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1 Rheological characterisation of complex fluids

Rheology is one of the very few scientific disciplines whose emergence can be
precisely dated: April 29, 1929, Bingham (cca 1945). The term ”Rheology”
has been coined by Dr. Eugene Bingham, professor at the Lafayette College
following a suggestion of his colleague Dr. Markus Rainer and was inspired
by an aphorism of Simplicius (often but incorrectly attributed to Heraclitus)
”pantha rhei” - ”everything flows”. The main scope of rheology is the study
of deformation and flow of fluids and soft solids subjected to a varying
an external stress. The rheology is equally concerned with establishing a
correlation between the molecular structure of the materials and their flow
properties which is of paramount importance during polymer processing
operations.

1.1 Fundamentals of shear rheology

In order to relate the stresses and the deformations measured by a
rheometer, we refer to the Navier-Stokes equation:

ρ
dv

dt
= ∇ · (−pδ + σ) + ρg (1)

where σ is the stress tensor, p is the pressure field, δ is the unitary tensor
and the body force g is just acceleration of the gravity. We note that the
inertial term v∇v has been omitted in the equation of motion Eq. 1.

For a steady flow dv
dt = 0 and the momentum equation reduces to:

∇ · (−pδ + σ) + ρg = 0 (2)

If one projects Eq. 2 onto a Cartesian system of coordinates one obtains:

∂σxx
∂x

+
∂σyx
∂y

+
∂σzx
∂z

=
∂p

∂x
− ρgx

∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

=
∂p

∂y
− ρgy

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

=
∂p

∂z
− ρgz

(3)

If one projects Eq. 2 onto a cylindrical system of coordinates one obtains:
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∂σrr
∂r

+
1

r

∂σrφ
∂φ

+
∂σrz
∂z

+
σrr − σφφ

r
=
∂p

∂r
− ρgr

∂σrφ
∂r

+
1

r

∂σφφ
∂φ

+
∂σφz
∂z

+
2σrφ
r

=
1

r

∂p

∂θ
− ρgφ

∂σrz
∂r

+
1

r

∂σzφ
∂φ

+
∂σzz
∂z

+
σrz
r

=
∂p

∂z
− ρgz

(4)

If one projects Eq. 2 onto a spherical system of coordinates one obtains:

∂σrr
∂r

+
1

r

∂σrθ
∂θ

+
1

rsinθ

∂σrφ
∂φ

+
2σrr − σθθ − σφφ + σθθcotθ

r
=
∂p

∂r
− ρgr

∂σrφ
∂r

+
1

r

∂σθφ
∂θ

+
1

rsinθ

∂σφφ
∂φ

+
2σrφ − σφr + (σθφ + σφθ)cotθ

r
=

1

r

∂p

∂θ
− ρgφ

∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
1

rsinθ

∂σθφ
∂φ

+
σθr + 2σrθ + (σθθ − σφφ)cotθ

r
=

1

rsinθ

∂p

∂φ
− ρgθ

(5)

Capillary rheometry During the early days of the rheology, one of
the most commonly used rheometric systems was the capillary rheometer
schematically illustrated in Fig. 1. The fluid to be tested initially con-
tained in a reservoir flows through a capillary of radius R and length L in
conditions of a controlled applied pressure P that can be supplied either by
gravity (in the case of low viscosity fluids) or by the motion of a piston inside
the reservoir (in the case of highly viscous fluids, e.g. molten polymers).
The viscosity of the fluid may be inferred by simultaneous measurements of
the driving pressure P and of the flow rate Q through the capillary if the
following conditions are satisfied:

1. The flow is isothermal.
2. The flow is fully developed, linear and laminar.
3. The fluid is incompressible with a viscosity independent on the driving

pressure.
4. There exists no slip at the wall, vz|r=R = 0.

The first condition above indicates that, in order to solve such flow problem
and assess the viscosity, one needs to refer solely to the momentum conser-
vation equation as there exists no transfer of heat. The linear and laminar
nature of the flow translates into the absence of any radial and azimuthal
flow component, vr = vθ = 0. With these remarks, the Navier-Stokes equa-
tion reduces to:

−∂p
∂z

+
1

r

∂rσrz
∂r

= 0 (6)
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Figure 1. Schematic representation of the capillary rheometer.

Using the assumption that the flow is fully developed, the term ∂p
∂z is

constant along the capillary tube and Eq. 6 may be integrated to:

σrz =
r

2

Pc
L

(7)

where Pc is the pressure drop along the capillary tube. The stress at the
wall of the die is σw = σrz|r=R = R

2
Pc
L . To compute the shear viscosity one

needs the rate of shear in the capillary γ̇ = dvz
dr . This may be obtained from

the measured flow rate Q by noting that its relationship with the axial flow
speed:

Q = 2π

∫ R

0

rvz(r)dr (8)

By integrating Eq. 8 and using the no slip boundary conditions one may
readily show:
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Qσ3
w

πR3
= −

∫ σw

0

σ2
rz

(
dvz
dr

)
dσrz (9)

Finally, by differentiating the equation above with respect to σw according
to the fundamental theorem of calculus and re-arranging the terms one
obtains the Weissenberg-Rabinowitsch equation:

−dvz
dr
|σw = γ̇w =

1

4
γ̇aw

[
3 +

dlnQ

dlnσw

]
(10)

with the apparent shear rate given by γ̇aw = 4Q
πR3 .

By measuring the pressure drop Pc and the flow rate and if n = dlnQ
dlnσw

can be reliably computed via numerical differentiation of the data, one can
compute the viscosity:

η =
σw
γ̇w

=
πR4Pc
2QL

(
n

3n+ 1

)
(11)

We note here that, in the case of a power law fluid, n is simply the power
law index. The capillary rheometer has some practical advantages. It is
relatively easy to use and provides accurate steady state viscosity measure-
ments. However, entry corrections require a more extensive data analysis
procedure, Macosko (1994).

Concentric cylinders rheometry The first operational rotational rheome-
ter was the device built by Maurice Couette, Couette (1880). Couette used
a system of concentric cylinders containing within their gap the material
to be tested, Fig. 2(a). In the original prototype of Couette, the outer
cylinder of radius ri was rotating at a constant angular speed and the inner
cylinder of radius ro was suspended by a torsion wire. The torque acting
on the inner cylinder was assessed by measuring the angular deflection us-
ing a mirror rigidly attached on the torsional wire. The modern Couette
devices use similar operating systems with the difference that, for practical
reasons, the inner cylinder is set in rotation by attaching it to the shaft of
a rheometer while the outer one is static, Fig. 2(a). To describe the flow
kinematics in a Couette device we use the cylindrical coordinates illustrated
in Fig. 2(b). One can readily show that the shear rate in a Couette device is
γ̇ = r dΩ

dr . Within the narrow gap approximation, ro−ri
r � 1, the following

approximation can be made:

dΩ

dr
≈ ∆Ω

∆r
=

Ω

ro − ri
(12)
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Figure 2. (a) Schematic representation of the Taylor-Couette setup. (b)
Choice of the cylindrical coordinates.

with ∆r = ro− ri and ∆Ω = Ω(ro)−Ω(ri) = Ω0. With this approximation,
the shear rate becomes:

γ̇ ≈ r Ω0

∆r
≈ ri + ro

2

Ω0

∆r
=
rav

∆r
Ω0 (13)

with the average radius rav = ri+ro
2 . It can be shown that yet a better

approximation for the shear rate is:

γ̇(r) ≈ Ω0

r2

r2
i r

2
o

rav∆r
(14)

Due to symmetry considerations, a number of terms in the equation of
motion will vanish: σφz = σzφ = σrz = σzr = 0. Moreover, in the laminar
axisymmetric case, all partial derivatives with respect to the polar angle are
zero, ∂

∂φ = 0. The equations of motion Eqs.4 reduce to:

∂σrr
∂r
− (σφφ − σrr)

r
= 0 =⇒ ∂σrr

∂r
− N1

r
= 0 (15)

∂σrφ
∂r
− 2

σrφ
r

= 0 (16)

∂σzz
∂z

= −ρg (17)

(18)
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From Eq. 16 one obtains r ∂σrr∂r = N1. Within the narrow gap approx-

imation, ∂σrr
∂r ≈ ∆σrr

∆r = σrr(ro)−σrr(ri)
ro−ri . Finally, the first normal stress

difference may be approximated by:

N1 ≈
∆σrr
∆r

rav (19)

By integrating Eq. 17 one obtains r2σrφ = C = constant. The torque
acting on the rotating cylinder may be written T = 2πr2Lσrφ = 2πCL. An
important conclusion is that the torque does not depend on the position in
the liquid. The shear viscosity can be readily computed:

η =
σrφ
γ̇

=
T

4πΩ0L

r2
o − r2

i

r2
or

2
i

(20)

To conclude, the simultaneous measurements of the angular speed Ω0 and
of the torque T allow one to measure the viscosity (in the narrow gap limit).

Cone and plate rheometry In a cone-plate rheometric setup the ma-
terial under investigation is confined within the gap between a cone with
a large top angle (typically larger than 170o) and a flat plate, Fig. 3(a).
Consequently, the angle between the cone and the plate is small, ∆Θ ≤ 5o.
The top part of the cone is attached to a rotating shaft with the symmetry
axis orthogonal to the plate and positioned at its centre. To avoid contact
friction, the cone is truncated The shearing surfaces are co-axial conical
surfaces with top angles ranging in between π and π − 2∆Θ. The natural
coordinates one may use to describe the kinematics of the motion are the
spherical coordinates, 3(b).

The shear rate may be computed (for the details of the calculation the
reader is referred to Refs. Macosko (1994); Bird et al. (1977)):

γ̇ = sinθ
dΩ

dθ
≈ Ω0

∆Θ
(21)

According to Eq. 21, the shear rate is constant within the entire material
under investigation which makes the cone-plate tool best suited for the
measurements of viscosity and normal stress differences as a function of the
applied shear. In the absence of hydrodynamic instabilities, the flow field
has a single component, vφ = vφ(r) and the equation of motion described
by Eqs. 5 reduce to:
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∂σrr
∂r
− N1 + 2N2

r
= −ρgcosθ (22)

1

r

∂σθθ
∂θ
− N1

r
cotθ = ρgsinθ (23)

1

r

∂σθφ
∂θ

+
2σθφ
r

cotθ = ρgsinθ (24)

Bearing in mind that cotθ ≈ 0, the integration of Eq. 24 leads to σθφ =
constant = C. Consequently, the torque T exerted on the top plate may be
computed:

T =

∫ 2π

0

∫ R

0

r2σθφ|π/2drdφ (25)

which leads to σθφ = 3T
2πR3 . The viscosity may be calculated as:

η =
σθφ
γ̇

=
3T

2πγ̇R3
≈ 3T∆Θ

2πR3Ω0
. (26)

According to the equation above, the viscosity measured with a cone-plate
geometry is proportional to the torque acting on the geometry and inverse
proportional to its angular speed. Besides the homogeneity of the rate of
shear within the entire volume of the sample under investigation, a second
notable feature of the cone-plate rheometric setup is that, within the small
angle approximation, the result given by Eq. 26 is independent of the
constitutive equation of the material.

The normal stress differences N1 = σφφ − σθθ, N2 = σθθ − σrr can be
measured by measuring the normal force and the pressure distribution along
the bottom plate. Because cosθ ≈ 0, Eq. 23 may be approximated 1 by:

r
∂σrr
∂r
≈ N1 +N2 (27)

As the shear rate γ̇ is independent on the radial coordinate r and N2 is
a steady material function depending only on γ̇, ∂N2

∂r = σθθ
∂r −

σrr
∂r = 0 or

σθθ
∂r = σrr

∂r . With these remarks, Eq. 26 becomes:

∂σθθ
∂lnr

≈ N1 +N2 (28)

The radial distribution of the stress σθθ may be measured using an array
of pressure transducers mounted on the bottom plate at various radial po-
sitions r. If we can assume that the stress in the radial direction at the rim

1The relationship becomes exact only at the level of the plate, θ = π/2.
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Figure 3. (a) Schematic representation of the cone-plate setup. (b) Choice
of the spherical coordinates.

σθθ|r=R is balanced by the atmospheric pressure pa (i.e., the surface tension
and/or other edge effects may be neglected), then σθθ(R) is just the second
normal stress difference:

N2 = σθθ(R)− σrr(R) = σθθ(R). (29)

From a technical standpoint, it simpler to measure the normal force Fz
exerted on the bottom plate of the geometry:

Fz = −paπR2 −
∫ 2π

0

∫ R

0

σθθ(r)drdφ. (30)

The integration of the equation above yields:

Fz =
1

2
πR2N1 (31)

To obtain the relationship above, one has assumed once more that the at-
mospheric pressure balances the pressure exerted on the free fluid meniscus.
To conclude, by combining measurements of the thrust exerted on the bot-
tom plate with measurements of the radial distribution of the pressure one
can measure both normal force differerences.

Parallel plate rheometry Yet another rheometric setup commonly used
for the rheological characterisation of fluids is the parallel plate torsional
rheometer, Fig.4(a). The fluid to be investigated is confined in the gap
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Figure 4. (a) Schematic representation of the parallel plate setup. (b)
Choice of the cylindrical coordinates.

between two parallel plates separated by a finite distance z0 ranging from
hundreds of micro-meters to several milimeters. The bottom plate is fixed
while the top plate rotates at a constant angular speed Ω0 around the com-
mon symmetry axis of the plates, Fig.4. In the absence of hydrodynamic
instabilities, the trajectories of individual material elements are concentric
circles. The natural coordinates one may use to describe the kinematics
are the cylindrical coordinates detailed in Fig. 4(b). With this choice of
coordinates, vr = vφ = vz = 0.

The shear rate is may be expressed as:

γ̇ = lim∆z→0
rΩ(z + ∆z)− rΩ(z)

∆z
= r

dΩ

dz
(32)

Unlike in the case of the cone-plate geometry, the rate of shear is not
constant within the gap between the parallel plates. It increases linearly
from γ̇ = 0 along the symmetry axis of the device to γ̇(R) = Ω0

z0
at the rim.

This is a significant drawback of the plate-plate system as it can not be
used for materials with properties that depend strongly on the shear rate
which is the case for a large number of materials that exhibit shear thinning
rheological properties.
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The equations of motion may be written:

∂σrr
∂r

=
N1 +N2

r
(33)

∂σφz
∂z

= 0 (34)

∂σzz
∂z

= ρg (35)

From Eq. 35 it can be shown:

vθ(r, z) =
rΩ0z

z0
(36)

γ̇(r) = r
dΩ

dz
= r

Ω0

z0
(37)

The relationship between the shear stress σθz and the torque T acting
on the top plate is:

σθz(γ̇R) =
T

2πR3

[
3 +

dlnT

dlnγ̇R

]
(38)

where the rim shear rate is γ̇R = RΩ0

z0
. The difference between the first and

the second normal stress differences is:

N1(γ̇R)−N2(γ̇R) =
Fz
πR2

(
2 +

dlnFz
dlnΩ0

)
(39)

where Fz is the normal force exerted on the bottom plate. Thus, by plotting
both the torque and the normal force versus the angular speed on a double
logarithmic scale, the dependencies of the slopes dlnT

dlnΩ0
and dlnFz

dlnΩ0
on the

rim shear rate can be determined. This procedure yields σθz and N1 −N2.
The apparent (or Newtonian) shear stress obtained with the parallel plate
rheometric setup is:

σa =
2T

πR3
(40)

Novel trends in shear rheology

1.2 Fundamentals of extensional rheology

A significant number of modern polymer processing operations which
include (but are not limited to) melt blowing, fibre spinning, compression
moulding, extrusion involve flows that combine both shear and extension.
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As compared to the case of shear flows, the material elements undergo much
higher strains during extensional flows which typically leads to a strongly
nonlinear dependence of the extensional stresses on the strain. The knowl-
edge of the rheological behaviour in shear does not suffice to describe the
behaviour during extension. The rheological response of a complex fluid
undergoing shear such as a polymer solution or melt injected into a die or
mould, drawn through an extrusion die, blow moulded, calendared etc. will
not correctly predict the processing behaviour during such operations: in-
ferring the extensional flow behaviour from rheological tests performed in
shear is usually impossible.

Despite a clear need for extensional measurements of complex fluids,
the development of instrumentation evolved slower than the development of
shear rheometry. A first daunting task in this context is the generation of
a spatially homogeneous extensional flow field. To generate an extensional
motion in a fluid, one needs to bring the fluid in contact with a moving solid
surface. This generally creates shear in the vicinity of the solid surface which
alters the kinematics of the extensional flow. A second difficulty relates
to the need of generating high strains during extension. This requires the
development of motion control systems able to operate within a broad range
of speeds and achieve significant travel distances.

Unlike in the case of shear rheometry, the design and instrumentation
of an extensional rheometric device depend on the range of extensional vis-
cosities to be measured. After providing the reader with a basic description
of the kinematics of extensional flows, we will describe several such exten-
sional rheometric devices highlighting both their advantages and practical
limitations.

Kinematics of extensional flows A pure extensional flow is an irro-
tational flow which lacks both vorticity and shear, Bird et al. (1977). As
compared to a laminar shear flow where neighbouring fluid elements sepa-
rate linearly with time, in an extensional flow the separation is exponential
in time. Consequently, such flows are very efficient in elongating and orient-
ing the microscopic structural units of a complex fluid which makes them
a valuable of probing the microstructure of a complex fluids. A simple
extensional flow may be described by the following velocity field:

vx = −1

2
(1 + b)ε̇x

vy = −1

2
(1− b)ε̇y

vz = ε̇z

(41)
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Figure 5. Steady elongational flow field (b = 0).

where b is a constant that affects the way the streamlines change with rota-
tion about the z axis and ε̇ is the rate of deformation of fluid elements. Three
distinct types of extensional flows may be obtained for different choices of
the parameter b and of the sign of the rate of deformation:

1. b = 0, ε̇ > 0 - uniaxial extension

2. b = 0, ε̇ < 0 - biaxial stretching

3. b = 1 - planar elongation

A typical extensional flow field obtained for b = 0 is illustrated in Fig.
5.

The deformation of a cubic fluid element of unitary volume by each of
the three types of extensional flows is schematically illustrated in Fig. 6.

In practical applications even in the case when the deformation field is
steady, the response of the material is usually unsteady meaning that the
material reaches a steady dynamic regime only after a finite period of time.
This is because fluids are characterised by a finite response time. In the case
of Newtonian fluid, the characteristic time scale of the response is the viscous
time whereas for non-Newtonian fluids is a relaxation time which describes
how fast the micro-structure ”emph” to the externally applied deformation
field. Bearing this in mind, it appears natural that the material functions
characterising the response to an extensional flow should be sought as time
dependent (i.e. ”transient”) even in the case when the deformation field is

14



Figure 6. Deformation of a cube of unitary volume (a) during the time
interval ∆t by three types of shear free flow: (b) uniaxial extension (b = 0,
ε̇ > 0), (c) biaxial extension (b = 0, ε̇ < 0), (d) planar elogation (b = 1).

steady (dε̇dt = 0). Thus, the transient extensional viscosities may be defined
as:

η+
1 (ε̇, t) =

σzz − σxx
ε̇

η+
2 (ε̇, t) =

σxx − σyy
ε̇

(42)

For the case of the uniaxial extension (b = 0) σxx = σyy and the response of
the material to deformation is characterised by a single transient extensional
viscosity, η+ = η+

1 .
The total strain accumulated by the material elements during the exten-

sional process may be computed by direct integration of the equations of
motion Eq. 41. In the case of the uniaxial extension (b = 0), the position of

15



a material element labelled by [j] varies exponentially in time, Xj = Xj
0e
ε̇t

and the strain between two neighbouring material elements is the Hencky
strain defined logarithmically by:

εH = ε̇t = ln

[
∆X(t)

∆X(0)

]
(43)

For a linear viscoelastic material characterised by a discrete spectrum of
relaxation times {λk}k=1,N the response during uniaxial extension can be
solved analitically:

η+(t) =

N∑
k=1

3ηk

[
1− e−

t
λk

]
(44)

In the asymptotic limit of long relaxation times t� maxλk, the response of
the material approaches a steady state η+

SS = limt→∞η
+(t) = 3η0 where η0

is the zero shear viscosity of the material. This limiting value of the response
is called the ”linear viscoelastic envelope” (LVE). The knowledge of the LVE
is crucial for the validation of extensional viscosity measurements because
in a linear range of deformation all transient extensional viscosity curves
should asymptotically approach the LVE. The concept of LVE is equally
useful in introducing the term of ”strain hardening” which is observed for
a broad class of polymeric systems in the form of a substantial increase
(up to several orders of magnitude) of the transient elongational viscosity
with respect to the LVE. The magnitude of the strain hardening effect is
quantified by the Trouton ratio:

Tr (ε̇, t) =
η+(t)

η0
(45)

The strain hardening is a rather complex phenomenon which depends
on both the molecular architecture of the polymeric systems (e.g. branched
polymeric systems exhibit stronger strain hardening) and the rate of exten-
sion ε̇. Thus, the quantisation of this effect by measuring the Trouton ratio
is a rather sensitive probe of the branched structure of molten polymeric
systems.

Capillary breakup rheometry of low viscosity fluids The capillary
breakup extensional rheometry is a simple and reliable technique for assess-
ing the extensional rheological properties of low to moderate viscosity fluids.
The technique was first described by Bazilevsky and coworkers, Bazilevsky
et al. (1997, 1990) and later revisited in a number of subsequent papers,
Bazilevsky et al. (1981, 2001, 1994).
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Figure 7. Schematic represenation of the capillary breakup device: (a) ini-
tial fluid meniscus. (b) fluid meniscus during the capillary thinning process.

In this technique, a drop of liquid is confined between two rigid plates
initially set at a distance z0 apart as schematically illustrated in Fig. 7(a).
Next, by rapidly moving the top plate to a higher position, an axial step-
strain is imposed onto the liquid bridge Fig. 7(b). The shape of the liquid
bridge evolves under the combined action of several physical processes: the
capillary pressure which here plays the natural role of a ”force transducer”,
viscous dissipation that the necking of the fluid filament and, in the case of
polymeric fluids, the elastic forces that equally oppose the necking process.

Bazilevsky and coworkers were first to propose a theoretical framework
to describe the thinning of a Newtonian and an Oldroyd-B fluid filament in
terms of measurements of its radius, Bazilevsky et al. (1990). Their analysis
has been extended by Entov and Hinch to account for both the effect of a
spectrum of relaxation times and of the finite extensibility of the polymer
chains, Entov and Hinch (1997).

For a Newtonian fluid of viscosity ηs and surface tension coefficient γ a
local force balance together with the elimination of the pressure lead to the
following equation for the mid-point diameter of the filament:

3ηs

(
− 1

Dmid(t)

dDmid(t)

dt

)
=

γ

Dmid(t)
(46)

The derivation of Eq. 46 assumed the total longitudinal stress along
the fluid filament to be zero at all times. The term in the brackets may
be understood as an extensional deformation rate of a Lagrangian fluid
element at the mid-plane of the fluid column where the diameter Dmid is
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measured. By integrating Eq. 46 a linear decay of the mid-point diameter
of the filament with time is obtained:

Dmid(t) =
γ

12ηs
(tc − t) (47)

Here tc = 6ηsD0

σ is a critical time associated to the filament breakup and
D0 is the initial mid-point diameter of the filament. The Hencky εH(t)
experienced by the fluid element at the mid-point of the liquid bridge at
time t can be defined using the mid-filament diameter:

εH(t) = 2ln

(
D0

Dmid(t)

)
(48)

The rate of extension at the mid-point of the filament may be readily ob-
tained by differentiating Eq. 48:

ε̇H(t) = − 2

Dmid(t)

dDmid(t)

dt
(49)

From Eqs. 47 and 49 one can easily note that the rate of deformation is
automatically set by the surface tension and the viscosity of the fluid.

Based on the measurements of the mid-point filament diameter, the ap-
parent transient elongational viscosity may be estimated:

η+
app(t) = − γ

dDmid(t)
dt

(50)

For viscoelastic fluids following the Oldroyd-B constitutive relationship
and if the viscous dissipation may be neglected as compared to elastic and
capillary terms in the force balance, an exponential decay of the mid-point
diameter of the filament has been predicted theoretically, Bousfield et al.
(1986); Bazilevsky et al. (1990); Renardy (1994); Entov and Hinch (1997):

Dmid(t) =

(
ηpD

4
0

2λγ

)1/3

e−
t
3λ (51)

where ηp = η−ηs is the polymer part of the viscosity. This relationship has
been systematically verified experiementally, Anna and McKinley (2001).

Meissner rheometry of molten polymeric systems Meissner pro-
posed a rotatory clamp extensional rheometer (RME) Meissner and Hostet-
tler (1994) schematically illustrated in Fig. 8. The basic concept of the
device was proposed at the end of 60′s at the Research and Development
department at the BASF, Ludwigshafen, Germany, Meissner (1969).
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The sample is clamped in between four counter-rotatory clamps. The
sample was both heated and buoyed by gas injected from below. When
the rotatory clamps were set in motion with a constant angular speed, the
polymeric sample was experiencing a uniaxial extensional deformation. The
samples were carefully prepared by extrusion and their initial length was
rather large, L0 = 50 mm. The large initial length of the sample might seem
an unimportant detail but it is not. One of the particular concerns was re-
lated to the geometrical homogeneity of the sample which is of paramount
importance in assuring a purely uniaxial deformation. This was specifically
stated in page 20 of Ref. Meissner and Hostettler (1994): ”When the elon-
gation becomes inhomogeneous (for homogeneous samples the reason often
is an inhomogeneous temperature field), any data processing becomes ques-
tionable”. An initially long sample together with an extremely careful and
elaborated mechanical design of the rotatory clamps insured a geometri-
cal homogeneous deformation of the sample. The RME device could reach
Hencky strains εH = 7 and could operate at strain rates of ε̇H = 1s−1. The
transient tensile force F (t) was measured by a force transducer was installed
on the pairs of rotating clamps. For a geometrically homogeneous sample,
the cross-sectional decays exponentially with time:

A(t) = A0

(
ρS
ρM

)2/3

e−εH (52)

where A0 is the initial cross sectional area measured in a solid state (at room
temperature) and εH = ε̇Ht is the Hencky strain at time t. The pre-factor(
ρS
ρM

) 2
3

where ρS is the density of the sample in a solid state while ρM is

its density in a molten accounts for the thermal expansion of the sample.
The geometric homogeneity of the sample is crucial for the applicability of
Eq. 52. In the case of a geometrically inhomogheneous sample the cross
sectional area also depends on the position along the sample leading to a
rate of deformation that is no longer equal to the nominal value ε̇H and
depends on both the time and the position along the sample. As already
stated above, Dr. Meissner was particularly keen about this aspect (which
nowadays, unfortunately, no longer receives the deserved attention) and
assessed the homogeneity of the sample during the extension by in-situ
visualisation of the sample (see Fig. 19 in Ref. Meissner and Hostettler
(1994)). The transient extensional viscosity may be computed according
to:

µ+(t) =
F (t)

A(t)ε̇H
(53)
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Figure 8. Schematic representation of the Meissner extensional rheometer.

Well ahead of its time, the RME device could operate in two distinct modes.
The first one as described above is a ”stressing mode” which corresponds
to a constant rate of extension ε̇H . Alternatively, however, the device could
operate in ”creep mode” which corresponds to a constant applied stress.
Bearing in mind the limited technology available at the end of the 60′s, this
was a remarkable achievement hard to implement even with todays techno-
logical advancements as it requires a specially developed controlled feedback

system able to maintain the ratio F (t)
A(t)ε̇H

constant during the extension.

Münstedt rheometry of molten polymeric systems Yet an another
approach to the extensional rheology of molten polymeric system was pro-
posed by H. Münstedt, Münstedt (1979). The Münstedt device is schemat-
ically illustrated in Fig. 9.

As opposed to the Meissner approach, the device proposed by Münstedt
uses an initially short sample (S) with a cylindrical cross section and an
initial diameter D0 attached in a vertical position to the plates P1, P2 and
immersed in an oil bath OB. The density of the oil is roughly equal to that
of the sample thus minimising gravity and buoyancy effects which can cause
inhomogeneous deformations of the specimen. While the bottom plate P2

is fixed, the top plate P1 is moved vertically by a ac-servo motor controlled
by a personal computer. If L0 is the initial length of the sample, L(t) its
length at time t the nominal Hencky strain is defined:

εH = ln

(
L(t)

L0

)
(54)

20



Figure 9. Schematic representation of the Münstedt extensional rheometer
according to Ref. Münstedt (1979) (not in scale): (S) - sample, (OB) - oil
bath, (P1) - top plate, (P2) - bottom plate.

The nominal rate of uniaxial deformation is:

ε̇H =
L0

L(t)

dL(t)

dt
(55)

The bottom plate P2 is equipped with an accurate force transducer which
measures the transient tensile force F (t).

As the Meissner device, the Münstedt device may operate in two dis-
tinct modes, Münstedt and Laun (1979): ”stressing mode” (at constant rate
of deformation ε̇) and ”creep” (at constant driving stress). In the stress-
ing mode, a feedback loop insures an exponential increase of the distance
between plates with time, L(t) = L0e

ε̇Ht and the transient elongational
viscosity is computed as:

µ+(t) =
F (t)

ε̇HA(t)
(56)

Here A(t) = πD2(t)/4 is the transient cross-sectional area of the sample
with D(t) being the diameter of the sample at time t.

As in the case of the Meissner device, the homogeneity of the deformation
states is crucial in reliably assessing the transient extensional viscosity of
the material. It has been demonstrated experimentally that if this condition
is not fulfilled, the Hencky strain is not uniform along the sample and the
interpretation of the measurements becomes questionable, Burghelea et al.
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(2009); Starý et al. (2015); Burghelea et al. (2011, 2012). If the homogeneity
condition is fulfilled, due to the incompressibility of the polymer melt, it can
be readily shown that D(t) = D0e

−εH/2 and Eq. 56 becomes:

µ+(t) =
4F (t)

πε̇HD2
0e
−εH

(57)

In a stressing operating mode, a different feedback loop maintains the
ratio σ+(t) = F/A(t) = FL(t)/(V ) constant where V is the volume of the
sample. Again, these measurements rely on the geometrical homogeneity of
the sample and its incompressibility.

Filmament stretching rheometry of molten polymeric systems The
filament stretching extensional rheometer (FISER) for viscous fluids was
proposed by Tirtaatmadja and Sridhar, Tirtaatmadja and Sridhar (1993).
The original design of the FISER is schematically illustrated in Fig. 10.
Like the Münstedt device, the FISER uses a constant volume sample with
a small initial length L0 clamped in between two plates P1, P2 which move
in opposite directions with equal speeds u(t).

Variants of the device with the sample oriented vertically were later
proposed, Anna et al. (2001); McKinley and Sridhar (2002); Bach et al.
(2003, 2002). Unlike in the case of the Münstedt device, the sample is not
immersed in an oil bath which, at low deformation rates, makes the mea-
surements problematic due to gravity sagging effects, Anna et al. (2001).
The theoretical background of the transient elongational viscosity measure-
ments using the FISER device is given in Ref. Szabo (1997). Due to the
lack of an oil bath the force balance includes a non-negligible surface tension
term and, in a vertical configuration, a gravity term as well. In addition,
depending on the operating speeds, an extra inertial term may be involved.
Thus, the stress difference computed at the mid-point of the filament is:

σzz(t)−σrr(t) =
4F (t)

πDmid(t)2
− 2γ

Dmid(t)
− ρMgL(t)

2
− ρM ε̇H(t)2L(t)2

8
(58)

where γ is the surface tension coefficient of the sample and ρM its viscosity.
The last term in the right-hand side of Eq. 58 which accounts for the inertia
may be neglected if:

ρM ε̇HL

8µ+
� 1 (59)

This inequality above is satisfied for highly viscous polymer melts but may
break down for materials with smaller viscosities tested at high rates of
deformation. The transient extensional viscosity may be calculated as:
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Figure 10. Schematic representation of the filament stretching rheometer
according to Ref. Tirtaatmadja and Sridhar (1993) (not in scale).

µ+(t) =
σzz(t)− σrr(d)

ε̇H(t)
=

4F (t)

πε̇H(t)Dmid(t)2
− 2γ

ε̇H(t)Dmid(t)

−ρMgL(t)

2ε̇H(t)
− ρM ε̇H(t)L(t)2

8

(60)

The FISER device may be operated in two distinct ways. The first way
is very similar to the operating mode of the Münstedt device. First, the
Hencky strain is computed from the instantaneous length of the sample
according to Eq. 55. If the deformation of the sample is geometrically
homogeneous, the mid-point diameter of the sample may be computed as
Dmid(t) = D0e

−εH(t)/2. Finally, the transient elongational viscosity accord-
ing to Eq. 60.

Alternatively, rather than monitoring the instantaneous length L(t) of
the sample in order to compute the Hencky strain, one could measure the
instantaneous diameter of the sample Dmid(t) measured at the midpoint of
the sample. Such measurements may be performed either using a laser sheet
and a photomultiplier or by imaging the sample with a digital camera. The
local Hencky strain may be computed as for the CABER device (Eq. 48):

εmidH (t) = 2ln

(
D0

Dmid(t)

)
(61)

Consequently, the rate of deformation at the mid-point of the sample is:

ε̇midH (t) = − 2

D(t)

dD(t)

dt
(62)

If the deformation is geometrically inhomogeneous, the rate of deforma-
tion at the mid-point of the sample differs from the nominal value given by
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Eq. 55 and is not necessarily constant in time. This issue may be addressed
by employing a special feedback loop which modifies in real time the sepa-
rating speed of the plates based on the local measurements of the mid-point
diameter of the filament in order to maintain the local rate of deformation
given by Eq. 62 constant, Anna et al. (2001); Bach et al. (2003, 2002).

The FISER device has been recently become available commercially from
Rheo Filament.

Sentmanat rheometry of molten polymeric systems An ingenious
method of using a commercial rotational rheometer to perform measure-
ments of the transient elongational viscosity was proposed by Martin Sent-
manat, Sentmanat (2003a,b, 2004).

The idea consisted of designing a fixture that can be mounted on the
shaft of a rotational rheometer and ”convert” the rotation at a constant
angular speed Ω0 in a uniaxial extension flow, Fig. 11. The Sentmanat
extensional fixture consists of two identical drums of radius R separated by
a fixed distance L0 inter-coupled by a system of gears (not shown in Fig.
11) such as the rotation of the cylinder connected to the shaft triggers the
rotation of the second cylinder at a same angular speed but in an opposite
sense. This counter-rotative motion of the cylinders will induce a uniaxial
deformation of a rectangular shaped sample rigidly fixed by a system of
clamps onto the frontal surface of the cylinders, Fig. 11(a).

For a constant angular speed of the shaft, the Hencky strain associated
to the uniaxial extension of the sample increases linearly with time:

εH =
2Ω0R

L0
t (63)

Accordingly, the Hencky strain rate is given by:

ε̇H =
2Ω0R

L0
(64)

The resistance of the sample to the extensional deformation manifests
through a transient tangential force F (t) acting on each cylinder and related
to the transient torque T (t) acting on the shaft of the rheometer via:

F (t) =
T (t)

2R
(65)

If an affine deformation of the specimen is assumed, its cross sectional area
A(t) (see Fig. 11 (b)) will decay exponentially with time according to:
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Figure 11. Schematic representation of the Sentmanat extensional fixture:
(a) front view (b) top view.

A(t) = A0

(
ρS
ρM

) 2
3

e−ε̇Ht (66)

where A0 is the initial cross sectional area measured in a solid state (at

room temperature). The pre-factor
(
ρS
ρM

) 2
3

where ρS is the density of the

sample in a solid state while ρM is its density in a molten accounts for the
thermal expansion of the sample.

For a purely uni-axial extension at a constant Hencky strain rate, the
transient elongational viscosity may be expressed:

η+(t) =
F (t)

ε̇hA(t)
(67)

where the cross-sectional area A(t) is given by Eq. 66.
As compared to the other techniques of measuring the transient elon-

gational visocosity of polymer melts, the Sentmanat has a number of ad-
vantages as well as some potential disadvantages. A first major advantage
of this technique comes from its simplicity: the extensional fixture may
be quickly coupled to any commercially available rotational rheometer and
the sample can be quickly loaded. This is certainly not the case of the
previously discussed methods which all require sophisticated machining, in-
strumentation and digital control systems as well as a more complicated
loading procedure of the sample. Second, as compared to other techniques,
the Sentmanat solution is rather affordable.

However, this technique equally has some drawbacks. First, the sample
is held in air and, consequently, gravity sagging effects may bias the mea-
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surements of the transient elongational viscosity. These effects may become
significant in a range of low Hencky strain rates. A second drawback comes
from the lack of visual information on the evolution of the sample during
extension: when used for molten polymeric systems, the extensional fixture
is enclosed in an oven which makes the visualisation of the sample impos-
sible. Thus, if some undesired effects such as gravity sagging or slippage
of the sample at the contact points with the cylinders come into play, the
operator will only see spurious data after the end of the experiment. A third
and perhaps the most important drawback of this technique relates to the
impossibility of assuring a geometrical uniform deformation of the sample
at all times. In terms of flow kinematics, this means that the frontal shape
of the sample must remain rectangular at all times during the extension (as
hinted by the dotted lines in Fig. 11(a)). Any deviation from this would
translate into a rate of deformation that differs from the nominal value given
by Eq. 64 and is a function of the horizontal coordinate x. Equation 67
used to compute the transient extensional viscosity using the torque mea-
surements performed by the rotational rheometer is applicable if and only
if the deformation is a purely uniaxial one which, of course, is no longer the
case if the shape of the sample deviates from a rectangular one.

This aspect is generally neglected while performing measurements with
the Sentmanat fixture. On the other hand, according to the Considère
rule, an inhomogeneous deformation will regularly appear at a finite Hencky
strain, Considére (1885). This inhomegeneous deformation is triggered by
the presence of the rigid boundary conditions at the clamping points of the
sample and appears in the form of a primary necking.
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Teodor I. Burghelea, Zdeněk Starý, and Helmut Münstedt. Local versus in-

tegral measurements of the extensional viscosity of polymer melts. Jour-
nal of Rheology, 53(6):1363–1377, 2009. doi: 10.1122/1.3237024. URL
http://dx.doi.org/10.1122/1.3237024.
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