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Abstract

The dynamical systems approach recently applied to understand subcritical transitions in wall-bounded shear flows is combined

with the use of large-eddy simulations to investigate the nature of large-scale coherent motions in turbulent Couette and Poiseuille

flows. Exact invariant solutions of the filtered Navier-Stokes (LES) equations are computed by using the Smagorinsky model to

parametrize small-scale motions. These solutions can be continued into exact solutions of the Navier-Stokes equations, therefore

providing a bridge between coherent large-scale motions in wall-bounded fully developed turbulent flows and invariant solutions

appearing in transitional flows.
c© 2016 The Authors. Published by Elsevier B.V.
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1. Introduction

The understanding of subcritical transition in wall-bounded shear flows has been greatly improved by the compu-

tation and the analysis of invariant solutions of the Navier-Stokes equations disconnected from the laminar basic state.

A number of steady and travelling wave solutions of the Navier-Stokes equations have been computed in canonical

flows such as the plane Couette flow1,2,3, the plane channel4,5 and the pipe flow6,7. These solutions typically appear in

saddle-node bifurcations at low Reynolds numbers and represent saddles in phase space. Typically, lower branch solu-

tions are related to the laminar-turbulent transition boundary, while upper branch solutions display features consistent

with the turbulent flow arising in the transition process.

It was originally hoped that, at least at low Reynolds numbers, turbulent solutions would spend a significant time

in the neighbourhood of a few of these saddle solutions. However, careful analysis did later show that this is not the

case8,9. The next step has consisted in the computation of (unstable) periodic and relative periodic orbits. Global

bifurcations of relative periodic orbits have been shown to be related to the transition to chaotic dynamics in plane

Couette flow10 and in magnetohydrodynamic Keplerian shear flows11. However, to this date, attempts to approximate

turbulent statistics with expansions based on these periodic solutions12,13 have not been completely successful14.

Furthermore, the number of invariant solutions increases rapidly and their spatial structures become more and more
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complex when the Reynolds number is increased above transitional values. The relevance of using a few invari-

ant solutions to approximate the statistics of fully developed turbulent wall-bounded flows might therefore not be

straightforward to prove at high Reynolds number.

One of the prominent features of fully developed wall-bounded turbulent flows is the ubiquity of streaky motions.

It has long been known15 that the buffer-layer is populated by very active streaky structures which have an average

spanwise streak-spacing of λ+z ≈ 100 (in wall units). Streaky motions also exist in the logarithmic and the outer

regions. ‘Large-scale motions’ (LSM) have typical streamwise and spanwise sizes of λx ≈ 2δ − 3δ and λz ≈ δ − 1.5δ
respectively. Very large scale motions (VLSM) have been shown17,18,19 to exist with streamwise scales extending up

to λx � O(10δ). An increasingly significant amount of the turbulent kinetic energy and Reynolds stress in the outer

region is indeed associated to these large scale and very large scale motions16.

Using overdamped large-eddy simulations it has been recently shown that large-scale and very-large-scale motions

can sustain themselves in the turbulent plane channel and Couette flows even when small-scale structures (including

buffer-layer and log-layer structures) are artificially quenched20,21. Motions with intermediate scales, which populate

the logarithmic region, have been also shown to self-sustain and to be approximately self-similar and scale with their

spanwise wavelength λz or, equivalently, with their distance y from the wall22,23 which is compatible with the classical

concept of attached eddies24.

It makes therefore sense to use the same large-eddy simulation approach to calculate invariant solutions pertaining

to large-scale coherent motions which contain most of the energy at high Reynolds numbers. Following this approach,

small-scale motions are modelled in order to take only their ‘locally averaged’ (by the filtering action) effect into

account. This would for instance permit to compute steady large-scale solutions even if small-scale motions are

unsteady but their local average is steady. This paper is about the computation of these ‘large-eddy’ invariant solutions.

2. Background

We follow the approach taken in previous investigations20,22,21,25 to compute the self-sustained dynamics of coher-

ent large scale motions. The filtered Navier-Stokes equations routinely used in large eddy simulations are the usual

ones26,27:

∂ui

∂xi
= 0;

∂ui

∂t
+ u j
∂ui

∂x j
= − ∂q
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+ ν
∂2ui
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j
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where an over-bar indicates filtered quantities. The anisotropic residual stress tensor τr
= τR − tr(τR) I/3, with

τR
i j = uiu j − uiu j and q = p + tr(τR)/3, is modelled using the Smagorinsky model28 based on the eddy viscosity νt:

τr
i j = −2νtS i j. S i j is the rate of strain tensor associated with the filtered velocity field. The eddy viscosity is modelled

as νt = D(CsΔ)2S, where S ≡ (2S i jS i j)
1/2, Δ = (ΔxΔyΔz)

1/3. The wall (damping) function D = 1 − e−(y+/A+)2

with

A+ = 25 is used to avoid non-zero residual velocity and shear stress.

Steady and travelling-wave solutions are computed by means of a Newton-Krylov method implemented in the code

peanuts29,11 which relies on repeated calls to numerical time-integrations of eq. (1). These integrations are performed

with the code diablo which implements the fractional-step method based on a semi-implicit time integration scheme

and a mixed finite-difference and Fourier discretization in space30 . The computational domain, which extends from

0 to Lx and from 0 to Lz in the streamwise and spanwise directions respectively and from −h to h in the wall-normal

direction, is discretized with Nx × Ny × Nz points in respectively the streamwise (x), wall-normal (y) and spanwise

(z) directions. Grid stretching is applied in the wall-normal direction in order to refine the grid near the wall. No-slip

boundary conditions are applied at the walls and periodic boundary conditions at other boundaries.

The Smagorinsky constant is used as a quenching parameter in temporal simulations and a a continuation parameter

for the invariant solutions. The value Cs = 0.05 which is known to provide the best performance for a posteriori
tests31 is used as a reference value. Solutions can be obtained by increasing the Smagorinsy constant above its

reference value (Cs > 0.05, ‘overdamped’ LES) therefore quenching the production term of an increasing range of

small-scale motions20,22,21. Solutions can also be continued up to Cs = 0, where the eddy viscosity is zero and the

filtered equations reduce to the (unfiltered) Navier-Stokes equations.
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3. Large-eddy exact coherent solutions (LECS)

The first exact invariant solutions of the filtered Navier-Stokes equations (1) have been computed21 in plane Couette

flow in a horizontally periodic domain having the same size of turbulent large-scale motions Lx × Lz = 10.9h × 5.5h
(where h is the half-width of the channel). The initial guess for the Newton iterations was found by computing the edge

state of coherent large-scale motions at Re = 750 (roughly twice the transitional Reynolds number) and Cs = 0.14

(overdamped simulation) by edge-tracking. The edge state was found to be a non-trivial steady solution of the filtered

equations with all the characteristics of a lower branch solution. Continuation to higher values of Cs revealed that

the computed edge state could be connected to an upper branch of solutions via a saddle-node bifurcation (see figure

1). Upper branch solutions of the filtered equations could then be computed up to Re = 2150 using specific paths in

the Re − Cs parameter plane (see figure 1). Both upper and lower branch solutions were then connected21 to Navier-

Stokes solutions by continuation to Cs = 0. These Navier-Stokes solutions belong to the Nagata-Clever-Busse-Waleffe

branch of solutions1,2,3 as is verified by continuation in the Reynolds number at Cs = 0.

The fact that invariant solutions of the filtered equations representing coherent large-scale turbulent motions could

be connected to invariant solutions of the Navier-Stokes equations has opened an exciting path for additional inves-

tigations. If a solution can be continued from higher Cs values to zero, the reverse must also be true. It is therefore

possible, in principle to use Navier-Stokes invariant solutions (ECS) as starting point for a continuation to higher Cs.

We have initially applied this method to plane Poiseuille flow where a recently computed25 multi-streaks travelling-

wave solution of the Navier-Stokes equations (Cs = 0) in the periodic domain Lx×Lz = 2πh×5.5h has been continued

from Cs = 0 to Cs = 0.05 at Re = 2000. The continuation was straightforward and the solution at Cs = 0.05 is very

similar to that at Cs = 0.

Next, we have considered the P4 Navier-Stokes travelling-wave solutions recently computed by Park & Graham32

in plane Poiseuille flow in the periodic domain of size Lx = πh, Lz = πh/2. This solution had the interesting

property that the upper-branch mean flow profile approaches a logarithmic profile for increasing Reynolds numbers,

while the lower-branch mean flow profile approaches the one corresponding to Virk’s minimum drag regime. A first

continuation of this solution is initiated at Re = 1650 and Cs = 0. Convergence is obtained in a few iterations to

solutions which are substantially unchanged at Cs = 0.05. A saddle-node bifurcation, connecting upper and lower

Cs-branches of solutions is found at Cs = 0.13, similarly to what found in plane Couette flow. It is similarly possible

to continue to even higher values of Cs the upper-branch solution at Re = 3500 which is connected to a lower a lower

branch via a turning point at Cs = 0.29. The latter results, obtained in collaboration with JS Park and MD Graham,

are currently under further investigation and will be published elsewhere33.

All the computed solutions consist of a combination of quasi-streamwise vortices and streaks (see figures 2 and 3)

which, on average, self-sustain via a coherent self-sustained process at large scale20,22,34. The computed ‘large-eddy’

solutions (LECS) of the filtered equations take into account the effect of small scales but only through their averaged

effect. This approach makes possible to compute steady coherent solutions despite the fact that motions at smaller

scale are unsteady and therefore focus on the relevant dynamics of the large-scale coherent solutions without the

complications associated to smaller-scales motions. The spatial and Re dependence of the eddy viscosity associated

with the averaged (residual) small-scale motions is naturally embedded in the computed solutions (see figures 2 and

3).

4. Conclusions

It has recently been shown that that coherent motions of medium large-scale and very-large scale self-sustain

in wall-bounded turbulent flows even if active motions of smaller scales are artificially quenched20,22,21. A deeper

understanding of the dynamics of these coherent self-sustained motions is gained by computing invariant solutions of

the filtered Navier-Stokes equations where the residual motions are suitably modelled, i.e. of the equations used in

large-eddy simulations. We have labelled these solutions ‘large-eddy’ exact coherent solutions (LECS) to distinguish

them from the much studied ‘exact coherent structures’ (ECS) which are invariant solutions of the (unfiltered) Navier-

Stokes equations and which of course do not take into account any Reynolds stress associated to smaller scale motions.

An early study21 where steady state LECS solutions were computed in plane Couette flow, showed that upper

and lower-branch LECS solutions are connected by continuation in the Smagorinsky constant Cs via a turning point



 Subhandu Rawat et al.  /  Procedia IUTAM   20  ( 2017 )  94 – 98 97

and that they can be connected to Navier-Stokes ECS solutions when Cs is driven to zero. While in this early study

LECS were initialized with a ‘large-eddy’ edge state computed using edge-tracking on large-eddy simulations (finite

Cs), and then continued to ECS solutions (corespoding to Cs = 0), it is was expected that the reverse would also be

possible. We have shown that this is the case and that it is possible to compute two families of (LECS) solutions of

the filtered Navier-Stokes equations by continuation of previously known32,25 travelling wave (ECS) solutions of the

(unfiltered) Navier-Stokes equations from Cs = 0 to finite values of Cs.
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Fig. 1. Continuation paths of the steady solutions of the filtered equations (LES) for plane Couette flow. The Cs continuation in Cs at Re = 750 (red

line) shows how upper-branch solutions can be accessed in this way. Continuation to Cs = 0 and then in Re (black line, dashed) show that solutions

continued from the turbulent case (square symbols) belong to the Nagata-Busse-Clever-Waleffe branch of Navier-Stokes solutions. Coherent steady

solutions at higher Reynolds numbers are found by first continuing the solutions obtained for Cs = 0.1 to higher Re (blue line, dashed-dotted) and

then reducing Cs.

Fig. 2. Visualisation of the upper branch solutions of the filtered equations (LES) obtained in plane Couette (Re = 2150, Cs = 0.05, steady solution,

panels a and b) and Poiseuille (Re = 2000, Cs = 0.05, travelling-wave solution, panels c and d) flow. Panels a and c represent the large-scale

coherent (i.e. filtered) streaks (green) and quasi-streamwise vorticity (blue if negative, red if positive) while panels b and d report the relative

eddy-viscosity νt/ν associated to the residual small-scale motions.

Fig. 3. Visualisation of the upper branch P4 ECS and LECS solutions obtained with, respectively, Cs = 0 (Navier-Stokes solutions, panels a and b)

and Cs = 0.2 (panels c and d) at Re = 3500. Panels a and c represent the large-scale coherent (i.e. filtered) streaks (green) and quasi-streamwise

vorticity (blue if negative, red if positive) while panels b and d report the relative eddy-viscosity νt/ν associated to the residual small-scale motions.


