wij ≥ 1;

yij , zi,j , wi,j ≥ 0, for 1 ≤ i < j ≤ n.

It is compelling to simplify D′ to

min
∑
i

ui + 2
∑
i<j

|ρij |(D)

subject to:
n∑

i=1

uiEii +
∑
i<j

[ρij(Eij + Eji) + wij(−Eii − Ejj + Eij + Eji)] � 0;(6)

∑
i<j

wij ≥ 1;(7)

wi,j ≥ 0, for 1 ≤ i < j ≤ n.(8)

We will demonstrate that v(n) = 2n/(n−1) by displaying feasible solutions
to (P) and (D), both having objective value 2n/(n− 1).

Letting J be an n× n matrix of all ones, our primal solution has α equal
to 2n/(n− 1) and X equal to n

n−1I −
1

n−1J . We can see that we have Xii =

Xjj = 1 and Xij = Xji = − 1
n−1 , so clearly (1) is satisfied, (2) is satisfied (with

slack everywhere), and we can readily check that (3) is satisfied as an equation
(for all i 6= j). Finally, it is easy to see that this solution matrix X is positive
semidefinite, because the eigenvalues of n

n−1I −
1

n−1J are: 0, n
n−1 , . . . ,

n
n−1 .

Our dual solution has all ui equal to 2/(n − 1), all wij equal to 1/
(
n
2

)
=

2/(n(n − 1)), and all ρij equal to 0. It is easy to see that the objective value
of this dual solution is 2n

n−1 , the same as the primal objective value.
Next, we need to check (6) and (7). For our particular dual solution, we

can see (6) as

F̃ :=

n∑
i=1

uiEii +
∑
i<j

wij(−Eii − Ejj + Eij + Eji) � 0,
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the left-hand side of which is

2

n− 1

n∑
i=1

Eii +
1(
n
2

) ∑
i<j

(−Eii − Ejj + Eij + Eji)

=
2

n− 1
I +

1(
n
2

) [−(n− 1)I + (J − I)]

=
1(
n
2

)J,
which is clearly positive semidefinite. Finally, it is easy to see that (7) is
satisfied (as an equation). ut

Incidentally, it is easy to verify complementarity of the primal and dual
solutions in the proof. In particular,

F̃ X̃ =

(
1(
n
2

)J) ( 1

n− 1
(nI − J)

)
= 0.

As an obvious consequence of Theorem 1, we see that lim
n→∞

v(n) = 2, which

was the behavior computationally observed in [9].
As we have already observed, we always have v(n) ≥ 1, but our theorem

sharpens this and also demonstrates, due to the form of the optimal X̃ that we
find, that PCA — which chooses the d coordinates corresponding to the largest
eigenvalues of X̃ — cannot be effective: our solution X̃ has one zero eigenvalue
and the remaining n−1 (positive) ones are all identical; so the computed basis
for the corresponding (n − 1)-dimensional eigenspace is arbitrary. Therefore,
a heuristic based on applying PCA to our optimal solution of (P) cannot be
effective.

3 Possible future work

We have not made any attempt to characterize all optimal solutions of (P)
or to try and demonstrate that the solution that we obtained is the unique
optimal solution. There may be some interest in carrying out such an analysis,
and there are tools to do it (see [1], for example). In any case, a consequence
of our work is that the best hope for exploiting the relaxation (P) should
strengthen it.

On the other side, we have exploited the extreme symmetry of (P) to get
a closed-form solution of it. It might be an interesting mathematical exercise
(with no import on the kissing-number problem) to see how far this idea can
be pushed. We could replace (3) in (P) with

Xii +Xjj −Xij −Xji ≥ α, for 1 ≤ i < j ≤ n : {i, j} ∈ E ,

where E is the edge set of a graph on vertex set {1, 2, . . . , n}. We have been
working with complete graphs, but it seems possible to still get a closed form
solution if the graph is say a Johnson graph or perhaps other classes of (or
even all) distance-transitive graphs (see [4] for example).
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