Random Projections for Quadratic Programs over a Euclidean Ball - Archive ouverte HAL
Communication Dans Un Congrès Année : 2019

Random Projections for Quadratic Programs over a Euclidean Ball

Résumé

Random projections are used as dimensional reduction techniques in many situations. They project a set of points in a high dimensional space to a lower dimensional one while approximately preserving all pairwise Euclidean distances. Usually, random projections are applied to numerical data. In this paper, however, we present a successful application of random projections to quadratic programming problems subject to polyhedral and a Euclidean ball constraint. We derive approximate feasibility and optimality results for the lower dimensional problem. We then show the practical usefulness of this idea on many random instances , as well as on two portfolio optimization instances with over 25M nonzeros in the (quadratic) risk term.
Fichier principal
Vignette du fichier
ipco19.pdf (671.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02869206 , version 1 (15-06-2020)

Identifiants

Citer

Ky Vu, Pierre-Louis Poirion, Claudia d'Ambrosio, Leo Liberti. Random Projections for Quadratic Programs over a Euclidean Ball. Integer Programming and Combinatorial Optimization (IPCO), 2019, Ann Arbor, United States. pp.442-452, ⟨10.1007/978-3-030-17953-3_33⟩. ⟨hal-02869206⟩
38 Consultations
240 Téléchargements

Altmetric

Partager

More