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dσ̃

∣∣∣
σ≈σy

given by Eqn. 24

calculated around the yield point on the interaction parameter β. 52

20 Flow curve measured for increasing (empty symbols) and de-
creasing (full symbols) values of the applied stress. The full line
is a fit by the model by Putz and Burghelea Putz and Burghe-
lea (2009) and the dashed line is the prediction of the nonlinear
dynamical system model. . . . . . . . . . . . . . . . . . . . . . . 53

21 Schematic view of the experimental setup: R1,2 - fluid reservoirs,
P - pump, FM - flow meter, PT1,2 - pressure transducers, FT -
fish tank, CCD - digital camera, PB - laser Doppler velocimetry
probe, PMT - photomultiplier, BSA - burst spectrum analyzer. 57

22 Transversal velocity profiles . . . . . . . . . . . . . . . . . . . . . 59

23 Turbulence intensity measured at r/R = 0 (circles), r/R =
−0.75 (up triangles) and r/R = 0.75 (down triangles) for a 0.1%
(wt) solution of Carbopol R© 940. . . . . . . . . . . . . . . . . . . 59

24 Instant puff images taken for 0.075% solution of Carbopol R© 940
at ReG = 1850 at different time instants: (a) t = 130ms, (b)
t = 225.5ms, (c) t = 255.5ms, (d) t = 320ms, (e) t = 422.5ms,
(f) t = 447.5ms, (g) t = 497.5ms, (h) t = 600ms, (i) t =
755ms, (j) t = 1117.5ms, (k) t = 1155ms and (l) t = 1187.5ms. 60

25 Space Time Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

26 Carbopol time autocorrelation functions . . . . . . . . . . . . . . 63

27 Axial Reynolds stresses normalized by yield stress for four differ-
ent concentration levels of Carbopol R©. The filled symbols indi-
cate points where the flow becomes transitional, with puffs/slugs
first observed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

28 Plug radius normalized by pipe radius for four different concen-
tration levels of Carbopol R© indicated in the insert. . . . . . . . . 65

5



29 Normalised critical Re for increasing Pl. . . . . . . . . . . . . . . 69

30 Schematic overview of the reactive flow configurations: (a) dis-
placement configuration (b) Hele-Shaw parallel flow configura-
tion. The colours in each panel refer to the pH of the fluid - see
text for description. . . . . . . . . . . . . . . . . . . . . . . . . . 70

31 (a) Strain rate dependence of the effective viscosity of the two
reacting fluids: circle - displaced Carbopol solution at pH = 3,
squares - displacing sucrose solution at pH = 13, triangles -
neutralised Carbopol R© solution(pH = 7). (b) pH dependence
of the viscosity of the Carbopol R© solution measured at γ̇ = 1s−1.
(c) pH dependence of the yield stress of the Carbopol R© solution. 71

32 Example fluorescent images of the interface in an experiment
from control sequence: displacing fluid 65% saccharose solution,
displaced fluid - 66% saccharose solution. The flow rate Q̂ =
0.145ml/s. The two images are separated in time by 5s. . . . . . 72

33 [(a) - (f)]Fluorescent images of the interface in a reactive dis-
placement: displacing fluid - 65% saccharose solution, displaced
fluid- 0.1% Carbopol R© in 66% saccharose solution. [(e) - (f)]
Fluorescent flow images long after the entrance of the unstable
interface in the field of view; the images are separated in time by
approximately 5 s. The dotted lines highlight gelled structures
tumbling downstream. The direction of the flow in each panel is
from right to left. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

34 (a) Normalised width of the tip vs the normalised displace-
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Abstract This chapter focuses on various transport phenomena in
yield stress materials. After a brief introduction, an overview of
the phenomenology of the solid fluid transition is given, Sec. 2.
Sec. 3 introduces a microscopic theory able to describe the solid-
fluid transition in both thixotropic and non-thixotropic yield stress
materials. A discussion of the hydrodynamic stability of yield stress
materials is presented in Sec. 4. Some non-isothermal transport
phenomena are discussed in Sec. 5.

1 Introduction

A broad class of materials exhibit a dual response when subjected to an ex-
ternal stress. For low applied stresses they behave as solids (loosely speaking
they may deform but they do not flow) but, if the stress exceeds a critical
threshold generally referred to as the ”yield stress”, they behave as fluids
(typically non-Newtonian) and a macroscopic flow is observed. This dis-
tinct class of materials has been termed as ”yield stress materials” and,
during the past several decades it attracted a constantly increasing level
of interest from both theoreticians and experimentalists. The motivation
behind this issue is two-fold. From a practical standpoint, such materials
have found a significant number of applications in several industries (which
include food, cosmetical, pharmaceutical, oil field engineering, etc.) and
they are encountered in daily life in various forms such as food pastes, hair
gels and emulsions, cement, mud etc.. More recently, hydrogels which ex-
hibit a yield stress have found a number of future promising applications
including targeted drug delivery Han et al. (1997); Qiu and Park (2001),
contact lenses, noninvasive intervertebral disc repair Hou et al. (2004) and
tissue engineering Beck et al. (2007).

From a fundamental standpoint, yield stress materials continue trigger-
ing intensive debates and posing difficult challenges to both theoreticians
and experimentalists from various communities: soft matter physics, rhe-
ology, physical chemistry and applied mathematics. The progress in un-
derstanding the flow behaviour of yield stress materials made the object of
several review papers Nguyen and Boger (1992); Coussot (2014); Balmforth
et al. (2014); Bonn et al. (2015). The best known debate concerning the
yield stress materials is undoubtedly that related to the very existence of
a ”true” yield stress behaviour Barnes (1999); Barnes and Walters (1985).
During the past two decades, however, a number of technical improvements
of the rheometric equipment made possible measurements of torques as
small as 0.1n Nm and of rates of deformation as small as 10−7 s−1). Such
accurate rheological measurements proved unequivocally the existence of a
true yielding behaviour Putz and Burghelea (2009); Bonn and Denn (2009);
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Denn and Bonn (2011). The physics of the yielding process itself on the
other hand remains elusive. The macroscopic response of yield stress flu-
ids subjected to an external stress σ has been classically described by the
Herschel-Bulkely model Herschel and Bulkley (1926b,a):

σ = σy +Kγ̇N (1)

Here σy is the yield stress, γ̇ is the rate of shear, i.e., the rate at which
the material is being deformed, σ is the macroscopically applied stress (the
external forcing parameter), K is a so-called consistency parameter that
sets the viscosity scale in the flowing state and N is the power law index
which characterises the degree of shear thinning of the viscosity beyond the
yield point.

In spite of its wide use by rheologists, fluid dynamicists and engineers,
the Herschel-Bulkley model (and its regularised variants, e.g. Papanastasiou
Papanastasiou (1987)) is in fact applicable only for a limited number of yield
stress materials, sufficiently far from the solid-fluid transition, i.e. when
σ > σy, and in the conditions of a steady state forcing, i.e. when a constant
external stress σ is applied over a long period of time. The behaviour
of a large number of the yield stress materials encountered in daily life
applications can not be accurately described by the simple Herschel-Bulkley
model. This fact has initiated the ”quest” for a ”model” yield stress fluid.

A ”model” yield stress material should fulfil a number of quite restrictive
conditions:

1. As the externally applied stresses are gradually increased, a solid-fluid
transition occurs at a well defined value of the applied stress, σ = σy.

2. Past the yield point the relationship between the applied stress σ and
the macroscopic rate of shear γ̇ follows faithfully the Herschel-Bulkley
model described by Eq. 1.

3. The solid-fluid transition is reversible upon increasing/decreasing forc-
ing, that is no thixotropic effects are present.

For nearly two decades, aqueous solution of Carbopol R© have been cho-
sen as the best candidates as ”model” yield stress materials, Curran et al.
(2002); Ovarlez et al. (2013). Carbopol R© is the generic trade name of an
entire family of cross-linked poly-acrylic acids with the generic chemical
structure H − A. Upon dissolution in water, the polya-crylic acid dissoci-
ates, H − A ⇐⇒ H+ + A−, resulting in a mixture with pH ≈ 3. Upon
neutralisation with an appropriate basic solution (e.g. a sodium hydrox-
ide solution, NaOH) the micro-gel particles swell up to 2000 times and a
physical gel is obtained. The Carbopol gels are optically transparent, chem-
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ically stable over long periods of time which makes them ideal candidates
for experimental studies.

To illustrate the limitations of the classical Herschel-Bulkley picture
in accurately describing the solid-fluid transition even in the case of a
Carbopol R© gel, we discuss below several experimental observations per-
formed in kinematically ”simple” flows of aqueous solutions of Carbopol R©

that are at odds with the picture of a ”model” yield stress fluid.

Sedimentation of a spherical object in an elasto-viscoplastic mate-
rial (Carbopol R© 940) The first experimental observation relates to the
flow patterns around a spherical object freely falling in an aqueous solution
of Carbopol R© 940 discussed in detail in Ref. Putz et al. (2008).

The experiment consisted of measuring time series of the velocity fields
around a sphere freely falling in a container filled with a Carbopol R© solution
via a Digital Particle Image Velocimetry (DPIV) technique implemented in
the house. To test the reliability of the method, flow fields were with a
Newtonian fluid (an aqueous solution of Glycerol), 1(a). As the Reynolds
numbers (calculated using the size and terminal speed of the spherical ob-
ject) did not exceed unity, a perfect fore-aft symmetry of the flow pattern is
observed and a quantitative agreement with the analytical solution Landau
and Lifschitz (1987) is found which fully confirms the reliability of both the
experimental procedure and data analysis technique.

For several cases involving different Carbopol R© solutions and different
sizes of the spherical object, however, the flow patterns are strikingly dif-
ferent though the Reynolds number was kept in the same range, Fig. 1(b).
As compared to Newtonian flow patterns, two distinct features may be ob-
served:

1. For each of the cases illustrated in Fig. 1(b) the fore-aft symmetry of
the flow patterns is broken in spite the laminar character of the flow.

2. For each of the cases illustrated in Fig. 1(b) a negative wake mani-
fested through a reversal of the flow direction is clearly visible.

None of these distinctive features can be understood in the classical
Bingham/Herschel-Bulkley frameworks. As the first feature is concerned,
numerical simulations using either the Bingham or the Herschel-Bulkley
constitutive equations predict fore-aft symmetry of the flow pattern Beris
et al. (1985); Fraggedakis et al. (2016). The second feature is even more
intriguing as the negative wake phenomenon has been observed in strongly
elastic shear thinning solutions with no yield stress, Arigo and McKinley
(1998).
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Figure 1. 1(a) Experimentally measured flow field around a sphere freely
falling in a Newtonian fluid (glycerol) at Re < 1. 1(b). Experimentally
measured flow fields around a sphere freely falling in Carbopol R© solutions
at Re < 1. The radii of the spheres and the yield stresses of the solutions
in each panel are: (1) - R = 3.2mm,σy = 0.5Pa, (2) - R = 1.95mm,σy =
0.5Pa, (3) - R = 3.2mm,σy = 1.4Pa, (4) - R = 1.95mm,σy = 1.4Pa. The
colour maps in all panels refer to the modulus of velocity and the full lines
are streamlines. The acceleration of gravity is oriented from right to left.
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We have proposed the following phenomenological explanations, Ref.
Putz et al. (2008). Bearing in mind that the material in the fore region of
the object is subjected to a forcing that gradually increases past the solid-
fluid transition and the aft region is subjected to a forcing that gradually
decreases past the fluid-solid transition we have conjectured that the solid-
fluid transition is not reversible upon increasing/decreasing stresses. As
the emergence of the negative wake is concerned we have conjectured that,
around the solid fluid transition the elastic effects are dominant which, in
conjunction with the curvature of the streamlines leads to the emergence
of a first normal stress difference that ultimately causes a ”flow reversal”
or negative wake. Although quite debated for nearly a decade by part of
the viscoplastic community, these phenomenological explanations have been
confirmed by the recent numerical simulations, Fraggedakis et al. (2016).

The Landau-Levich experiment with an elasto-viscoplastic mate-
rial (Carbopol R© 980) A second and equally simple experiment one
can perform is to withdraw a vertical plate at a constant speed U from a
bath filled with a Carbopol R© gel. This is referred to in the literature as the
”Landau-Levich” problem, Landau and Levich (1972). An instantaneous
flow field measured the DPIV technique is exemplified in Fig. 2. As for
the case of the sedimentation experiment previously illustrated, a negative
wake is clearly visible behind the moving plate. As in the previous case, the
material located in the wake region of the flow is subjected to a decreasing
stress and gradually transits from a fluid state to a solid one. The emergence
of a negative wake is once again associated to the presence of elasticity.

The solid-fluid transition in a Carbopol R© gel revisited The ”sim-
ple flows” examples presented above bear two common features:

1. The material is subjected to an external forcing (stress) around the
solid-fluid transition.

2. The material is forced in an unsteady manner. By this, we mean that
the stress locally applied changes with a characteristic time t0 set by
the characteristic scale of the speed U and a characteristic space scale
L by t0 = L/U . In the case of the sedimentation problem, for example,
L is just the size of the spherical object L = R and U is its terminal
speed which, for the experiments illustrated in Fig. 1(b), give t0 < 1s.

The points above prompted us to revisit the macroscopic solid - fluid
transition. The solid-fluid transition may be investigated during macro-
scopic rheological experiments by subjecting the material to a controlled
stress ramp and monitoring its response (the rate of shear γ̇). Prior to yield-
ing negligibly small shear rates are measured whereas above the yield point
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Figure 2. The Landau-Levich flow problem: instantaneous flow field
around a rigid plate being withdrawn at constant speed from a bath filled
with a Carbopol R© gel.

non-zero values are recorded which allows one to ”guess” the yield point.
We have implemented a rheological protocol that ”mimics” an unsteady
forcing rather than following the rheological ”golden rule” of imposing a
steady state forcing (t0 →∞).

In Fig. 3(b) we illustrate such measurements performed on a controlled
stress rheometer (Mars III from Thermo Fischer Scientific) equipped with
a serrated plate - plate geometry with a 0.1% (wt) solution of Carbopol R©

940 by using the forcing scheme illustrated in Fig. 3(a) with t0 = 0.5 s. As
opposed to previous measurements by others that seemed to indicate that
the Carbopol R© gels are ”model” or ”ideal” yield stress fluids - i.e. free of
thixotropic effects and with a rheological behaviour well described by the
Herschel- Bulkley constitutive law, the data presented in Fig. 3(b) reveals
the following features of the solid-fluid transition:

1. The solid-fluid transition is not direct (does not occur at a well defined
value of the applied stress σ = σy) but gradual and spanning a finite
interval of the applied stresses.

2. The Herschel-Bulkley law describes well the rheometric response only
in a range of large applied stresses, the full line in Fig. 3(b).

3. The data corresponding to the increasing/decreasing branches of the
controlled stress ramps overlap only far above the solid-fluid transi-
tion. Additionally, a cusp visible on the decreasing stress branch is
visible. At this point the rate of shear γ̇ changes sign which indicates
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Figure 3. 3(a) Schematic illustration of the controlled stress flow ramp 3(b)
Rheological flow curve measured via the controlled stress ramp illustrated
in Fig. 3(a) for a 0.1% (wt) solution of Carbopol R© 940. The full line
is a non linear fitting functions according to the Herschel-Bulkley model.
The full/empty symbols refer to the increasing/decreasing branches of the
stress ramp schematically illustrated in Fig. 3(a). The inset presents the
dependence of the hysteresis area on the characteristic forcing time t0. The
full line in the inset is a guide for the eye Ph ∝ t−1

0 .

an elastic recoil effect typically observed with viscoelastic fluids. This
feature has not been reported before and may phenomenologically ex-
plain the emergence of a negative wake in Figs. 2, 1(b).

4. The degree of the irreversibility of the deformation states upon in-
creasing/decreasing forcing quantitatively described by the area of the
hysteresis visible in Fig. 3(b) scales as a power-law with the degree of
steadiness of the controlled stress ramp t0 - see the inset in Fig. 3(b).

A natural question arises at this point: How universal is the irreversible
flow behaviour observed with a Carbopol R© gel? To answer this question,
we present in Fig. 4 rheological controlled stress ramps performed with
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Figure 4. Rheological flow curves measured via controlled stress ramps for
various materials: (a) mayonnaise (Carrefour, France) (b) mustard (Car-
refour, France) (c) 0.08% (wt) aqueous solution of Carbopol R© 980. For
each stress value the response of the material was averaged during t0 = 10s.
The range of applied stresses corresponding to the yielding transition is high-
lighted in each subplot. The full lines are non linear fitting functions accord-
ing to the Herschel-Bulkley model. The full/empty symbols in each panels
refer to the increasing/decreasing branches of the stress ramp schematically
illustrated in Fig. 3(a).

three micro-structurally distinct yield stress materials: a commercially avail-
able mayonnaise, a commercially available mustard and a different type of
Carbopol R© gel (Carbopol R© 980). Each of these rheological tests reveal a
gradual solid-fluid transition characterised by a more or less pronounced hys-
teresis that departs from the Herschel-Bulkley constitutive relation. This
indicates that, irrespective to the chemical identity of the material, the
solid-fluid transition follows a rather universal scenario. It is equally inter-
esting to monitor how the magnitude of the hysteresis depends on the degree
of steadiness of the external forcing - the time t0 the stress is maintained
constant during the stress ramp (see Fig. 3(a)).

We present in Fig. 5 the dependence of the magnitude of the rheological
hysteresis on the characteristic time t0 for each of the materials characterised
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Figure 5. Dependence of the hysteresis area on the characteristic forcing
time t0 (see text for description) measured with several yield stress materials
via controlled-stress flow ramps: circle (◦) - mayonnaise (Carrefour, France),
square (�) - mustard (Carrefour, France), up triangle (4) - 0.08% (wt)
aqueous solution of Carbopol R© 980. The dashed lines are log-normal fitting
functions (see text for the discussion), the full lines are power law fitting
functions indicated in the inserts.

in Fig. 4.

For the case of mayonnaise and mustard (the circles and the squares in
Fig. 5), a non monotone dependence of the magnitude of the hysteresis on
the characteristic forcing time t0 is observed. Corresponding to low values of
t0 (fast forcing) the hysteresis area first increases and then, for large values
of t0 (slow forcing), decreases following a power law. This non monotone
behaviour agrees well with the measurements of Divoux and his coworkers
performed for several yield stress materials: mayonnaise, Laponite gel and
carbon black gel, Divoux et al. (2013). As pointed out in Divoux et al.
(2013), these non monotone dependencies may be fitted by a log normal
function (the dashed lines in Fig. 5). The presence of a local maximum
of these curves has been attributed to the existence of a critical time scale
t?0 specific to each material which describes the restructuration dynamics of
the solid material units.

It has been shown recently that a clear departure from the Herschel-
Bulkley behavior can be observed even for ”simple” yield stress fluids such as
the Carbopol R© gels particularly during unsteady flows taking place around
the yield point Putz and Burghelea (2009); Weber et al. (2012); Divoux et al.
(2013); Poumaere et al. (2014). The yielding behaviour of a Carbopol R© gel
is illustrated here in Fig. 3(b) and in panel (c) of Fig. 4. As compared to
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the mayonnaise and the mustard, no local maximum was observed in the
dependence of the hysteresis area on the characteristic forcing time but a
negative power law scaling which indicates that in the limit of very slow
forcing (large t0) the Carbopol R© gels behave as non-thixotropic yield stress
fluids.

2 Phenomenological modelling of the solid-fluid
transition in an elasto-viscoplastic material

As argued in the previous section, the simple Herschel-Bulkley picture can
not accurately describe the solid-fluid transition even in the case when the
time dependent effect (thixotropy) are not very pronounced, e.g. for the
case of a Carbopol R© gel. This prompted the development of more sophisti-
cated phenomenological models. It is widely believed that the macroscopic
yield stress behaviour originates from the presence of a microstructure which
can sustain a finite local stress prior to breaking apart and allowing for a
macroscopic flow to set in. To illustrate this, we present in Fig. 6 micro-
graphs (acquired in a quiescent state) of several materials that exhibit a
yield stress behavior. In spite of clear differences in the chemical nature
(and, consequently, physico-chemical properties) of these materials, hetero-
geneous and soft-solid like aggregates are visible in each of the micrographs
presented in Fig. 6. A microscopic experimental study of the yielding would
require monitoring in real time both the motion of such aggregates and the
dynamics of their break-up (and, possibly, reforming) during flow. This
experimental approach is difficult to implement and we are aware of very
few previous works that describe the evolution of the microstructure during
yielding, Dimitriou and McKinley (2014). Although the structural hetero-
geneity and the characteristic space scales of a Carbopol R© gel are quite
clearly probed by the diffusion experiments by Oppong et al, Oppong et al.
(2006); Oppong and de Bruyn (2007), a detailed experimental description
of the Carbopol R© microstructure is still missing. This is mainly due to
practical difficulties in visualising the microstructure without altering it,
Piau (2007). We present in the following a minimalistic model that uses no
explicit microstructural assumption but is yet able to describe both shear
and oscillation rheological experiments. As previously suggested by several
authors (Möller et al. (2006); Dullaert and Mewis (2006)), the fluidisation
process of a physical gel sample under shear can be interpreted in terms of a
”dissociation” reaction, S
 S + F which can be modelled by the following
kinetic equation:

dā(t)

dt
= Rd [ā(t), t,Γ] +Rr [ā(t), t,Γ] + δ (2)
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Figure 6. Micrographs of several yield stress materials: (a) commercial
shaving gel (Gillette Series) (b) mayonnaise (Carrefour, France) (c) 5%
bentonite in water (d) suspension of Chlorella Vulgaris unicellular micro
alga (reproduced from Ref. Souliès et al. (2013))

where S, F denote the solid and fluid phases, respectively, ā(t) = [S] is the
concentration of the solid phase, Γ = σ

σy
is the non dimensional forcing

parameter, Rd is the rate of destruction of solid units and Rr is the rate of
fluid recombination of fluid elements into a gelled structure and δ is a small
thermal noise term.

The exact form of the terms Rr and Rd is usually chosen on an intuitive
basis: the destruction of solid structural units increases monotonically with
increasing applied forcing whereas the recombination probability may be
even constant or monotonically decreasing with increasing forcing.

On of the simplest choice of a micro-structural equation was introduced
by Coussot and coworkers in Ref. Coussot et al. (2002b).

It considers an evolution equation for a micro-structural parameter λ in
the form:

dā

dt
=

1

τ
− αγ̇ā (3)

where τ is a characteristic time scale of the aggregation of micro-structural
units and α is a positive constant related to role of the external shear in
destroying the solid structural units. Furthermore the model considers a
viscosity function that depends on the micro-structure in the form:

η = η0 (1 + ān) (4)
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where η0 is a constant asymptotic viscosity when the micro-structure is
entirely destroyed, η0 = limā→0 η (ā).

The parameter ā can be loosely defined as the degree of flocculation
for clays, a measure of the free energy landscape for glasses or as the frac-
tion of particles in potential wells for colloidal suspensions, Coussot et al.
(2002b). An obvious difficulty of this micro-structural approach relates to
the fact that the parameter ā is not easily accessible experimentally and,
consequently, a direct comparison with rheometric measurements remains
elusive, Coussot (2007).

Due to its simplicity and formal elegance, this model is quite appealing
to both physicists and rheologists.

In a recent publication it has been claimed that this simple micro-
structural model is able to accurately fit rheological flow curves measured
during a controlled stress ramp, Dinkgreve et al. (2018) - see Fig. 7 therein.
This is result is highly questionable. Even if one neglects the emergence of a
hysteresis of the deformation states illustrated in Fig. 3, far above the yield
point Carbopol R© gels are shear thinning fluids. On the other hand, in a
fluid state (ā→ 0) the above mentioned model predicts a constant viscosity
η0 according to Eq. 4. This is at odds with any rheological tests performed
with Carbopol R© gels we are aware of. As a cautionary note to the reader,
we point out that in spite of their appeal, phenomenological models that
are too simple may be deceptive when compared to experimental results.

We present in the following a minimalistic phenomenological model able
to describe the main features of the solid-fluid transition of a Carbopol R©

gel subjected to stress.
For a detailed discussion the reader is referred to Refs. Putz and Burghe-

lea (2009); Gonzalez et al. (2011b).
We make the following assumptions concerning the terms Rr and Rd

involved in the micro-structural equation Eq. 2:

1. Rd(ā(t), t, γ̇) is proportional to the relative speed of neighboring solid
units and the existing amount of solid, that isRd(ā(t), t, γ̇) = −g(Γ)ā(t),
and g(Γ) = K1|Γ| is a linear amplitude of shear induced destruction.

2. Unlike in solutions of micelles or suspensions, where the external shear
may induce aggregation, Goveas and Olmsted (2001); Heymann and
Aksel (2007), in the case of a physical gel, the rate of fluid recombi-
nation decreases with the relative speed of neighboring fluid elements
being practically zero in a fast enough flow. Therefore, we consider
Rr(ā(t), t,Γ) = f(Γ)ā(t)(1− ā(t)), where f(Γ) = Kr

[
1− tanh

(
Γ−1
w

)]
is a smooth decaying function of the applied forcing. Here we have con-
sidered that recombination of the gel network takes place via binding
of single polymer molecules to already existing solid blobs. Although
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we are not aware of any theoretical prediction in this sense, different
re-combination schemes (S+S→ S, L+L→ S, S+S+L→ S etc.) are
in principle possible and we note here that they actually lead to a
qualitatively similar behavior of the phase parameter ā(t).

With the assumptions above, the kinetic equation 2 may be written:

dā

dt
= −KdΓā+Kr

[
1− tanh

(
Γ− 1

w

)]
ā(1− ā) + δ (5)

We would like to point out that a constant recombination term as previously
employed by several authors, Möller et al. (2006); Roussel et al. (2004),
seems to us somewhat un-physical in this context. Precisely, if one solves
the phase equation 5 with a constant recombination term and a forcing
parameter linearly increasing with time, Γ ∝ t, one obtains a non monotone
dependence ā = ā(t) which we consider to be unrealistic for a Carbopol R©

gel as it will further imply a non-monotone stress-rate of strain dependence.
The phase equation 2 admits two steady state solutions:

āSS1 =

{
1− g

f , g < f

0 otherwise
, stable (6)

and

āSS2 =

{
1− g

f , g ≥ f
0 otherwise

,unstable (7)

It can be easily noted that the first steady state āSS1 is stable whereas āSS2

is unstable and their separation is insured by the small parameter δ.
As a constitutive equation we use a thixo-elastic Maxwell (TEM) type

model previously employed by Quemada, Quemada (1998a,b, 1999):

η (γ̇)

G
ā
dσ

dt
+ σ = η (γ̇) γ̇ (8)

where the viscosity is given by a regularized Herschel-Bulkley model, η =
K (ε+ |γ̇|)N−1

+
σy
ε+|γ̇| . Here G is the static elastic modulus, K the consis-

tency, N the power law index and ε is the regularisation parameter (typically
of order of 10−12). A detailed discussion of several regularisation techniques
is presented in Ref. Frigaard and Nouar (2005).

The choice of this constitutive equation is motivated by the presence of
elastic effects in the intermediate deformation regime (see the cusp in de-
creasing stress branch in Figs. 3(b), 4 (c) and the corresponding discussion).
It is easy to note that in the limit ā→ 1 equation 8 reduces to Hooke’s law,
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Figure 7. 7(a) Rheological flow curve measured via the controlled stress
ramp illustrated in Fig. 3(a) for a 0.1% (wt) solution of Carbopol 940.
The full/empty symbols refer to the increasing/decreasing branches of the
stress ramp schematically illustrated in Fig. 3(a) 7(b) Normalised strain
measured during a controlled stress oscillatory sweep. 7(c) Lissajoux figure
corresponding to the controlled stress oscillatory sweep. The full line in
each panel is the prediction of the model.
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G = σγ, and in the limit ā→ 0 it reduces to a regularized Herschel-Bulkley
model.

A nonlinear fit of the controlled stress ramp presented in Fig. 3(b) is
presented in Fig. 7(a) (the full line).

Quite remarkably, without any other adjustment of the fit parameters,
the model is able to fit controlled stress oscillatory tests performed with the
same material, Fig. 7(b) and the corresponding Lissajoux figure Fig. 7(c).

A central conclusion of this part is that the usage of an evolution equation
that describes a smooth change of a micro-structural parameter ā coupled
to a constitutive equation that contains information on both the viscous
and the elastic behaviour suffices to describe rheological measurements.

Though able to model sufficiently complex rheological data (ranging from
controlled stress/strain unsteady flow ramps, creep tests and oscillatory
tests in a wide range of frequencies and amplitudes), the phenomenological
phenomenological model has a number of limitations:

1. As the functional dependence of the micro-structural parameter Eq. 5
is generally chosen on an intuitive basis rather derived from first prin-
ciples, the PMM can teach little about the microscopic scale physics
of the yielding process.

2. The model involves a rather large number of parameters some of which
are not directly and easily measurable and can be obtained only by
fitting the experimental data, e. g. Kr, Kd, w.

3. The model is not inherently validated from a thermodynamical stand-
point as the choice of Rd, Rr is not made based on first principles. The
second law of thermodynamics is not necessarily satisfied and such a
validation is not always straightforward as it requires the derivation of
a thermodynamic potential Picard et al. (2002); Bautista et al. (2009);
Hong et al. (2008).

To circumvent these limitations, we present in the next section a different
and more fundamental approach for the yielding of a soft material subjected
to a varying external stress based on principles of Statistical Physics and
Critical Phenomena.

3 Microscopic modelling for the yielding of a physical
gel as a critical phenomenon

For a detailed account of these theoretical developments the reader is re-
ferred to two recent publications, Sainudiin et al. (2015b); Burghelea et al.
(2017).
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We propose in the following a microscopic model for the yielding or gela-
tion, corresponding to a approaching 0 or 1 respectively, of a physical gel
using an essentially bi-parametric family of a correlated site percolation that
is inspired by the two dimensional Ising model for the +1 or −1 magneti-
zation of a ferromagnet Ising (1925); Stanley (1987). Our model builds on
the analogy between the local agglomerative interactions in terms of assem-
bly/disassembly of neighboring gel particles in a microscopic gel network see
(Slomkowski et al., 2011, (2.5,2.6,5.9,5.9.1,5.9.1.1,8.1.4)) and Jones (2009)
for standardized nomenclature subjected to an external stress and the local
ferromagnetic interactions in terms of spin up (+1) / spin down (−1) of
neighboring particles in a microscopic ferromagnetic network subjected to
an external magnetic field.

By the analogy with the Ising model for the ferromagnetism we are
placing the problem of yielding of a soft solid under stress in the more
general context of ”Phase Transitions and Critical Phenomena” and fully
benefit from a number of theoretical tools developed during the past five
decades for gaining physical insights into the solid-fluid transition.

This thermodynamically consistent microscopic model with only two pa-
rameters that reflect the chemical nature of the gel of the gel and only two
energy-determining configuration statistics the number of gelled particles
and the number of gelled pairs of neighbouring particles is able to capture
the macroscopic behaviors of yielding and gelation for any stress regime
given as a function of time, including hysteretic effects, if any. This ap-
proach is fundamentally probabilistic and formalises Gibbs fields as time-
homogeneous and time-inhomogeneous Markov chains over the state space
of all microscopic configurations. It not only provides simulation algorithms
to gain insights but also allows one to derive an approximating nonlinear
ordinary differential equation for a(t), the expected volume fraction of the
unyielded material at a rescaled time t, which we show to be a robust qual-
itative determinant of the probabilistic dynamics of the system.

3.1 A microscopic Gibbs field model for the macroscopic yielding
of a yield stress material

Let us model an idealized yield stress material or viscoplastic fluid as a
network of microscopic constituents in an appropriate solvent that are capa-
ble of assembling by ”forming bonds” or disassembling by “breaking bonds”
with their neighbors. Without making any assumption about either the na-
ture of the bonds or the physical nature of the interactions among neighbour-
ing microscopic constituents, we investigate the model when the network of
particles is the regular graph given by the toroidal two-dimensional square
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lattice as illustrated in Fig. 8 and the bonds/interactions are accounted for
in a generic manner as detailed in the following.

(a) (b)

Figure 8. (a) The regular graph represented for n = 5. The vertices
labeled with 1/0 represent microgel particles in a unyielded/yielded state,
respectively. The labels 1/0 of the edges indicate indicate whether two sites
are connected/unconnected. (b) 2D toroidal lattice suggesting the periodic
boundary conditions used through the simulations.

Let the set of nodes or sites be

Sn = {1, 2, . . . , n}2 = {(1, 1), (1, 2), . . . , . . . , (n, n)} .

Let Ns = {r : ‖(r − s)n‖ = 1} denote the set of four nearest neighboring

sites of a given site s ∈ Sn, where (r − s)n denotes coordinate-wise sub-
traction modulo n and ‖·‖ denotes the Euclidean distance. Then the set of
edges between pairs of sites is

En =
⋃
s∈Sn

{〈s, r〉 : r ∈ Ns} ⊂ S2
n .

Let |A| denote the size of the set A. Note that |Sn| = n2 and |En| = 2n2.
Each site s ∈ Sn can be thought to represent a microscopic clump of particles
in a particular region of the material and each edge 〈s, r〉 ∈ En represents
a potential connection between neighbouring clumps at sites s and r. At
the finest resolution of the model, each site can be a monomer molecule in
the material and each edge can represent a potential bond between neigh-
boring molecules. Let xs ∈ Λ = {0, 1} denote the phase at site s. Phase 0
corresponds to being yielded or ungelled and phase 1 corresponds to being
unyielded or gelled. The phase at a site directly affects its connectability
with its neighbouring sites. We assume that only two gelled sites can be
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connected with one another. Thus, the connectivity between sites s and r
is given by

y〈s,r〉 =

{
1 if r ∈ Ns and xrxs = 1

0 otherwise.
(9)

In other words, we say that sites s and r are connected, i.e., y〈s,r〉 = 1, if
and only if xs = xr = 1 and s and r are neighbors. Otherwise, we say
s and r are unconnected, i.e., y〈s,r〉 = 0. These definitions are schemat-
ically illustrated in Fig. 8(a). Since the phase of sites determine their
connectedness, we refer to sites in phase 1 as connectable and those in
phase 0 as un-connectable. Thus, every site configuration x ∈ Xn := ΛSn

has an associated edge configuration y ∈ Yn := ΛEn which character-
izes the connectivity information between all pairs of neighboring sites.
We use X to denote a random site configuration and Y = Y (X) to de-
note the associated random edge configuration. Two extreme site config-
urations are 1 := {xs = 1 : s ∈ Sn} ∈ Xn, with all sites gelled, and
0 := {xs = 0 : s ∈ Sn} ∈ Xn, with all sites ungelled. Their corresponding
extreme edge configurations are 1 := {y〈s,r〉 = 1 : 〈s, r〉 ∈ En} ∈ Yn, with
all neighboring pairs of sites connected and thus making the material to be
in a fully solid state, and 0 := {y〈s,r〉 = 0 : 〈s, r〉 ∈ En} ∈ Yn, with all
neighboring pairs of sites unconnected and thus making the material to be
in a fully fluid state, respectively. Note that Y (x) : Xn → Yn is neither
injective nor surjective.

Let E(x) be the energy of a site configuration x, k be the Boltzmann
constant and T be the temperature. Then the probability distribution of
interest on the site configuration space Xn is

π(x) =
1

ZkT
exp

(
− 1

kT
E(x)

)
,

where ZkT is the normalizing constant or partition function

ZkT =
∑
x∈Xn

exp

(
− 1

kT
E(x)

)
.

ByX ∼ π, we mean that the random site configurationX has probability
distribution π, i.e.,

Pr(X = x) =

{
π(x) if x ∈ Xn
0 otherwise .

Next we show that π is a Gibbs distribution by expressing the energy in
terms of a potential function describing local interactions. Due to {Ns :
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s ∈ Sn}, the neighborhood system, we have only singleton and doubleton
cliques. Therefore, the Gibbs potential over the two types of cliques are:

V{s}(x) = (σ − α)xs =

{
0 if xs = 0

σ − α if xs = 1 ,

and

V〈s,r〉(x) = −βxsxr =


0 if (xs, xr) = (0, 0)

0 if (xs, xr) = (1, 0)

0 if (xs, xr) = (0, 1)

−β if (xs, xr) = (1, 1) ,

where {s} is the singleton clique, 〈s, r〉 is the doubleton clique with r ∈ Ns,
σ ≥ 0 is the external stress applied, α ≥ 0 is the site-specific threshold,
and β ∈ (−∞,∞) is interaction constant between neighbouring sites. The
parameters α and β can be thought to reflect fundamental rheological prop-
erties of the material under study.

The energy function corresponding to this potential is therefore

E(x) =
∑
C

VC(x)

=
∑
s∈Sn

V{s}(x) +
∑

〈s,r〉∈En

V〈s,r〉(x)

=

−β ∑
〈s,r〉∈En

xsxr + (σ − α)
∑
s∈Sn

xs

 .

Since E(x), the energy of a configuration x, only depends on β and the
difference (σ − α), we can define this difference as the parameter σ̃ :=
σ − α ≥ −α in order to reparametrize

E(x) =

−β ∑
〈s,r〉∈En

xsxr + σ̃
∑
s∈Sn

xs

 ,

through (σ̃, β) ∈ [−α,∞)× (−∞,∞).
Let the expectation of a function g : Xn → R, with respect to π, be

Eπ(g) :=
∑
x∈Xn

g(x)π(x)

then the internal energy of the system is

U = Eπ (E) =
∑
x∈Xn

E(x)π(x) ,
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and the free energy of the system is

F = −kT ln(ZkT ) .

Our model satisfies the standard thermodynamic equality:

− T 2 ∂

∂T

(
F
T

)
= −T 2 ∂

∂T

(
−kT ln(ZkT )

T

)
= kT 2 ∂

∂T
(ln(ZkT ))

= kT 2 1

ZkT

∂

∂T
(ZkT ) = kT 2 1

ZkT

∂

∂T

(∑
x∈Xn

exp

(
− 1

kT
E(x)

))

= kT 2 1

ZkT

(∑
x∈Xn

exp

(
− 1

kT
E(x)

)
E(x)

kT 2

)
=
∑
x∈Xn

E(x)π(x)

= U .

We sometimes emphasize the dependence of the energy and the corre-
sponding distribution upon α, β and σ by subscripting as follows:

E(x) = Eα,β,σ(x) and π(x) = πα,β,σ(x) .

Let the number of neighbors of site s that are in phase 1 be xNs :=∑
r∈Ns xr. Then, Es(x), the local energy at site s of configuration x, is

obtained by summing the Gibbs potential VC(x) over all C 3 s, i.e., over
cliques C containing site s, as follows

Es(x) =
∑
C3s

VC(x) = V{s}(x) +
∑
r∈Ns

V〈s,r〉(x)

= (σ − α)xs − β
∑
r∈Ns

xsxr

= xs

(
(σ − α)− β

∑
r∈Ns

xr

)
= xs ((σ − α)− βxNs) .

Let (λ, x(S\s)) denote the configuration that is in phase λ at s and identical
to x everywhere else. Then the local specification is

πs(x) =
exp(− 1

kT Es(x))∑
λ∈Λ exp(− 1

kT Es(λ, x(S \ s)))

=

{
θ

1+θ if xs = 0
1

1+θ if xs = 1
, (10)
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where

θ = θ(s, α, β, σ) = exp

(
− 1

kT
(βxNs − (σ − α))

)
. (11)

We focus on the effect of varying external stress σ at a constant ambient
temperature, and therefore without loss of generality, one may set kT = 1
and work with π(x) = Z−1

1 exp(−E(x)).
We can think of this model as an Xn-valued Markov chain {X(m)}∞m=0,

where X(m) = (Xs(m), s ∈ Sn) and Xs(m) ∈ Λ, in discrete time m ∈ Z+ :=
{0, 1, 2, . . .}. Let the initial condition, X(0) = x(0), be given by the initial
distribution δx(0) over Xn that is entirely concentrated at state x(0). Then
the conditional probability of the Markov chain at time-step m, given that
it starts at time 0 in state x(0), is

Pr {X(m) |X(0) = x(0) } = δx(0) (Pα,β,σ)
m

, (12)

where, the |Xn| × |Xn| transition probability matrix Pα,β,σ over any pair of
configurations (x, x′) ∈ Xn × Xn is

Pα,β,σ(x, x′) =



1
n2

1
1+θ if ||x− x′|| = 1, 0 = xs 6= x′s = 1

1
n2

θ
1+θ if ||x− x′|| = 1, 1 = xs 6= x′s = 0

1
n2

1
1+θ if ||x− x′|| = 0, 1 = xs = x′s = 1

1
n2

θ
1+θ if ||x− x′|| = 0, 0 = xs = x′s = 0

0 otherwise .

(13)

and θ = θ(s, α, β, σ), is indeed a function of the site s and the three param-
eters: α, β and σ. By ||x− x′|| = 1 we mean that the configurations x and
x′ differ at exactly site s, i.e., xs 6= x′s. Similarly, by ||x− x′|| = 0 we mean
that the two configurations are identical, i.e., x = x′ or xs = x′s at every
site s ∈ Sn. We can think of our Markov chain evolving according to the
following probabilistic rules based on (10) and (11):
• given the current configuration x, we first choose one of the n2 sites

in Sn uniformly at random with probability n−2,
• denote this chosen site by s and let the number of bondable neighbors

of s be i = Ns(x) ∈ {0, 1, 2, 3, 4}, and
• finally change the phase at s to 1, i.e., set xs = 1 with probability

pi := (1 + θ)−1 = (1 + θ(s, α, β, σ))−1 = 1/(1 + e(σ−α−iβ)) (14)

and set xs = 0 with probability 1− pi.
We emphasize the dependence of pi on the parameters α, β and σ by

pi(α, β, σ). This is illustrated in Fig. 9 for different parameter values. Just
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Figure 9. Plots of pi, the probability that site s with i = xNs neighbors
in phase 1, is also in phase 1, as a function of external stress σ for different
values of α, β. From the plots it is clear that α is a location parameter
while β controls the scale of the relative difference between pi’s.

as in the Ising model, our model can be classified into three behavioural
regimes depending on the sign of the interaction parameter β. When the
interaction parameter β > 0 the model is said to have ”agglomerative
interactions” analogous to the to the ferromagnetic interactions of the Ising
model whereby the probability of a site being in phase 1 increases with the
number of its neighbouring sites also being in phase 1, i.e., if β > 0 then
0 < p0 < p1 < p2 < p3 < p4 < 1. When β = 0 the model is said to be ”non-
interactive” since the probability of a site being in phase 1 is independent
of the phase of the neighbouring sites and identically p at each site, i.e.,
0 < p = p0 = p1 = p2 = p3 = p4 = 1/ (1 + eσ−α) < 1. When β < 0, our
model captures the ”anti-agglomerative” interactions that are analogous to
the ”anti-ferromagnetic” interactions of the Ising model since the probability
of a site being in phase 1 decreases with the number of its neighboring sites
also being in phase 1, i.e., if β < 0 then 1 > p0 > p1 > p2 > p3 > p4 > 0.

Note that our transition probabilities allow self-transitions, i.e., there
is a positive probability that we will go from a configuration x to itself.
Although we think of {X(m)}∞m=0 on the state space of all configurations Xn
as a discrete-time Markov chain, with transition probability matrix Pα,β,σ
in (13), we can easily add exponentially distributed holding times with rate
1 at each configuration and use (13) to choose a possibly new configuration

30



and thereby obtain a continuous time Markov chain {X(t)}t≥0 in the usual
way from {X(m)}∞m=0. This Markov chain over Xn is nothing but our Gibbs
field (or Markov random field) model (Brémaud, 1999, see for e.g. Ch. 7).

If the external stress varies as a function of discrete time-blocks of
length h = bhn2c and given by the function σ(m) for each time-block m =

0, 1, . . . ,M then we have the time-inhomogeneous Markov chain {X(k)}Mh
k=0

with the transition probability matrix at time k given by

P (k) = Pα,β,σ(bk/hc) , (15)

and the k-step configuration probability, with k < Mh under initial distri-
bution δx(0), given by

Pr {X(k) = x(k) |X(0) = x(0) }

= δx(0)

bk/hc∏
m=0

(
Pα,β,σ(m)

)h(Pα,β,σ(bk/hc+1)

)(k)h . (16)

As before, (k)h is k modulo h.
We can use the local specification to obtain the Gibbs sampler, a Monte

Carlo Markov chain (MCMC), to simulate from {X(m)}. Let h denote
the average number of hits per site. Thus, bh |Sn|c = bhn2c gives the
number of hits on all n2 sites in Sn chosen uniformly at random. Given
h and the parameters determining the local specification, i.e., α, β and σ,
GibbsSample(x(0), α, β, σ, h) produces a sample path of configurations from
the Markov chain {X(k)}mk=0 given by (12) and (13) and initialized at x(0)
as it undergoes m = bhn2c transitions in Xn.

If we are interested in simulating configurations with stationary distribu-
tion πα,β,σ, then for largem = bhn2c, them-step probabilities, Pr {X(m) |X(0) = x(0) },
by construction will approximate samples from πα,β,σ (Brémaud, 1999, see
for e.g. Ch. 7, Sec. 6), i.e.,

lim
m→∞

dTV (Pr {X(m) |X(0) = x(0) } , πα,β,σ) = 0 .

Here, dTV ($,π) = 2−1
∑
x∈Xn |$(x)− π(x)| is the total variation distance

between two distributions $ and π over Xn.
Two informative singleton clique statistics of a configuration x(m) at

time m are the number and fraction of gelled sites given respectively by

a(x) :=
∑
s∈Sn

xs and a(x) := |Sn|−1a(x) =
a(x)

n2
.
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Similarly, two informative doubleton clique statistics of a configuration
x are the number and fraction of connected pairs of neighboring sites given
respectively by

b(x) :=
∑

〈s,t〉∈En

y〈s,r〉 =
∑

〈s,r〉∈En

xrxs and

b(x) := |En|−1b(x) =
b(x)

2n2
.

When the configuration is a function of time m and given by x(m),
then the corresponding configuration statistics are also functions of time
and are given by: a(m) = a(x(m)), a(m) = a(x(m)), b(m) = b(x(m))
and b(m) = b(x(m)). The energy of a configuration x can be succinctly
expressed in terms of a(x) and b(x) as

E(x) = −βb(x) + (σ − α)a(x) = −β2n2b(x) + (σ − α)n2a(x) ,

and therefore

E(x) ∝ −2βb(x) + (σ − α)a(x) = −2βb(x) + σ̃a(x) , (17)

where β ∈ (−∞,∞) and σ̃ = σ−α ≥ −α for a given α ≥ 0. Since the energy
of a configuration x, given n, only depends on its a(x) and b(x), we can easily
visualize any sample path (x(0), . . . , x(m) ) ∈ Xm+1

n in configuration space
as the following sequence of (m+ 1) ordered pairs in the unit square:( (

a(x(0)), b(x(0))
)
, . . . ,

(
a(x(m)), b(x(m))

) )
∈
(
[0, 1]2

)m+1
.

Finally, we reserve upper-case letters for random variables. Thus, A(X),
A(X), B(X) and B(X) are the statistics of the random configuration X.
And the notation naturally extends to A(m), A(m), B(m) and B(m) when
X(m) is a random configuration at time m.

The macroscopic behaviour of a configuration x can be described by
other statistics of x. We can obtain the connectivity information in the
site configuration x through y, its edge configuration, according to (9).
By representing the connectivity in y and/or x as the adjacency matrix of
the graph whose vertices are Sn, we can obtain various alternative graph
statistics:

1. Cx =
{
C

(1)
x , C

(2)
x , . . . , C

(ny)
x

}
, a partition of Sn that gives the set of

connected components of x
2. C

(∗)
x = argmax

C
(i)
x ∈Cx

|C(i)
x |, the first largest connected component

3. |C(∗)
x |/n2, the size of the first largest connected component per site

4. F
(∗)
x , the fraction of the rows of Sn that are permeated (from top to

bottom) by C
(∗)
x .
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Equilibrium behaviour under constant stress We are interested in
the effect of applying constant external stress σ for a long period of time to
an yield stress material with rheological properties specified by parameters
α and β.

The sub-plot (a) of Fig. 10 approximates the time asymptotic behavior
of a when the Monte Carlo simulation of Gibbs field was initialized from
1 ( h = 100 hits per site were performed) and sub-plot (b) presents the
same information when the Gibbs field was initialized from 0. For both
simulations we have used n = 100 and (σ̃, β) taken from a grid of linearly
spaced points in [−10, 15] × [0, 4]. In both panels (a-b) of Fig. 10 one can
note that if the interaction parameter is smaller than a critical value of
the interaction parameter β < βc (βc ≈ 1.5), both the solid-fluid and fluid-
solid transitions are smooth. When the interaction parameter β is gradually
increased past this critical value both transitions become increasingly sharp.

Figure 10. The value of a at rescaled time t = 100 from Monte Carlo
simulations of the Gibbs field for fixed parameters (σ̃, β) when initialized
from 1 (panel (a)) and from 0 (panel (b)). The difference in a between the
sub-plots (a) and (b) is shown in panel (c). The horizontal dashed lines
indicate the critical value of the interacting parameter βc (see the discussion
in the text).

To assess the reversibility of the deformation states in the time asymp-
totic limit we focus at the difference between the sub-plots (a) and (b)
which is presented in Fig. 10(c). In the range β < βc the steady state
transition from solid to fluid evolves through the same intermediate states
as the steady state transition from fluid to solid and no hysteresis effect can
be observed. When the interaction parameter β exceeds the critical value
βc a triangular hysteresis region may be observed in Fig. 10(c).

This is an interesting result as it tells us that in the presence of strong
interactions a ”genuine” hysteresis of the deformation states would be ob-
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served even in conditions of a steady state forcing. At a given applied
stress σ̃ the size of the hysteresis region increases when the strength of the
interactions is increased.

Configurations at the Solid-Fluid Interface Let us now focus on
the nature of the configuration x for a given β at the solid-fluid interface,
i.e. when a = 1/2, as σ̃ reaches a specific value. Site configurations at the
solid-fluid interface provide the random environment for restricted diffusion
of small tracer particles near gel transition. This phenomenon is of experi-
mental and theoretical interest Oppong et al. (2006); Oppong and de Bruyn
(2007); Putz and Burghelea (2009) and has been recently studied for the
case of β = 0 de Bruyn (2013). We are interested here in gaining insights
on the nature of the site configurations at the solid-fluid interface for values
of β below, above and equal to zero.

Figure 11. Effect of β on preferred energy minimising configurations. Two
sample configurations are shown for each β ∈ {−2, 0,+2} over a toroidal
square lattice of 100× 100 sites. Sites in phase 0 and 1 are shown in black
and white, respectively, at the solid-fluid interface when a u 1/2.
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Figure 11 shows two random site configurations at the solid-fluid inter-
face when a u 1/2 for three different values of β. Without loss of generality,
we fixed α = 8, and focus on the properties of the material that is capa-
ble of forming a gel in the absence of external stress. Clearly, the site
configurations are dependent on the magnitude and sign of the interaction
parameter β. Recall that a, the fraction of gelled sites, and b, the frac-
tion of pairs of neighboring gelled sites, are the sufficient statistic of the
configuration, i.e. the energy of the configuration only depends on its (a, b).

Three distinct cases can be distinguished.

If β = 0, the non-interactive case of the classical site percolation model
studied in de Bruyn (2013), and σ̃ is chosen so that a = 1/2 then due to
the site-filling probability being independently and identically distributed
across all n2 sites b = a2 = 1/4. Two typical configurations when β = 0,
n = 100 and t = 100 at the solid-fluid interface are shown by the sub-plots
in the second row of Fig. 11. More configurations were visually explored
and their distinguishing site configuration feature is characterized by the
independence of the site-filling probability over sites and is apparent by the
concentration of their sufficient statistics (a, b) about (a, a2) = (1/2, 1/4)
at the solid-fluid interface. This is the only case considered by de Bruyn
(2013) when obtaining the random environment for restricted diffusion of
small tracer particles near gel transition.

When β is increased from 0 to 2 we have a very different distribution
over site configurations at the solid-fluid interface as shown by two samples
in the first (top) row of Fig. 11. It is easy to understand this ”patchy”
pattern in site configurations with large positive β by realising that new
gelled sites can occur with a higher probability at sites neighboring existing
gelled sites that have a larger i = xNs , number of neighbours in phase 1,
than at sites surrounded by un-gelled sites with a smaller i = xNs . As β gets
larger, the probability of forming gelled sites around existing gelled sites is
much larger than that of forming gelled sites around ungelled sites, and this
concentrates (a, b) about (a, a) = (1/2, 1/2) at the solid-fluid interface.

Finally, when β is decreased from 0 to −2 we have a ”checkered” pattern
of site configurations at the solid-fluid interface as shown by two samples
in the third (bottom) row of Fig. 11. As β gets negative, the probability
of forming gelled sites around existing gelled sites gets much smaller (see
top row of Fig. 9). In the extreme asymptotic case, as β → −∞, we obtain
configurations with increasingly checkered patters with (a, b) → (1/2, 0),
the sufficient statistics of the extreme “chess board” configuration (such
patterns occur already for β = −8 with n = 100 but are not shown here).

Thus, from the β-dependent site configurations at the solid-fluid interface
depicted in Fig. 11, it is clear that the trajectories of tracer particles (see
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Fig. 1 of Putz and Burghelea (2009) from Oppong et al. (2006)) that can
only diffuse through the un-gelled (black) contiguous regions are heavily
dependent on whether there is interaction between adjacent gelled sites.
This interaction is captured in our correlated site percolation model by the
interaction parameter β.

Behaviour under varying stress

The energy of X(t), the random site configuration at time t, depends on
two of its highly correlated statistics: A(t), the random fraction of gelled
sites at time t, and B(t), the random fraction of connected sites at time t.
One of our primary interests is to study A(t) and B(t) as X(t) is under the
influence of time-varying externally applied stress σ(t). This test will be the
closest equivalent of a controlled stress ramp typically used in experiments
(see Fig. 3(a) in Sec. 1).

Using Monte Carlo simulations of the time-inhomogeneous Markov chain
{X(m)}Mh

m=0 given by (15) and (16), under an initially increasing and sub-
sequently decreasing time-dependent stress σ(m) given in the bottom panel
of Figure 16, we obtained multiple independent trajectories of A(σ), the
fraction of gelled sites as a function of the external stress σ. Five such sim-
ulated trajectories are shown in the first four panels of Figure 16. In order
to mimic an asymptotic steady state of deformation (which is typically what
a rheologist would be interested in characterising during a rheological mea-
surement) the holding time per stress value has been chosen large, h = 1000
hits per site. We note that regardless the value of the interaction parame-
ter β the results of the five individual simulations overlap nearly perfectly
which indicates that the grid size of the simulation is sufficiently large and
the simulated trajectories are robust.

For low values of the interaction parameter (β ∈ {0, 1}, top row of
Figure 16) the dependence a(σ) corresponding to the decreasing branch of
the stress ramp overlaps with that corresponding to the increasing branch
and no hysteresis is observed. This indicates that in the presence of weak
interactions and provided that an asymptotically steady state is reached
the deformation states are fully reversible upon increasing/decreasing the
external forces. In this case a smooth solid-fluid transition is observed.

As the value of the interaction parameter is increased (β ∈ {2, 4},
middle row of Figure 16) a significantly different yielding behaviour is
observed. First, the deformation states are no longer reproducible upon
increasing/decreasing stresses and a clear hysteresis is observed. Second,
larger the value of the interaction parameter is, steeper the solid-fluid tran-
sition becomes.
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Figure 12. Results of five distinct Gibbs field simulations corresponding to
an increasing/decreasing stress ramp (illustrated in the bottom panel) with
α = 8 and β ∈ {0, 1, 2, 4} indicated on the top of each panel). The stress
was increased from 0 to 25 in units of 0.01 and decreased back to 0 with
a holding time of h = 1000 (nearly asymptotic state for each value of the
applied stress) as the site configuration varied from 1 to 0 and then back
to 1. The arrows indicate the increasing/decreasing branches of the stress
ramp.

To conclude this part, the realisations of the time-inhomogeneous Markov
chain under time-dependent stress σ(m) corresponding to an asymptotically
steady forcing reveal a smooth and reversible solid-fluid transition if the in-
teractions are either absent or weak and a steep and irreversible transition
in the presence of strong interactions. This result is consistent with the
result presented in Fig. 10 where we have seen that for β > βc a gen-
uine irreversibility of the deformation state is observed during the steady
yielding process. An experimental validation of these conclusions has been
recently presented in Ref. Souliès et al. (2013). The rheological flow curves
measured for a suspension of spherical and electrically charged non-motile
micro algae (Chlorella Vulgaris) reveal an abrupt solid-fluid transition and
exhibit a strong hysteresis even in the limit of very slow forcing, see Fig.
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11 in Souliès et al. (2013). In the case of a Carbopol gel where the mi-
croscopic interactions are presumably weaker than the interactions between
electrically charged Chlorella cell a much smoother solid fluid transition is
observed and, in the asymptotic limit of steady forcing, the hysteresis effects
become negligibly small, Putz and Burghelea (2009). This is perhaps the
main reason why Carbopol gels have been considered for decades “model”,
“simple” or “ideal” yield stress fluids.

Effect of holding time (steadiness of the external forcing) on the
hysteresis A large number of flows of yield stress fluids are unsteady in
the sense that the applied stress is maintained for a finite time t0. For the
case of a rheometric configuration, we have illustrated the unsteady response
of the material in Figs. 3(b), 4. An important feature of the deformation
curves presented in Figs. 3(b), 4 is the irreversibility of the deformation
states upon increasing/decreasing applied stresses. The magnitude of this
effect is found to depend systematically on the degree of steadiness of the
forcing, the time t0 the applied stress is maintained constant, Fig. 5.

The question we address in the following is to what extend is the Gibbs
field model able to describe the unsteady yielding behaviour observed in
macroscopic experiments, see the discussion in Secs. 1, 2. To answer this
question we calculate trajectories a similar to those presented in Fig. 16
which are realised during an increasing/decreasing stress ramp (see the bot-
tom panel of Fig. 16).

To place ourselves in the conditions of an unsteady forcing, we chose
during the simulations finite values of the holding time (or average num-
ber of hits per site). We note that the average holding time per site in
our simulations is the closest equivalent we could find for the characteris-
tic forcing time t0 imposed during macroscopic rheological measurements,
see Figs. 3(b), 4 and the discussion in Sec.1. To quantify the degree of
reversibility of the deformation states, we calculate after each run the area
of the hysteresis encompassed by the increasing/decreasing branches of the
dependence a = a(σ).

The dependencies of the hysteresis area on the holding time obtained
from such simulations performed for a fixed value of the site threshold α
and several values of the interaction parameter β are presented in Fig.13.

Regardless the strength β of the interaction, a non monotone depen-
dence of the hysteresis area on the holding time is obtained. By carefully
inspecting the individual dependencies a = a(σ), we have noticed that prior
to the local maximum the lattice yields only partially (a never reaches 0)
corresponding to the largest value of the applied stress σ. Corresponding to
the local maxima t?0 of the dependencies presented in 13 the lattice yields
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Figure 13. Effect of increasing β on the relative hysteresis area for a for
different holding times t0 per stress level in a stress ramp from 0 to 25 in
increments of 1 (with α = 8). The dash line is a log-normal fit and the full
lines are the fitted power laws indicated in the inserts. The symbols refer
to the value of the interaction parameter β: circles (◦) - β = 0, up triangles
(4) - β = 1.5, down triangles (O) - β = 3, hexagons (7) - β = 3.5.

completely (the terminal value of a is 0) and the area of the hysteresis
starts decaying with the holding time t0. This behaviour of the degree of
irreversibility of deformation states as a function of the steadiness of the
forcing is qualitatively similar to the experimental results illustrated in Fig.
5. In the absence of interactions (β = 0), the hysteresis area follows a log-
normal correlation with the holding time (see the circles and the dashed line
in Fig. 13) which once more comes into a qualitative agreement with the
experimental results. For non zero values of β we could not accurately fit
the data by a log-normal function. Corresponding to the largest values of
the average number of hits per site we have tested, we have found a power
law decay of the hysteresis area, the full lines Fig. 13) which is once again
similar to the behaviour illustrated in Figs. 3(b), 4 and consistent with ex-
perimental results obtained with Carbopol gels, Putz and Burghelea (2009);
Poumaere et al. (2014).

It is equally interesting to note that stronger the interaction is (larger
the parameter β is), weaker the decay of the hysteresis area with the char-
acteristic forcing time t0 is. This indicates that in the presence of strong
interactions a full reversibility of the deformation states can not be achieved
regardless the degree of steadiness of the external forcing. This is indeed the
case of several highly thixotropic materials such as bentonite gels, laponite
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gels where steady state rheological measurements can not be truly achieved
even during very slow controlled stress flow ramps. Among the data we
illustrate in Figs. 4, 5, the mayonnaise seems to behave as such as well.

3.2 A nonlinear dynamical system approach for the yielding be-
haviour of a viscoplastic material

Though able to capture most of the relevant features of the solid-fluid
transition in a thermodynamically consistent manner and making use of
solely two internal para meters, the microscopic Gibbs field model pre-
sented in the previous section is rather difficult to implement and requires
a number of skills in both statistics and programming. As practical ap-
plications regarding the dynamics of the solid-fluid transition in a pasty
materials are concerned, one would often prefer dealing with a continuum
micro-structural equation with a general form given by Eq. 2 which, unlike
the simple phenomenological model described in the second part of Sec. 2,
is derived from first principles.

Here, based on the microscopic Gibbs field model, we derive a nonlinear
first-order differential equation to asymptotically approximate E(A(t)), the
expected fraction of sites in the solid phase, in continuous time t that is
measured in units of n2 discrete time-steps as the number of sites n2 →∞,
under a fixed externally applied stress σ and fixed rheological parameters α
and β.

First consider the discrete-time Markov chain {X(m)}∞m=0 of (12) and
(13) and recall that X(m) is the random site configuration of the chain at
discrete time m and A(m) =

∑
sXs(m) is the number of sites that are in

phase 1. We will derive the approximation first for the case when β = 0 in
(13) and then for the general setting of β 6= 0.

Non-interactive case with β = 0

If β = 0 then the probability of the phase in site s at the next time-step is
independent of the current configuration, i.e.,

Pr {Xs(m+ 1) = xs(m+ 1) |X(m) = x(m)}
= Pr {Xs(m+ 1) = xs(m+ 1)}

=


p = (1 + eσ−α)

−1
if xs(m+ 1) = 1

1− p = 1− (1 + eσ−α)
−1

if xs(m+ 1) = 0

0 if xs(m+ 1) /∈ {0, 1} .

Therefore, the probability that the total number of sites in phase 1 increases
by 1 in one time-step is obtained by adding the probability of a transition
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from phase 0 to phase 1 over every uniformly chosen site s as follows:

Pr {A(m+ 1) = a(m) + 1 |A(m) = a(m)}

=
∑
s∈Sn

Pr {Xs(m+ 1) = 1, Xs(m) = 0, S = s |A(m) = a(m)}

=
∑
s∈Sn

Pr {Xs(m+ 1) = 1 |Xs(m) = 0, S = s,A(m) = a(m)}︸ ︷︷ ︸
p

× Pr {Xs(m) = 0 |S = s,A(m) = a(m)}︸ ︷︷ ︸
(n2−a(m))/n2

× Pr {S = s |A(m) = a(m)}︸ ︷︷ ︸
1/n2

=
∑
s∈Sn

p

(
1− a(m)

n2

)
1

n2
= p (1− a(m)) .

Dividing both sides of the equality that defines the above event by n2 we
get

Pr
{
A(m+ 1)/n2 = a(m)/n2 + 1/n2

∣∣A(m)/n2 = a(m)/n2
}

= Pr
{
A(m+ 1) = a(m) + 1/n2

∣∣A(m) = a(m)
}

= p (1− a(m)) .

By an analogous argument we can obtain the probabilities for the remaining
two possibilities

Pr
{
A(m+ 1) = a(m)− 1/n2

∣∣A(m) = a(m)
}

= (1− p)a(m) ,

Pr
{
A(m+ 1) = a(m)

∣∣A(m) = a(m)
}

= pa(m) + (1− p)(1− a(m)) .

Now we can define a continuous-time Markov chain {A(t)}t≥0 on the unit
interval [0, 1] by a rescaling of the discrete-time Markov chain {A(m)}∞m=0

and letting the number of sites n2 → ∞. These two Markov chains are
notationally distinguished only by their time indices. The rescaled time t
is m in units of n2, i.e., m = btn2c and m + 1 = b(t + 1/n2)n2c. Then by
taking ∆t = O(1/n2) and letting

∆A = A(t+ ∆t)− a(t) = A(b(t+ ∆t)n
2c)− a(btn2c) ,
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we get

Pr

{
∆A

∆t
=

∆a

∆t

∣∣∣∣A(t) = a(t)

}

=


p (1− a(t)) +O(∆t) if ∆a

∆t
= 1

(1− p)a(t) +O(∆t) if ∆a

∆t
= −1

pa(t) + (1− p)(1− a(t)) +O(∆t) if ∆a

∆t
= 0

O(∆t) otherwise .

(18)

Finally by considering the instantaneous rate of change of the expected
fraction of sites in phase 1

d

dt
a(t) := lim

∆t→0
E

(
A(t+ ∆t)−A(t)

∆t

∣∣∣∣A(t)

)
we get the limiting differential equation approximation as

n2 →∞, ∆t → 0, ∆a → 0 ,

such that
Pr{∆a/∆t ∈ {0,−1,+1} } → 1

based on (18) as follows:

ȧ =
d

dt
a(t) = p(1− a(t))− (1− p)a(t) = p− a(t) ,

or simply by
ȧ = p− a = (1 + eσ−α)−1 − a . (19)

The simple relationship above is mathematically very similar to the so called
“lambda-model” introduced in Coussot et al. (2002b,a) with the remark
that we consider the stress σ as a forcing parameter rather than the rate of
deformation. Given the initial condition a(0) = a0, the analytic solution is

a(t) = p+ (a0 − p)e−t = (1 + eσ−α)−1 + (a0 − (1 + eσ−α)−1)e−t

with only one asymptotically stable fixed point

a∗ = p = (1 + eσ−α)−1 . (20)

Thus, a(t) in the above differential equation is the expected fraction of sites
in phase 1 at time t in the limit of an infinite toroidal square lattice with
|Sn| = n2 → ∞ and a realization of the continuous time Markov chain
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{A(t)}t≥0 is a(t). Since β = 0, the probability of a site being in a given
phase is independent of the phases of its neighboring sites. Thus, we can
obtain b(t), the expected fraction of bonds, by simply multiplying a(t), the
probability of finding a randomly chosen site in phase 1, by itself, i.e.,

b(t) = a(t)2 and b
∗

= (a∗)
2
. (21)

Interactive case with β 6= 0 If β 6= 0 then the probability of site s being
in phase 1 at time m + 1 depends on the configuration of the neighboring
sites of s at time m through XNs(m) =

∑
r∈Ns Xr(m), the number of

neighboring sites of s in phase 1 at time m.

Pr {Xs(m+ 1) = xs(m+ 1) |X(m) = x(m)}
= Pr {Xs(m+ 1) = xs(m+ 1) |XNs(m) = i}

=


pi =

(
1 + eσ−α−iβ

)−1
if xs(m+ 1) = 1

1− pi = 1−
(
1 + eσ−α−iβ

)−1
if xs(m+ 1) = 0

0 if xs(m+ 1) /∈ {0, 1} .

Thus the probability that the phase changes from 0 to 1 in one time-step at
site s given that a(m) is the total number of sites in phase 1 at time m is

Pr {Xs(m+ 1) = 1, Xs(m) = 0 |S = s,A(m) = a(m)}

=

4∑
i=0

Pr {Xs(m+ 1) = 1, XNs(m) = i,Xs(m) = 0

|S = s,A(m) = a(m)}

=

4∑
i=0

Pr {Xs(m+ 1) = 1 |XNs(m) = i,

Xs(m) = 0, S = s,A(m) = a(m)}︸ ︷︷ ︸
pi

× Pr {XNs(m) = i |Xs(m) = 0, S = s,A(m) = a(m)}
× Pr {Xs(m) = 0 |S = s,A(m) = a(m)}︸ ︷︷ ︸

(n2−a(m))/n2=1−a(m)

Since there are 4!/((4− i)!i!) distinct neighborhood configurations with
i of the four nearest neighbors of site s in phase 1, we can make the following
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binomial approximation for Pr {XNs(m) = i |Xs(m) = 0, S = s,A(m) = a(m)}
in the above expression and obtain

Pr {Xs(m+ 1) = 1, Xs(m) = 0 |S = s,A(m) = a(m)}

=

4∑
i=0

pi(1− a(m))

× Pr {XNs(m) = i |Xs(m) = 0, S = s,A(m) = a(m)}

u
4∑
i=0

pi (1− a(m))

(
4

i

)
(a(m))

i
(1− a(m))

4−i
.

Therefore, the probability that the total number of sites in phase 1 in-
creases by 1 in one time-step is obtained by adding the probability of a
transition from phase 0 to phase 1 over every uniformly chosen site s as
follows:

Pr {A(m+ 1) = a(m) + 1 |A(m) = a(m)}

=
∑
s∈Sn

Pr {Xs(m+ 1) = 1, Xs(m) = 0, S = s |A(m) = a(m)}

=
∑
s∈Sn

Pr {Xs(m+ 1) = 1, Xs(m) = 0 |S = s,A(m) = a(m)}

× Pr {S = s |A(m) = a(m)}︸ ︷︷ ︸
1/n2

u
∑
s∈Sn

(
4∑
i=0

pi (1− a(m))

(
4

i

)
(a(m))

i
(1− a(m))

4−i

)
1

n2

= (1− a(m))

4∑
i=0

pi

(
4

i

)
(a(m))

i
(1− a(m))

4−i
.

Dividing both sides of the equality that defines the above event by n2 we
get

Pr
{
A(m+ 1) = a(m) + 1/n2

∣∣A(m) = a(m)
}

u (1− a(m))

4∑
i=0

pi

(
4

i

)
(a(m))

i
(1− a(m))

4−i
.
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By an analogous argument we can obtain the probability that A(m + 1)
decreases by 1/n2 as

Pr
{
A(m+ 1) = a(m)− 1/n2

∣∣A(m) = a(m)
}

u a(m)

4∑
i=0

(1− pi)
(

4

i

)
(a(m))

i
(1− a(m))

4−i
.

Using the same limiting approximation in the previous Section we can obtain
the following differential equation approximation for a = a(t) one obtains:

ȧ =
d

dt
a(t)

= (1− a)
(
p0 (1− a)4 + p1 4a(1− a)3

+p2 6a2(1− a)2 + p3 4a3(1− a) + p4 a4
)

−a
(
(1− p0) (1− a)4 + (1− p1) 4a(1− a)3

+(1− p2) 6a2(1− a)2 + (1− p3) 4a3(1− a)

+(1− p4) a4)
)
.

This simplifies after factoring and extracting coefficients of a as follows:

ȧ(t) = p0 − (4 p0 − 4 p1 + 1)a + 6 (p0 − 2 p1 + p2)a2

−4 (p0 − 3 p1 + 3 p2 − p3)a3

+(p0 − 4 p1 + 6 p2 − 4 p3 + p4)a4 . (22)

We can understand (22) directly as a quartic polynomial in a whose
coefficients are given by an alternating binomial series corresponding to the
increase and decrease in a based on a combinatorial averaging over the
transition diagram of site configurations at the four nearest neighbors of a
given site.

We now focus on the stability of the fixed points of the evolution equa-
tion for the volume of fraction of solid ā, Eq. 22. In the left panel of
Fig. 14, we present three different stability scenarios for the fixed points of
equation (22) in the (σ̃, β) plane: (i) In the blue shaded region the right
hand side of equation (22) has four real roots and only one of them is in
[0, 1], this fixed point is stable. (ii) In the yellow region, starting at point
(2.589145, 1.2945725), we have four distinct real roots with three of them
in [0, 1]. Only one of the three distinct real roots is an unstable fixed point
while the other two roots are stable fixed points. This naturally corresponds
to a family of pitch-fork bifurcations and the associated hysteresis depend-
ing on where the system is initialised from. (iii) The unshaded region in the
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Figure 14. Four real roots of the quartic occur in the shaded regions (blue
and yellow) over σ̃ = σ − α and β is shown in the left panel. The black
line is β = σ̃/2 started at (2.589145, 1.2945725). The parameter space with
only three distinct real roots in [0, 1] is shown in the right panel.

left panel of Fig. 14 corresponds to the parameter space where the quartic
discriminant ∆4 is negative and thus implying the existence of two real roots
(with one of them in [0, 1], stable fixed point) and two complex conjugate
roots.

The real roots and their derivatives over each (σ̃, β) in a grid of param-
eter values from [−8, 12] × [−4, 4] were obtained through interval analytic
methods using Hofschuster and Krämer (2003).

Figure 15 shows the set of fixed points a∗ of the dynamical system as a
function of (σ̃, β). The parameter space corresponding to the central shaded
region of Fig. 14 containing the line β = σ̃/2 is evident in Fig. 15 with three
fixed points in [0, 1]. The pitch-fork bifurcations along the plane σ̃ = 2β
or β = σ̃/2 determined by the non-negative sign of the cubic discriminant
along the black line in Fig. 14 is displayed to highlight the dynamics with
one unstable fixed point at 1/2 and two other stable fixed points that are
equidistant on either side of 1/2.

We are interested in varying the externally applied stress σ for a given
material characterized by fixed rheological parameters α and β. This amounts
to varying σ̃ for a fixed β since the fixed α is absorbed into σ̃ = σ−α. The
asymptotic dynamics when we apply a constant external stress for a long
period of time are given by the fixed points a∗ in Fig. 15. Note that the
ODE model for β 6= 0 is only in qualitative agreement with a(t), the ex-
pected volume fraction of the unyielded material at time t. This is because
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we are ignoring the dependent statistic b(t), the expected fraction of bonds
or pairs of neighboring unyielded material at time t. Despite this simplifi-
cation, as we will see through this Section, there is qualitative agreement
between the ODE and the Gibbs simulations presented in Sec. 3.1. Further-
more, an admittedly ad hoc correction of the ODE through a translation
of the vector field by (α0, β0) even improves the quantitative approxima-
tion. We postpone a formal quantitative approximation of the ODE using
perturbation theoretic methods to the future and focus here on obtaining
insights from the Gibbs sampler that is in qualitative agreement with the
ODE approximation.

Figure 15. The fixed points a∗ as a set-valued function of the parame-
ters σ̃ = σ − α and β. The blue, black and azure points are the stable
fixed points while the red and green points are the unstable fixed points of
the system. There is a pitch-fork bifurcation along σ̃ = 2β that starts at
(2.589145, 1.2945725) where the fixed point at 0.5 becomes unstable with
two stable fixed points on either side.

Comparison between Microscopic Gibbs field model described in
Sec. 3.1 and ODE approximation under varying stress The energy
of X(t), the random site configuration at time t, depends on two of its
highly correlated statistics: A(t), the random fraction of gelled sites at time
t, and B(t), the random fraction of connected sites at time t. One of our
primary interests is to study A(t) and B(t) as X(t) is under the influence of
time-varying externally applied stress σ(t). Using Monte Carlo simulations
from Algorithm 2 in Sainudiin et al. (2015a) of the time-inhomogeneous

Markov chain {X(m)}Mh
m=0, under a time-dependent stress σ ramp, we can

obtain multiple independent trajectories of A(σ), the fraction of gelled sites
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as a function of the external stress σ. This is to emulate conditions of
an unsteady forcing during macroscopic rhelogical measurements. In the
following, h is the average hits per site in the Gibbs sampler algorithm and
we define it also as the characteristic forcing time t0 for the stress ramp in
our ODE simulations. We set h = 1000 in order to reach steady state for
each value of σ. In Figure 16, the trajectories are shown as thin lines and
the curves for the ODE approximation have the � symbol on them. Note
the reversibility of the response of the material when β ∈ {0, 1} (top row
of Figure 16) upon increasing/decreasing applied stresses. The microscopic
model and the ODE approximation quantitatively agree quite well when
β < βc (βc ≈ 1.3), the threshold for three fixed points in [0, 1] for the
ODE model. As we increase β beyond the aforementioned threshold βc we
see that irreversible behaviour in the material appears and the comparison
between the two models (discrete and continuous) is only qualitative in
nature. This is due to the fact that our ODE approximation only models
a, instead of modelling the dependent pair (a,b) that is sufficient for the
energy, see Sec. 3.1. This effect can also bee seen if we compare the right
panel of Fig. 14 with Fig. 10(c). Clearly the light region of Fig. 10(c)
corresponds to the yellow region where the hysteresis is always present.
The main discrepancy is the value of βc. In the ODE approximation, the
calculated value is βc ≈ 1.3 whereas from the Gibbs sampler simulations one
obtains βGSc ≈ 1.5. As mentioned above this difference is due to the fact
that in the ODE approximation all bond interactions between neighbours
have been disregarded. Further details on improving the agreement between
the predictions of the approximating nonlinear dynamical system model
with those of the Gibbs field model are given in Sec. 4.4 and Fig. 9 in
Ref. Sainudiin et al. (2014).

As a qualitative remark one can note that even in the presence of strong
interactions β > βc, both models predict an increase of the steepness of
the solid fluid transition (defined as the slope of the dependence ā(t) on σ
around the point where ā ≈ 1/2).

Comparison between model by Putz and Burghelea Putz and
Burghelea (2009) and ODE approximation

In this section we will consider the model developed by Putz and cowork-
ers in Putz and Burghelea (2009); Gonzalez et al. (2011b). As already
highlighted in Sec. ??2, this model is phenomenological in the sense that,
unlike the Gibbs field model presented in Sec. 3.1 it is not derived from
first principles. In this type of modelling one mimics the behaviour of the
microstructure through the definition of a macroscopic structural variable
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Figure 16. Gibbs field and ODE approximation simulations with α = 8
and β ∈ {0, 1, 3}. The stress was increased from 0 to 25 in units of 0.01 and
decreased back to 0 with a holding time of t0 = 1000 (nearly asymptotic
state for each distinct stress) as the site configuration varied from 1 to 0 and
then back to 1. The curves with the symbol (�) are the ODE simulations.

with range in [0, 1], where 0 means completely unstructured or fluid and 1
means completely structured or solid. As explained in Sec. 2, the structural
variable ap satisfies a kinematic equation and usually depends explicitly on
the stress and/or rate of strain. In the case of the PMM Putz and Burghelea
(2009) we have:

d

dt
ap(t) = kr

[
1− tanh

(
σ − σy
w

)]
(1− ap(t))

− kd

[
1 + tanh

(
σ − σy
w

)]
ap(t). (23)

where kr is the rate of recombination of micro-structural units, kd is
the rate of destruction of the solid phase, σy is the yield stress and w is
a constant that controls how steep the change in the microstructure from
solid to fluid and fluid to solid is.

In Figure 17 we present the simulations of equations (22) and (23) for
three characteristic forcing times t0. As expected we have very good agree-
ment between the models. This could be considered as a qualitative ”proof ”
that the phenomenological models can actually approximate the behaviour
of the microscopic models derived from first principles.
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ā
p
(σ
)

t0 = 100

Figure 17. Comparison between ODE approxiamtion and the PMM by
Putz and Burghelea Putz and Burghelea (2009) detailed in Sec. 2 for dif-
ferent holding times t0. ODE model with α = 8 and β = 1, PMM with
kd = kr = 0.3, w = 0.5 and σy = 10. Full lines are the ODE approximation
and broken lines the PMM.

Determination of the yield point in the limit of a steady state
forcing A reliable estimation of the yield point is important to many
practical applications involving yield stress materials.This is typically done
by fitting steady state rheological measurements with models with various
degrees of complexity ranging from the mathematically simple and classi-
cal Herschel-Bulkley correlation up to structural models. Thus, it appears
natural to attempt in the following to obtain an estimate of the yield point
for the case of a steady state forcing from the nonlinear dynamical system
model presented herein.

To get an approximation for the yield point σy during a steady state
forcing process we will make the assumption (well supported by the results
presented in Figs. 16, 17) that, corresponding to the yield point, the abso-
lute value of the slope of the dependence ā∗(σ) passes through a maximum:∣∣∣∣dā∗dσ

∣∣∣∣ σ≈σy7−→ Max (24)

For simplicity, let us focus first on the non-interacting case, β = 0. From
Eq. 20 one can readily show that the condition 24 reduces to σy = α. Thus,
in the non-interactive case, the yield point obtained during a steady state
stressing practically coincides with the site specific threshold α of the Gibbs
field model.
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Figure 18. Dependence of the approximate yield stress shifted by the the
site specific threshold σ̃y = σy − α on the interaction parameter β. The
dashed line is σ̃y = β and the dash-dotted line is σ̃y = 2β. The circles
marks the critical point corresponding to βc ≈ 1.3.

We now consider the interactive case β 6= 0. To a leading order in ā∗

and assuming that around the yield point ā∗ ≈ 1/2 it can be shown using
Eq. 22:

dā∗

dσ̃

∣∣∣∣
σ≈σy

≈ eσ̃
[

1

(1 + eσ̃)
2 − 2

e−β

(1 + eσ̃e−β)
2

]
(25)

The implicit dependence of the approximate yield stress σ̃y on the in-

teraction parameter β may be obtained by solving numerically
∣∣∣dā∗dσ̃ ∣∣∣ = 0.

The result is presented in Fig. 18. For interactions weaker than the critical
threshold βc, the apparent yield stress scales as σ̃y = σ − α = β (the dash-
dotted line in Fig. 18). Beyond this threshold, the scaling becomes steeper,
σ̃y = σ − α = 2β (the dashed line in Fig. 18). To conclude this part, the
yield stress assessed via steady state controlled stress ramps is (according to
our model) expected to depend linearly on both the site specific threshold
α which may be intuitively understood as a measure of the strength of the
microscopic constituents of the fluid and the strength β of their interaction
and the slope of this behaviour switches when the strength of the interaction
passes through the threshold β = βc.

In Fig. 19 we investigate the dependence of right hand side of eqn. 25
with respect to σ̃ (left panel) and with respect to β (the right panel).

Regardless the value of the interaction parameter the stress dependence
of the slope passes through a local maximum marked by a full symbol in
Fig. 19(a). As previously explained, this may be considered as an indicator
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Figure 19. (a) Dependance of the slope of the dependence of ā∗ on the
applied stress on the yield stress for various values of β ranging from 0 to 2
(β increases from bottom to top). (b) Dependance of the maximum value

of the slope dā∗

dσ̃

∣∣∣
σ≈σy

given by Eqn. 24 calculated around the yield point

on the interaction parameter β.

of the yield point. While β increases, the location of this maximum shifts
towards larger stress values as already illustrated in Fig. 18. The value
of this maximum slope increases monotonically with β, the dashed line
in Fig.19(a). As we approach βc the slope diverges Fig. 19(b). This is
consistent with the fact that our steady solution becomes discontinuous as
a function of σ̃. Recall that we have a pitchfork bifurcation with stable fixed
points {0, 1}, hence the value of σy is not unique and depends on the initial
condition.

Description of linear controlled stress flow ramps

To demonstrate the practical usefulness of our approach, we focus in the
following on the description of an experimentally measured data set acquired
during a linear controlled stress flow ramp with a 0.2% (wt) aqueous solution
of Carbopol 980, the symbols in Fig. 20. The characteristic forcing time
for the rheological test was t0 = 2 s and the empty/full symbols refer to
the increasing/decreasing branch of the stress ramp. As already pointed
out, the control parameter of our model is an energy supplied to the lattice
rather than a true stress. Yet, in order to describe a one dimensional data
set, one can interpret the stress as the energy supplied per unit volume of
material and attempt to couple the evolution equation for the number of
sites in a gelled state to a constitutive relation.

To describe the experimentally measured flow ramp, the equation (22)
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Figure 20. Flow curve measured for increasing (empty symbols) and de-
creasing (full symbols) values of the applied stress. The full line is a fit
by the model by Putz and Burghelea Putz and Burghelea (2009) and the
dashed line is the prediction of the nonlinear dynamical system model.

describing the evolution of the micro-structural parameter ā(t) is comple-
mented by a Maxwell type thixoelastic constitutive equation (as in the case
of the PMM discussed in Sec. 2):

η(γ̇)

G
ā
dσ

dt
+ σ = η(γ̇)γ̇ (26)

where G is the elastic modulus, γ̇ the rate of shear and η(γ̇) = Kγ̇N−1 +

σy
1−e−m|γ̇|
|γ̇| is a Papanastasiou regularised Herschel-Bulkley viscosity func-

tion.
The best fits using both the model by Putz and Burghelea Putz and

Burghelea (2009) and the current approach are presented in Fig. 20 as full
and dashed lines, respectively.

The fit parameters for the model by Putz and Burghelea (the full line
in Fig. 20) are: σuy = 66.2 Pa, σdy = 63.45 Pa, kud = kdd = 0.1s−1, kur =

0.263 s−1, kdr = 0.95 s−1, wu = 0.93 Pa, wd = 0.143 Pa, Nu = Nd = 0.31,
Ku = 24.33 PasN , Kd = 27.12 PasN , Gu = 2036 Pa, Gd = 457 Pa.

The fit parameters for the nonlinear dynamical system approach (the
dashed line in Fig. 20) are: σuy = 64.38 Pa, σdy = 63.48 Pa, αu = 64.72,

αd = 62, βu = 0.73, βd = 0.98, Nu = 0.31, Nd = 0.3, Ku = 26.21 PasN ,
Kd = 27 PasN , Gu = 3929 Pa, Gd = 451 Pa.

The goodness of the fit by the current model is comparable to that by the
model by Putz and Burghelea (the PMM , see Sec. 2) which demonstrates
the practical usefulness of this approach. It is equally worth noting that,
for the Carbopol gel used in the rheological test illustrated in Fig. 20,
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the interactive parameter β obtained for each branch of the stress ramp is
smaller than the critical value βc ≈ 1.3 that defines the cross-over from a
reversible to irreversible yielding scenario. This indicates that the Carbopol
gels fall into the class of weakly interactive viscoplastic materials that show
no thixotropic effects in the limit of a steady state forcing.

To conclude this section, a fundamental understanding of the yielding of
a viscoplastic material may be obtained via a probabilistic approach devel-
oped using the main tools of the Statistical Physics similar to the Ising model
of magnetisation. Unlike the phenomenological approaches that typically in-
volve a rather large number of parameters some of which have an unclear
physical meaning (and, consequently, are difficult to assess experimentally),
this approach involves only two internal parameters: a site specific thresh-
old and the strength of interaction of neighbouring building blocks of the
viscoplastic material. These two parameters are responsible for a number
of experimentally observed features of the solid fluid transition: its onset
(the yield stress), its reversibility upon increasing decreasing stresses and
its steepness.

4 Viscoplasticity and hydrodynamic stability

The flows discussed so far through this chapter were hydrodynamically sta-
ble and the only source of nonlinearity in the momentum equation was re-
lated to the constitutive relation describing the viscoplastic material. The
aim of this section is to introduce the reader into the hydrodynamic stabil-
ity of yield stress materials. We discuss two distinct types of instabilities
involving viscoplastic materials. In Secs. 4.1, 4.2 we discuss the inertial
instability of flows of a viscoplastic material in a pipe flow and in a plane
channel flow, respectively. In 4.3 we discuss a low Reynolds number hydro-
dynamic instability triggered by a fast chemical reaction occurring at the
interface between two fluids which locally creates a yield stress material or,
in other words, a strong stratification of stresses.

4.1 Transition to hydrodynamic turbulence in a shear thinning
physical gel

In this section we summarise some key results of an experimental study
of the laminar, transitional and turbulent flows of a visco-plastic fluid in
a cylindrical pipe (Hagen-Poiseuille flow). For a more comprehensive ac-
count of the main results the reader is referred to Ref. Güzel et al. (2009).
As compared to the laminar flows previously studied through this chapter,
such flows are expected to be significantly more complex as two sources of
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non-linearity are present in the Navier-Stokes equation: inertial (related to
large Reynolds numbers) and rheological (related to the dependence of the
stresses on the rate of strain).

The motivation of studying the hydrodynamic stability of yield stress
fluids is three-fold:

1. Fluids of shear-thinning type with a yield stress abound in industrial
settings, as well as some natural ones. The particular particular mo-
tivation here comes from both the petroleum industry and the pulp
and paper industry, where design/control of the inherent processes
often requires knowledge of the flow state at different velocities. Sim-
ilar fluid types and ranges of flows occur in food processing, polymer
flows and in the transport of homogeneous mined slurries. Although
many of these industrial fluid exhibit more complex behaviour (e.g.
thixotropy, visco-elasticity, etc.), as noted by Bird, Armstrong and
Hassager Bird et al. (1977), the shear-dependent rheology is often the
dominant feature.

2. In line with the above, there is a demand from industrial application
to predict the Reynolds number (Re = UD/ν, where U is the average
velocity, D is the diameter of the pipe and ν is the kinematic viscos-
ity), or other bulk flow parameter, at which transition occurs, for a
range of fluid types, so that different frictional pressure closures may
be applied to hydraulics calculations above/below this limit. One of
the such earliest attempts, and probably still the most popular, was
that of Metzner and Reed Metzner and Reed (1955). Perhaps the
most obvious weakness with such phenomenological formulae is that
turbulent transition occurs over a wide range of Reynolds numbers
and not at a single number. For example, in careful experiments, Hof,
Juel and Mullin Hof et al. (2003) report retaining laminar flows in
Newtonian fluids up to Re = 24000, whereas the common observation
of transition initiating in pipe flows is at Re ≈ 2000. Thus, there is
a difficulty with interpreting the predictions of phenomenological for-
mulae, many of which we note were either formulated before a detailed
understanding of transitional phenomena has developed.

3. A third and most important motivation of such study is of a scientific
nature. Since Reynolds’ famous experiment Reynolds (1883), transi-
tion in pipe flows has been an enduring unsolved problem in Newto-
nian fluid mechanics. It is thus natural that there have been far fewer
studies of non-Newtonian fluids in this regime, either experimental or
numerical/theoretical. The intellectual challenge is related to dealing
with two sources of strong nonlinearity in the momentum equation
?? discussed in the Introduction: inertial and rheological - coming
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from nonlinearity of the stress-rate of strain relationship. The exist-
ing studies that have been conducted for shear- thinning viscoplastic
fluids leave a large number of intriguing questions unanswered. In
the first place, experimental studies by Escudier and Presti Escudier
and Presti (1996) using Laponite suspensions and by Peixinho and
coworkers Peixinho et al. (2005b) using Carbopol R© solutions have re-
vealed interesting flow asymmetries in the mean axial velocity profile
during transition, which have been largely unexplained. These have
been summarised by Escudier et al., Escudier et al. (2005).

Experimental setup and procedures All the results we report herein
are from tests performed in a L = 10m long flow loop with an inner diameter
of 2R = 50.8mm. The setup is illustrated schematically in Fig. 21. The flow
is generated by a variable-frequency driven screw pump fed to a carbon steel
inlet reservoir R1 of approximately 120 L capacity to an outlet reservoir
R2 of the same capacity. The pump can provide a maximum flow rate
of ≈ 22 l/s, which is equivalent to a maximal mean flow velocity of ≈
10 m/s. Two honeycomb sections are placed inside the reservoir R1 before
the tube inlet in order to suppress any swirl or other fluid entry effects. We
used a Borda style entry condition in which the pipe extended backwards
approximately 50 cm into the tank. Two honeycomb elements were inserted
into this section. The fluid reservoir R2 is pressurised to damp mechanical
vibrations induced by the pump motor and a flexible hose is used between
the pump and reservoir in order to diminish flow pulsations.

The flow structure has been investigated using the Laser Doppler Velovime-
try (LDV ) technique. A detailed description of the LDV optical arrange-
ment is given in Ref. Güzel et al. (2009). Two pressure transducers (PT1,2)
are located near the inlet and outlet of the flow channel, (Model 210, Series
C from www.gp50.com). These are bonded strain gauge transducers with
internal signal conditioning to provide a Vdc output signal in direct pro-
portion to the input pressure. The accuracy of each transducer is 0.02% of
the full scale and they were calibrated with an externally mounted pressure
gauge. Pressure drop readings ∆p were averaged over 150 s and used to
estimate the radius of the plug according to:

rp = 2L
σy
R∆p

(27)

Flow rates were estimated using two methods: (i) using an electromag-
netic flow meter (FM) installed near the outlet reservoir, see Fig. 21; (ii) by
numerically integrating the measured axial velocity profiles. The latter esti-
mate is used to calculate the relevant flow parameters reported through this
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Figure 21. Schematic view of the experimental setup: R1,2 - fluid reser-
voirs, P - pump, FM - flow meter, PT1,2 - pressure transducers, FT - fish
tank, CCD - digital camera, PB - laser Doppler velocimetry probe, PMT
- photomultiplier, BSA - burst spectrum analyzer.

section. The transversal profiles of the axial velocity have been measured at
a position Lm = 108D downstream where the flow is fully developed (corre-
sponding to a Reynolds number Re ≈ 3000 the entry length was estimated
Le ≈ 100D) .

The Reynolds number can be defined in a number of ways for a non-
Newtonian fluid. Here we define a generalised number that accounts for the
shear thinning of the solution across the pipe by:

ReG =
4ρ

R

∫ R

0

ū(r)

η [γ̇(r)]
rdr (28)

where ρ and η are the density and the effective viscosity of the fluid. The
latter depends on the strain rate of the base flow γ̇(r) which is calculated lo-
cally from the transversal profile of the time averaged axial velocity ū(r). As
a yield stress material we have used several aqueous solutions of Carbopol R©

940. As a first approximation, we consider here for simplicity a Herschel-
Bulkley constitutive relationship, η = σyγ̇

−1 + Kγ̇N−1 . As already dis-
cussed in Sec. 2, 1 the Herschel-Bulkley constitutive relationship does not
accurately describe the yielding of a Carbopol R© gel. In our context, the
main problem arrises from the term η(γ̇) which around the solid fluid tran-
sition diverges. The experimental measurements presented in Sec. 1 indicate
that prior to yielding the viscosity is very large but finite. The Herschel-

57



Bulkley correlation, however, remains useful to get an estimate for the yield
stress.

Transition to turbulence in the pipe flow of a shear thinning yield
stress fluid: phenomenological observations Before proceeding to
the main findings, it is instructive to first examine representative transversal
profiles of the time average velocity. To this end, we plot transversal profiles
of the time-averaged velocity ū as a function of ReG, see Figure 22 measured
with a 0.1% Carbopol R© solution at various ReG. At each radial position,
over one-hundred thousand instantaneous velocity measurements were used
in the ensemble average and the confidence interval for each point is very
small. It should be noted that the results have been made dimensionless
by scaling the ensemble average with the centreline velocity uc. Under
laminar conditions, that is with ReG < 1700, the fully developed laminar
profiles are included in these graphs as the solid lines. This was performed
in order to ascertain the validity of our results. For the higher flow rates,
we present cases for both transitional and turbulent flows. Dashed lines
are drawn to highlight an apparent asymmetry in the measurements. The
dashed lines were constructed by averaging the data at equivalent radial
positions on either side of the central axis. The asymmetry is apparent and
disappears once a fully turbulent flow regime is achieved. It is worth noting
that the asymmetry is systematic, i.e. these data were taken from time-
averaged data and the asymmetry is consistently in the same part of the
pipe for the same fluid. This persistent flow asymmetry runs contrary to the
intuitive notion that transitional flow structures, when ensemble averaged
over a suitably long time, should occur with no azimuthal bias. A similar
asymmetry has been reported by other groups in their experiments, see
e.g. Escudier and Presti (1996); Peixinho et al. (2005b); Escudier and Presti
(1996). The initial reaction to this rather unexpected flow asymmetry was
to look for and eliminate any directional bias in the apparatus or in the
flow visualisation technique. However, even after extensive precautions the
asymmetry still persists and is fully reproducible in subsequent tests and
for several concentrations of Carbopol R©(a more comprehensive discussion
adn additional data are presented in Ref. Güzel et al. (2009)).

To characterise the transition to turbulence in a Carbopol R© gel, the
turbulence intensity is monitored at various radial positions r/R. The tur-
bulence intensity is defined as I = urms

ū where urms stands for the root
mean square of the fluctuations of the point-wise velocity.

After a rapid increase through transition the turbulent intensity relaxes
as we enter the fully developed turbulent regime, 23. An important ex-
perimental observation is that transition does not involve a simultaneous

58



-1.0 -0.5 0.0 0.5 1.0

1.0

0.0

0.0

0.0

0.0

0.0

 

 

(a)

 

Cu
u

r/R
 

 

(a)

-1.0 -0.5 0.0 0.5 1.0

1.0

0.0

0.0

0.0

0.0

0.0

 

 

(b)

 

Cu
u

r/R

 

 

(b)

Figure 22. The transversal profiles of the time averaged velocity ū for 0.1%
(wt) Carbopol: (a) ReG=378(©), 937(�), 1160(4), 1735(5) and 2920(C)
(b) ReG=397(©), 914(�), 2001(4), 2238(5) and 2612(C). These data are
from replicate tests obtained from similar experimental conditions.

Figure 23. Turbulence intensity measured at r/R = 0 (circles), r/R =
−0.75 (up triangles) and r/R = 0.75 (down triangles) for a 0.1% (wt) solu-
tion of Carbopol R© 940.
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and sharp increase in turbulent intensity across the pipe radius. Instead
one may notice in Fig. 23 that the turbulent intensity begins to increase
at r/R = ±0.75 at markedly lower generalised Reynolds numbers than at
the centreline. This observation was systematically reproduced for several
other Carbopol R© solutions indicating that this transition scenario is rather
universal.

Figure 24. Instant puff images taken for 0.075% solution of Carbopol R© 940
at ReG = 1850 at different time instants: (a) t = 130ms, (b) t = 225.5ms,
(c) t = 255.5ms, (d) t = 320ms, (e) t = 422.5ms, (f) t = 447.5ms,
(g) t = 497.5ms, (h) t = 600ms, (i) t = 755ms, (j) t = 1117.5ms, (k)
t = 1155ms and (l) t = 1187.5ms.

To get additional insights into the evolution of the flow structure around
the onset of the laminar-turbulent transition, we resort to a qualitative
imaging of the flows. For this purpose, the flow was seeded with a minute
amount of Kalliroscope reflective flakes. Thus, turbulent ”puffs” passing
the point of observation cause mixing of the tracer particles which result
in ”grainy” flow image due to local changes in mean orientation (i.e. re-
flectance) of the seeding particles. Instant puff images obtained for a 0.075%
(wt) solution of Carbopol R© at a ReG close to the onset of the instability are
illustrated in Fig. 24. With these images we attempted to characterize the
size and velocity of the leading and trailing edges of the puff by an object
tracking method. We have also produced spatio-temporal plots of the im-
ages. Here the images are filtered and the variation of grey-scale intensity
at one axial position is reported as a function of time, see Fig. 25. What is
clear in this sequence of images is that an asymmetry is once more evident.
As compared to the Newtonian case (data not shown here but shown in Fig.
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Figure 25. Space time plot measured with a 0.075%(wt) Carbopol R© at
ReG = 1850 (a) obtained from raw images (a) obtained from filtered, back-
ground subtracted and binarised images. The puff length is ≈ 1.69 m. The
images sequence consisted of 320 frames.

10 of Ref. Güzel et al. (2009)), the leading edge of the puff is elongated and
is located in the vicinity of the wall. Moreover, the puffs observed with the
Carbopol R© solution will spread axially at a significantly slower rate than
those typically observed with Newtonian fluids. Another observation for the
case of a Carbopol R© solution is that the elongation of the leading edge gets
smaller with decreasing concentrations of Carbopol R©, i.e. the tip observed
in Fig. 25 is both reduced in size and located closer to the centre-line of the
pipe.

To summarise our observations, we measured the axial velocity as a
function of radial position using the LDV for several aqueous solutions of
Carbopol R© solutions undergoing Hagen-Poiseuille flow within a wide range
of Reynolds numbers. We find that for all the fluids tested there exists
a persistent asymmetry in the velocity profiles present during transition.
Symmetrical flows were found for both laminar and fully-turbulent cases.
These observations were confirmed using high speed imaging. No physical
explanation is given at this point. We do, however, attempt to quantify the
transition more precisely by presenting a more in-depth statistical analysis
of these results. To this is dedicated the next section.

Statistics of weak turbulence Landau and Lifschitz indicate that iner-
tially turbulent flows are traditionally characterised by random fluid motion
in a broad range of spatial and temporal scales, Landau and Lifschitz (1987).
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We have attempted to characterise these relevant scales using several sta-
tistical measures as indicated in Frisch (1995).

A first statistical measure is the Eulerian auto-correlation of the velocity
defined by:

C(t) =
〈u(t)u(t+ τ)〉τ

u2
rms

(29)

and determined using the LDV data. This quantity is a measure of the
time over which the instantaneous velocity u(t) is correlated with itself. In
other words, C(t) is bounded by unity as t approaches zero and by zero
as t→∞, because a process becomes un-correlated with itself after a long
time.

We report measurements of the temporal autocorrelation function as a
function of both ReG and the radial position in the pipe, Fig. 26. Before we
proceed to interpret these figures we must spend some time explaining how
the data is represented. Each figure is given as three panels, i.e. at three
different radial positions. Within each panel four data sets are presented
representing four different Reynolds numbers. The data series labeled (1)
and (2) represent laminar flow while (3) is in the transitional regime and (4)
in a turbulent regime. With regards to (1), which corresponds to the lowest
ReG, in each of the panels the velocity signal is probably dominated by high
frequency noise which results in a fast decay of C(t) with a characteristic
decay time which we find to be of the order of the inverse data rate of
the LDV signal. Proceeding through (4) we find the fully turbulent state
characterised by rapid decay of the autocorrelation to the noise level.

A striking difference is found in curve (2) in comparison to the other
curves. We observe that there are plateaus in these curves, for some radial
positions for each of the fluids, e.g. at C(τ) ∼ 0.4 for both r/R = ±0.75.
Although this data was obtained in a region which we define as laminar, it is
clear that there are some weakly correlated structures at this radial position
in the pipe. For the Newtonian fluid, the plateau in the autocorrelation is
at a lower value than for the non-Newtonian fluids and is visible also at the
centreline (data not sown here but detailed in Ref. Güzel et al. (2009)).
For the case of the Carbopol R© solution illustrated Fig. 26 the plateau is
strongly attenuated at the centreline, but evident at the radial positions
r/R = ±0.75. Using Taylor’s frozen flow hypothesis (Taylor (1938)) we
may estimate the axial length-scale of these structures to be ∼ 10−1m,
being longer for the Newtonian fluids than for the non-Newtonian fluids
(again, for a full account of this issue the reader is referred to Ref. Güzel
et al. (2009)). This is significantly lower than the size of the puffs and slugs
estimated via the high speed imaging technique. We comment also that
consistently with the flow asymmetry of the velocity profiles illustrated in
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Figure 26. Correlation functions measured for a 0.1% solution Carbopol R©

at three different radial positions: (a) r/R=-0.75 (b) r/R=0(c) r/R=0.75.
The data sets in each panel are: (1) ReG = 397, (2) ReG = 914, (3)
ReG = 2238, (4) ReG = 3309.

Fig. 22 an asymmetry is observed in many of the autocorrelations curves
as well.

Evolution of the the plug region during transition For yield stress
fluids the role of the plug region in retarding transition is largely unknown.
If one interprets the yield stress fluid to be fully rigid below the yield stress
then the laminar flow is analogous to that with the plug replaced by a solid
cylinder moving at the appropriate speed. Presumably, since the effective
viscosity becomes infinite at the yield surface the flow should be locally
stabilised. Two different scenarios may be postulated at transition:

1. transition may occur in the yielded annulus around the plug, leaving
intact the plug region;

2. transition is retarded until the plug region thins to such an extent
that the Reynolds stresses (in the annular region) can exceed the yield
stress.
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Figure 27. Axial Reynolds stresses normalized by yield stress for four
different concentration levels of Carbopol R©. The filled symbols indicate
points where the flow becomes transitional, with puffs/slugs first observed.

Scenario (i) is that described in Peixinho (2004); Peixinho et al. (2005a),
where during the first stage of transition the turbulence intensity level on
the centreline is reported as being similar to laminar levels. This is also the
scenario assumed explicitly in some phenomenological theories of transition,
e.g. sla (1999) treats the plug as a rigid body in developing his formula for
transition. In Figure 27 we present the ratio of averaged Reynolds stress
at the centreline (where the level of velocity fluctuations is minimum) to
the yield stress, as a function of the generalized Reynolds number ReG for
the four different Carbopol concentrations that we have used. The filled
symbols in figure 18 mark the lowest value of ReG for which puffs or slugs
were detected in the experiments, for each of the different concentrations of
Carbopol.

One can observe that the mean Reynolds stress exceeds the yield stress
in each case. This remains true even if we subtract the laminar flow fluctu-
ations from the Reynolds stresses, interpreting them as instrumental noise.
This suggests that the second explanation given above is the more plau-
sible, i.e. the viscoplastic plug has broken when transition starts. This
is further reinforced by the results of the previous section on the struc-
ture functions, i.e. at these transitional/weak turbulent Reynolds numbers
we have observed very similar intermittency characteristics with Carbopol,
right across the pipe radius, as with Xanthan, where there is no yield stress.
We should also comment that for the concentrations of Carbopol that we
have used, if we calculate the (laminar) un-yielded plug diameters using Eq.
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Figure 28. Plug radius normalized by pipe radius for four different con-
centration levels of Carbopol R© indicated in the insert.

27, for the largest flow rates for which puffs or slugs are not detected (see
Fig. 28) these plug diameters are at most of the order 2mm. Thus, we do
not anyway have a strong plug close to transition.

There is no contradiction with the data from Peixinho (2004); Peixinho
et al. (2005a), simply with its interpretation. Even with this thinning and
breakup of the plug, in the Reynolds number range preceding transition
flow instabilities are not sustained. Peixinho et al report in Peixinho et al.
(2005a) measuring low-frequency oscillations away from the central region.
Such low-frequency forcing, presumably with slow axial variation could eas-
ily be responsible for slow extensional straining that yields the true plug
of the base flow into a pseudo-plug. This type of psuedo-plug also occurs
for example in thin film flows Balmforth and Craster (1999), and in chan-
nels of slowly varying width Frigaard and Ryan (2004). In such flows the
velocity remains asymptotically close to the base flow solutions while shear
and extensional stresses combine to maintain the pseudo-plug at just above
the yield stress. Such flows are laminar but yielded and the psuedo-plug is
characterised by large effective viscosity, which would presumably give sim-
ilar characteristics to the base laminar flow in controlling fluctuation level,
as reported in Peixinho (2004); Peixinho et al. (2005a). From our measure-
ments of the velocity profiles, the mean velocity remains very plug-like in
the centre of the pipe in this upper range of laminar Reynolds numbers and
it is simply not possible to discern whether what is observed is a true plug
or not. Evidently the ideal situation would be to visualise transition within
a plug region of significant size in comparison to the pipe. Interestingly,
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this was the intention of our experiments. Our study was started after dis-
cussions with C. Nouar about ongoing experiments at LEMTA, Nancy, that
were later reported in Peixinho (2004); Peixinho et al. (2005a). These were
conducted in a 30 mm pipe at lower speeds, and for the flow rates at which
transition occurred the plug region had radius of the order of 1 mm: too
small to detect if broken or not. This prompted our interest in the role of
the plug during transition, and we therefore designed our experiments at
a larger scale so that we could potentially achieve transition with higher
yield stress fluids, in larger diameter pipes and at higher speeds, hopefully
also with a larger plug radius at transition. This objective could not be
attained, as the small values of rp/R in Fig. 28 indicate. Together with
the experiments in Peixinho (2004); Peixinho et al. (2005a), the results de-
scribed above contribute to the evidence that the plug region must thin to
such an extent that the Reynolds stresses can break it, before transition
commences.

4.2 Hydrodynamic stability of a plane Poiseuille flow of a Carbopol R©

solution within the PMM framework

We have argued in Sec. 1 of this chapter that the yielding scenario of
a Carbopol R© gel is somewhat more complex that one would have expected
and it can not be accurately described by the classical Herschel-Bulkley
framework. To circumvent these difficulties, we have proposed in Sec. 2 a
phenomenological model able to account for both a gradual solid-fluid tran-
sition and describe the elastic effects observed in both rheological (controlled
stress ramps) and table top (e.g. the sedimentation problem discussed in
Sec. 1 and illustrated in Fig. 1(b)).

The fundamental question we address in this section is: To what extent
the novel yielding scenario proposed in Sec. 2 could influence our under-
standing of hydrodynamic stability?.

At a first glance this question might appear groundless: the yielding
transition occurs at very low Re (typically Re � 1) whereas the loss of
hydrodynamic stability due to the inertial term in the momentum equation
occurs at significantly larger Re (typically Re > 1000) therefore what is the
physical connection between the two phenomena? Given a second thought,
the relevance of the yielding scenario to the hydrodynamic problem may
be defended as follows. The base flows usually considered in the linear
analysis of the hydrodynamic stability of channel flows of yield stress fluids
are characterised by a significant stratification of the velocity gradients:
large values near the channel boundaries which are consistent with a yielded
flow region and vanishing values near the centre-line, which are consistent
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with a plug region. The experimental investigation of the laminar-turbulent
transition in the pipe flow of a yield stress fluids we have briefly presented
in Sec. 4.1 and detailed in Ref. Güzel et al. (2009) demonstrates that
the transition to turbulence occurs when the Reynolds stresses balance the
yield stress of the fluid, that is when the plug is broken. These findings
corroborate well with the idea that, contrary to our initial intuition, the
nature of the solid-fluid transition and the yielding scenario may actually
play a role in the hydrodynamic stability problem.

To test this, we briefly discuss in the following the linear stability of
a plane channel flow of an elasto-viscoplastic material described by the
phenomenoligical presented in Sec. 2 and compare our results with the
results obtained from a Casson regularised constitutive relationship. For
the details of this analysis the reader is referred to Ref. Gonzalez et al.
(2011a).

The plane channel flow of the elasto-viscoplastic fluid is described by the
following set of equations depending on the variables (p,u, σ, ā):

ρ

(
∂u

∂t
+ (u · ∇) u

)
= −∇p+ ηs∇ · γ̇ +∇ · σ (30)

∇ · u = 0 (31)

where ηs is the solvent viscosity and γ̇ is the rate of strain tensor. The
constitutive relation is the one we have proposed in Sec. 2 in the framework
of the phenomenological yielding model but adapted to a tensorial form in
order to be coupled to the Navier-Stokes equation 30:

σ + λ (γ̇, ā)∇
−
σ = η [γ̇(u)] γ̇ (32)

where ∇
−
· = D·

Dt − ∇u · − · ∇uT is the upper convected derivative (D·Dt is

the classical material derivative), λ (γ̇, ā) = η[γ̇(u)]
G ā is the relaxation time

and G is the elastic modulus. The concentration of the unyielded material
ā satisfies the kinematic equation below:

∂ā

∂t
+ (u · ∇) ā = Rd [ā, σ(u)] +Rr [ā, σ(u)] (33)

As detailed in Sec. 2, Rd, Rr are the rates of destruction and re-formation
of solid structural units, respectively. The hydrodynamic stability problem
is governed by the Reynolds (Re), the Weissenberg (Wi) and the Bingham
(Bi) number defined as:
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Re =
ρLUmax

η
(34)

Wi =
λHUmax

L
(35)

Bi =
σyL

ηUmax
(36)

The relaxation time λH is defined here as λH = η∞
G with η∞ being the

infinite shear viscosity and G the elastic modulus. The plasticity number
is defined as the product between the Reynolds number and the Bingham
number, Pl = ReBi =

σyρL
η2 . Note that Pl depends solely on the rheological

properties of the fluid and the geometry of the problem, thus as we increase
Re in our analysis Pl will remain fixed. For this reason we chose Pl as
control parameter through our analysis.

As is common in linear stability analysis we consider an infinitesimal
perturbation (εu′, εp′) superimposed upon the base flow and linearise the
momentum Eq. 30 around around the base flow solution. We do not show
here the full development of the linear stability analysis (for these mathe-
matical details the reader is referred to Ref. Gonzalez et al. (2011a)) but
solely focus on the main results. Unlike pipe flows of Newtonian fluids which
are linearly stable at all Re, the plane Poiseuille flow becomes linearly un-
stable at ReNewt = 5772.

We have studied the onset of instability for two cases: the case of an
yield stress fluid described by the classical Herschel-Bulkley constitutive
relation and the case of a fluid described by the PMM. The dependence
of the normalised onset of the instability on the plasticity number for each
case is illustrated in Fig. 29.

As with the regularised Herschel-Bulkley model the existence of a pseudo-
plug region (spatially stratified viscosity) is sufficient to greatly enhance the
stability of the flow. The critical Reynolds number appears to be a mono-
tone increasing function of plasticity number Pl, just as with the regularised
viscoplastic model. We should also note that the inclusion of a highly viscous
viscoelastic fluid as a plug destabilises the flow when comparing it with the
regularised model (shown as the lower curve in Fig. 29). In relative terms,
when Pl = 1000 the critical Reynolds number for the elastoviscoplastic
model is 2.66% smaller than the critical Reynolds number for regularised
model. For Pl = 105 this percentage increases to around 6%, this is due to
the fact that the pseudo-plug and solid-fluid regions increase and are closer
to the wall. Thus, the central conclusion of this study is that the presence
of a solid-fluid coexistence transitional regime marked by the presence of
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Figure 29. Normalised critical Re for increasing Pl.

elastic effects which is properly accounted for by the PMM proposed in Sec.
2 has a destabilising role.

4.3 Unstable flows triggered by a fast chemical reaction

Generating high Reynolds number flows as illustrated in Sec. 4.1 may
sometimes prove to be un-practical, e.g. in the case of highly viscous fluids
flowing in spatially confined environments. An alternative way of break-
ing the hydrodynamic stability in the absence of any significant inertial
contribution (Re � 1) is to ”switch on” another source of nonlinearity in
the Navier-Stokes equation. This can be done by inducing a strong spatial
heterogeneity of the viscosity (and/or yield stress) in the flow. Although
the hydrodynamic stability of miscible shear flows with a strong monotonic
variation in viscosity has been analysed theoretically, ERN et al. (2003), we
have found no clear experimental demonstration of these instabilities. With
flows of simple Newtonian fluids, it is difficult to vary the viscosity locally
to induce an instability. With complex or ”structured” fluids, however, the
situation is significantly different: the rheology is strongly coupled to the
molecular scale organisation of the fluid. This opens a new possibility of
locally controlling the viscosity by inducing local changes in the molecular
structure via a chemical reaction. The advantage of such a method is that
a chemical reaction may be controlled by either mass transfer or by local
heating or cooling.

Here we demonstrate experimentally that a fast (acid-base) chemical
reaction taking place at the interface between two miscible fluids and re-
sulting in the local formation of a gel may indeed de-stabilise the flow in the
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Figure 30. Schematic overview of the reactive flow configurations: (a)
displacement configuration (b) Hele-Shaw parallel flow configuration. The
colours in each panel refer to the pH of the fluid - see text for description.

absence of any relevant inertial contribution. The chemical reaction takes
place at the interface between a Newtonian fluid (an aqueous of sucrose)
at pH ≈ 13 and an un-neutralised aqueous solution of Carbopol R© 980 at
pH ≈ 3.5. The neutralised Carbopol R© located around the interface of the
reacting fluids exhibits an yield stress behaviour and thus a large viscosity
contrast is generated in the flow. The pH dependent rheology is illustrated
in Fig. 31.

In a neutral state, the viscosity of the Carbopol R© solution is two orders
of magnitude larger than in the initial acid state (pH ≈ 3), panel (b) in Fig.
31 and the Carbopol R© solution exhibits yield stress, panel (c) in Fig. 31.

We show through this section that this spatially inhomogeneous fluid
rheology triggered by the acid-base reaction that locally neutralises the
Carbopol R© structural units leads to an inertia free hydrodynamic instability.
We have focused on two distinct flow configurations:

1. a displacement flow configuration where the less viscous Newtonian
fluid displaces the more viscous Carbopol R© solution, Fig. 30(a).

2. a parallel flow configuration where the two reacting fluids are injected
side by side, Fig. 30(b).
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Figure 31. (a) Strain rate dependence of the effective viscosity of the two
reacting fluids: circle - displaced Carbopol solution at pH = 3, squares -
displacing sucrose solution at pH = 13, triangles - neutralised Carbopol R©

solution(pH = 7). (b) pH dependence of the viscosity of the Carbopol R©

solution measured at γ̇ = 1s−1. (c) pH dependence of the yield stress of
the Carbopol R© solution.

Besides the fundamental interest in understanding how a stratification of
the viscosity influences the hydrodynamic stability of the flow, each of the
aforementioned flow configurations had a clearly defined practical motiva-
tion. The motivation for the displacement flow configuration illustrated in
Fig. 30(a) came from the construction of oil and gas wells. Since the early
1990′s there has been an increasing number of wells that are constructed
with long horizontal sections. The worlds longest extended-reach wells have
horizontal sections in the 10−15 km range, but these are exceptional. More
routinely, wells are built with horizontal extensions of up to 7 km. One of
the key barriers in constructing longer wells comes from simple hydraulic
friction. In a vertical well, both the pore pressure of reservoir fluids and the
fracture pressure of the reservoir rock increase with depth, approximately
linearly. Judicious choice of fluid density and circulating flow rates keeps
the well-bore pressure inside the so-called ”pore-frac envelope” i.e., the re-
gion where the porous rock does not fracture. In a horizontal well section,
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Figure 32. Example fluorescent images of the interface in an experiment
from control sequence: displacing fluid 65% saccharose solution, displaced
fluid - 66% saccharose solution. The flow rate Q̂ = 0.145ml/s. The two
images are separated in time by 5s.

the pore-frac envelope is unchanged with length along the well, but the fric-
tional pressure increases with length, leading to eventual breaching of the
envelope.

To avoid large pressure drops but yet achieve an efficient displacement,
our original idea was to locally increase the viscosity of the fluid only in the
vicinity of the interface (see the sketch in Fig. 30(a) ) rather than using
a high viscosity displacing fluid over the entire length of the pipe. A brief
discussion of the main experimental findings for this flow configuration is
given in Sec. 4.3. For a detailed account these findings the reader is referred
to Burghelea et al. (2007).

The second flow configuration illustrated in Fig. 30(b) might find some
useful applications in efficiently mixing viscous fluids in the absence of sig-
nificant inertial contributions, e. g. in micro-channels. A brief discussion
of the main experimental findings for this flow configuration is given in
Sec. 4.3. For a detailed account of these findings the reader is refered to
Burghelea and Frigaard (2011).

Unstable displacement flows in the present of a fast chemical reac-
tion A typical stable displacement experiment performed with two Newto-
nian fluids at low Re is illustrated in Fig. 32. A small amount of fluorescein
has been added to the displacing fluid in order to visualise the interface
between the two fluids. The fluid displacement process laminar, steady
and dominated by a long finger of the displacing fluid penetrating into the
displaced fluid.

The flow behaviour was significantly different from the control experi-
ments in the reactive case, when the Carbopol R© solution at pH = 3 was
displaced by a saccharose solution at pH = 11, at different flow rates. The

72



Figure 33. [(a) - (f)]Fluorescent images of the interface in a reactive dis-
placement: displacing fluid - 65% saccharose solution, displaced fluid- 0.1%
Carbopol R© in 66% saccharose solution. [(e) - (f)] Fluorescent flow images
long after the entrance of the unstable interface in the field of view; the im-
ages are separated in time by approximately 5 s. The dotted lines highlight
gelled structures tumbling downstream. The direction of the flow in each
panel is from right to left.

initial interface penetrates in a sharp spike as before, but this is destabilised
and the finger rapidly widens to nearly fill the pipe. A complex secondary
flow develops at the interface between fluids. The flow seems to be domi-
nated by large vortices advected by the flow, with a typical size of the order
of the pipe radius. Typical images are shown in Fig. 33. As the front of the
finger passes, the secondary flow instabilities persist along the sides of the
finger. The secondary flow provides a feedback mechanism for the instabil-
ity by bringing into contact new unreacted fluid elements and taking away
reacted highly viscous fluid. The initial pass of the finger front does not
remove all the fluid 2 from the walls. However, the secondary flows result
in a fairly rapid erosion of the residual layers. After the initial instability,
small parcels of Fluid 2 pulled into the Fluid 1 stream react to form gelled
solid regions that are advected along with the fluid. Close observation of
video images reveals that some of these parcels appear to be in rigid motion
see, e.g., Figs. 33(e) and 33(f).

To quantitatively assess the impact of the instability on the efficiency of
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Figure 34. (a) Normalised width of the tip vs the normalised displace-
ment distance, Û0t̂/R̂, for several values of the flow rate: Q̂ = 0.063ml/s,
Q̂ = 0.145ml/s, Q̂ = 0.19ml/s, Q̂ = 0.3ml/s. The experiments with
the Newtonian fluids pair that undergoes a stable displacement flow. (b)
Normalized width of the tip versus the normalized displacement distance,
Û0t̂/R̂ , for several values of the flow rate: Q̂ = 0.13ml/s, Q̂ = 0.18ml/s,
Q̂ = 0.2ml/s, Q̂ = 0.31ml/s, Q̂ = 0.47ml/s. The experiments belong to
the reactive sequence.

the fluid displacement we monitor the dependence of the normalised width
of the finger W

2R̂
(here R̂ stands for the radius of the pipe) versus the strain

γ = Û0 t̂

R̂
. Here U0 stands for the mean flow velocity and t̂ for the time.

When a Newtonian fluid pair is used, the displacement efficiency depends
strongly on the flow rate and, at the higher rate, does not exceed 0.9, Fig. 34.
This is what one would expect for a laminar flow and a displacing fluid less
viscous than the displaced one. The picture is quite different when a reactive
fluid pair is used. Due the flow instability, efficient mixing occurs near the
interface Fig. 33. As compared to the Newtonian case, two major differences
are observed. First, the temporal evolution of the displacement efficiency
is little sensitive to the flow rates: the points measured for various flow
rates collapse onto a single master curve. Second, the displacing efficiency
reaches now 0.98 indicating that the instability leads to a nearly complete
displacement which the desirable case for the oil well engineering context
we described in the beginning of this section.

Unstable parallel flows in the present of a fast chemical reaction

We now focus on reactive flows in a parallel flow configuration (Fig. 30(b))
where the reacting fluids are injected side by side. As in the case of the
displacement flow configuration discussed in Sec. 4.3, in the absence of a
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Figure 35. Space - time diagrams measured at a fixed driving pressure
drop ∆p = 500Pa at several locations downstream: (a) y = 3.2cm, (b)
y = 14cm, (c) y = 17cm, and (d) y = 35cm. The flow patterns have been
visualized using the laser induced fluorescence (LIF) technique. LIF flow
images acquired in the horizontal plane corresponding to each space - time
diagram are presented on the top row. The dotted lines in the bottom row
indicate the time instant when the LIF flow images have been acquired.
The concentration of Carbopol R© in the acid fluid was 0.1%.

chemical reaction the flow is linear, laminar and steady. Thus, the mixing
of the fluids is poor as it is carried on by molecular diffusion alone.

The spatial development of the flow downstream in the channel for the
reactive fluid pair is presented in Fig. 35, at an intermediate pressure drop
∆p = 500Pa. Four positions downstream are selected. The top row presents
a snapshot of the spatial structure at each position while the bottom row
presents space - time diagrams for a time period of 500s including the snap-
shot. The space - time diagrams are obtained by monitoring a single bright-
ness profile acquired at a fixed location across successive laser induced fluo-
rescence (LIF) images evenly spaced in time. The interface between the two
fluids is unstable from the very entry of the channel y = 3.2cm, Fig. 35 (a).
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As one advances downstream, the interface between the two fluids becomes
increasingly unstable and the degree of mixing increases, panels (b) - (d) in
Fig. 35. The diffuse layer visible near the interface in Fig. 35 (a) is sugges-
tive of a spreading reaction - diffusion front. We can observe unevenness of
the diffuse layer thickness at small spatial scales (which could correspond to
a reactive-diffusive instability), but we also see larger wavy variations in the
interface itself which are likely to have a hydrodynamic origin. This larger
scale waviness is evident in the spatiotemporal plot and appears to evolve
spatially along the channel while the diffuse interfacial layer is lost. On
the scale of the channel the characteristic diffusion timescale is much larger
than the advection timescale. This implies that the apparently random
mixing patterns illustrated in panels (b) - (d) are not related to molecular
diffusion but rather to a (chaotic) advection phenomenon. The degree of
mixing increases, extending across the entire channel Fig. 35 (c) and (d),
but it is remains intermittent with significant regimes of black and white
showing in the LIF images. This suggests that the mixing mechanism is in-
terfacially controlled, rather than by bulk fluid motion. Presumably those
interfacial regions that react quickly on mixing will form highly viscous (or
unyielded) layers. These layers may either separate regions of pure fluid
or may even encapsulate such regions through advective instability. Fluid
which is bounded by highly viscous (or unyielded) layers will respond much
less to local stress gradients. At the same time unstable motions will con-
tinue to bring new unreacted fluids into contact. This probably explains the
preservation of some larger scale structures together with seemingly diffuse
well mixed regions, as the flow progresses. In Fig. 35 (d) we see a more
longitudinal spatial structure developing. A plausible mechanism for this is
that the regions of unreacted fluid will move relatively fast along the chan-
nel and help to orient near rigid regions with the flow. These regions may
agglomerate, but in doing so will move slower and hence have an increased
possibility of further growth via agglomeration.

5 Non-isothermal problems involving yield stress
materials

5.1 Thermo-rheological behaviour of a shear thinning yield stress
material

Whereas a clear progress towards understanding the isothermal defor-
mation of viscoplastic materials has been made, there exists a limited num-
ber of studies dealing with temperature dependent viscometric and non-
viscometric flows of Carbopol R© solutions. An experimental study of the
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heat transfer in the transitional pipe flow of a Carbopol R© solution is pre-
sented in Peixinho et al. Peixinho et al. (2008). The authors of this study
consider a Herschel - Bulkley type yielding scenario and analyse their rhe-
ological measurements accordingly. The hydrodynamic stability of the flow
and the heat transfer problem are discussed in terms of the rheological
properties of the material and their temperature dependence.

The previous studies regarding the thermorheology of Carbopol R© gels
may be divided in two classes. A first class of previous rheological stud-
ies found a ”normal” temperature correlation of the rheological properties
that can be modeled by the Arrhenius law, Islam et al. Islam et al. (2004),
Peixinho et al. Peixinho et al. (2008), Alain and Bardet Alain and Bardet
(1982), and Fresno et al. Contreras et al. (2001) has been found. Islam
and coworkers found an Arrhenius scaling of the viscosity of the Carbopol R©

gel with temperature which gave rather low values of the activation energy,
∆Ea consistent with a low temperature sensitivity Islam et al. (2004). The
gels studied in this work were prepared in a glycerol solvent which behaves
as a rheologically simple fluid and has a rather large flow activation en-
ergy Magazu et al. (2007) which could potentially ”mask” a significantly
weaker anomalous behaviour related to the swollen gel network. Peixinho
and his coworkers found no temperature dependence of the power law index
and yield stress and an Arrhenius type decay of the consistency, Peixinho
et al. (2008). They have used a neutralized 0.2% (wt) aqueous solution of
Carbopol R© 940 and a controlled stress rheometer (AR2000 from TA Instru-
ments) equipped with a steel 0.5 deg cone/40 mm plate and truncation of
15µm. It is worth noting that the maximum temperature investigated in
Ref. Peixinho et al. (2008) is as large as 85oC (and therefore the fluid evap-
oration could have played a significant role during the measurements) and
that the scatter of their yield stress measurements accounts for nearly 30%
of the measured values which makes the observation of a particular trend
difficult. There exists a second class of previous rheological studies which
observe an anomalous temperature - viscosity correlation (an increase of the
viscosity with the temperature), Owen et al. (2003); Park and Jr. (1997);
Park and Irvine (1997); Todica et al. (2010). Barry and coworkers were
among the first to provide a very complete description of the rheological
properties of Carbopol R© at various temperatures by combined shear mea-
surements, creep measurements and small amplitude oscillatory measure-
ments, Barry and Meyer (1979a,b).

Although the general conclusion drawn in Ref. Barry and Meyer (1979a)
is that the rheological properties of Carbopol R© gels are practically insen-
sitive to temperature variations (their flow activation energy is small), the
authors did observe an anomalous temperature dependence of the viscosity
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(see the discussion in page 8 of Ref. Barry and Meyer (1979a)) but they
discard the observation by noting ”As an increase in apparent viscosity is
inconsistent with an activation energy for viscous flow these data were not
used to derive such values”. By using a Brookfield Model DV-III Digi-
tal Rheometer (Brookfield Engineering Laboratories Inc., Stoughton, MA,
USA) and a cone and plate configuration, Owen and coworkers observed an
anomalous temperature viscosity correlation for two neutralized polyacrylic
acid derivatives used in contraception under the trade names ”Advantage-
S” and ”KY - Plus”, Owen et al. (2003). In the same study, however,
for two other contraceptive gel formulations, ”Ginol II” and ”Conceptrol”
and by using the same rheological procedure, a ”normal” (Arrhenius like)
temperature correlation of the viscosity is observed. This indicates that
the correlation between the temperature and the rheological behaviour is
intrinsically related to the physico-chemical properties of the gel mixture.

By using a falling needle viscometer, Park and Irvine observe in Park
and Irvine Refs. Park and Jr. (1997); Park and Irvine (1997) an anomalous
temperature dependence of the viscosity of Carbopol R© 934 at three distinct
concentrations (which they express in parts per million): c = 5000ppm,
c = 7500ppm and c = 10000ppm. They did not elaborate any further on
this rather unexpected result but they did note, however, that ”Perhaps this
phenomenon originates from a structural change of the polymer molecules
with concentration and temperature”. The most recent observation of an
anomalous behaviour we are aware of is due to Todica and coworkers Todica
et al. (2010). They have performed their measurements on a Brookfield DV
II Pro viscometer, using cylindrical spindle. A detailed explanation for this
anomalous behaviour is not given in this paper either.

Both classes of previous works briefly discussed above have, most prob-
ably, a limited number of things in common which makes a pertinent com-
parison quite difficult. Although they use a variety of rheometric equipment
(note that these studies span the last four decades during which the rheo-
metric devices have significantly evolved) it is, in our opinion, unlikely that
the differences in the observed temperature correlations are due to this.
This idea corroborates with the fact that sometimes, within the same study
(thus using the same device and rheological method) both a ”normal” and
”anomalous” behaviour are found, depending on grade of Carbopol R© used,
Owen et al. (2003).

At a second analysis of the bibliography given above, one can find how-
ever other significant differences between these studies: the physico-chemical
properties of the gels. Thus, various studies used various grades of Car-
bopol (934, 940, Ultrez 10 etc.) or even custom gel formulations, Owen
et al. (2003). Additionally, many of these studies do not discuss in detail
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the chemical nature of the cross-linking agent, the ionic content and the
interaction of the polyacrylic acid molecules with various types of solvent
used (water, water/ethanol mixtures, water ethylene/glycol mixtures and
glycerol).

To conclude this part, a pertinent comparison and analysis of the existing
body of literature on the thermorheological properties of Carbopol R© is diffi-
cult to make based on the published results. This is due in our opinion to an
incomplete understanding and control of the physico-chemical interactions
that govern the cross linking, ionization, swelling and jamming dynamics
of the individual molecules. Each of these molecular scale physico-chemical
processes are temperature dependent (and they are characterized by their
own chemical activation energies which are largely unknown) and the overall
temperature dependence observed in a macroscopic rheological experiment
is the result of a highly non trivial ”average” of these microscopic depen-
dencies. We discuss in the following the thermorheological properties of a
Carbopol R© gel under shear. For a more comprehensive account of the main
results, the reader is referred to Ref. Weber et al. (2012).

Experimental setup and methods To prevent the wall slip, a parallel
plate geometry with cleated surfaces has been used, Fig. 36(a). The radius
of the parallel plates is R = 40mm and the gap measured by the rheometer
is d = 1mm. The cleats have an equal height H = 600µm and are disposed
in a rectangular grid over each plate. Several advantages of cleated geome-
tries over other methods of preventing the wall slip effect (such as using
a sand blasted geometry or a vane tool) have been recently demonstrated
experimentally, Nickerson and Kornfield (2005). Among these advantages,
the cleated geometry allows suppression of the wall slip effect even in the
absence of significant normal forces and creates a well defined shear.

The flow between neighbouring cleats is restricted and stops over a fi-
nite distance ∆ (the flow penetration length) along the vertical axis (see
Fig. 36(a)) and thus, two parallel no-slip surfaces are formed at an effec-
tive distance de = d + 2∆. Consequently, the stress measurements should
be corrected according to σ = σa

de
d where σa is the apparent stress value

recorded by the rheometer. A second concern was related to the possi-
ble artifacts introduced by fluid evaporation during long experimental runs.
In order to prevent this, a solvent trap has been placed around the free
fluid meniscus. The sealing of the solvent trap on the base plate of the
rheometer has been insured by a thin layer of vacuum grease. After each
experimental run it has been carefully checked (by visual inspection) that
no significant changes in the shape of the meniscus occurred. Additionally,
we have checked at the end of each run that one can reproduce the viscosity
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Figure 36. (a) Schematic illustration of the cleated parallel plate geometry.
(b) Temperature calibration measurements. The symbols are: circles - the
top plate, squares - the bottom plate. A thermorheologically simple silicon
oil with a known activation energy has been used.

measured during the pre-shear step which indicated us that the evapora-
tion effects were either minimal or absent. A third concern is related to the
temperature gradient which develops within the space between the parallel
plates of the measuring geometry. To monitor and account for this effect,
two temperature probes have been embedded in each of the parallel plates of
the geometry. The temperature of each plate (Tt, Tb) has been measured as
a function of the temperature set to the Peltier plate of the rheometer Tpp in
the range 5−55oC. Beyond this range of temperatures, we have found that
the measurements are not reproducible (a scatter of nearly 75% over several
subsequent runs with fresh samples was observed) and, consequently unre-
liable. During these measurements, a Carbopol R© sample was loaded but
the top plate of the rheometer was held static. The transient temperature
signals have been monitored using a digital oscilloscope and each temper-
ature reading has been made only after the temperature of each plate has
reached a steady state. Calibration measurements of the temperature at
the top and bottom plate of the rheometer as a function of the temperature
set to the Peltier plate are presented in Fig. 36(b).

As the temperature set to the Peltier plate, Tpp, departs the room tem-
perature, a linear increase of temperature difference between the top and
the bottom plates is observed. By measuring the temperature difference
between the plates at a fixed temperature of the Peltier plate for various
values of the distance d between the plates, it has been checked that the
temperature varies linearly within the gap. This allowed us to define an
effective temperature of the sample as an arithmetic mean of the tempera-
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Figure 37. Validation of the cleated geometry and stress correction. The
symbols are: circles- cone and plate geometry, squares - the cleated geometry
illustrated in Fig. 36(b). A thermorheologically simple silicon oil with a
known activation energy has been used.

tures of the top and the bottom plates of the rheometer, T = (Tt + Tb)/2.
The reliability of the stress and temperature corrections described above has
been assessed by comparative thermo-rheological measurements performed
on a calibrated silicon using both the cleated geometry described above (to-
gether with the stress and the temperature corrections) and a standard cone
and plate geometry. The result of this comparison is presented in Fig. 37.

The viscosity measurements performed on the two geometries come into
a perfect agreement which indicates that both the stress correction related to
the cleated geometry and the temperature correction related to the temper-
ature gradient between the parallel plates are reliable and can be safely em-
ployed in the thermo-rheological measurements concerning the Carbopol R©

gel.

Thermorheological properties of a Carbopol R© gel Each of the thermo-
rheological measurements performed with Carbopol R© gels followed the pro-
cedure Sec. 1. More specifically, corresponding to each avearage tempera-
ture T the material has been subjected to a controlled stress stepped ramp
similar to the one schematically illustrated in Fig. 3(a) and flow curves
qualitatively similar to those illustrated in Figs. 3(b), 4(c), 7(a) have been
recorded. The characteristic forcing time (see Sec. 1 for a detailed dis-
cussion) has been kept constant, t0 = 0.66s. For each up/down controlled
stress ramp 1000 linearly spaced stress values have been explored ranging
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Figure 38. (a)Temperature dependence of the elastic moduli, measured
from the increasing (the empty symbols) and decreasing (the full symbols)
branches of the controlled stress ramp. (b) Temperature dependence of
the consistency.(c) Temperature dependence of the power law index. The
symbols in each panels refer to different Carbopol R© weight concentrations:
squares -c = 0.1%, triangles - c = 0.15%, circles - c = 0.2%.

between 0.1 Pa and 20 Pa.

The advantage of this rheological protocol is two-fold. First, it allows the
simultaneous assessment of both elastic and viscous rheological parameters.
Second, it allows a more accurate measurement of the yield stress within the
phenomenological framework briefly introduced in Sec. 2 (and detailed in
Ref. Putz and Burghelea (2009)) and thus avoiding the inherent inaccuracies
related to the classical Herschel - Bulkley nonlinear fitting procedure.

At low values of the applied stress corresponding to the solid deforma-
tion regime (ā → 1) the elasto-viscoplastic constitutive relation defined by
Eq. 8 reduces to the Hooke’s law, σ = Gγ. Bearing in mind that the con-
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Figure 39. Temperature dependence of the yield stress measured for three
distinct values of the Carbopol R© concentration: squares -c = 0.1%, triangles
- c = 0.15%, circles - c = 0.2%. The dashed line marks the transition from
an Arrhenius temperature dependence to a non-Arrhenius one.

trolled stress ramp is linearly spaced in time, this provides us with a quick
way of estimating the elastic modulus by monitoring the plateau observed
in the solid range on each branch of the stress ramp (increasing/decreasing
stresses). The measured dependence of the elastic moduli Gu, Gd measured
on the increasing/decreasing branches of the flow ramp (full/empty sym-
bols) performed with Carbopol R© are presented in Fig. 38(a). The error
bars have been calculated be repeating each test four times with a fresh
sample. Within the accuracy of the measurements, no sensitive temper-
ature dependence of the elastic moduli is observed (but only an obvious
dependence on the concentration of Carbopol R©). Thus, the solid-like de-
formation observed in a range of low applied stresses is inconsistent with
a rubber-like behavior, which typically manifests through a proportional
increase of the elastic modulus with the temperature, Larson (1999).

By fitting controlled stress ramps measured at various temperatures with
the phenomenological model presented in Sec. 2 one obtains the tempera-
tures dependencies of the consistency K, power law index n and the yield
stress σy. Similarly, neither the consistency presented in Fig. 38(b) nor
the power law index presented in Fig.38(c) depend on the temperature but
solely on the polymer concentration. The invariance of the consistency with
the temperature is at odds with the observations by Peixinho and coworkers
which indicate an Arrhenius type exponential decay of the consistency with
the temperature, Peixinho et al. (2008).
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A strikingly different behaviour is observed for the temperature depen-
dence of the yield stress σy, Fig. 39. Corresponding to a critical temperature
Tc a local minimum of the dependence is observed. This unexpected be-
havior has been observed for each value of the Carbopol R© concentration
and the non-monotone trend of the curves clearly highlighted by the dashed
line in Fig. 39 falls beyond the error bars of the measurements. The crit-
ical temperature Tc marks the transition from a Arrhenius like behaviour

described by σy = σ0
ye

∆Ea
RT (the full lines in Fig. 39)) to a anomalous non Ar-

rhenius one and decreases with increasing Carbopol R© concentration. Here
∆Ea and R stand for the activation energy and the universal gas constant,
respectively.

As the observation of an anomalous temperature dependence of the yield
stress (and implicitly of the viscosity measured at a given applied stress,
because the consistency and the power law index are temperature invariant,
Figs. 38(b), 38(c)) was quite unexpected and intriguing (particularly the
increase of σy for T > Tc ), the calibration measurements presented in
Fig. 39 have been repeated several times and subsequently reproduce this
result. As the same stress calibration and temperature correction have been
employed for all the measurements performed on the various Carbopol R© gels
as in the case of the calibration measurements illustrated in Fig. 37, we may
safely rule out the possibility that the anomalous temperature dependence
observed in Fig. 39 is the result of an experimental artefact.

Attempting to qualitatively understand the temperature dependence of
the yield stress above the critical temperature within the classical frame-
work of the Arrhenius law would quickly lead to an unphysical conclusion:
the activation energy is negative which apparently violates the second law
of thermodynamics. This prompts one to seek an explanation for the exper-
imentally observed anomalous behaviour beyond the ”classical” Arrhenius
framework. To this discussion we dedicate the next subsection.

A possible qualitative explanation for the anomalous
temperature dependence of the yield stress

The Arrhenius viscosity - temperature correlation emerges as a particular
case from the a more general theory developed by Henry Eyring which
described the fluid flow as an activation process, Eyring (1936); Ree and
Eyring (1955a,b). At its turn, the Eyring theory of flow as an activated
process emerged as a particular case of the Theory of Rate Processes which
has significantly reshaped the modern chemical physics, Glasstone et al.
(1941). We briefly present in the following the main results of the Eyring
theory.
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For a detailed discussion, we refer the reader to the classical textbook by
Bird, Stewart and Lightfoot Byron et al. (2002). Similarly to the excitation
of atoms from their ground state to various energetic levels, Eyring has in-
terpreted the motion of a ”flow unit” (we use the term originally employed
in Ref. Eyring (1936)) along a given direction x as a tunnelling process of
an energy barrier. Although the Eyring flow activation theory has been em-
ployed by several authors to explain the yielding in extension of amorphous
polymers Richeton et al. (2005); Bauwens-Crowet et al. (1972), we are not
aware of any similar work for viscoplastic materials under shear.

In the absence of a shear force, the energy barrier associated to the
displacement of the neighbouring material layers along the x direction is
symmetric and, consequently, the probabilities of hopping (or hopping rates)
along and opposite to the x direction are equal, ν+ = ν− = ν0e

∆Ea
RT . Here

ν0 is the equilibrium hopping frequency, ∆Ea the activation energy per mol
of material and R the universal gas constant.

When an external shear force f+ is applied onto the material layers along
the direction x, the symmetry of the activation energy barrier is broken,
∆E−,+ = ∆Ea ± f+DNA) where NA stands for the Avogadro’s number
and D is a characteristic space scale (measured along the shearing direction,
” + ”) associated to the gel network. Consequently, the hopping rates along
and opposite to the direction of the shearing force ν+, ν− are no longer equal
and an effective hopping rate along the direction of the imposed shear can
be calculated by the difference:

ν = ν+ − ν− = 2ν0e
−∆Ea

RT sinh

[
f+D

2kBT

]
(37)

Denoting by A the characteristic shearing area between two neighbouring
gel elements and interpreting the effective hopping rate as a microscopic rate
of shear ν = γ̇, one can invert Eq. 37 and obtain the viscosity1:

η (γ̇, T ) =
2kBT

V ∗γ̇
sinh−1

[
γ̇

2ν0
e

∆Ea
RT

]
(38)

where V ∗ = AD stands for a characteristic volume of the gel network. In
the case of a Carbopol R© gel, we expect V ∗ to be a non trivial function of
the molar mass of the polyacrylic acid, the polymer concentration and the
pH which controls the degree of swelling of individual molecules, Gutowski
et al. (2012).

For simple fluids it is often assumed that:

1In the derivation of Eq. 37 has been related to the shearing force via η (γ̇) =
f+
Aγ̇

.
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f+D

2kBT
� 1 (39)

and Eq. 38 reduces to the well known Arrhenius law2:

η (γ̇, T ) =
kBT

V ∗γ̇
e

∆Ea
RT (40)

To test the applicability of the simplifying condition given by the in-
equality 39 for the case of a Carbopol R© gel, one can consider as a typical
space scale related to the gel network D ≈ 1µm, A ≈ 1µm2 (which are
of the same order of magnitude with the values assessed via diffusion mea-
surements reported in Refs. Oppong et al. (2006); Oppong and de Bruyn

(2007)) and σ = 1Pa which leads to f+D
2kBT

≈ 240.
These simple numerical estimates indicate that, in the case of a perco-

lated Carbopol R© gel structure, one should not expect the simplified Ar-
rhenius law to apply in the whole range of temperatures and one should
consider instead the full Eyring dependence given by Eq. 38.

If one assumes that V ∗ is temperature invariant 3, it can readily be
shown that there exists a critical temperature Tc corresponding to which
the viscosity given by Eq. 38 passes through a local minimum. By solving

numerically the equation ∂η(γ̇,T )
∂T = 0 it can be readily shown that the criti-

cal temperature Tc which marks the transition from a thermo-rheologically
simple (Arrhenius like) behaviour to a anomalous one is a decreasing func-
tion of γ̇

ν0
at a fixed value of the activation energy ∆Ea.

We emphasize once more that the Eyring model does not directly refer to
the temperature dependence of the yield stress but to that of the viscosity.
However, within a Herschel - Bulkley framework and due to the temperature
invariance of both the consistency and the power law index (see the data
presented in Figs. 38(b), 38(c)), the yield stress σy at a given temperature
T is a linear function of the viscosity measured at the same temperature and
a fixed rate of shear, σy = η (γ̇, T ) γ̇ −Kγ̇n. Thus, one can conclude that
the Eyring theory may qualitatively describe the anomalous temperature
dependence of the yield stress illustrated in Fig. 39.

We propose in the following a simplistic phenomenological interpretation
for the existence of a critical temperature Tc beyond which an anomalous

2This can be easily seen if one retains from the series expansion of the right hand side

of Eq. 37 only the first order term.
3This is for now only a plausible assumption and a direct experimental investigation

by fluorescent visualisation of the gel network as recently performed by Gutowski and

coworkers Gutowski et al. (2012) would be highly needed to test it.
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temperature correlation is observed. The microstructure of a polyacrylic
microgel system statistically described by the characteristic volume V ∗ is
the result of two competing effects: swelling of individual microgel particles
and osmotic de-swelling.

Following Cloitre and coworkers Cloitre et al. (2003) and Borrega and
coworkers Borrega et al. (1999), the swelling behaviour of a polyelectrolyte
gel is governed by three contributions: the mixing entropy of the poly-
mer molecules, the balance of osmotic pressure exerted by the counter-ions
trapped within the micro-gel particles and the pressure of the ions present
in the solution and the elasticity of the gel network. At a neutral pH the
degree of ionization a of individual polyacrylic acid molecules is high and,
consequently, the mixing entropy can be neglected in the swelling equation:

Πin + Πe = Πout (41)

Here Πe stands for the elastic pressure exerted upon the micro-gel particles
and Πin, Πout stand for the osmotic pressures due to the mobile ions inside
and outside the microgel particles. The osmotic pressures are related to the
concentrations of ions Cin, Cout via Πin,out = RTCin,out. Assuming that
all ions are contained within the micro-gel particles (which is reasonable
provided that no salt is added to the system) Eq. 41 reduces to Πin =
Πe. The concentration of ions trapped into the micro-gel particles may
be written as Cin = αC0zQ

−1 where C0 is the average concentration of
polyacrylic acid inside the micro-gel particles, α is the degree of ionisation,
z the molar fraction of acidic groups and Q = V ∗/V0 is the swelling ratio
(V0 is the characteristic volume of the un-swollen micro-gel particles).

Because the macroscopic elastic modulus reflects the microscopic scale
elasticity of the micro-gel structure, the temperature invariance illustrated
in Fig. 38(a) indicates that the elastic pressure of the gel network Πe is
temperature invariant. With these considerations, a simple algebraic ma-
nipulation of Eq. 41 would lead to the conclusion that the swelling ratio
is proportional to the temperature or, equivalently V ∗ ∝ T . Thus, within
this regime, the pre-factor in Eq. 38 is practically temperature independent
which explains why the temperature dependence of yield stress (viscosity)
can be fairly well described by an Arrhenius type correlation, see the full
lines in Fig. 39. The osmotic de-swelling occurs when counter-ions may
escape from the core of microgel particles into the solution by penetrating
the outer shell of the particles where the local electro-neutrality condition
is not fulfilled. The fraction Γ of these counter-ions is proportional to the
Debye length, Γ ∝ λD, Cloitre et al. (2003); Israelachvili (2010). Bearing in
mind that the Debye length scales as T 1/2 one can conclude that an increase
of the temperature translates into an increase of the number of counter-ions
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that leave the micro gel particles which promotes the de-swelling process.
According to Cloitre and his coworkers Cloitre et al. (2003), if one accounts
for the competing effects of the swelling and osmotic de-swelling and if one
denotes the volume fraction of microgel particles by Φ, the concentrations
Cin,out may be rewritten:

Cin =
α (1− Γ) zC0

Q
(42)

Cout =
αΓzC0

Q

Φ

1− Φ
(43)

A dynamical equilibrium between the swelling and the osmotic de-swelling
may be achieved when the concentration of ions trapped within the mi-
crogel particles becomes comparable to that of the counter-ions that leave
the micro-gel particles, Cin ≈ Cout. This, together with Eqs. 42 and with
the square root temperature scaling of Γ indicate the existence of a criti-
cal temperature Tc and a critical characteristic volume defied implicitly via
Γc = 1 − Φc. Beyond this critical temperature Tc, the osmotic de-swelling
wins over the swelling and a further increase of the characteristic volume V ∗

with the temperature is no longer possible. Consequently, the pre-factor in
Eq. 38 is proportional to the temperature which translates into the anoma-
lous behaviour observed in Fig. 39. For high polymer concentration, the
range of temperatures within which individual molecules can freely swell
upon an increase of the temperature becomes narrower and the critical con-
dition will be fulfilled at a lower temperature Tc. As a consequence, within
this phenomenological picture, one should expect a decrease of the critical
temperature Tc with increasing Carbopol R© concentration. This trend is
apparent in Fig. 39. A quantitative description of the data presented in
Fig. 39 by the Eyring model could not be obtained. The reason behind this
might be that Eq. 38 considered a single (plastic) ”flow unit” characterised
by a single specific volume V ∗ related to the average size of the percolated
gel network. A more realistic model should account for the presence of the
Newtonian solvent (in our case the water trapped into the swollen polymer
network) and a realistic statistical distribution of V ∗. Such a statistical dis-
tribution is difficult to predict theoretically from first principles and, most
probably should be tackled experimentally by direct visualization of the
polymer network, as very recently performed in Gutowski et al. Gutowski
et al. (2012).
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5.2 Rayleigh-Bénard convection in a shear thinning yield stress
material

The Rayleigh-Bénard convection in a fluid heated from below is a paradigm
of pattern forming systems, Cross and Hohenberg (1993).

Imposing a vertical temperature gradient within a Newtonian fluid by
heating it from below translates into a vertical gradient of the fluid density
or buoyancy which, beyond a critical value of the temperature gradient
∆Tc, may overcome the viscous dissipation and trigger an upwards motion
of the fluid elements. Within a finite size system and in the virtue of the
mass conservation, this instability results into a regular and steady fluid
motion in the form of rolls or hexagons which is classically referred to as
the Rayleigh-Bénard thermal convection.

The transition to laminar Rayleigh-Bénard convection in Newtonian flu-
ids has been intensively studied during the past five decades both theoret-
ically and experimentally. Among a large amount of published work on
the topic, we can refer the reader to textbook of Koschmeider Koschmieder
(1993) and the review article by Bodenschatz, Pesch and Ahlers , Boden-
schatz et al. (2000).

A Newtonian fluid heated from below loses its hydrodynamic stability
when the stresses associated to the buoyancy forces exceed those associated
to the viscous dissipative forces.

The balance between the buoyancy and the viscous forces is quantified
by the Rayleigh number:

Ra =
β∆TgH3

k · ν
(44)

where β is the coefficient of thermal expansion, g the gravitational constant,
k the thermal diffusivity, ν the kinematic viscosity, ∆T the temperature
difference measured between the plates andH is the distance between plates.
It has been shown both theoretically and experimentally that the onset of
the convection corresponds to Rac ≈ 1708.

Within the Boussinesq approximation, it has been demonstrated the-
oretically that the Rayleigh - Bénard convection emerges via a backward
bifurcation (which may become an imperfect bifurcation in a finite sys-
tem) and its onset can be described via a linear theory, Joseph (1970); Sani
(1964). Moreover, it is demonstrated that a finite amplitude bifurcation is
not possible in this case.

If Q is the amount of heat transported between plates via the thermal
convection, the balance between the convective and conductive heat transfer
is quantified by the Nusselt number:

Nu =
QH

α∆T
(45)
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where α is the thermal conductivity of the fluid.

Whereas there exists an overwhelming number of fundamentally impor-
tant studies of the Rayleigh-Bénard convection in Newtonian fluids, much
less progress has been achieved in understanding the thermal convection in
non-Newtonian fluids. The reason for this most probably originates in the
highly non trivial coupling between the hydrodynamic problem, the rheo-
logical properties of the fluids and their thermal dependence.

A systematic theoretical analysis of the Rayleigh-Bénard convection in
shear thinning fluids is presented by Albaalbaki and Khayat, Albaalbaki
and Khayat (2011). Using the Carreau-Bird rheological model, they show
that although the onset of the thermal convection is the same as in the
Newtonian case, the non-Newtonian fluids can convect in the form of rolls,
squares or hexagons, depending on the degree of shear thinning. They also
predict that in the case of a strong enough degree of shear thinning the
bifurcation may turn sub-critical.

The experimental investigation presented by Lamsaadi and his cowork-
ers for a power law fluid revealed an increase of the Nusselt number with the
shear thinning index, Lamsaadi et al. (2005). There exist several systematic
studies of the Rayleigh-Bénard convection in viscoelastic fluids focusing on
the role of elasticity (quantified by the Weissenberg number) on the onset of
convection and on the main features of the transition, Park and Ryu (2001);
Park and Park (2004). The experimental investigation presented by Mar-
tinez - Mardones and his coworkers for a viscoelastic fluid has captured the
influence of the rheological parameters on the critical conditions, Martinez-
Mardones et al. (2000). The experiments performed on viscoelastic shear
thinning fluids by Liang and coworkers indicate that the transition to con-
vective states emerges as a super-critical bifurcation, Liang and Acrivos
(1970). They also conclude that the experimentally observed convective
patterns are similar to the Newtonian ones. The main effect of the non-
Newtonian rheological behaviour on the Rayleigh-Bénard convection is an
increase of the Nusselt number as compared to a Newtonian fluid with the
same viscosity.

The practical interest in understanding thermo-convective instabilities
in viscoplastic originates from the fact that such materials are relevant to
various geophysical flows such as magma flows within the Earth’s mantle,
Griggs (1939); Meinesz (1947); Orowan (1965); Le Bars and Davaille (2004).

Systematic studies of the hydrodynamic stability of yield stress fluids
have been performed only recently, Frigaard et al. (1994); Landry et al.
(2006); Metivier et al. (2005). In this context, there exist several funda-
mental mathematical and physical problems yet to be understood. One of
these problems concerns with the occurrence of the Rayleigh-Bénard insta-
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bility in yield stress materials.

The very first theoretical study of the Rayleigh-Bénard convection in a
yield stress fluid was performed by Zhang and her coworkers, Zhang et al.
(2006). Using a linear stability approach formulated within the framework
of the Bingham rheological model, they show that base state is stable to
infinitesimally small perturbations regardless the finite value of the yield
stress. This is due to the fact that, corresponding to the stable base flow
state, the Bingham model predicts an infinite viscosity which can not be
destabilised by infinitesimally small perturbations.

The weakly nonlinear stability analysis performed by Balmforth and
Rust Balmforth and Rust (2009) carried out within the framework of the
Bingham rheological model indicates that a sufficiently large finite am-
plitude perturbation of the base state of a viscoplastic fluid may trigger
Rayleigh-Bénard convection.

The experiments that complement their theoretical investigation confirm
that the presence of the yield stress generally suppresses the convection in
the sense that the fluids will not spontaneously convect unless a perturba-
tion of a finite amplitude is applied. The magnitude of the perturbation
needed to initiate the convection increases with the yield number Y which
characterises the competition between the buoyancy induced stresses and
the yield stress of the fluid.

A numerical simulation study of the Rayleigh-Bénard convection of a
Bingham fluid in a square enclosure is presented by Turan et al., Turan
et al. (2012). By a systematic scaling analysis Turan and his coworkers
assess the scaling of the relevant non-dimensional numbers corresponding
to the onset of the instability and relate the results to the strength of the
gel.

An experimental study of the development of thermal plumes within
a Carbopol R© gel due to local heating was recently presented by Davaille
and her coworkers, Davaille et al. (2013). Depending on the yield num-
ber Y , they have observed three distinct dynamic regimes: stable, small
scale convective (the convection is localised around the heater) and thermal
plumes. A systematic description of the morphology of the thermal plumes
is provided as a function of the yield number. The study by Davaille et
al. reinforces the main conclusion of the study by Balmorth and Rust that
finite amplitude perturbations may indeed destabilise the base flow of fluids
with a finite yield stress.

Darbouli and his coworkers have studied experimentally the Rayleigh-
Bénard convection within various Carbopol R© gels confined in a cylindrical
cavity and heated from below, Darbouli et al. (2013). Although they did
not intentionally applied a finite amplitude perturbation, they did observe
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convective states various values of the yield stress that cover a limited range,
[0.0047 Pa - 0.104 Pa] (according to their Table 1). Bearing in mind that
the accuracy of the determination of the yield stress via classical rheometry
is somewhat limited and the uncertainties becomes increasingly larger when
the yield stress is diminished, it is not fully clear whether their materials
truly possessed a yield stress or they were merely shear thinning fluids
(which is the case when the concentration of Carbopol R© is smaller than the
overlap concentration even at neutral pH).

In the case of a viscoplastic fluid, the onset of the Rayleigh-Bénard con-
vection coincides with the onset of the solid-fluid transition (yielding) and
thus, the viscous stresses are infinite at the onset. This suggests that, in
the case of a viscoplastic fluid, the onset condition should be reconsidered.
For this purpose, the force balance criterion can be modified by considering
that the thermal convection is triggered when the stresses associated to the
buoyancy overcome the yield stress τy of the gel and by replacing the viscous
time scale with a characteristic time scale associated to the microstructure
of the gel:

Ra =
ρβ∆TgH

τy

td
tg
≥ Rac (46)

Here td = H2

κ is the characteristic time scale associated to the thermal
diffusion and tg is a characteristic time scale associated to the gel microstruc-
ture near the onset of the convection (i.e. near the yield point) which will
be discussed in detail through our paper in connection to the rheological
properties of the Carbopol R© gels. As the yield stress has been considered
as a scale for the stresses, the definition above is valid only around the onset
of the instability which coincides with the onset of the solid-fluid transition
(yielding). Far beyond the onset the Rayleigh number should be rewritten
in terms of a shear thinning viscosity.

From a phenomenological point of view and following the basic ideas
of the (energy) balance theorem initially introduced by Chandrasekhar (see
Ref. Chandrasekhar (1961)) one can alternatively consider that the thermal
convection in a yield stress fluid is initiated when the energy dissipated per
unit volume of material by the buoyancy forces becomes comparable in
magnitude to the maximal elastic energy that the gel network can locally
store per unit volume prior to yielding: Wb ≥ We. Here We = ρgβ∆T is
the energy dissipated per unit volume by the buoyancy forces and We =
τy is the elastic energy per unit volume. With these considerations, the
energy criterion for the convective instability in a yield stress fluid can be
formulated in terms of the yield number Y :
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Y =
τy

ρβgH∆T
≤ Yc (47)

To our best knowledge, there exists no experimental assessment of the
validity of the force and energy balance criteria for the transition to thermal
convective states in a Carbopol R© gel given by Eqs. 46 and 47.

The present study concerns with an experimental investigation of the
Rayleigh-Bénard convection in Carbopol R© gels with various concentrations
(yield stresses). Among the primary goals of the study we mention the accu-
rate detection of the onset of the instability in relation with the rheological
properties of the gel (yield stress), the characterisation of the convective flow
patterns as a function of the control parameter. Of particular interest is the
assessment of the nature of the bifurcation towards convective states which
is little documented by the existing body of experimental work. In addition
to these goals, we are interested in the scaling of the physical parameters
characterising the onset of the convective instability with the rheological
properties of the solutions which will allow one to probe the applicability of
the force and energy balance stability criteria discussed above.

Experimental setup and methods The Rayleigh-Bénard convection
cell is schematically illustrated in Fig. 40. It consists of a rectangular cavity
with acrylic made flat transparent walls. The length of the fluid cavity is
L = 386 mm, the width W = 186 mm and its height is H = 20 mm. The
length to height aspect ratio of the cavity is L/W = 19.3. The bottom
and the top enclosures of the cavity are 3 cm thick polycarbonate plates.
The smooth surfaces of the plates have not been treated neither chemically
nor mechanically and thus the wall slip phenomenon was present during
the experiments with Carbopol R© gels. The significant width of these two
plates and their small thermal conductivity coefficient have been purposely
chosen in order to obtain a uniform temperature distribution along the
entire fluid cavity. The bottom plate was heated electrically by a resistive
circuit fed by a constant current I supplied by the stabilised current supply
CS. The heating power was calculated as P = RI2 where R = 25.5 Ω is
the resistance of the electrical heater. To avoid the thermal damage of the
bottom polycarbonate plate, a copper plate CP is interposed in between
the polycarbonate plate and the resistive heater.

The top plate was uniformly cooled by means of a circulating fluid bath
CFB. The circulating fluid is a mixture of glycerin and anti-freeze and
its temperature is maintained constant through our experiments, Twb =
−10oC.
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The transition to the Rayleigh-Bénard convection was simultaneously in-
vestigated by both integral measurements of the temperature difference ∆T
between plates and local measurements of the amplitude of the convective
states.

Figure 40. Schematic view of the experimental setup L - solid state laser,
CO - cylindrical optics block, CP - copper plate, TP - top plate, BP -
bottom plate, CFB - cooling fluid bath, A2D - analogical to digital signal
conditioning block, RB - reference box.

Prior to characterising the transition to the Rayleigh-Bénard convection
within a Carbopol R© gel, we have focused on a systematic validation of
the experimental system and the measuring techniques with a Newtonian
fluid, pure Glycerin. The experimentally measured values of the physical
parameters for the Glycerin are: β = 5 · 10−4K−1, g = 9.8m2/s, κ =
1.37 · 10−7m2/s and ν = 872 · 10−6m2s−1.

Measurements of the temperature difference ∆T between the plates per-
formed with a Glycerin solution for both increasing and decreasing values
of the heating power P are presented in Fig. 42(a). A linear increase of
the integral temperature difference between the plates ∆T with P which
corresponds to a purely conductive heat transfer regime (the slope of this
dependence is proportional to the thermal conductivity α of fluid) is ob-
served below a critical value of the heating power Pc ≈ 16.32W . Beyond
this onset the dependence becomes nonlinear consistently with a mixed
conductive-convective heat transfer regime. Based on the material param-
eters enumerated above, the critical Rayleigh number corresponding to the
onset of the thermal convection can be estimated Rac ≈ 1774 which is in
a very good agreement (within 4 %) with the theoretical value Ratc = 1708
given in Chandrasekhar (1961).

The dependence of the reduced temperature difference ∆Tr = ∆T
∆Tlin

− 1

on to the reduced power Pr = P/Pc − 1 is presented in the top panel
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Figure 41. (a) Temperature measurements within the bottom plate BP
(the empty circles) and within the top plate TP (the empty squares). The
full lines are linear fitting functions and the full symbols are the linear
extrapolations of the temperature measurement at the contact points with
the fluid. (b) Time series of the temperature difference ∆T . The full line is
a nonlinear fit by Eq. 5. td stands for the characteristic thermal diffusion
time. The dash-dotted line is a fit according to Eq. 6. tc stands for the
characteristic slowing down time. The dependence of the thermal diffusion
time td on the heating power P measured for three Carbopol R© solutions
with the concentrations c = 0.06%, 0.075%, 0.08% for both increasing (full
symbols) and decreasing (empty symbols) heating powers is presented in
the inset. The full line is the theoretical estimate, td ≈ 2730s(see text).

of Fig. 42(b). Here ∆Tlin represents the linear temperature difference
measured within the conductive regime (see the full line in Fig. 42(a)).
It can be observed that the reduced temperature difference ∆Tr increases
linearly with the reduced heating power Pr consistent with a supercritical
bifurcation towards convective states.

Measurements of the convection amplitude obtained via the DPIV tech-
nique as a function of the heating power are presented in Fig. 42(b).

Around the onset of convection the velocity amplitude follows the Lan-
dau theory of imperfect bifurcations, Landau and Lisfshits (1980):

PrV − aV 3 + h = 0 (48)

Here a is the amplitude coefficient and h the imperfection coefficient which
quantifies the degree of smearing of the bifurcation. This result agrees with
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(a) (b)

Figure 42. (a)Dependence of the temperature gradient ∆T within Glycerin
on the heat flux P . The full/empty symbols refer to increasing/decreasing
heat flux. The vertical dashed line marks the transition between the conduc-
tive and convective regimes. A typical DPIV measured convection pattern
is illustrated in the insert. (b) (Top) Dependence of the reduced tem-
perature ∆Tr on the reduced power. The line is a linear fit. (Bottom)
Dependence of the pattern amplitude V on the reduced power Pr. The line
is a nonlinear fit according to Landau’s theory of imperfect bifurcations,
Eq. 48.

both theoretical predictions Newell and Whitehead (1969); Segel (1969) and
previous experimental findings, Dubois and Bergé (1978).

To conclude this part, the measurements illustrated and discussed above
clearly identify the transition to convective states within a Newtonian fluid
as an imperfect bifurcation.

After having probed by these measurements the reliability of our ex-
perimental setup and measuring methods, we focus in the following section
on the transition to the Rayleigh-Bénard convection in various Carbopol R©

gels.

Experimental observation of the thermal convection in a Carbopol R©

gel To study the thermo-convective stability of a physical gel, we have
used various Carbopol R© solutions with weight concentrations ranging in
between 0.05% and 0.11% as working fluids and the same experimental pro-
cedures as for the Newtonian test case discussed in the previous section.
The chosen polymer concentrations all lie above the overlap concentration
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c∗ which ensures that our working fluids are indeed yield stress fluids not
just weakly shear thinning. A more systematic account of the experimental
observations is given in Ref. Kebiche et al. (2014).

As for the case of a Newtonian fluid, the transition to convective states
within various Carbopol R© gels is simultaneously assessed by both local flow
speed measurements by the DPIV technique and integral measurements of
the temperature difference between the top and the bottom plates, ∆T .

For each value of the concentration of the Carbopol R© solution, no mea-
surable flow is observed if the integral temperature difference between plates
does not exceed a critical value, ∆T < ∆Tc. As the temperature difference
is increased past this onset, the energy dissipated per unit volume of mate-
rial by the buoyancy forces overcomes the elastic energy associated with the
gel microstructure. Consequently, the gel locally yields and roll flow pat-
terns are observed. The unstable flow patterns are observed in the absence
of an external perturbation of a finite amplitude.

The evolution of the flow patterns as the control parameter is varied right
above the onset of the convection monitored within a 0.08% Carbopol R©

solution is illustrated in Fig. 43.

Right above the onset of the convection (∆T = 3.18oC), the flow pat-
tern has a slightly asymmetric appearance. This may be due to the large
characteristic times tc needed for the pattern to reach a steady state or
the so called critical slowing down phenomenon which will be discussed in
detail through the paper. Upon an increase of the temperature difference
between plates the flow patterns become more regular and the horizontal
extent λ of the convection rolls decreases (equivalently with an increase of
the horizontal wave number qx = 2π

λ ). It is important to note that the flow
states are reversible upon a decrease of the heating power (or temperature
difference) which is a first indicator that, similarly to the Newtonian case,
the transition to the Rayleigh-Bénard convection in the Carbopol R© gel is a
continuous one and exhibits no hysteresis. This qualitative similarity with
the transition to convective states within a Newtonian fluid that deserves
being studied in depth.

Integral measurements of the dependence of the temperature difference
between plates ∆T performed for six values of the Carbopol R© concentra-
tion and for both increasing (the full symbols) and decreasing (the empty
symbols) values of the heating power P are presented in Fig. 44.

For each value of the Carbopol R© concentration a linear conductive part
of the dependence is observed below a critical heating power Pc. The slopes
of these linear dependencies are independent on the polymer concentration
(see the full line in Fig. 44) indicating that the polymer addition does not
significantly alter the thermal conductivity of the aqueous solutions. This
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Figure 43. Evolution of the flow patterns corresponding to several values
of the integral temperature difference ∆T indicated in the inserts. The
up/down arrows indicate the increasing/decreasing branch of the heating
ramp. The false colour map refers to the absolute value of the flow velocity.
A 0.08% Carbopol R© solution was used and the onset of the Rayleigh-Bénard
convection corresponds to ∆Tc = 2.58oC.

result is fully consistent with direct measurements of the thermal conduc-
tivity coefficient κ performed for each solution separately, Kebiche et al.
(2014). Beyond the onset Pc, the dependence of the temperature difference
between plates on the heating power becomes sub-linear and a convective
regime is observed.

Regardless the yield stress of the Carbopol R© solution, the transition from
a conductive to a convective regime is reversible upon increasing/decreasing
values of the heating power and a strong qualitative similarity of these
integral measurements to the similar ones performed with a Newtonian fluid
previously discussed is observed.

To gain a deeper insight into the nature of the bifurcation towards con-
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Figure 44. Dependence of temperature gradient on the heat flux for six
values of the Carbopol R© concentration: (4, N) - c = 0.11%wt, (◦, •) -
c = 0.1%wt, (D, D) - c = 0.08%wt, (�, �) - c = 0.075%wt, (?, A) -
c = 0.06%wt, (�, �) - c = 0.05%wt. The full/empty symbols refer to
increasing/decreasing heat flux. The full line is a linear fit.

vective states within the Carbopol R© solutions we present the same data in
terms of the reduced variables ∆Tr, Pr. The dependence of the reduced
temperature ∆Tr on the control parameter Pr for each Carbopol R© solution
is presented in Fig. 45 (a).

Above the onset of the bifurcation the reduced temperature ∆Tr scales
linearly with the control parameter and this result is, as in the Newto-
nian case illustrated in Fig. 42(a), typical for a super-critical bifurcation.
This fundamentally important conclusion on the nature of the bifurcation
towards convective states is reinforced by the local measurements of the
convective amplitude V presented in Fig. 45(b). Indeed, above the onset
the bifurcation, the amplitude data can be well fitted by the Landau pre-
diction for a super-critical bifurcation. The smearing of the transition data
observed near the onset indicates that the bifurcation is an imperfect one.
The degree of smearing of the bifurcation is rather small (h ≈ 0.05) and the
bifurcation is rather close to a perfect one.

The dependence of the onset parameters on the yield stress of the Carbopol R©

solution is illustrated in Fig. 46.
The critical heating power needed to trigger convective states increases

exponentially with the yield stress of the Carbopol R© solution, Fig. 46(a).
This indicates that in solutions with a sufficiently large yield stress the
thermal convection can not be experimentally observed as it would require
heating powers practically unsustainable.
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Figure 45. (a) Dependence of the reduced temperature ∆Tr on the reduced
power Pr for various Carbopol concentrations, see Fig. 44. The full lines are
linear fitting functions. (b) Dependence the DPIV measured amplitude of
the convection pattern V on the reduced power Pr. The line is nonlinear fit
function according to the Landau theory of imperfect bifurcation, Eq. 48.
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Figure 46. (a)Dependence of the critical heating power Pc corresponding
to the onset of the Rayleigh-Bénard convection on the yield stress σy of
the Carbopol R© solution. The line is an exponential fit. (b) Dependence of
the critical yield number Yc (squares, bottom-left axis) and of the critical
Rayleigh number Rac (circles, bottom-right axes) on the yield stress σy.
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Another important issue relates to the right control parameter to de-
scribe the transition towards convective states. In the case of Newtonian
fluids, this is the Rayleigh number Chandrasekhar (1961). To test if this the
case for a Carbopol R© gel, we have calculated the critical Rayleigh number
corresponding to the onset of convection according Eq. 46. The result is
displayed in Fig. 46(b) (the circles). Quite remarkably, as the yield stress
of the solution varies, the critical Rayleigh number Rac spans nearly three
orders of magnitude. This clearly indicates that, unlike for the case of New-
tonian fluids, Ra is not the right control parameter. On the other, the yield
number Y calculated at the onset of the instability according to Eq. 47
remains of order of unity over the entire range of yield stresses explored.
This indicates that the right control parameter for the thermo-convective
instability in a Carbopol R© gel is the yield number.

To conclude this section we have demonstrated that, contrary to the
existing theoretical predictions, thermal convection can be triggered in a
Carbopol R© gel in the absence of any finite amplitude perturbation and
the bifurcation towards convective states is an imperfect one (described by
the Landau-Ginzburg formalism). A first physical ingredient that probably
needs to be accounted for in the theoretical studies is related to the rather
new scenario of the yielding illustrated in Sec. 2 that accounts for a gradual
yielding process characterised by both a solid-fluid phase coexistence and
elastic effects that are not captured by the classical rheological pictures.
Indeed, measurements of the second invariant of the rate of strain (not
shown here by shown in Fig.19 of Ref. Kebiche et al. (2014)) indicate that
the onset of convection is practically located within the non trivial solid-fluid
coexistence zone (hysteresis) visible in Figs. 3(b), 4. Thus, any theoretical
attempt to describe this instability using the Herschel-Bulkley law that is
applicable at much larger rates of strain is not expected to accurately predict
the transition. A second theoretical ingredient worth to be accounted for
in future theoretical developments is related to the non-trivial (and rather
un-expected) thermo-rheological behaviour of the Carbopol R© gel presented
in Sec. 5.1.

6 Concluding remarks

During the past decade, the fluid dynamics of viscoplastic materials has
emerged as a distinct field of the hydrodynamics of complex fluids rivalling,
perhaps, with the well established field of hydrodynamics of viscoelastic
fluids. Following my postdoc at the University of British Columbia with
Professor Ian Frigaard, I have been fortunate to get the chance to bring
several modest contributions to this emerging field. This intellectually very
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rich discipline brings together several scientific communities: fluid dynamics,
rheology, applied mathematics, thermal science, engineering. The dynamics
of yield stress materials poses highly non-trivial problems even in isothermal
flow conditions.

The first class of isothermal flows we have studied was that of low
Reynolds number flows and the main scope was understanding the physics
of the solid-fluid transition in a physical gel subjected to a gradually in-
creasing external stress. The physical complexity of this problem comes
from a strong non-linearity of the stress term in the momentum conserva-
tion and a highly nontrivial coupling between the flow field and the micro-
structure of the material. In this context, the Carbopol R© gels have been
considered as ”model” yield stress materials for over two decades and their
flows have been traditionally studied within the classical Herschel-Bulkley
model. Yet, it has been shown only recently that this classical picture is
unable to describe several ”simple” fluid dynamics problems: the low Re
sedimentation of a spherical object (Sec. 1), the slow withdraw of a rigid
plate at a constant speed (Sec. 1). These rather unexpected experimental
facts have prompted us to reconsider the solid-fluid transition by careful
and more systematic rheological tests, Sec. 1. Contrary to the common be-
lieve that Carbopol R© gels behave as ”model” yield stress fluids accurately
described by the Herschel-Bulkley constitutive equation, we have found a
gradual and irreversible yielding scenario together with significant elastic
effects. Thus, the Herschel-Bulkley constitutive relationship is applicable
only far above the transitional region, i.e. at large enough rates of defor-
mation. In an attempt to ”rationalise” these findings, we have proposed
a phenomenological model that we have coined ”The Poor Man Model”,
Sec. 2. These results initially published in Ref. Putz and Burghelea (2009)
have been received with a fair amount of skepticism by the viscoplastic
community which prompted us for an additional validation in simple low
Reynolds number pipe flow upon an increase/decrease of the driving pres-
sures, Poumaere et al. (2014). This particular experiment (not detailed in
this Memoire) funded by the ANR project ThIM (PI: Cathy Castelain) has
finally dissipated any doubts on the nature of the solid-fluid transition: a
hysteresis of the deformation states is equally observed in a pipe flow. Re-
assured by this result, we have started to develop a scientifically more solid
theoretical approach to explain the solid-fluid transition, Sec. 3. This time
we have resorted to the tools of Statistical Physics and Critical Phenom-
ena and derived from first principles a model somewhat similar to the Ising
model of the ferromagnetism. The model depends on solely two internal
parameters and, as it is formulated from first principles, it is inherently
validated from a thermodynamic standpoint. The central conclusion of the
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approach is that, when the magnitude of the interactions between the mi-
croscopic building blocks of a yield stress material exceeds a threshold an
irreversible solid-fluid transition will be observed regardless the manner the
material is forced: steadily or unsteadily. This threshold is the exact phys-
ical equivalent of the Curie temperature in a magnetic system. For weakly
interacting systems such as Carbopol R© gels a reversible yielding scenario
may be retrieved in the asymptotic limit of a steady state external forcing.

An extra level of complexity is added to the flow problem of a yield stress
material if the Reynolds numbers are sufficiently high. Thus, a fundamental
question how does the viscoplasticity couples to the inertial hydrodynamic
instability observed at Re > 1000, Sec. 4. The complexity of this ques-
tion comes from two sources of nonlinearity in the momentum equation:
inertial and due to the highly nonlinear dependence of the stresses on the
rate of strain. An experimental study of the laminar-turbulent transition
in a Carbopol R© gel is presented in Sec. 4.1. The central conclusion of this
study is that the inertial instability sets in when the Reynolds stresses be-
come comparable in magnitude with the yield stress. This suggests that,
somewhat peculiarly, the loss of the hydrodynamic stability can not be fully
decoupled from the solid-fluid transition although the onset Reynolds num-
ber is large. We have pursued this idea in Sec. 4.2 where we have addressed
the question on how the inertial instability of a plane Poiseuille flow is af-
fected by the yielding scenario. The central conclusion of this part was that
switching from the classical Herschel-Bulkley yielding scenario to the PMM
framework developed in Sec. 2 changes significantly the stability picture:
the elasticity present in the PMM has a destabilising role. In Sec. 4.3 we
show that if one generates strong spatial gradients of stresses via a chemical
reaction that locally produces a Carbopol R© gel one obtains a sharp hydro-
dynamic instability in the absence of any inertial contribution. We have
shown that this novel instability may turn useful in both efficiently displac-
ing very viscous fluids from a flow channel and obtaining efficient mixing in
situations where increasing Re is un-practical, e.g. micro-fluidics systems.

Yet a third layer of complexity is added to the flow problem of a vis-
coplastic material if one considers the non-isothermal case, Sec. 5. What
looked at a first glance the most basic and straightforward problem was
related to the temperature dependence of the rheological properties of a
Carbopol R©, Sec. 5.1. Quite surprisingly, the thermo-rheology of a Carpobol R©

gel departs from the classical Arrhenius picture. We provide a phenomeno-
logical explanation in terms of the physico-chemical properties of a swollen
system of polyacrylic acid spongy particles in conditions of neutral pH.

In Sec. 5.2 we have shown that, contrary to the existing theoretical pre-
dictions, the Rayleigh-Bénard convection can be triggered in a Carbopol R©
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gel in a wide range of measurable yield stresses. Although we do not yet have
a detailed theoretical explanation for this fact, we believe this discrepancy
originates from the non-trivial yielding scenario observed experimentally in
Sec. ?? and theoretically described in Sec. 2 and Sec. 3.
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Werner Hofschuster and Walter Krämer. C-xsc 2.0: A c++ library for

extended scientific computing. In Numerical Software with Result Veri-
fication, pages 15–35, 2003.

Wei Hong, Xuanhe Zhao, Jinxiong Zhou, and Zhigang Suo. A theory of
coupled diffusion and large deformation in polymeric gels. Journal of the
Mechanics and Physics of Solids, 56(5):1779 – 1793, 2008. ISSN 0022-
5096. doi: http://dx.doi.org/10.1016/j.jmps.2007.11.010. URL http://

www.sciencedirect.com/science/article/pii/S0022509607002244.
Q. Hou, P. A. De Bank, and K. M. Shakesheff. Injectable scaffolds for tissue

regeneration. J. Matter. Chem., 14:1915, 2004.
E. Ising. Beitrag zur theorie des ferromagnetismus. Zeitschrift für Physik,

31:253–258, 1925.
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