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at various vertical positions and several Wi: (a) Wi = 0 (b)
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1 Molecular origins of viscoelasticity in dilute
polymer solutions

A distinct class of complex fluids is represented by dilute solutions of high
molecular weight linear polymers. The dilute limit refers to the situation
when polymer-polymer interaction can be neglected. A typical linear poly-
mer strand consists of a large number of sequentially bonded monomer units
of molecular weights typically of the order of 102Da with a total molecular
weight M of the order 106 ÷ 107Da.

The simplest picture of a high molecular weight linear polymer molecule
immersed in a low molecular weight (Newtonian) solvent is that of an elas-
tic spring with two beads connected at its ends (elastic dumb-bell model).
In the absence of flow and external forces acting on the chain, the most
probable state of the molecule is the coiled state, Fig. 1(a). In the presence
of flow, each bead interacts hydrodynamically with the solvent via Stokes
like frictional forces (the Reynolds number based on the size of the polymer
molecule is negligibly small). If the magnitude of the largest eigenvalue
of the velocity gradient tensor becomes of the order of the inverse charac-
teristic relaxation time of the polymer molecule, the coil-stretch transition
occurs, Fig. 1(b).

The coil-stretch transition was first predicted by Pierre Gilles de Gennes
in his seminal 1974 paper, De Gennes [1974]. As the microscopic coil-
stretch transition is naturally associated to the emergence of a polymer
component in the stress tensor, its dynamics will consequently impact the
macroscopic flow features discussed through this chapter. For this reason,
a brief discussion of the main elements and predictions of the de Gennes’s
theory is in order. A first subtle element of the theory was to realise that the
dynamics of the coil-stretch transition depends on the kinematics of the flow.
Thus, two cases are considered: shear flows and shear free (extensional)
flows. A two dimensional flow field (Vx, Vy) is characterised by the vorticity

ω = 1
2

(
∂Vx
∂y −

∂Vy
∂x

)
and the extensional part A = 1

2

(
∂Vx
∂y +

∂Vy
∂x

)
. The
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Figure 1. Posible configurations of a linear polymer molecule in a flow: (a)
Coiled state (b) Stretched state.

sketch presented in Fig. 2(a) exemplifies the coil-stretch transition for the
case when the vorticity ω is gradually decreased while A is maintained
constant (but large). The transition is a 2nd order (imperfect) bifurcation
and the width of the transitional region is approximately Z−1 where Z is
the number of monomers in the chain, De Gennes [1974].

The nature of the bifurcation from a coiled to a stretched state changes
when a shear free flow is considered: Vx = ε̇x, Vy = −ε̇y.

In this case the the dependence of the fractional extension of the polymer
molecules folds back and in a certain range of rates of extension ε̇ and a
bistable equilibrium is observed. There is one critical value of ε̇ = ε̇∗ at
which the system (if it is operated very slowly) will switch from a coiled
state to a stretched one. A first order phase transition takes place at ε̇ = ε̇∗.

A first experimental confirmation of the de Gennes theory has been re-
ported by Schroeder and coworkers for the case of a planar extensional
flow of a dilute solution of highly flexible Escherichia coli DNA molecules,
Schroeder et al. [2003]. By tracking a statistically relevant number of indi-
vidual polymer molecules stained with a fluorescent compound for various
Deborah numbers De = λε̇ they confirm the 1st order bifurcation conjec-
tured by de Gennes in 1974 for the case of a steady extensional flow, Fig.
3.

To our best knowledge, the prediction of a 2nd order bifurcation for the
case of a steady shear flow (see the sketch in Fig. 2(a)) still awaits an
experimental validation.
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Figure 2. (a) Sketch of a 2nd order coil-stretch transition in a two dimen-
sional flow when the vorticity ω increases while A is large but constant. The
width of the transition zone is Z−1 (where Z is the number of monomers on
one chain). (b) Sketch of a 1st order coil-stretch transition in an extensional
flow (c) Phase diagram corresponding to the coil-stretch transition: blue
line - second order, red line - first order. The sketches in each panel are
reproductions of the sketches presented in Ref. De Gennes [1974].

2 Macroscopic flow phenomena triggered by the
microscopic coil-stretch transition

2.1 The rod climbing effect

The generation of a macroscopic elastic stress component associated to
the microscopic coil-stretch transition is responsible for a number of some-
what counterintuitive flow phenomena. The best known such effect is, prob-
ably, the rod-climbing or the Weissenberg effect, Weissenberg [1947].

As schematically illustrated in Fig. 4 (a), a polymeric fluid possessing
”enough” elasticity climbs on a rod rotating at a constant angular speed Ω
in the fluid rather being repelled by the centrifugal force (which is obviously
what would happen if the fluid was Newtonian).
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Figure 3. Dependence of the steady fractional extension of Escherichia coli
DNA molecules in planar extensional flow for increasing/decreasing values
of the Deborah number, De = λε̇. The plot is reproduced from Fig. 3(E)
of Ref. Schroeder et al. [2003] with permission. we need to ask for the
permission and pay for it 27 euros ! .

A simple phenomenological explanation of this effect may be formulated
as follows. The individual polymer molecules get stretched along the stream
lines which are closed circles which generates an extra tension along these
lines which generates a n inwards fluid motion which makes the polymeric
fluid climb the rod. This is schematically illustrated in Fig. 4 (b).

More rigorously, it can be shown that actually the first normal stress
difference N1 = σθθ − σrr which is proportional to the square of the rate
of shear but generally negative generates a body force F = N1

r called hoop
stress oriented inwards, Bird et al. [1977]. In the case of a Newtonian
N1 = 0, the only acting force is the centrifugal one and the liquid is pushed
outwards.

2.2 Extrudate swell effect

If a Newtonian fluid exits a capillary of diameter D at low Reynolds
number it forms a jet of a smaller diameter DN < D as schematically
illustrated in Fig. 5(a). Typically DN is up to ten percents smaller than
the diameter of the capillary. This phenomenon is called ”vena contraction”
and was first described by Torricelli in 1643, Torricelli [1644].
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Figure 4. (a) Schematic illustration of the Weissenberg effect. (b) Cross
sectional view illustrating the physical mechanism of the Weissenberg effect.

Figure 5. (a) Newtonian fluid exiting a capillary tube, DN < D. (b)
Polymeric fluid exiting a capillary tube, DP > D.
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Figure 6. (a) Sketch of a turbulent pipe flow with no polymer added. (b)
Sketch of a turbulent pipe flow after a small amount of polymer has been
added.

The overall picture is dramatically different if the same experiment is
performed with a polymeric fluid, Fig. 5(b). The diameter of the exiting
fluid jet DP may be up to three times larger than the diameter of the
capillary. This phenomenon is called the ”extrudate swell”. A simplified
phenomenological interpretation of this effect may be given if one resorts
once again to the original idea of Weissenberg of tension generation along the
stream lines in flows of polymeric fluids. When the fluid exits the capillary
this extra tension can not be accommodated and, as a result, the fluid will
contract axially and expand radially.

A more rigorous and quantitative result which relates the swelling ratio
DP
D to the ratio between the first normal stress difference N1 shear stress

measured near the wall at the capillary exit was given by Tanner, Tanner
[1970]:

DP

D
= 0.1 +

[
1 +

1

2

(
1 +

(
N1

σxy

)2

w

)]1/6

(1)

2.3 Drag reduction

In 1949 Toms discovered that a small addition of a flexible linear polymer
(roughly 10 ppm of polymethylacrylate) to an inertially turbulent leads to
a substantial reduction of the turbulent drag (defined by the pressure drop
∆P needed to maintain a given flow rate) that may reach 40%, Toms [1949].
This phenomenon has been coined the drag reduction phenomenon.

The early studies of drag reduction in dilute polymer solutions revealed
two types of drag reduction in dilute polymer solutions, Hershey and Zalkin
[1967]. In dilute polymer solutions the drag reduction emerges in a fully
developed turbulence regime beyond a critical Reynolds number where the
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friction factor decreases below that for an ordinary Newtonian turbulent
flow. For Reynolds numbers smaller that the onset value, no drag reduction
is observed. In more concentrated polymer solutions, the drag reduction is
observed near the upper bond of the laminar region. In this case, onset con-
ditions are reached at low Reynolds numbers, that is, the laminar-turbulent
transition is not observed. The main difference between these two kinds
of drag reduction is the region where drag reduction occurs. The former
begins in the fully developed turbulent region. The latter is observed in
the extended laminar region. They were later labeled type A and type
B drag reduction by Virk and Wagger, Virk and Wagger [1990]. Despite
a large number of theoretical, numerical and experimental studies ?Yarin
[1997] that span almost six decades, the mechanism by which the polymer
addition inhibits the momentum transfer to the channel walls and the drag
reduction occurs it is still not fully understood.

3 Hydrodynamic stability of dilute polymer solutions

Vinogradov and Manin [1965]
Stretching of individual polymer molecules in the flow leads to generation

of additional elastic stresses that relax with a macroscopic characteristic
time λ, are flow history dependent and grow in a strongly nonlinear fashion
with the external forcing. Thus, the stress tensor, τ , can be decomposed in
two parts, τ = τs + τp. The first term τs is proportional to the viscosity of
the newtonian solvent, ηs, and to the rate of strain in the flow

τs = −ηs · [∇−→v + (∇−→v )T ] (2)

Therefore, the equation of motion of a dilute polymer solution becomes

∂t−→v +−→v ∇−→v = −∇p
ρ

+
ηs
ρ
4−→v − ∇τp

ρ
(3)

Here the elastic stress tensor, τp is due to the presence of polymer molecules
which are stretched in the flow. The simplest model that accounts for the
elastic nature of the polymer part of the stress tensor, τp, is a Maxwell type
constitutive equation with a single relaxation time, λ,

τp + λ · Dτp
Dt

= −ηp[∇−→v + (∇−→v )T ] (4)

Here
Dτp
Dt is the upper convective time derivative defined by

Dτp
Dt

=
∂τp
∂t

+ (−→v ∇) · τp − (−→v ∇)T · τp − τp · (∇−→v ) (5)

20



Equations (4), (5) and (2) constitute the Oldroyd-B model of polymer so-
lution rheology Bird et al. [1977]. It is worth noting that the non-linear
terms involved in the equations (4) and (5) are all of the order λ(VL )τp.
The balance between the non linear elastic terms and the linear dissipative
terms is quantified by a second dimensionless quantity usually referred as
the Weissenberg number, Wi = λ · vL . The mechanical properties of a dilute
polymer solution become increasingly nonlinear as Wi is increased.

Few effects driven by the nonlinear polymer stress have been understood
long time ago Bird et al. [1977].

For example, in a simple shear flow of a dilute polymer solution, there
is always a difference between the normal stresses along the flow-line and
orthogonal to it. In the limit of small shear rates, this normal stress dif-
ference, N1, is proportional to the square of the shear rate. In the case of
flows with curvilinear streamlines, the normal force difference gives rise to a
volume force acting on the fluid elements in the direction of the curvature,
hoop stress. Thus, if a rotating rod is inserted in an open container filled
with a polymer solution, the fluid climbs the rod instead of being pushed
outwards ,Bird et al. [1977]. This phenomenon is known as rod climbing
or Weissenberg effect, ?. Secondly, the resistance in a purely extensional
flow of a dilute polymer solution increases with the rate of extension in a
strongly nonlinear manner. When the rate of extension becomes larger than

1
2·λ (which corresponds to Wi > 1

2 ) a sharp growth of the elastic stresses
is observed. As a result, the apparent viscosity of a dilute polymer solu-
tion can increase up to few orders of magnitude Tirtaatmadja and Sridhar
[1993].

One should point out here that both the Weissenberg effect and the
nonlinear growth of resistance in extensional flow have been observed in
highly viscous polymer solutions at quite low Re, that is in the absence
of any inertial nonlinear effects. Thus, these effects are solely due to the
nonlinear elastic stresses.

In the context of two potential sources of nonlinearity in the hydrody-
namic equations of a dilute polymer solution, inertial and elastic, a natural
question arises: how is the hydrodynamic stability affected by each nonlin-
ear contribution. This question can be only partially answered. Figure 7
shows a sketch of a stability diagram in the parameter space (Wi − Re).
If both Re and Wi are smaller than unity, the flow is steady and laminar.
In the limit of negligible Wi, the flow looses its stability only if the iner-
tial nonlinearity is large comparative to the viscous dissipation. Thus when
Reynolds number exceeds a threshold value, Re > Rec, the flow evolves
to turbulent states (the region IT in Fig. 7). This is, of course, an over-
simplified picture. In most of the realistic situations, the transition to fully
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Figure 7. Sketch of hydrodynamic stability diagram: T-inertial turbulence,
ET-elastic turbulence, DR-drag reduction, PEFI-purely elastic flow in-
stabilities.

developed turbulence does not occur directly but via secondary instabilities.
When Re is small but the values of Wi slightly exceed unity, the flow can
undergo purely elastic instabilities, Muller et al. [1989a], Larson [1992]. As
a result of these instabilities, secondary flows have been observed experi-
mentally Muller et al. [1989b] together with an increase in flow resistance
Magda and Larson [1988].

More recently, Groisman and Steinberg have shown that, corresponding
to values of Wi significantly larger than unity and arbitrarily small values
of Re, the flow evolves towards random states in a regime of so called elastic
turbulence Groisman and Steinberg [2000]. This corresponds to the region
(ET) shown in Fig. 7. The elastic turbulence is a chaotic dynamic state
solely driven by nonlinear elastic stresses. Although it can be excited in the
absence of inertial effects, it exhibits few of the main features of the high Re
turbulence: significant increase in the rates of momentum and mass transfer
(flow resistance and mixing), chaotic fluid motion excited in a broad range of
spatial and temporal scales. However, there are also major differences with
respect to the case of inertial turbulence. The main difference is probably
the absence of any analogue of the Kolmogorov scale: although random in
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time, the flow is smooth at all spatial scales. The energy is mainly pumped
by the large scale flow field and the leading mechanism for generation of
small scale structures is the passive advection of the elastic stresses.

One of the most remarkable hydrodynamic effects caused by a small
addition of polymer molecules to a high Re turbulent flow is the drag re-
duction. In 1948, Toms Toms [1949] discovered that a minor addition of
polymethylmethacrylate (about 10ppm by weight) to a turbulent pipe flow
results in a significant reduction in pressure drop needed to drive the flow
at the given flow rate. The tremendous difficulty in understanding the drag
reduction originates in the fact that it occurs at both very high Re and Wi
(the region DR in Fig. 7) and thus, one has to deal simultaneously with
two strong nonlinearities in the flow: inertial and elastic.

The work presented in this thesis mainly focuses on two regions of the
stability diagram sketched in Fig. 7: ET and PEFI. I have tried to organise
the material presented in a self-consistent manner that allows an indepen-
dent reading of each Chapter. It is organised as follows.

In Chapter 1 an experimental investigation of the elastic turbulence in a
swirling flow configuration is presented. Chapter 2 follows with a detailed
investigation of random micro-flows of a dilute polymer solution in a regime
of elastic turbulence. Chapter 3 presents a theoretical and numerical in-
vestigation of purely elastic waves sustained by a stratification of elastic
stresses in curvilinear geometries.

4 Elastic turbulence in dilute polymer solutions:
turbulence without inertia

The addition of a tiny amount of high molar mass linear polymer molecules
to a fluid makes it elastic and capable of storing stresses that depend on the
flow history, Bird et al. [1977]. The polymer contribution to the stress tensor
depends on the flow forcing in a strongly nonlinear fashion and may lead to a
loss of the hydrodynamic stability of shear flows with curvilinear trajectories
Larson [1992], Shaqfeh [1996], Muller et al. [1989a]. The purely elastic
instabilities are triggered in the absence of any inertial contributions (i.e. at
vanishingly small Reynolds numbers, Re) when the elastic energy overcomes
the dissipation due to polymer relaxation. The ratio of the nonlinear elastic
term to the linear relaxation one is defined by the Weissenberg number Wi
which is the main control parameter and the purely elastic instabilities in
curvilinear shear flows are observed when Wi > Wic. A further increase of
Wi past the onset of the primary elastic instability leads to the observation
of the so called ”Elastic Turbulence”, Groisman and Steinberg [2000]. The
elastic turbulence is a random flow state solely driven by the nonlinear
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elastic stresses and, as opposed to its inertial counterpart, it can be observed
at arbitrarily small Re.

Following the discovery of the elastic turbulence, a number of experimen-
tal studies have revealed several of its key features in various flow macro-
scopic configurations Burghelea et al. [2007, 2004b], Burghelea, T et al.
[2005], Burghelea, Teodor et al. [2006].

Below we detail several of the main features of the elastic turbulence
observed in a macroscopic flows with curved streamlines - a vo,n Karman
swirling flow.

4.1 Methods

Experimenta apparatus The experimental apparatus is schematically
shown in Fig. 8. It consists of a stationary cylindrical container, C, (with
radius Rc) mounted on the shaft of a commercial rheometer (AR-1000 from
TA Instruments) and a disk, D, (with radius Rd) mounted concentrically
on the shaft of the rheometer. In order to check the sensitivity of the results
with respect to the geometrical aspect ratio and to explore a broad range
of Weissenberg numbers, two versions of this setup have been used: first
one had Rc = 2.2cm, Rd = 2cm and the distance between plates d = 1cm
and the second had Rc = 4.9cm ,Rd = 4.7cm and d = 1cm. The two
setups will be further referred as setup 1 and setup 2. The rheometer can
be driven either in constant (within 0.5%) angular speed mode either in
constant(within 0.5%) torque mode. The two forcing modes will be further
referred as Ω-forcing and T -forcing. The momentum of inertia of the shaft of
the rheometer is Is ≈ 14µNms2 and the momentum of inertia of the upper
plate, Id,was about 61µNms2 for setup 1, and about 84µNms2 for setup 2.
The accuracy of the angular speed measurements in constant torque mode
is about 2% and the accuracy of the torque measurements in the constant
speed mode is about 1%. One has to point out here that smallness of the
fluctuations rate of the angular velocity is not a sufficient criterion to have
a constant speed forcing. Corresponding to the Ω-mode, (Ir + Id)

∂Ω
∂t should

be also much smaller than the typical values of torque, T .

The system was illuminated laterally by a thin(30µm in the centre of
the setup and about 120µm at the edges of the setup) laser sheet at the
middle distance between plates. The laser sheet was generated by passing
a laser beam delivered by a 300mW argon-ion laser, L, through a block of
two crossed cylindrical lenses, CO, mounted in a telescopic arrangement.
Flow images are acquired with a digital camera (PixelFly from PCO with
12 bit quantisation and 640 × 512 pixels resolution)from below, through a
45deg flat mirror, M.
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Figure 8. Overview of the swirling flow apparatus: C- fluid container,
D-rotating disk ,AR-1000-rheometer, CO-cylindrical optics, L- laser,
M- plane mirror, CCD-digital camera, P-LDV probe,BSA-burst spectrum
analyser, PMT-photomultiplier.

Rheological properties of the polymer solutions The polymer used
was polyacrylamide, PAAm (from Polysciences Inc.) with the molecular
weight Mw = 1.8X107Da which was the same polymer used in Ref. Gro-
isman and Steinberg [2001]. The polymer was dissolved at a concentration
of 80ppm in a Newtonian solvent. The Newtonian solvent was about 65%
saccharose in water.

The rheological properties of the solvent and the polymer solution were
measured with two different rheometers: AR-1000 from TA Instruments
and Vilastic 3 from Vilastic Scientific. The viscosity of the solvent was
ηs = 114mPas at 22oC, and the viscosity of the solution was η = 138mPas
at a shear rate of 2s−1. The polymer relaxation time, λ, was measured in
oscillatory tests at different shear rates ,γ̇, ranging from 0.4s−1 to 3.6s−1.
The real and imaginary part of the complex viscosity (or the components in-
phase and out-of-phase with the applied shear), η′ and η′′, respectively, were
measured in long series at different angular frequencies ranging from 0.1Hz
to 1Hz. Corresponding to each frequency, the results were averaged over
six different runs. The same procedure was applied with the solvent ant its
viscosity components,η′s and η′′s were measured as well. The values for the
polymer in-phase and out-of-phase viscosity were calculated as η′p = η′− η′s
and η′′p = η′′ − η′′p . The polymer relaxation time was finally calculated
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Figure 9. Polymer relaxation obtained from oscillation measurements in a
Mooney-Ewart geometry mounted on the AR-1000 rheometer. The full line
is a fit γ̇−0.29.

λ = limω→0[ 1
ω (

η′′p (ω)

η′p(ω) )].

The dependence of the polymer relaxation time on the shear rate is
presented in Fig. 9.

Flow field measurements In order to obtain a detailed characterisation
of both spatial structure and temporal evolution of the flow-fields, three dif-
ferent experimental techniques have been alternatively used: particle image
velocimetry (PIV), particle tracking velocimetry (PTV) and laser Doppler
anemometry (LDA). As flow tracers we have used 10µm fluorescent parti-
cles, for the PIV and PTV measurements and 1µm latex beads for the LDA
measurements.

We have acquired 2000 pairs of flow images every 120ms. A custom
development of the camera software allowed us to adjust the time delay
between consecutive images in relation with the local flow velocity (in order
to keep the mean particle displacement in the range 5 − 15 pixels). Cor-
responding to low values of the angular velocity of the upper disk (up to
about 0.4rad/s) the time delay was 540ms and then, gradually decreased
down to 40ms. The total data acquisition time was always longer than
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the Eulerian correlation times of the velocity (about 240 times in the fully
developed random regime). Time series of velocity fields are obtained by a
multi-pass PIV algorithm. The space resolution was 0.89mm in setup 2 and
0.57mm in setup 1. The accuracy of the method has been carefully checked
by running test experiments with the solvent, in the same range of mean
particle displacements and at similar illumination conditions. Although an
instrumental error increased more or less linearly with the mean particle
displacement, it has never exceeded 5% of the mean displacement. By post
processing the velocity fields, we obtain the profiles of the velocity com-
ponents, fields of fluctuations of each velocity component, space spectra of
the velocity fluctuations, velocity gradients and their fluctuations, structure
functions of gradients, power spectra of velocity fluctuations, eulerian veloc-
ity correlation times. The space-time measurements together with simulta-
neous bulk measurements of the flow resistance provide a rather complete
description of the different flow regimes as a function of Wi.

In order to check the consistency of the PIV approach (particularly when
Lagrangian trajectories were measured), flow fields have been alternatively
investigated by PTV technique. The first step of the PTV approach is
an accurate particle identification in each flow image, by correlation with
prototypical particle shapes which can be either extracted from flow images,
either defined manually. Secondly, trajectories are reconstructed by joining
successive positions of the same particle on subsequent images. This has
been done by a search algorithm based on an initial ”guess” of the mean flow
line. Although the PIV and PTV tools are very suitable for the investigation
of the spatial properties of the flow, they provide a limited time resolution
and statistics. In order to overcome this limitation, the LDA technique
has been alternatively used. By the LDA technique, time series of the
fluid velocity are measured in a relatively small volume (typically 100µm×
50µm×50µm). A commercial LDA system from Dantec Dynamics Inc. has
been used. Two laser beam delivered by a probe (P) (Fig. 8)are aligned to
cross each other at an angle of θ = 10deg in some point in the flow. The
light scattered in the backward direction by the flow tracers present in the
flow is collected by the probe P and delivered to a photomultiplier, PMT
via a fiber optic light guide. The PMT signal is processed by a real time
burst spectrum analyser BSA. The local flow velocity is proportional to the
Doppler shift of the signal. The error validated velocity data is stored on a
computer via a GPIB line.
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4.2 Flow resistance

One of the main features of the transition to elastic turbulence is the
substantial growth of flow resistance above the onset of the instability Gro-
isman and Steinberg [2000], Burghelea et al. [2007, 2004c]. In the case of
a von Karman swirling flow, a measure of the flow resistance is either the
power needed to spin the upper plate a constant angular speed, PΩ, either
the power needed to spin the upper plate in a regime of constant torque,
T , on the shaft of the rheometer, PT . For a swirling flow between parallel
plates, the Reynolds number can be defined as Re = Ω·Rc·d·ρ

η . In our ex-
periments the inertial contribution was always low, Re < 16. The relevant
control parameter is the Weissenberg number, Wi = λ(γ̇)·γ̇ where the shear
rate, γ̇, can be estimated 1 as γ̇ = Ω·Rc

d .

The dependencies of the injected power and of the rms of its fluctuations
on the control parameter, Wi, are presented in Fig. 10 A,B.

The data presented in Fig. 10 A,B reveal three distinct flow regimes.
For low values of the control parameter, Wi, the injected power grows as
Plam ∝ Wi2.85. If one takes into account the thinning of the polymer
relaxation time with the shear rate (Fig. 9), one can easily conclude that
the power grows quadratically with the angular speed, consistent with a
linear and laminar flow regime. Corresponding to Wi ≈ Wic, a primary
elastic instability occurs, resulting in a sharp increase of the injected power
and of the rms of its fluctuations. Increasing further the control parameter,
the flow evolves towards a scaling regime ( Wi > Wiet) where both the
average and the rms of fluctuations of the injected power scale algebraically
with Wi (Fig. 10): P ∝ Wi3.34 and Prms ∝ Wi3.21. The scaling of the
mean injected power with the control parameter can be explained by simple
considerations. Due to the smallness of the inertial nonlinearity in the flow
(Re < 16), the relative growth of the mean injected power with respect to
its laminar values, should be solely due to the mean elastic contribution to
the stresses, P

Plam
∝ τp. Therefore,according to the fit presented in Fig. 10

A, τp ∝Wi0.49.

According to theory, Balkovsky and Fouxon [1999], Balkovsky et al.
[2001], for a sufficiently large degree of stretching of the polymer molecules
in the flow (when the back reaction of the polymer molecules is switched
on), the elastic contribution to the stress tensor, τp, scales as the inverse
polymer relaxation time, τp ∝ λ−1. Next, if one takes into account the de-
pendence of the relaxation time on the shear rates presented in sub section
1.1.1, λ ∝ γ̇.−0.3, one obtains τp ∝Wi0.43 which is rather close to the value

1Due to the strong non homogeneity of the shear rates in a swirling flow, even in laminar

regime, this choice is somewhat arbitrary.
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Figure 10. (A)Dependence of the mean power, P , on the control param-
eter, Wi: squares-increasing Wi, circles-decreasing Wi. The full line is a
guide for the eye, Wi3.34. The dotted line is Wi2.85.The inset shows a power
law fit, Wi3.34±0.05 (B) Dependence of the rms of power fluctuations, P rms,
on Wi: squares-increasing Wi, circles-decreasing Wi. The full lines are
power laws, Wi3.21. The inset shows the power law fits, Wi3.21±0.3. Data
were collected in setup 2 in Ω forcing mode.
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Setup ε Ωc(rad/s) Ωet(rad/s) γc(s
−1) γet(s

−1) λc(s) λet(s) Wic Wiet Rec
1 0.5 1.3 2 2.6 4.6 3.4 3 10 13.8 2.7

2 0.2 0.3 0.97 1.43 4.74 4.2 2.95 6 14 1.38

Table 1. Onset values of the relevant physical quantities corresponding to
the primary elastic instability and fully elastic turbulent regime.

Figure 11. Dependence of the onset of the primary elastic instability on
geometric aspect ratio:(A) Shear Rate (B) Angular velocity. The symbols
are: squares-Rd = 4.7cm, circles-Rd = 2.2cm,triangles-Rd = 1.7cm. The
full line is ε−1.

0.49 obtained experimentally. The onset values of the angular speed and
the corresponding values of the shear rate, characteristic relaxation time
and Wi are presented in the table 1.

Corresponding to the onset of the elastic instability, Re was of order of unity
in both setups, suggesting that the transition is of purely elastic nature.

One has to point out a discrepancy between the values of the geometric
aspect ratio ε = d/Rc for each of the setups used and the corresponding
onset values,Wic, for the primary elastic instability. Indeed, as illustrated
in the table above, although the first setup has a larger aspect ratio than
the second, the elastic instability occurs here at higher Wi than in the
second setup. This discrepancy motivated me to study more systematically
the relation between the onset of the primary elastic instability and the
geometric aspect ratio ε. By modifying both the radius of the container,
Rc, and the distance between plates d, the geometric aspect ratio ε has been
varied about 10 times. For each value of ε, the onset of the primary elastic
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instability has been identified by measuring the dependence of the mean
injected power on the angular speed of the upper plate. As illustrated in
Fig. 11 A,B the onset values of the shear rate scale as ε−1 and, implicitly,
the onset values of the angular speed are practically independent on the
aspect ratio. However, as one can see in 11 B, the onset speeds seem to
depend on the radius of the cylindrical container.

One has to point out that these experimental results clearly disagree
with the linear stability analysis presented in [8-10] which leads to γ̇c ∝ ε−

1
2

and Ωc ∝ ε
1
2 .

Typical time series of the injected power and their probability distribu-
tion functions(pdf’s) for different Wi are displayed in Fig. 12 (Ω forcing)
and Fig. 13 (T forcing). For each value of the control parameter, the statis-
tics of the power fluctuations was carried out on 180000 data points evenly
sampled in time (ts ≈ 0.038s).

In order to avoid the mechanical degradation of the polymer solution
during long data acquisition times, separate experiments have been con-
ducted for each value of the control parameter. The local(in time) average
values of the injected power did not change significantly during the total
data acquisition times, suggesting that no major degradation has occurred
2. For low values of the control parameter, (Wi < Wic), the power fluctua-
tions are only due to the instrumental noise suggesting a linear and laminar
flow regime. Above the onset of the elastic instability, the power starts to
fluctuate quite randomly in time. Corresponding to large values of Wi, the
pdf’s are strongly non Gaussian for both forcing modes. It is worth noting
the left side skewness of the pdf’s in Fig. 12 and the right side skewness
the pdf’s in Fig. 13. Understanding the reasons of this asymmetry requires
a future investigation.

To conclude this section, accurate measurements of the power injected in
the flow revealed three distinct flow regimes. A linear and laminar regime
was observed for Wi < Wic, followed by transitional regime above the
onset of the elastic instability, Wic < Wi < Wiet, and finally the elastic
turbulence regime, Wi > Wiet, where both the injected power and the rms
of its fluctuations scale algebraically with the control parameter. The sharp
increase of the flow resistance above the onset of the elastic instability is
related to a major reorganization that occurs in the flow.

The next section is dedicated to a detailed investigation of the flow
structure in each of the three regimes discussed above.

2One of the signatures of the mechanical degradation is an apparent decrease in time

of the viscosity of the solution, which results in a decrease of the injected power.
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Figure 12. (A) Time series (partially shown) of the injected power in con-
stant Ω forcing regime for different Wi. (B)pdf’s of the power fluctuations in
constant Ω forcing regime for different Wi. The colors are: orange-Wi = 5,
yellow-Wi = 19, red-Wi = 24, green-Wi = 31.5, blue-Wi = 40. Data were
collected in setup 2.
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Figure 13. (A) Time series (partially shown) of the injected power in con-
stant T forcing regime for different Wi. (B)pdf’s of the power fluctuations
in constant T forcing regime for different Wi. The colors are: blue-Wi = 5,
green-Wi = 17, red-Wi = 25, yellow-Wi = 34, black-Wi = 46.Data were
collected in setup 2.
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Figure 14. (A) Profiles of the average tangential velocity components,
Vθ, for several values of Wi. The inset shows a typical laminar profile of the
tangential velocity component. (B)Profiles of the average radial velocity
components, Vr, for several values of Wi. The colors are: black-Wi = 2.48,
green-Wi = 4.41, red-Wi = 11.1, orange-Wi = 15, blue-Wi = 18.Data were
collected in setup 1 at middle distance between plates.

4.3 Flow structure in a regime of Elastic Turbulence

Corresponding to each value of Wi investigated, the flow fields have been
characterised by combined PIV, PTV and LDA techniques. Typical time
averaged profiles of the tangential, Vθ, and radial, Vr, velocity components
are displayed in Fig. 14 A,B. Instantaneous and time averaged velocity
fields are presented in Fig. 15(a-c).

Below the onset of the primary elastic instability (Wi < Wic) the flow
is steady and laminar. The core region of the flow is consistent with a rigid
body rotation characterised by a linear increase of the tangential velocity
component(inset in Fig. 14A, Fig. 15(a)) with a slope Ω−1. In the pe-
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Figure 15. Instantaneous (left column) and time averaged (right col-
umn)velocity fields for different values Wi: a) Wi = 2.48 b) Wi = 9.88
(c)Wi= 18.96. Data were collected in setup 1 at middle distance between
plates.
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ripheral region of the flow, Vθ decays towards the boundaries similarly to
a Couette flow between cylinders. As illustrated in Fig. 14 B, below the
onset of the elastic instability, there is no fluid motion in the radial direc-
tion, Vr ≈ 0. This is also illustrated in Fig. 15 (left column), which displays
spatial distribution of the radial velocity component for several values of
the control parameter. The right column of Fig. 15 displays typical average
spatial distributions of the tangential velocity component at different values
of Wi.

The velocity fluctuations in the laminar regime are only due to the in-
strumental errors and do not exceed 5% of the mean values (panel (a) in
Fig. 17). Corresponding to Wi ≈ Wic, a primary elastic instability driven
by the hoop stresses leads to a first flow reorganization 3 in the form of a
large scale structure which is probably similar to the toroidal vortex previ-
ously observed experimentally, Groisman and Steinberg [2004] . Large scale
toroidal vortices driven by the hoop stresses are actually quite well known
to appear in swirling flows of viscoelastic fluids Bird et al. [1977], STOKES
et al. [2001a,b] and, the non homogeneity of the shear rate profile in the
primary laminar flow has been long recognised as their common origin. The
mean radial velocity component changes its sign in the radial direction, from
negative values near the centre of the system, to positive ones towards the
boundaries(the red curve in Fig. 14B). This sign alternation of the radial
velocity component in the radial direction is also apparent in Fig. 15(B).

The first flow reorganisation in the intermediate regime, Wic < Wi <
Wiet, is accompanied by a sharp increase of the level of velocity fluctuations
(Figs. 17, 19). The field of fluctuations has a ring shaped topology (Fig.
17 (b-c)) which is probably related to the topology of the secondary flow
developed in this region. The toroidal vortex is providing a smooth large
scale velocity field (as illustrated in panel Fig. 15(b), the instantaneous
velocity field displays no small scale features) which fluctuates randomly in
time. The stress tensor is imbedded in this field and chaotically advected
by it. Such advection can create small scale fluctuations of stresses which
can result in small scale fluid motion4 Balkovsky and Fouxon [1999], Fouxon
and Lebedev [2003], Balkovsky et al. [2001].

It is worth noting that in the peripheral region of the flow (down trian-
gles, left triangles in Fig. 18), the increase of turbulence intensity defined

as defined as It =
V rmsθ

Vθ
occurs at slightly lower values of Wi than in the

3As one can see from Fig. 10, this large scale flow reorganization costs in a drastic

increase of both the flow resistance and level of fluctuations of the injected power.
4The mechanism is similar to generation of small scale passive scalar variations in the

chaotic mixing in spatially smooth random flows.
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Figure 16. Distribution of the radial velocity component(left column) and
of the tangential velocity components ( right column) for different values of
Wi:(a) Wi = 2.48 (b) Wi = 9.88 (c)Wi= 18.96. Data were collected in
setup 1 at middle distance between plates.

central region (up triangles, circles). Here V rmsθ is the rms of fluctuations of

the tangential velocity component, V rmsθ = 〈V 2
θ 〉

1
2
t . This suggests that in-

stability front propagates from the boundary towards the bulk of the flow.
The forthcoming analysis of the velocity gradients will clarify this issue.
Radial profiles of the turbulence intensity,It are displayed in Fig. 19.

The large scale toroidal vortex developed in the intermediate region
mediates the transition to elastic turbulence regime of Elastic Turbulence,
(Wi > Wiet). Corresponding to this regime, a second flow reorganisation
occurs 5. As suggested by panel (c) in Figs. 15, 16, the dominant flow
structure is now a large scale spiral vortex. The topology of the field of

5Corresponding to this second flow reorganization, both the mean injected power and
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Figure 17. Fields of fluctuations of the tangential velocity component at
different Wi:(a) Wi = 8.32 .(b) Wi = 9.88.(c) Wi = 11.1.(d) Wi =
12.72.(e) Wi = 13.83.(f) Wi = 17(g) Wi = 19. Data were collected in the
setup 1 at middle distance between plates.

fluctuations also changes drastically. In setup 1, the circular symmetry (see
the ring like structure in panels (b),(c) in Fig. 17) is broken, and the fluc-
tuation fields have now a dipolar appearance (panels (d)-(g) in Fig. 17). A
different 6 topological change has been observed in setup 2, from a ring (in
the intermediate region) to a corona in the elastic turbulence region. Figure
1.12 shows radial profiles of the turbulence intensity for several values of the
control parameter. The dependence of the turbulence intensity, It, on the
control parameter enters a scaling regime, It ∝Wi0.5 (Fig. 18, the inset in
Fig. 19).

the rms of its fluctuations enter a scaling region, Fig. 10.
6The difference in the topologies of the fields of fluctuations observed in the two setups

is probably related to the sensitivity to the boundary conditions.
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Figure 18. Turbulence intensity versus Wi at different radial positions:
squares-r = 1cm, up triangles-r = 0.7cm, down triangles-r = 1.5cm,
rhumbs- r = 1.74cm,left triangles-r = 1.89cm.The arrow indicates the onset
of the elastic instability. The full line is a guide for the eye, Wi0.5. The
data were collected in setup 1.

The Eulerian correlation time can be defined as

τc =

∫
t C(t)dt/

∫
C(t)dt (6)

using the Eulerian correlation function (data are not shown here) of the
velocity in a regime of elastic turbulence, C(t).

The transition to elastic turbulence is accompanied by a significant de-
crease of the correlation times, τc, from values of order of 15s in the inter-
mediate flow regime to values of about 1s, Fig. 20. An apparent saturation
of the correlation time in the elastic turbulence regime was observed in both
setups, suggesting that some sort of dynamical equilibrium is reached. The
saturation level is of the order of 1/λ, Fig. 9.

A main similarity between random flows in a regime of elastic turbulence
and high Re turbulent flows is the fast decay of the power spectra of velocity
fluctuations Groisman and Steinberg [2000, 2001, 2004].

Fig. 21 displays space 7 spectra of the velocity fluctuations for different

7The spectra were obtained from the time dependent measurements of the flow fields
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Figure 19. Turbulence intensity versus the reduced radial coordinate at
different Wi: rhumbs-Wi = 31.56, squares- Wi = 27.73,circles-Wi = 23.67,
up triangles-Wi = 19.29, down triangles- Wi = 15.48,stars-Wi = 7.54, half
filled triangles-Wi = 2.82. The inset shows the dependence of the turbu-
lence intensity on Wi at r/Rc = 0.85 obtained from LDV measurements.
The full line is a power law fit, It ∝ Wi0.49±0.06. The arrow indicates the
onset of the elastic instability. The data were collected in setup 2.

values of the control parameter. However, in contrast to the inertial turbu-
lence, the spectrum of the velocity fluctuations is not related to an energy
cascade. A recent theoretical work, Fouxon and Lebedev [2003], suggests the
following explanation for the shape of the velocity power spectra displayed
in Fig. 21.

In a regime of elastic turbulence, the flow is dominated by a large scale
randomly fluctuating velocity field. The passive advection of the stress field
by the large scale velocity fields leads to generation of smaller scales stress
fields, which are permanently decaying to polymer relaxation. The situation
is quite similar to the decay of a passively advected tracer in the Batchelor
regime of mixing. The small scales velocity fluctuations are a result of the
small scale fluctuations of the stress field. A typical scale at which elastic

without using the Taylor hypothesis. The validity of the TH for elastic turbulent flows

will be discussed in section 1.6.
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stresses are pumped can be estimated using the power spectra shown in Fig.
21,

L = 2π

∫
P (k)dk∫
k · P (k)dk

(7)

Corresponding to fully developed chaotic flow states(Wi > Wiet), one ob-
tains L = 2.4cm for setup 1 and L = 5.9cm for setup 2, suggesting that the
main energy dissipation takes place at large scale and the physics behind the
spectra is similar to the linearly decaying passive scalar problem. Unlike in
the case of high Re turbulence, here there is no analogue of the Kolmogorov
scale (the apparent flattening of the spectra for large wave numbers is only
due to the finite spatial resolution of the PIV measurements) and the spec-
tra should terminate at wave numbers kdiff ≈ 1/

√
D · λ defined by the

diffusivity D of the polymer molecules and their relaxation time, λ. The
simultaneous passive advection and relaxation of the elastic stresses results
in a fast decay of the stress fluctuations at small scales, which should pro-
duce P (k) ∼ k−α velocity spectra with α > 3. The data presented in Fig.
21 displays a decay region k−3.6 which agrees rather well with the theoreti-
cal prediction, Fouxon and Lebedev [2003], and with previous experimental
results 8, Groisman and Steinberg [2000] .

Unfortunately, an experimental technique that allows measurements of
the stresses embedded in a fluid flow is not currently available. As sug-
gested in refs. Balkovsky and Fouxon [1999], Balkovsky et al. [2001], the
stress generation in the flow of a dilute polymer solution is directly related
to the local Lyapunov exponents of the flow (defined by the average loga-
rithmic rate of separation of two initially close Lagrangian trajectories)or,
equivalently, to the rms of fluctuations of the velocity gradients.

8In ref. Groisman and Steinberg [2000] the spatial spectra of the velocity fluctuations

have been derived from point velocity measurements by using the Taylor hypothesis.

For random flows of a dilute polymer solution in a regime of elastic turbulence, this

hypothesis generally fails (see section 1.6). The remarkable agreement between the

spectra measured in ref. Groisman and Steinberg [2000]and the directly measured

spectra deserves a brief discussion. Following Lumley, Lumley [1965], the relation

between the spatial spectra, P (k) and the frequency domain spectra, P1(f) can be

written: P (k) = V · P1(f)− I2t
2
· d

2(k2·P (k))

dk2
+O(I4t ). If P (k) ∝ kα2 and P (f) ∝ fα1 ,

the equation above leads to: α2 − α1 ∝
log[1+

I2t
2

·α2·(α2+2)]

log(k)
. If one plugs in the last

equation α2 ≈ −3.6, the difference between the exponents is (for k ≈ 1000m−1) as

small as α2 − α1 ≈ 0.2.
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Figure 20. Eulerian correlation times of the tangential velocity component
as function of Wi: squares-setup 1, circles-setup 2.
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Figure 21. Power spectra of the fluctuations of tangential velocity com-
ponent at different Wi: circles-Wi = 4.41, up triangles-Wi = 5.72, down
triangles-Wi = 8.32, left triangles Wi = 11.1, right triangles-Wi = 12.7,
hexagons-Wi = 13.8, diamonds-Wi = 16, half filled squares-Wi = 18,
empty circles-Wi = 19. Data were collected in setup 1.
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Figure 22. Average gradient of the tangential velocity component in the
radial direction,∂vθ∂r , at different Wi: (a) Wi = 8.32 .(b) Wi = 9.88.(c)
Wi = 11.1. (d) Wi = 12.72. (e) Wi = 13.83.(f) Wi = 17 (g) Wi = 19.
Data were collected in setup 1 at middle distance between plates. The
squared pattern slightly visible in panel (a) is a result of combined peak
locking effect and numerical differentiation and should be disregarded.
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Figure 23. Average gradient of the radial velocity component in the radial
direction,∂vr∂r , at different Wi: (a) Wi = 8.32 .(b) Wi = 9.88.(c) Wi =
11.1.(d) Wi = 12.72.(e) Wi = 13.83.(f) Wi = 17(g) Wi = 19. Data were
collected in setup 1 at middle distance between plates.
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Figure 24. Average vertical component of the vorticity, ωrθ, at different
Wi: (a) Wi = 8.32 .(b) Wi = 9.88.(c) Wi = 11.1.(d) Wi = 12.72.(e)
Wi = 13.83.(f) Wi = 17(g) Wi = 19. Data were collected in setup 1 at
middle distance between plates. The squared pattern visible in panels (a),
(b) is a result of combined peak locking effect and numerical differentiation
and should be disregarded.
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Figure 25. (A) Profiles of the average radial gradient of the tangential
velocity at different Wi: black-Wi = 19, red-Wi = 18, green-Wi = 11,
blue-Wi = 16, magenta-Wi = 13.83, olive-Wi = 11.1, dark blue-Wi = 9.88,
yellow-Wi = 8.32, orange-Wi = 5.73, pink-Wi = 2.48. (B) Dependence
of the average radial gradient of the tangential velocity on Wi at differ-
ent radial positions: squares-r/Rc=0.3, circles-r/Rc = 0.66, up triangles-
r/Rc = 0.4, down triangles-r/Rc = 0.2, left triangles-r/Rc = 0.1, right
triangles-r/Rc = 0.7, stars-r/Rc = 0.5. The arrow indicates the onset of
the elastic instability. Data were collected in setup 1 at middle distance
between plates.
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Figure 26. (A) Profiles of the rms of fluctuations of the radial gradient
of the tangential velocity at different Wi: black-Wi = 19, red-Wi = 18,
green-Wi = 11, blue-Wi = 16, magenta-Wi = 13.83, olive-Wi = 11.1, dark
blue-Wi = 9.88, yellow-Wi = 8.32, orange-Wi = 5.73, pink-Wi = 2.48.
(B) Dependence of the rms of fluctuations of the radial gradient of the
tangential velocity on Wi at different radial positions: squares-r/Rc=0.3,
circles-r/Rc = 0.66, up triangles-r/Rc = 0.4, down triangles-r/Rc = 0.2,
left triangles-r/Rc = 0.1, right triangles-r/Rc = 0.7, stars-r/Rc = 0.5. The
arrow indicates the onset of the elastic instability. Data were collected in
setup 1 at middle distance between plates.
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Figure 27. (A) Profiles of the average vorticity, 〈ωrθ〉, at different Wi:
black-Wi = 19, red-Wi = 18, green-Wi = 11, blue-Wi = 16, magenta-
Wi = 13.83, olive-Wi = 11.1, dark blue-Wi = 9.88, yellow-Wi = 8.32,
orange-Wi = 5.73, pink-Wi = 2.48. (B) Dependence of the average
vorticity on Wi at different radial positions: squares-r/Rc=0.3, circles-
r/Rc = 0.66, up triangles-r/Rc = 0.4, down triangles-r/Rc = 0.2, left
triangles-r/Rc = 0.1, right triangles-r/Rc = 0.7, stars-r/Rc = 0.5. The
arrow indicates the onset of the elastic instability. Data were collected in
setup 1.
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Figure 28. (A) Profiles of the rms of fluctuations of the vorticity, ωrmsrθ , at
different Wi: black-Wi = 19, red-Wi = 18, green-Wi = 11, blue-Wi = 16,
magenta-Wi = 13.83, olive-Wi = 11.1, dark blue-Wi = 9.88, yellow-Wi =
8.32, orange-Wi = 5.73, pink-Wi = 2.48. (B) Dependence of the rms of
fluctuations of the vorticity on Wi at different radial positions: squares-
r/Rc=0.3, circles-r/Rc = 0.66, up triangles-r/Rc = 0.4, down triangles-
r/Rc = 0.2, left triangles-r/Rc = 0.1, right triangles-r/Rc = 0.7, stars-
r/Rc = 0.5. The arrow indicates the onset of the elastic instability. Data
were collected in setup 1.
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Figure 29. (A) Profiles of the average radial gradient of the tangential
velocity at differentWi:black-Wi = 34.5, red-Wi = 32.3, green-Wi = 27.73,
blue-Wi = 26.13, magenta-Wi = 19.29, dark yellow-Wi = 17.43, dark blue-
Wi = 14.48, yellow-Wi = 10, orange-Wi = 5.4, pink-Wi = 2.82. (B)
Dependence of the average radial gradient of the tangential velocity on Wi
at different radial positions: squares-r/Rc=0.33, circles-r/Rc = 0.66, up
triangles-r/Rc = 0.4, down triangles-r/Rc = 0.2, left triangles-r/Rc = 0.1,
right triangles-r/Rc = 0.7, stars-r/Rc = 0.5, half filled squares-r/Rc = 0.8,
half filled circles-r/Rc = 0.9. The arrow indicates the onset of the elastic
instability. Data were collected in setup 2.
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Figure 30. (A) Profiles of the rms of fluctuations of the radial gradient of
the tangential velocity at different Wi: black-Wi = 34.5, red-Wi = 32.3,
green-Wi = 27.73, blue-Wi = 26.13, magenta-Wi = 19.29, dark yellow-
Wi = 17.43, dark blue-Wi = 14.48, yellow-Wi = 10, orange-Wi = 5.4,
pink-Wi = 2.82.(B) Dependence of the rms of fluctuations of the radial gra-
dient of the tangential velocity on Wi at different radial positions: squares-
r/Rc=0.33, circles-r/Rc = 0.66, up triangles-r/Rc = 0.4, down triangles-
r/Rc = 0.2, left triangles-r/Rc = 0.1, right triangles-r/Rc = 0.7, stars-
r/Rc = 0.5, half filled squares-r/Rc = 0.8, half filled circles-r/Rc = 0.9.
The arrow indicates the onset of the elastic instability. Data were collected
in setup 2.
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Figure 31. (A)Profiles of the average vorticity, 〈ωr,θ〉, at different Wi:
black-Wi = 34.5, red-Wi = 32.3, green-Wi = 27.73, blue-Wi = 26.13,
magenta-Wi = 19.29, dark yellow-Wi = 17.43, dark blue-Wi = 14.48,
yellow-Wi = 10, orange-Wi = 5.4, pink-Wi = 2.82 (B) Dependence of the
average vorticity on Wi at different radial positions: squares-r/Rc=0.33,
circles-r/Rc = 0.66, up triangles-r/Rc = 0.4, down triangles-r/Rc = 0.2,
left triangles-r/Rc = 0.1, right triangles-r/Rc = 0.7, stars-r/Rc = 0.5, half
filled squares-r/Rc = 0.8, half filled circles-r/Rc = 0.9. The arrow indicates
the onset of the elastic instability. Data were collected in setup 2.

The measurements of time dependent flow fields allowed us to calculate
directly 9 the average gradients and the rms of their fluctuations of each
velocity component in both polar directions. Typical spatial distributions
of the time averaged gradient of the tangential velocity component in the
radial direction, ∂vθ∂r , and of the time averaged radial velocity component in

the radial direction,∂vr∂r are displayed in Figs. 22 and 23 for several values

9Again, without using the Taylor hypothesis.
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Figure 32. (A) Profiles of the rms of fluctuations of the vorticity, ωrmsr,θ ,
at different Wi: black-Wi = 34.5, red-Wi = 32.3, green-Wi = 27.73,
blue-Wi = 26.13, magenta-Wi = 19.29, dark yellow-Wi = 17.43, dark
blue-Wi = 14.48, yellow-Wi = 10, orange-Wi = 5.4, pink-Wi = 2.82.(B)
Dependence of the rms of fluctuations of the vorticity on Wi at differ-
ent radial positions: squares-r/Rc=0.33, circles-r/Rc = 0.66, up triangles-
r/Rc = 0.4, down triangles-r/Rc = 0.2, left triangles-r/Rc = 0.1, right
triangles-r/Rc = 0.7, stars-r/Rc = 0.5, half filled squares-r/Rc = 0.8, half
filled circles-r/Rc = 0.9. The arrow indicates the onset of the elastic insta-
bility. Data were collected in setup 2.
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of the control parameter (the data refers to setup 1).

Spatial distributions of the time averaged vorticity are presented in Fig.
24 for several values of Wi. As one can see in Fig.22(b), below the onset
of the elastic instability, Wi < Wic, the mean gradient of the tangential
component is rather constant in the bulk (consistent with a rigid body
rotation, that is a linear increase of the tangential velocity with the radial
coordinate, Fig. 14 ) and sharply decreasing towards negative values in the
boundary. In the intermediate flow region, Wic < Wi < Wiet, the spatial
distribution of the mean gradient has an apparent ring shaped topology (Fig.
22(c)) which is consistent with the large scale toroidal vortex developed
in this region. The large values of the velocity gradient in the boundary
explain why, once the hoop stresses destabilise the flow the instability front
propagates from the boundaries to the bulk as the control parameter is
increased (Fig. 18). A further increase of the control parameter in the
region Wi > Wiet results in a rather uniform distribution of the gradients
in the bulk and large negative values in the boundary. Radial profiles of the
mean gradient of the tangential velocity component in the radial direction
displayed in Fig. 25(A) reveal a rather uniform distribution of the gradients
in the bulk of the flow and a sharp increase near the boundary. The typical
dependencies on the control parameter are displayed in Fig. 25(B).

As one can see in Figs.26 30, (∂vθ∂r )rms saturates at a value ≈ 1.4s−1

which is of the same order of magnitude with the inverse Eulerian correlation
time (see Fig. 20) and the inverse polymer relaxation time. Profiles of the
average vorticity and its dependence on the control parameter are shown in
Fig. 27,1.24. In Figs. 28, 32 are shown profiles of the rms of fluctuations
(panel (A)) of the vorticity and their Wi dependence (panel (B)). In both
of the setups tested a similar behaviour of the gradients and the rms of their
fluctuations (though the increase in the boundary looks less pronounced)
has been observed.

The saturation of the rms of fluctuations of the velocity gradients in the
region Wi > Wiet at values comparable to the inverse polymer relaxation
time is consistent with the theoretical predictions corresponding to the case
when the back reaction of the polymer molecules to the flow is switched on.
A theoretical explanation for this experimentally observed fact will be given
in Sec. 5.

4.4 Lagrangian frame dynamics in a regime of Elastic Tuerbu-
lence

The discovery of a deterministic chaos has substantially changed the
classical view point on the origin of randomness in a fluid flow and pro-
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vided a considerable number of powerful tools in understanding bifurcation
phenomena in hydrodynamic systems Brandstäter et al. [1983]. One of the
quantitative measures of the degree of randomness of a fluid flow is the
largest Lyapunov exponent (LLE), which defines the average rate of an ex-
ponential separation of two neighbouring trajectories:

LLE = lim
t→∞

lim
δ(0)→0

1

t
log(

δ(t)

δ(0)
) (8)

where δ(t) = ‖x2(t)− x1(t)‖ is the Euclidian distance between two tra-
jectories at time t. The LLE is the main flow characteristics that deter-
mine both the local dynamics and conformations of the polymer molecules
Balkovsky and Fouxon [1999], Balkovsky et al. [2001], Gerashchenko, S.
et al. [2005]. Thus, the knowledge of the LLE together with the knowledge
of the single molecule polymer relaxation time τr defines the criterion for
the coil-stretch transition Balkovsky and Fouxon [1999], Balkovsky et al.
[2001], Gerashchenko, S. et al. [2005]: λ · τr = 1. In most of the previous
experimental works, the LLE was measured by reconstruction of the phase
portrait from measurements of a single point observable. Although from
technical point of view this approach might look less demanding than a
direct measurement of the particle pair separations, there are few rather
sensitive issues that should be carefully addressed: a proper choice of the
time delays and the embedding dimension, length and noise level of the data
sets. We are aware of only one experimental work that deals with direct
measurements of the Lagrangian trajectories and the statistics of pair sep-
arations Boffetta, G. et al. [1999]. The main purpose of this Lagrangian
frame investigation is to understand the relation between LLE’s and the
relevant Eulerian time scales of the flow: velocity correlation time, inverse
velocity gradients, and the magnitude of their fluctuations. In experimen-
tal and numerical simulations the infinite time limit required by Eq. (8)
is unattainable. Besides, due to the finite size of experimental setups the
dispersion of initially closely located particles cannot reach a truly asymp-
totic regime due to interaction with boundaries. A way to overcome these
difficulties is to use the finite time Lyapunov exponents approach (FTLE)
Boffetta et al. [2002], Lacorata et al. [2001], Artale et al. [1997], Boffetta
et al. [2003], that is to look on the average rate of separation of initially
close particles during finite times. This approach is particularly suitable in
the case, when the characteristic scale of the velocity field, lu, is comparable
with the system size, L, and it has been recently employed in experiments
and numerical simulations Gerashchenko, S. et al. [2005], Boffetta et al.
[2002], Artale et al. [1997]. The FTLE is defined by
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γ(t) =
1

t
〈log

δ(t)

δ(0)
〉e (9)

where the ensemble average is taken over all particle pairs initially con-
tained in clusters of radius δ(0) � lu. For sufficiently small initial particle
separation, δ(0), the FTLE becomes a rather good estimate of the LLE
Boffetta et al. [2002], Artale et al. [1997].

We conducted our measurements above the elastic instability threshold
at (Wi > 6) and higher Groisman and Steinberg [2000], Larson [1992],
where the chaotic flow results from the elastic stresses only since inertial
contribution is low (Re < 16). The velocity field measurements presented
in the previuos section show that, above the onset of the elastic instability
the swirling flow is dominated by a randomly fluctuating large scale vortex.
In contrast to the case of inertial turbulence, where the flow can be consid-
ered smooth only below the Kolmogorov scale, the elastic turbulent flow is
smooth at all scales, and no analogue of the dissipation scale exists. The
large scale of the velocity field, on which energy pumping takes place, is
defined by the elastic instability and is about the system size, i.e. lu ≈ Rd
. Thus, the flow smoothness over a broad range of scales fully justifies the
use of the FTLE approach. Numerical Lagrangian trajectories were ob-

tained by integrating in time d−→x
dt = −→v (−→x , t) with a 5th order adaptive step

Runge-Kutta integrator (Shampine and Watts program based on Fehlberg’s
Runge-Kutta pair of order 4 and 5). Instantaneous velocity at a tracer po-
sition was obtained by a trilinear space-time interpolation of the velocity
field measured by PIV at regularly gridded space-time points. The time
step of the interpolation was 40ms. Fig. 33 shows the initial distribution
of the numerical tracers (panel (a)) and after 1s (panel (b)).

Statistics of particle pair separations The statistics of particle pair
separations was carried out for all the particle pairs initially distributed
(uniformly) inside clusters of radius R = 0.1Rc during 0.4 seconds (this total
integration time was smaller then a half turnover time in the whole range
of angular velocities). In order to collect statistically sufficient separation
data, this procedure was repeated 200 times until the whole velocity field
time series has been used. However, a major concern was whether the
average length of the numerical trajectories is consistent with that of real
particle trajectories. Thus, in order to check the correctness and consistency
of our approach, we have alternatively used particle tracking velocimetry
(PTV) technique to measure the statistics of real particle pair separations.
Direct measurements of particle trajectories have shown that the average
persistence time of real particles in the observation plane was consistent
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Figure 33. Numerical tracers at t = 0 (a) and t = 1s (b) for Wi = 33. The
false color maps the radial coordinate.

with the average length of the numerical trajectories. This additional check
is fully justified in our case because above the onset of the primary elastic
instability, the flow is three-dimensional, and tracking numerical tracers for
too long times would be physically meaningless.

As shown in the previous section, the Eulerian correlation time is τc ≈
1s (Fig.20), which is about 2.5 times larger then the integration time of
the numerical trajectories and about 240 times smaller than the total data
acquisition time. For each angular velocity investigated, we have defined
FTLE by the position of the peak of the probability distribution function
(PDF), P (γ, t) of the separation rates. In Fig.34 we show the Cramer rate
functions defined by

S(γ) = −1

t
· log(

P (γ, t)

Pmax
) (10)

where Pmax is the maximum of the PDFs.

The FTLEs as function of Wi are shown in Fig.35. Although the scale
dependence of the mean separation rates plotted in the inset of Fig.35 does
not show the expected decay corresponding to the mean turnover time Bof-
fetta, G. et al. [1999], its flatness in the range of separation times considered
is rather encouraging and suggesting that FTLE approach works rather ro-
bustly for our random flow. The FTLE dependence on Wi exhibits a sud-
den jump corresponding to the first flow reorganisation in the intermediate
regime, followed by a slower increase in the fully developed elastic turbulent
states.

Comparing the values of FTLE (Fig.35) with the Eulerian correlation
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Figure 34. Cramer functions of particle pair separation rates for 25 differ-
ent separation times (ranging from 0.16 to 2.08s) at Wi = 34. The full line
is the parabolic fit.

times (Fig.32) one notices that in fully developed random flow the following
relation holds: γav ·τc ≈ 0.1 . This discrepancy with the suggestion made in
Balkovsky and Fouxon [1999] is probably due to the long range correlations
10 existing in the flow and to insufficient time statistics (which is one of the
limitations of image based flow investigation techniques, such as PIV and
PTV).

Comparison of FTLEs with rms of the velocity gradients (Fig. 30) led
to the conclusion that

(
∂vθ
∂r

)rms ≈ 7 · γav (11)

Lagrangian frame flow intermittency

The FTLEs are the first moments of PDF, and they give no information
about the degree of intermittency. Equation (8) defines the average rate
of a separation of nearby trajectories but does not provide any information

10The measurements of the time space cross correlation function presented in the next

section support this point.
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Figure 35. Finite time Lyapunov exponents defined by the location of
the minima of the Cramer rate functions of the particle pairs separations
versus Wi: squares, from PTV approach, circles from PIV based approach.
The arrow indicates the onset of the primary elastic instability. The inset
shows the dependence of FTLE on the separation time; the horizontal axis
is normalised by the period of rotation of the disk.

about the fluctuations around this average. In order to characterize the
Lagrangian flow intermittency one has to reconstruct PDF of the particle
pair separations by calculating the generalized Lyapunov exponents (GLE),
which are related to the high order moments of the statistics of the particle
pair separations Paladin and Vulpiani [1987]. The GLE of order q is defined
by

L(q) = lim
t→∞

lim
δ(0)→0

1

t
log(| δ(t)

δ(0)
|q) (12)

In the infinite time limit, when the Central Limit Theorem is expected to
work, it has been shown Paladin and Vulpiani [1987] that for small values
of q:

L(q) = λ · q +
µ

2
· q2 (13)

where the second cumulant is defined as

60



Figure 36. Generalised Lyapunov exponents as a function of the order q
of the moments at different Wi: squares- Wi = 33, triangles- Wi = 2.82.
The full line is the parabolic fit, which gives µ = 0.0167± 0.00005.

µ = lim
t→∞

lim
δ(0)→0

1

t
[〈log | δ(t)

δ(0)
|2〉e − (λ · t)2] (14)

In Fig.36 we show as a GLE as a function of the order q of the moments.
According to Paladin and Vulpiani [1987] the onset of intermittent be-

havior corresponds to µ
γav
≈ 1 that is well above of the value obtained in

the experiment. Although the parabolic dependence of the generalised Lya-
punov exponents agrees well with theory Paladin and Vulpiani [1987], the
second cumulants obtained from the fit (Fig.36) display a rather big scatter
being plotted versus the angular velocity of the upper plate. This is proba-
bly related to the power law propagation of the instrumental errors in the
calculation of L(q). Alternatively, one can characterize the intermittency
by measuring the deviation of PDFs from a Gaussian shape (as illustrated
in Fig.34, around γav the Cramer function shows a parabolic behavior).
Recalling the scaling of the even order moments of the Gaussian PDF with
the variance, one should look at the normalized moments:

M2k = M2k ·
2k · k!

(2k)!
(15)
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Figure 37. Normalized (see text) high order moments at different Wi:
squares, - Wi = 1.9, up triangles- Wi = 4.8, diamonds -Wi = 29, circles-
Wi = 33.3, crosses- Wi = 38, right triangles- Wi = 56, left triangles- Wi =
58. The inset shows an estimate of the degree of the flow intermittency
versus Wi.

The deviation from the Gaussian shape can be quantified by the param-
eter defined as

log(M2k)

log(M2)
= k − β · k2 (16)

The dependence of the right hand side of Eq. (16) on the order of the
moment is shown in Fig. 37.

As the angular velocity of the upper plate increases, the flow intermit-
tency exhibits a sudden jump corresponding to the primary elastic insta-
bility followed by a second discontinuity corresponding to the second flow
reorganisation (see inset in Fig.37). As one can see from the plot in Fig.37
at sufficiently large angular velocities the deviation from a Gaussian linear
dependence is rather significant indicating a flow intermittency.
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4.5 Applicability of the Taylor hypothesis in a regime of Elastic
Turbulence

More than six decades ago, Taylor introduced a conjecture, by which
the spatial structure of a turbulent flow field can be inferred only from sin-
gle point measurements of its fluctuations Taylor [1938]. This assumption,
known as Taylor frozen flow hypothesis (TH), has become a main tool in
the experimental studies on turbulence particularly in situations, where full
flow field measurements were unavailable Lesieur [2008]. The validity of the
TH is mainly conditioned by the existence of a large mean flow compar-
ative to the fluctuations, v′

V � 1. Here v′ stands for the fluctuating part
of the instantaneous velocity, and V for the mean flow velocity. Secondly,
the frozen flow assumption works well only for structures, which are much
smaller than the typical scale of the mean flow Lin [1953]. Although few
theoretical works do exist on the subject Lin [1953], Lumley [1965], a general
theoretical frame work is still lacking and thus, the question of validity of
the TH should be addressed experimentally in each particular case. On the
other hand, there exists a large body of experimental works on this subject
mainly related to 3D inertial turbulent flows Dahm and Southerland [1997],
Quadrio and Luchini [2003], Mi and Antonia [1994] and more recently for a
2D turbulent soap film flow Belmonte et al. [2000].

In this section we address the problem of validity of TH in a random
in time and spatially smooth velocity field. Such type of a chaotic flow is
realised, e.g., in hydrodynamic turbulence at scales below the Kolmogorov
length Lesieur [2008], in 2D turbulenceJullien et al. [2000], Amarouchene
and Kellay [2004].

As shown Sec. Sec. 4.3, the flow of a dilute polymer solution above the
onset of the elastic instability is an ideal realisation of both randomness (in
time) and spatial smoothness.

We conducted our measurements in setup 2, above the onset of the elas-
tic instability Muller et al. [1989b] at (Wi > 6) and in the region of the
elastic turbulence Groisman and Steinberg [2000]. The velocity field mea-
surements presented in the previous section show that, above the onset of
the elastic instability the flow is dominated by a randomly fluctuating large
scale vortex Groisman and Steinberg [2000]. In contrast to the case of in-
ertial turbulence, where the space velocity correlations decay rather fast
over distances larger than the Kolmogorov scale, the elastic turbulent flow
is smooth and strongly correlated over space on a size of the fluid container.

In most of the previous experimental studies of the validity of the TH,
single point velocity time traces were measured simultaneously at different
points displaced along the mean flow direction and the validity of the TH
was tested either by analysing the velocity correlations downstream, or by
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Figure 38. Schematic view of the flow geometry: (M)- mean flow line, (L)
- measured Lagrangian trajectory (C) - circular arc.

comparing the velocity time derivatives with the velocity gradients. From
the point of view of robustness, these two approaches are complementary:
the first is suitable for the case, when velocity is well resolved in space but
not well resolved in time, whereas the second requires a high resolution in
time but is not strongly limited by the space resolution.

As already discussed in Sec. 4.3, a characteristic scale of a system, at
which energy pumping takes place, can be estimated from the space power
spectrum of the velocity fluctuations (Fig. 21(b)) as

L = 2π

∫
P (k)dk∫
k · P (k)dk

(17)

Then we have obtained for Wi = 70 ≈ 5.9cm, which is comparable to the
size of the setup 2. As one can see from Fig. 19 which displays the tur-
bulence intensity , It =

√
< v′2 >t/V , versus the reduced radial coordinate

in setup 2, the central flow region is characterised by large fluctuations and
vanishingly small mean flow whereas in the off central region the the level
of fluctuations decreases to about 25% of the mean flow.

Fig. 39 displays velocity time series at three different locations along
the mean flow line. As one can see from panels (a) and (b), for sufficiently
small separations, s, the two velocity time series are almost identical, up to
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a shift in time. For larger separations [panel (c)]the velocity fluctuations
are less correlated, and the two time series display clear differences.

Shape of the cross-correlation functions. In order to check whether
the velocity fluctuations are transported without evolving dynamically (the
flow is frozen), we measure the cross-correlation of the velocity fluctuations

between neighboring points separated by the distance s, Cij(τ,
−→
∆r,−→r ) de-

fined by:

Cij(τ,
−→
∆r,−→r ) =

〈vi(−→r , t) · vj(−→r +
−→
∆r, t− τ)〉t

vrmsi1 · vrmsj2

(18)

where vrms1,2 is the rms of velocity at the points −→r , −→r +
−→
∆r and i, j = r, θ

are the polar coordinates (Fig. 38). It is worth noting that, since the
mean flow is curvilinear, Cij depends not only on the magnitude of the

displacement between neighboring points, |−→∆r|, but also on the path along
which the displacement is considered and its length s. Thus, in order to
check the sensitivity of our results on the choice of the displacement path, we
have alternatively considered displacements along circular arcs (around the
center of the setup), time average flow lines, and Lagrangian trajectories.
Secondly, because the field of fluctuations is strongly non homogenous (Figs.
29,30), the dependence on the initial position −→r should also be considered.
For the simplicity of the notation, we will further refer the cross-correlation
functions as Cij(τ, s,−→r ).

Let us now focus on the relation between flow smoothness (∂
k−→v (−→r ,t)
∂−→r k ≈

0, k ≥ 3.) and the shape of the cross-correlations. Within the approximation
of vanishing high order spatial derivatives and for small displacements, s,
and delay times, τ , one can easily decouple the space and time dependencies
in the definition of the cross-correlation function [Eq. (18)]:

Cij(τ, s,−→r ) ' 〈vi(
−→r , t) · vj(−→r , t)〉t
vrmsi1 · vrmsj2

+ s ·
〈vi(−→r , t) · ∂vj(

−→r ,t)
∂r 〉t

vrmsi1 · vrmsj2

−

τ ·
〈vi(−→r , t) · ∂vj(

−→r ,t)
∂t 〉t

vrmsi1 · vrmsj2

− s · τ ·
〈vi(−→r , t) · ∂

2vj(
−→r ,t)

∂r∂t 〉t
vrmsi1 · vrmsj2

+
τ2

2!
·
〈vi(−→r , t) · ∂

2vj(
−→r ,t)

∂t2 〉t
vrmsi1 · vrmsj2

+

s2

2!
·
〈vi(−→r , t) · ∂

2vj(
−→r ,t)

∂r2 〉t
vrmsi1 · vrmsj2

(19)

A typical space time cross-correlation surface is shown in Fig. 40.
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Figure 39. Simultaneous tangential velocity time series (partially shown)
at Wi = 57.6 for three values of the displacement along the mean flow line:
(a) s = 0cm, (b) s = 1.5cm (c) s = 3.2cm.
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Figure 40. Space -time correlation surface.

For sufficiently small time delays and displacements, the correlation func-
tion surface can be well fitted by a paraboloidal surface. Unfortunately, the
limited time resolution of the PIV measurements did not allow a full com-
parison of the coefficients of the expression above with those resulted from
the fit. However, the parabolic dependence of Cij(τ,−→r ,−→s ) on the delay
time τ at a given spatial displacement s or at a given delay time τ has
been verified experimentally. In Fig. 41 we display several cross-correlation
functions collapsed onto a single curve being rescaled by the their maxima,
Cmaxrr .

Secondly, as resulted from the fit, the second order spatial derivative is
about one order of magnitude smaller than the first order one, which is a
direct confirmation of the flow smoothness. One can notice that for small
enough delay times and space displacements the cross-correlations are well
fitted by a parabola as suggested by Eq. 19. Secondly, the weakly parabolic
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Figure 41. Scaled cross correlation functions for displacements s along the
mean flow line ranging from 7mm to 4cm. The dotted line is a parabolic
fit.

dependence of Cij(0,−→r ,−→s ) on the displacement s has also been verified
experimentally (Fig. 42).

Fig. 43 shows Crr(τ, s,−→r ) for few separations s along the mean flow line
and corresponding to −→r = ( 2·Rc

3 , 0).

As one can see in Fig. 43, for a given value of the displacement in
space, s, the temporal part of the cross correlation displays a well defined

maxima at τmax(s,−→r ), defined by ∂Crr(τmax,s,
−→r )

∂τ |s=const. = 0. If TH is
valid and the information on velocity fluctuations is not altered during the
passage between two points separated by s in the flow, then the peaks
of the temporal part of the cross correlations are sharp and Cmaxrr (τmax)
close to unity. Moreover, the values of the delay time τ that maximize
the correlations should scale linearly with the space displacements, that is
τmax = s

V . Here, as discussed above, in order to correctly account for the
flow non-homogeneity, one should consider the spatial dependence of the
velocity field, V = V (−→r ).

Validity of the Taylor hypothesis One way of quantifying the validity
of the TH is to measure the deviation of the slope p1 of the dependence
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Figure 42. Space dependence of cross correlation functions at fixed time
delays: squares- τ = 0, circles- τ = τmax. The full lines are parabolic fits.

Figure 43. The cross correlation of velocity fluctuations, Crr(τ, s) vs. the
delay time τ for different values of the displacement s along the mean flow
line.
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Figure 44. Bottom-left axis: the delay time τmax that maximises the cross
correlation functions vs. the length of the displacement along three different
paths: squares-circular arcs, circles-mean flow line, triangles- Lagrangian
trajectory. The horizontal axis is normalised by the mean velocity at s=0.
The full lines are linear fits with slopes 0.6, 0.7 and 0.73 respectively. The
dotted line has slope 1. Top-right axis: the delay time τe (see text) vs.
the transit time τt. The full line is a linear fit with slope 0.96. The initial
position was ~r = ( 2Rc

3 , 0).

τmax = τmax( sV ) from unity Belmonte et al. [2000].
A typical dependence of the maximum delay time τmax on the spatial

displacement s is shown in Fig. 44. For this case we have obtained from a
linear fit p1 ' 0.73± 0.006.

As one can see from Fig. 45, in the central region of the flow the devia-
tions from the frozen flow assumption are large.

The TH is best verified towards the boundaries of the system. However,
p1 never exceeds 0.83.

Whereas the breakdown of the TH in the central flow region can be easily
understood in the context of large (relatively to the mean flow) velocity
fluctuations (Figs. 29,30) and practically zero mean flow, the applicability of
the frozen flow assumption in the off central flow region deserves a separate
discussion. Although chaotic in time, the flow is structurally different from
high Re turbulent flows. As we have already pointed out, the main difference

70



Figure 45. Validity of the TH (see text for discussion) vs. the radial
coordinate.

is the absence of any analogue of the Kolmogorov length scale, absence of
eddies of different sizes in the scaling range swept by larger eddies, and
the flow is smooth at all spatial scales. The main consequence of the flow
smoothness is the high space coherence of the velocity fluctuations (the
cross-correlations do not decay to 0 even on the size of the container, Fig.
42, 43).

This fact explains why three physically different choices of the path of
particle displacement (circular arcs, mean flow line, Lagrangian trajectories)
(Fig. 38), lead to similar values of the maximal delay times τmax (Fig. 44
).

Secondly, it is worth noting that the validity coefficient p1 is always
smaller than unity (Figs. 44,45) for each of the three displacement choices
we have considered and the deviation from unity (which accounts at best for
20%) is clearly outside the error bar of the linear fit. This suggests that the
breakdown of the TH in the off central flow region is not necessarily due to
the level of fluctuations (which is the case in the central region) but rather
to an underestimation of the advection velocity. Similar results have been
previously reported in experimental studies of coherent structures in tur-
bulent jets and turbulent boundary layers Fisher and Davies [1964], Zaman
and Hussain [1981], Koeltzsch [1998], Krogstad et al. [1998]. The central
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conclusion of these studies was that the velocity transporting the fluctua-
tion information at scales comparable to the size of the coherent structure
is substantially different from the local mean flow velocity. This seems to
be indeed the case of the data presented in Fig. 44: if one rescales the dis-
placements s with a velocity about 20% larger than the mean flow velocity
V , the data would overlap with the unitary slope line. Consistently with a
different choice of the advection velocity Fisher and Davies [1964], Koeltzsch
[1998], one can focus on the dependence of τe(s,−→r ) defined implicitly by
∂Crr(τe,s,

−→r )
∂s |τ=const. = 0 on the transit time τt between two points sepa-

rated by s. If the TH applies, this dependence is linear and has unitary
slope.

Thus, a second way to quantify the validity of the frozen flow assumption
is to measure the deviation of the slope p2 of the dependence τe = τe(τt)
from unity.

Following a suggestion made in Koeltzsch [1998] one can define an addi-
tional validity coefficient p3 =

√
p1 · p2. As shown in Fig. 45 these correc-

tions seem to work rather well for regions away from the vortex core. As an
alternative method, the TH can be verified by comparing directly measured
spatial structure functions and spatial power spectra of velocity fluctuations
with the ones derived using the frozen flow assumption. We now focus on
the second order structure function

S2(s) = 〈|vθ(−→r , t)− vθ(−→r +
−→
∆r, t)|2〉 (20)

and compare its values obtained from direct spatial measurements with
those obtained using the TH, s = V · t.

As shown in Fig. 46, corresponding to the characteristic scale L the
structure functions saturate at values roughly equal to 2 · v2

rms. Near the
core of the main vortex the two structure functions are significantly different
[Fig. 46.(a)], indicating once more a clear breakdown of the TH whereas
closer to the boundary [Fig. 46.(b)] the difference diminished to about 20%
of their saturation value that is rather consistent with the result shown in
Fig. 45.

72



This part from my HDR needs to be updated

The elastic turbulent flow fields are spatially smooth (meaning that the
second-order spatial derivative of the velocity field is roughly an order of
magnitude smaller than the first one) and their dominant space scale is set
by the size of the fluid container W , Burghelea et al. [2007], Burghelea,
T et al. [2005]. Thus, the elastic turbulent flow field may be considered
locally linear (i.e. locally uniform rate of strain). Consequently, the spec-
tra of the velocity fluctuations decay algebraically P ∝ f−δ with δ ≈ 3.5,
Li et al. [2017], Groisman and Steinberg [2000], Burghelea et al. [2007],
Burghelea [2005]. The elastic turbulent flows are characterised by divergent
Lagrangian trajectories and, consequently, positive finite time Lyapunov ex-
ponents (FTLE) could be measured by both numerical integration of the
measured velocity fields and by direct tracking of tracer particles in the flow,
Burghelea et al. [2004b]. The elastic turbulent flows are highly correlated
over space and the characteristic correlation distance is comparable to the
size of the fluid container, Burghelea, T et al. [2005]. Systematic experi-
ments performed in a macroscopic von Karman swirling flow between disks
by means of both Laser Doppler Velocimetry (LDV) and Digital Particle
Image Velocimetry (DPIV) Burghelea et al. [2007] revealed a new charac-
teristic space scale of the elastic turbulence: the width of the stress bound-
ary layer. The Eulerian temporal auto-correlation functions decay rather
fast with characteristic correlation times comparable to the longest poly-
mer relaxation time, Burghelea et al. [2007]. From a theoretical standpoint
the elastic turbulence remains, in our opinion, an insufficiently explored
area and, according to Steinberg [2009], understanding the elastic turbu-
lence might be a fundamental step towards understanding the long standing
problem of drag reduction.

From a practical perspective, it has been demonstrated experimentally
that elastic turbulent flows are able to mix efficiently very viscous fluids in
both macroscopic open channels Groisman and Steinberg [2001] and micro-
channels Burghelea et al. [2004c,a]. Moreover, the elastic turbulent flows
are an ideal realisation of the Batchelor regime of mixing. More recently
but equally important from a practical perspective, it has been shown that
elastic turbulent flows transfer heat up to four times more efficiently than
purely conductive laminar flows, Traore et al. [2015].

5 Hydrodynamic theory of Elastic Turbulence

The theory of elastic turbulence of a dilute solution of polymers with linear
elasticity and the feedback reaction on the flow was developed by Lebedev
et al. Balkovsky et al. [2001], Fouxon and Lebedev [2003]. The distinctive
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Figure 46. Second order velocity structure functions: squares - resulted
from direct measurements, circles derived by using the Taylor hypothesis.
Here we have considered displacements along the mean flow line and the
initial position was: (a) ~r = (Rc/3, 0)(b) ~r = (2 ·Rc/3, 0)
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property of solutions of high molar mass linear polymers is the dependence
of the stresses on the flow history, Bird et al. [1977]. Thus, once the flow
forcing is removed, the stress decays with a macroscopic relaxation time λ
(quite often as large as tens of seconds) rather than instantly vanishing. By
noting that for a dilute solution the total stress tensor can be decomposed
into a solvent and a polymer contribution σ = σs + σp, the equation of
motion takes the form:

∂~V

∂t
+
(
~V∇
)
~V = −∇p

ρ
+
ηs
ρ

∆~V +
∇σp
ρ

(21)

The mathematically simplest model accounting for the evolution of the
stress tensor in a flow is a single mode Maxwell type constitutive relation:

σp + λ
Dσp
Dt

= ηp

[
∇~V +

(
∇~V

)†]
(22)

Here Dσp/Dt stands for the material time derivative and ηp = η− ηs is the
polymer contribution to the solution viscosity. A commonly used definition
of the material time derivative is the upper convective time derivative:

Dσp
Dt

=
dσp
dt

+
(
~V∇
)
· σp −

(
~V∇
)†
· σp − σp ·

(
~V∇
)

(23)

The nonlinear terms in the right hand side of Eq. 23 account for the trans-
lation, rotation and stretching of fluid elements and are all of the order of
λVLσp.

Equations 22 and 23 are referred to as the Oldroyd-B rheological model
for polymer solutions, Bird et al. [1977].

A key ingredient of the theory of the elastic turbulence is to relate the
dynamics of the elastic stress tensor σp to the dynamics of a vector field
with a linear damping, Fouxon and Lebedev [2003], OGILVIE and PROC-
TOR [2003], Chertkov [1998], Balkovsky et al. [2001]. This can be done by
noting that if one neglects the thermal fluctuations the elastic stress tensor
is uniaxial, σi,jp = BiBj which allows one to derive an equation similar to
the equation for the magnetic field in magnetohydrodynamics (MHD):

∂ ~B

∂t
+
(
~V∇
)
~B =

(
~B∇
)
~V −

~B

λ
,∇ · ~B = 0 (24)

The stretching of the magnetic field lines is similar to the stretching of
polymer molecules in the flow and the sole difference with respect to the
MHD case comes from the linear relaxation term B

λ which replaces the
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diffusion term. In the absence of inertial contributions, Re << 1, the
momentum conservation equation can be written:

∇P = ρ
(
~B∇
)
~B + ηs∆~V ,∇ · ~V = 0 (25)

In the absence of significant inertial contributions (Re� 1) which is the
case for the elastic turbulence the kinetic energy of the polymer solution
can be neglected in comparison with the elastic one. The dissipation of the
elastic energy is, however, due to both viscous dissipation due to the solvent
viscosity and polymer relaxation:

d

dt

∫
d~r
B2

2
= − 1

λ

∫
d~r
B2

2
− ηs

ρ

∫
d~r (∇jVi)2

(26)

With the appropriate boundary conditions Eqs. 24, 25 exhibit an elastic
instability at Wi = Wic where Wi = λγ̇ and the instability results in a
chaotic and statistically stationary dynamics. Here γ̇ is the second invariant
of the rate of strain tensor.

The theory of elastic turbulence in an unbounded flow of a polymer
solution is upon two central assumptions:

1. The local feedback of the stretched polymer molecules on the flow field
leads to a statistically stationary state characterised by a saturation
of both the polymer contribution to the stress tensor τp and the rms

of the fluctuations of the velocity gradients
(
∂Vi
∂xj

)rms
. Consequently,

corresponding to a fully developed elastic turbulent regime the local

Weissenberg number defined as Wiloc = λ
(
∂Vi
∂xj

)rms
saturates and, in

the bulk of the flow, its saturation value is Wiloc ≈ 1.
2. Both dissipative terms due to viscosity and polymer relaxation that

appear in the equation for the dissipation of elastic energy are of

the same order of magnitude
σp
λ ≈

η
ρ

(
∇~V

)2

or, equivalently,
σpλ
η ≈

Wi2loc.
According to Balkovsky et al. [2001], the first assumption may be phe-

nomenologically understood in the context of a strong back reaction of the
extended polymer molecules to the flow as follows. If the instantaneous
velocity gradients exceed the reciprocal relaxation time 1/λ the polymer
coils are stretched which results in an increase of the elastic stresses that
damps the velocity gradients. Conversely, if the velocity gradients are much
smaller than 1/λ, the polymer molecules retract and produce no feedback to
the flow. Thus, the velocity gradients tend to increase to the characteristic
value corresponding to the pure solvent which is significantly larger than
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1/λ above the onset of the transition. The second assumption is consistent
with a saturation of the elastic stresses far above the onset of the primary
elastic instability.

Next, if one denotes by ~V ′ and ~B′ the small scale fluctuating parts of
the fields ~V and ~B it can be shown that the Fourier components satisfy

the linear relationship ~V ′ =
iρ(~k· ~B)
ηk2

~B′ which allows one to derive for the

spherically normalised spectra of fluctuations of ~V ′ and ~B the following
relationships Fouxon and Lebedev [2003]:

E(k) ∝ η2L(kL)−δ (27)

F (k) ∝ B2L(kL)2−δ (28)

With the assumptions ∇V ′ � ∇V and B′ � B it can be shown that δ > 3,
Fouxon and Lebedev [2003]. The algebraic decay of the velocity spectrum
has been measured by means of LDV measurements (and using the Taylor’s
frozen flow hypothesis was switch from the frequency domain to the wave
number domain) in a macroscopic von Karman flow and, subsequently, in
a macroscopic serpentine channel by Groisman and Steinberg in Groisman
and Steinberg [2000, 2001]. Direct measurements of the spectra in the space
domain by means of DPIV revealed a decay exponent δ ≈ 3.5, Burghelea
et al. [2007], Burghelea [2005]. Contrary to the case of the inertial turbu-
lence, the algebraic scalings of the kinetic and elastic energy are not related
to any cascade of energy (or other conserved physical quantity). Because
the velocity spectrum decays faster than k−3, the dominant space scale is
set by the size of the fluid container L and the velocity fluctuations are
strongly correlated over distances comparable to L. This has been probed
experimentally by measurements of the space-time correlation surface in a
macroscopic von Karman swirling flow configuration, Burghelea, T et al.
[2005].

A k−1 like decay of the spectrum of the fluctuations is characteristic for
the decay of a passive scalar in a smooth random flow field in the so called
Batchelor regime of mixing, Batchelor [1959b]. Such algebraic decay has
been observed for the mixing of a fluorescent tracer by an elastic turbulent
flow in both microscopic Burghelea [2005], Burghelea et al. [2004a,c] and
macroscopic channel flows Jun and Steinberg [2010]. More recently and
somehow unexpectedly a similar spectral decay has been observed for the
fluctuations of the temperature in an elastic turbulent von Karman swirling
flow cooled from below, Traore et al. [2015]. This indicates that, in spite of
the strong temperature dependence of the rheological properties (notably
the relaxation time and the shear viscosity) the temperature field behaves
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like a passive scalar. Thus, if the decay exponent of velocity spectrum is
δ ≈ 3, Eq. 28 suggests that the stress is passively advected by the large
scale chaotic smooth flow in a regime of elastic turbulence.

Although many fundamental features of elastic turbulent flows (such as
flow smoothness, the algebraic decay of spectra of fluctuations, the decay
of the flow correlation) have been investigated experimentally in various
macroscopic flows (Couette flow between rotating cylinders, von Karman
swirling flow, curvilinear channel flow), the main assumption of the theory
concerning with the saturation of velocity gradients still awaits a systematic
experimental test.

To this aspect we dedicate the next section.

6 Characterisation of Elastic Turbulence in
microscopic curvilinear flows

A full space-time characterisation of curvilinear microscopic channel flows
of a dilute solution of high molar mass linear polymer in a wide range of Wi
numbers is, to our best knowledge, still unavailable in the literature. This
sets the general scope of this project.

The motivation of focusing on a curvilinear microscopic flow is three
- fold. From a fundamental standpoint, we are interested in understand-
ing the role of spatial confinement on the dynamics of the elastic turbulence
(and check if the main features observed in macroscopic flows are preserved).
From a practical perspective, such flows have already proved their ability to
mix efficiently Burghelea et al. [2004c,a] and further practical applications
could be found in efficiently transporting heat at micro-scale and enhancing
chemical reactions in a lab on a chip environment. Lastly, as compared
to their macroscopic counterpart, the microscopic channel flows allow mea-
surements of flow speeds and velocity gradients with both very high spatial
and temporal resolution. Of particular interest here is testing the theoreti-
cal prediction concerning with the saturation of the velocity gradients in a
fully developed elastic turbulent regime, Balkovsky et al. [2001].

Experimental setup and methods The experiments have been per-
formed with a serpentine micro-channel schematically illustrated in Fig. 47
(a). It consists of N = 200 smoothly interconnected half circular rings with
the inner radius R1 = 50µm and the outer radius R2 = 250µm. The width
of the micro-channel is W = R2−R1 = 200µm and its depth is H = 200µm.
The geometric aspect ratio relevant to the onset of the primary elastic in-
stability McKinley et al. [1996], Zilz et al. [2012] is α = R1/W = 0.25.

The micro-channel chip is mounted on an inverted epifluorescent mi-
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Figure 47. (a) Schematic view of the serpentine micro-channel. (b)
Schematic view of the experimental setup (not in scale): MCC - micro-
channel chip, I - micro-channel inlet, O - micro-channel outlet, AT - adhe-
sive tape, MO - microscope objective, DM - dichroic mirror, LP - led, EXF
- excitation filter, EMF - emission filter, CCD - digital camera.

croscope (Nikon Eclipse TS − 100) schematically illustrated in Fig. 47(b).
The microscopic flows are generated and controlled by the difference in hy-
drostatic pressure between the inlet and outlet fluid containers. This is
achieved by rigidly mounting the inlet fluid container on a vertical trans-
lational stage driven by a precise stepping motor (Isel, Germany). The
position of the stage is controlled within 1µm accuracy.

The spatial and temporal features of the flow fields have been investi-
gated by means of a Digital Particle Image Velocimetry technique imple-
mented in house. Particularly important here were both the spatial reso-
lution of the velocity fields (1.5 µm) and the total data acquisition time,
Ttotal = 1200 s. This value is roughly 300 times larger than the largest
relaxation time of the polymer molecules, λ ≈ 4 s.

6.1 Onset and development of Elastic Turbulence in micro-channel,
flow structure

A visual assessment of the hydrodynamic stability of the flow is illus-
trated in Fig. 48 by means of the streak imaging technique. Whereas a
laminar flow is observed for low values of the driving pressure ∆p = 63Pa
(panel (a)), a strongly irregular fluid motion is observed corresponding to
∆p = 2.3kPa (panel (b)). At this driving pressure a major re-organisation
of the flow is apparent in the form of a large scale non-stationary spiral vor-
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Figure 48. Epifluorescent flow micrographs acquired at (a) ∆p = 63Pa
(Wi = 0.36 - laminar regime) (b) ∆p = 2.3kPa (Wi = 18 - elastic turbulent
regime). A X10 magnification objective was used.

Figure 49. Dependence of the time averaged tangential velocity component
on the driving pressure (bottom horizontal axis) and and on the integral
Weissenberg number (top horizontal axis). The full/empty symbols refer
to the increasing/decreasing branches of the pressure ramp. The shaded
regions highlight the level of fluctuations. The full line is a linear fit.

tex in agreement with the observation performed by means of laser scanning
confocal microscopy reported in Burghelea [2005]. Measurements of the de-
pendence of the time averaged tangential velocity component measured at
the centre line of the channel (ξ = 0) on the driving pressure (global Weis-
senberg numbers) are presented in Fig. 49. The average was performed
over 1200s (a time roughly 320 times longer than the average relaxation
time of the polymer λ̄) which guarantees that the flow field information is
statistically sufficient.

The dependence of time averaged tangential flow component 〈Uθ〉t on the
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Figure 50. Time averaged transversal profiles of the tangential velocity
component (panel 50(a)) and of the radial velocity component (panel 50(b)).
The symbols in panel refer to the driving pressures (global Weissenberg
number): ◦ - ∆p = 0.9kPa (Wi = 1.1), � - ∆p = 5.7kPa (Wi = 7.4),�
- ∆p = 7.6kPa (Wi = 9.5), 5 - ∆p = 10.2kPa (Wi = 11.3), 4 - ∆p =
23kPa (Wi = 18.3). The shaded regions in panel 50(a) indicate the level of
fluctuations of the velocity around its mean.

Weissenberg number remains roughly linear up to a critical value Wic ≈ 4.
Beyond this value, the dependence becomes sub linear indicating a signif-
icant re-organisation of the flow associated to an elastic flow instability.
It is noteworthy that the transition to elastic turbulence is smooth and,
within the instrumental accuracy of the measurements, reversible upon in-
creasing/decreasing pressure drops (the full/empty symbols in Fig. 49).
The value of the critical Weissenberg number is comparable to the values
reported in Burghelea [2005], Burghelea et al. [2004a,c]. However, a signifi-
cantly larger discrepancy is found with the onset value given in the recent
paper by Jun and Steinberg, Jun and Steinberg [2011], Wic ≈ 200. This
difference can not be explained by the different aspect ratio of the channel
(R1/W = 1) using the Pakdel-McKinley scaling, McKinley et al. [1996], Zilz
et al. [2012]. As they have used a similar polymer solution, the reasons for
this discrepancy remain elusive.

To get further insights into the evolution of the flow structure as the
global Weissenberg number is increased we focus on the time averaged
transversal profiles of each velocity component, Fig.50.

At low driving pressures corresponding to the laminar flow regime the
profile of the tangential velocity component 〈Uθ〉t is non-symmetric (the cir-
cles in Fig. 50(a)). Due to the curvilinear geometry of the micro-channel,
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Figure 51. Time series of the tangential (panel 51(a)) and the radial ve-
locity component (panel 51(b)) measured at the mid-point of the channel
(ξ = 0) at half depth. The symbols in panel refer to the driving pressure
(Weissenberg number): • - ∆p = 0.9kPa (Wi = 1.1), � - ∆p = 5.7kPa
(Wi = 7.36),� - ∆p = 7.6kPa (Wi = 9.5), H - ∆p = 10.2kPa (Wi = 11.3),
N - ∆p = 23kPa (Wi = 18.3).

a non-zero time averaged radial component 〈Ur〉t is measured even in a
laminar state, Fig. 50(b). An increase of the Weissenberg number past
the onset of the primary elastic instability Wic results in a significant re-
organisation of the flow: the transversal profiles of the tangential velocity
component become more symmetric and a strong inwards radial motion is
observed. The flow structure illustrated in Fig. 50 is qualitatively consis-
tent with that observed by the particle tracking velocimetry measurements
presented in Ref. Burghelea [2005]. The time series of both the tangential
and the radial components of the flow velocity measured at the centre line
of the curvilinear micro-channel (ξ = 0) are presented in Fig. 51. Within
a laminar regime (the time series labelled by a circle and square, respec-
tively), the fluctuations visible in the time series of each velocity component
are solely related to the instrumental error of the micro DPIV technique.
As the Weissenberg number is increased, the velocity time series exhibit a
chaotic like behaviour which reproduces the early measurements reported
in Refs. Burghelea et al. [2004c], Burghelea [2005]. As the measurements
illustrated in Figs. 51(a), 51(b) are performed over a total time 12 times
larger than the acquisition time in Burghelea et al. [2004c], Burghelea [2005]
we are now able to observe a new dynamical flow feature in the form of rare
”crash” events manifested by a significant slowing down of the flow (see the
series labelled by a rhomb and a down triangle in Fig. 51(a)). These rare
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Figure 52. Top: Time series of the tangential velocity component acquired
at Wi = 9.5. The bottom plots illustrate maps of the velocity modulus at
several time instants indicated on the top. The full lines in each bottom
panel are streamlines.

events emerge right above the onset of the primary elastic instability and the
frequency of their appearance increases with increasing control parameter.

A closer look into the emergence of rare events near the onset of the elas-
tic turbulence is presented in Fig. 52 by monitoring instantaneous flow fields
(the bottom line) before, during and after the emergence of a rare event.
One can note that a rare event is associated to a dramatic re-organisation
of the flow which persists for times significantly larger than the average
polymer relaxation time, ∆T ≈ 250 s. The emergence of rare events has
been previously observed during experiments performed on a macroscopic
von Karman swirling flow between two disks of a dilute polymer solution,
Burghelea et al. [2007]. In contrast to the observation illustrated in Fig.
52, in a von Karman flow the rare events are manifested though a local
flow acceleration rather than a deceleration, see Figs. 20(a) and 21(a) in
Burghelea et al. [2007]. The difference may originate in the different type
of forcing of the two flows. Whereas the measurements of the velocity time
series in the von Karman swirling flow were performed at a controlled angu-
lar speed Ω of the top disk (which sets the scale for the rate of deformation
γ̇) the microscopic flows presented here are driven at constant pressures,
i.e. at constant applied stresses. In both cases, however, the frequency of
the emergence of rare events increases with increasing global Weissenberg
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Figure 53. Dependence of the rms of fluctuations of the tangential velocity
component (panel 53(a)) and of the radial velocity component (panel 53(b))
measured at the midpoint of the channel (ξ = 0) on the global Weissenberg
number Wi. The full/empty symbols refer to the increasing/decreasing
driving pressures. The full line in each panel is a fit by the stationary
Ginzburg-Landau equation (see text for description).

numbers indicating a similar physical origin.

6.2 On the nature of the bifurcation towards Elastic Turbulence

A next important point relates to the nature of the bifurcation towards
elastic turbulent states. To address this point, we focus on the dependence
of the rms of fluctuations of each velocity component measured at the centre
line of the micro-channel on the Weissenberg number, Fig. 53. A strong
increase of the level of fluctuations of both the tangential velocity component
Fig. 53(a) and the radial velocity component Fig. 53(b) accounting for up
to 35 percent of the mean flow speed is observed.

As already noted for the Weissenberg dependence of the time aver-
aged tangential velocity component presented in Fig. 49, the transition
is smooth and, within the level of scatter of the data, reversible upon in-
creasing/decreasing Wi. Moreover, the data can be fitted by the stationary
Landau-Ginzburg equation with a field (the full lines in Figs. 53(a), 53(b)):

εUrmsi − a (Urmsi )
3

+ h = 0 i = r, θ (29)

where ε = Wi/Wic−1 is the reduced control parameter and a and h are fit-
ting parameters. One can conclude that the transition to elastic turbulence
in a curvilinear micro-flow occurs via a supercritical bifurcation. This result
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is interesting in itself, somewhat unexpected and it deserves being discussed.
In a Taylor-Couette geometry the elastic instability is experimentally found
to emerge via a subcritical bifurcation Groisman and Steinberg [1998] in
agreement with the theoretical prediction, Sureshkumar et al. [1994]. A
systematic and pedagogical description of the subcritical elastic instability
in parallel shear flows of viscoelastic fluids is presented in Ref. Morozov
and van Saarloos [2007]. The early investigation of the transition to elastic
turbulence in a von Karman swirling flow between disks suggested a simi-
lar subcritical bifurcation in the form of a hysteresis of the time averaged
injected power (calculated as the product between the angular speed of the
top disk and the torque that drives it), Burghelea et al. [2007], Burghelea
[2005], Burghelea, Teodor et al. [2006]. However, more recent measurements
of the injected power into a von Karman swirling flow averaged over signif-
icantly longer times reported in Ref. Traore et al. [2015] revealed a smooth
and reversible transition consistent with a supercritical bifurcation, see Fig.
4 therein. To conclude this part, the nature of the transition to elastic
turbulence remains elusive and future theoretical and numerical studies are
needed to clarify this point.

6.3 Statistics and spatial distribution of the velocity gradients;
analysis of boundary layers

As pointed out in Sec. 5, the key physical quantities that need to be
measured in order to verify the predictions of the theory of elastic turbu-
lence are the time averaged fields of the velocity gradients and their level of
fluctuation. Particularly, the production of the elastic stresses that desta-
bilise the flow is directly related to the magnitude of the velocity gradients
and the level of their fluctuations and one of the key ingredients of the the-
ory of elastic turbulence relates to the saturation of the rms of fluctuations
of the velocity gradients due to a strong back reaction of the polymers to
the flow. This motivates us to take advantage of the excellent temporal and
spatial resolution of the DPIV method described in Sec. ?? to provide a
full description of the spatial distribution of the velocity gradients and the
long time statistics of their fluctuations.

The spatial distributions of the time averaged second invariant of the

rate of strain
〈
γ̇
〉
t

measured for three distinct Weissenberg numbers are

presented in Fig. 54. One can note that the spatial distribution of the
second invariant of the rate of strain is strongly in-homogenous and exhibits
pronounced local maxima of unequal magnitude (except for the highest Wi
illustrated in panel (d)) distributed at a constant distance from the inner
and outer boundaries of the channel, panel (a) in Fig. 54. As the extension
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Figure 54. Spatial distribution of the time averaged second invariant of
the rate of strain measured at different Weissenberg numbers indicated in
the top inserts. The units of the colorbars are s−1.

of the linear polymer chains is controlled by the local velocity gradients, we
attribute the observation of the local maxima of the velocity gradients to
the formation of inner and outer boundary layers of the elastic stresses.

The primary elastic instability is accompanied by a sharp increase of
the velocity gradients particularly in the vicinity of the inner boundary of
the channel, panel (b) in Fig. 54. The lack of symmetry of the spatial
distribution of the velocity gradients with respect to the centre line of the
micro-channel indicates a strongly inhomogeneous distribution of elastic
stresses along the transversal flow direction. Within a fully developed elastic
turbulent regime, the symmetry of the distribution of the elastic stresses
with respect to the centre line of the channel is restored. A more systematic
investigation of the transversal distribution of the time averaged velocity
gradients and of their fluctuations as a function of the global Weissenberg
number is presented in Fig. 55.

The emergence of a boundary layer of the elastic stresses when the global
Weissenberg number is increased is clearly visible in Fig. 55(a). As already
noted in Fig. 54, as one advances within the regime of fully developed
elastic turbulence, the two local maxima of the profiles of the time averaged
gradients tend to be become equal in magnitude. Corresponding to the edge
of the boundary layers, local maxima are also observed in the transversal
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Figure 55. Transversal profile of the time averaged second invariant of
the rate of deformation (panel 55(a) ) and of the rms of fluctuations of the
second-invariant (panel 55(b)) measured at various driving pressures (global
Weissenberg numbers): ◦ - ∆p = 0.9kPa (Wi = 1.1), � - ∆p = 5.7kPa
(Wi = 7.3),� - ∆p = 7.6kPa (Wi = 9.5), 5 - ∆p = 10.2kPa (Wi = 11.3),
4 - ∆p = 23kPa (Wi = 18.3). The shaded regions in panel 55(a) indicate
the level of fluctuations around the mean value value.

distributions of the rms of fluctuations of the second invariant of the rate
of deformation tensor, Fig. 55(b).

The evolution of the width of the inner and outer boundary layers de-
termined by the location of the peaks of the spatial distribution of the time
averaged second invariant of the rate of strain tensor (Fig. 55(a)) with the
global Weissenberg number is presented in Fig. 56. The width of the inner
boundary layer (the squares) is systematically larger than the width of the
outer boundary layer (the circles) up to a Weissenberg number Wi ≈ 15
corresponding to the fully developed elastic turbulent regime when the two
boundary layers become practically identical.

We note that, within a regime of elastic turbulence the width of the
inner and outer boundary layers is Wbl/W ≈ 0.1 and independent on the
global Weissenberg number. This result is consistent with the measure-
ments presented by Jun and Steinberg Jun and Steinberg [2011] and with
earlier measurements performed in a macroscopic von Karman swirling flow,
Burghelea et al. [2007], Burghelea [2005].

The evolution of the time averaged velocity gradients and of the local
Weissenberg number defined as Wiloc = λ̄γ̇rms measured at the edge of the

inner/outer boundary layers (corresponding to the local maxima in Figs.
55(a), 55(b)) and in the bulk of the flow (averaged around the centre line
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Figure 56. Dependence of the reduced width of the inner boundary layer
(�,�) and of the outer boundary layer (•, ◦) on the global Weissenberg
number. The full/empty symbols refer to increasing/decreasing global Weis-
senberg numbers, respectively.

of the micro-channel) with the global Weissenberg number is presented in
Fig. 57.

The primary elastic instability is accompanied by a sharp increase of
both the time averaged velocity gradients (panel 57(a)) and of the local
Weissenberg number (panel 57(b)). For Wi ≤ 17 the time averaged ve-
locity gradients measured at the edge of the inner boundary layer are sys-
tematically larger than those measured at the edge of the outer boundary
layer, Fig. 57(a). The local Weissenberg number measured at the edge of
the inner boundary layer is systematically larger than the one measured at
the centre line of the flow, Fig. 57(b). Within a fully developed elastic
turbulent regime the local Weissenberg number measured at the edge of
the boundary layers increases linearly with the global Weissenberg number
Wiblloc = −25.58 + 3.54Wi (the dashed line in Fig. 57(b)). On the other
hand, a linear fit of the local Weissenberg number measured in the bulk
of the flow gives Wibulkloc = 15.21 + 0.12Wi (the full line in Fig. 57(b)).
Thus, one can conclude that in a fully developed elastic turbulence regime
Wiloc saturates in the bulk of the flow but keeps increasing at the edge of
the boundary layers. The result is in a qualitative agreement with the the-
oretical prediction for the elastic turbulence, Fouxon and Lebedev [2003],
Balkovsky et al. [2001]. Corresponding to the bulk measurements one ob-
tains Wibulkloc ≈ 15.5 which is significantly larger than the unitary value
predicted theoretically indicating that no quantitative agreement with the
theory is found. A similar conclusion has been reached for the case of an
elastic turbulent flow in a macroscopic von Karman swirling flow configu-

88



0 5 10 15 20

Wi

10
0

10
1

10
2

λ̄
〈

γ̇
〉

t

(a)

0 5 10 15 20

Wi

10
0

10
1

W
i l
o
c

Wiloc = 1

(b)

Figure 57. 57(a) Dependence of the time averaged second invariant of rate
of deformation on the global Weissenberg number. 57(b) Dependence of the
local Weissenberg number Wiloc on the global Weissenberg number. The
full and dashed lines are linear fit functions (see text for description). In
both panels the symbols refer to different radial locations ξ of the measure-
ments: (�,�) - the edge of the inner boundary layer, (•, ◦) - the edge of
the outer boundary layer, (H,5) - average in the bulk of the flow within
the range ξ ∈ [−0.4, 0.4]. In both panels the full/empty symbols refer to
increasing/decreasing global Weissenberg numbers, respectively.

ration, Burghelea et al. [2007], Burghelea, Teodor et al. [2006], Burghelea
[2005]. The local Weissenberg number was defined in these references as
Wiloc = ωrmsλ (here ω stands for the vorticity) saturates at the value
Wiloc ≈ 2 (Fig. 19(b) in Burghelea et al. [2007], insert of Fig. 2 in Burghe-
lea, Teodor et al. [2006]) which is twice larger than the value predicted by the
theory. We conclude that the main assumption of the theory of elastic tur-
bulence concerning with the saturation of the velocity gradients is verified
only qualitatively. Quantitatively, the experiments revealed a systematic
discrepancy which is more pronounced in a microscopic flow than a macro-
scopic one. This aspect may originate in the strong spatial confinement
of the microscopic flow and needs to be addressed by further theoretical
developements.

The result on the saturation of the local Weissenberg number in the bulk
of the flow is at odds with the recent measurements reported in Jun and
Steinberg [2011] which indicate a linear increase of Wiloc with Wi rather
than a saturation.

Finally, we note that the measurements of the time averaged velocity gra-
dients and of the rms of their fluctuations are reproducible upon increas-
ing/decreasing Wi proving once more the reversibility of the bifurcation
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towards elastic turbulence (the full/empty symbols in Fig. 57) in a curvi-
linear micro-channel flow in full agreement with the behaviour observed in
Figs. 49,53.

7 Efficient mixing by Elastic Turbulence

Microscopic flows have been attracting an increasing interest during the
past decade due to fast development of micro-fluidics and soft lithography
Whitesides and Stroock [2001]. The use of micro-fluidic devices has few
key practical advantages such as the dramatic reduction of the amount of
reagents required for fine chemistry and biochemistry Hansen et al. [2002]
applications, well controlled manipulation and sophisticated experiments on
single cells Li Jeon et al. [2002], Takayama et al. [2001], Mao et al. [2003]
and macromolecules Chou et al. [1999]. The microscopic flows are almost
universally laminar, steady and characterised by a linear dependence of the
flow rate on the driving force. These basic characteristics are determined
by low values of the Reynolds number, Re, which is a general measure of
the inertial nonlinearity of the flow Landau and Lisfshits [1980]. Here, V is
the mean flow velocity, d is the diameter of the channel, and ρ and η are
the density and the viscosity of the fluid, respectively. When d is reduced,
the flow velocity needed to reach a high enough value of Re in order to
excite chaotic or turbulent states increases as d−1 and the required driving
pressure (at fixed aspect ratio) as d−2. Therefore, when channels are only
few tens of microns wide, achieving high Re requires impractically high
driving pressures. A main consequence of the laminar character of the flow
is the inefficient mass transfer across the main flow direction which occurs
mainly due to molecular diffusion. Mixing of viscous fluids by diffusion is
slow comparative to the mixing that occurs in a random flow. Even for
a moderate size protein, such as bovine serum albumin (with a diffusion
coefficient D ≈ 3X10−7cm2/s in water), the diffusion time d2/D across a
micro channel with a width of 100µm is of the order of 100s.

Few techniques have been suggested to generate stirring by a three-
dimensional flow in order to increase the mixing efficiency in micro-channel
flows. They include application of time-dependent external force fields Oddy
et al. [2001], Tsai and Lin [2002] and increasing Re to moderately high values
in curvilinear three-dimensional channels Therriault et al. [2003], Vijayen-
dran et al. [2003]. An ingenious solution to generate chaotic advection in a
microscopic flow was suggested in Stroock et al. [2002]. It involves a special
”herringbone” patterning of a micro-channel wall which enhances a sec-
ondary flow normal to the mean flow direction. The continuous stretching
and folding of the fluid elements (as they advance downstream) results in
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exponential separation of initially close fluid particles and efficient mixing.
However, the flow was stationary in laboratory frame.

Groisman and Steinberg have demonstrated demonstrates that a small
addition of high molecular weight linear polymer to a macroscopic curvilin-
ear flow of a viscous fluid can lead to very efficient mixing in a regime of
elastic turbulence Groisman and Steinberg [2001].

If the size of the flow channel is reduced to a microscopic scale, the
extension of polymer molecules in the flow may become comparable to the
size of the setup. Therefore, the question whether a microscopic flow of a
dilute polymer solution can undergo a purely elastic instability and evolve
towards random flow states (in a regime of elastic turbulence) can not be
answered by a simple analogy with the macroscopic case and needed to be
addressed experimentally.

This section is organised as follows. The first section describes the mi-
croscopic flow system and the experimental investigation techniques. The
transition to random flow and the main features of the random micro-flow
are discussed in the second section. In the third section I present a detailed
investigation of the decay of a passive tracer in the random micro-flow.
The slow down of mixing with respect to the case of unbounded systems
(Batchelor regime) is further clarified by an analysis of the mixing boundary
layer.

7.1 The polymer solutions.

The polymer solution used in this series of experiments was identical
to that used in the experiments presented in the previous Chapter, that is
80ppm PAAm dissolved in a Newtonian solvent(about 65% saccharose in
water). The viscosity of the solution was η = 138mPas at a shear rate
of 2s−1 and the viscosity of the solvent was ηs = 114mPas at 22oC. The
polymer relaxation time λ is shown as a function of shear rate in Fig. 1.2.

The overlap concentration c?, defined as the concentration at which the
viscosity ratio η

ηs
= 2, was 200ppm, corresponding to a molecular concen-

tration n = 8.76X1012cm−3. The characteristic size of polymer molecules
at rest can be estimated from this as n−1/3 ' 0.5µm, and the charac-
teristic distance between them at 80ppm by weight can be estimated as
0.7µm . These estimates are well supported by the data on PAAm taken
from the literature Kulicke et al. [1989]. On the other hand, one can use
the Mark-Houvink scaling relation for PAAm, [η] = 6.31X10−3M0.8

w (in
ml/g) Kulicke et al. [1989], where [η] is the intirinsic viscosity of the poly-
mer defined as [η] = limc→0

η−ηs
c·ηs . Corresponding to the molecular weight

Mw = 1.8X107Da one obtains [η] = 4020ml/g. Defining c? = [η]−1 Bird
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Figure 58. (A) Photograph of the micro-fluidic device. The micro-channel
was filled with ink for better contrast. (B)Photograph of a section of the
functional curvilinear element. The point where instantaneous flow velocity
measurements (averaged over a 20X20 µm square region) were made is
marked by a cross.

et al. [1977] we obtain c? = 250ppm by weight for an aqueous solution which
agrees well with the above estimate.
Additionally, one can compare the estimated size of the PAAm coils with
the data obtained from light scattering, Ref. Kulicke et al. [1989]. Plug-
ging Mw = 1.8X107Da into an interpolation relation from Ref. Bird et al.
[1977], one obtains Rg ' 0.4µm for the radius of gyration of the coils, which
is rather consistent with the above estimate obtained from c?.
It is worth noting that c? = 200ppm is very close to the value found for
λ-phage DNA Shrewsbury et al. [2001], which has a comparable molecular
weight of 3.1X107Da. Radius of gyration of λ-phage DNA was found to be
0.73µm Smith et al. [1996], which is quite consistent with the above esti-
mates for the PAAm coil size. The full contour length of a PAAm molecule
having Mw = 1.8X107Da and thus consisting of 2.5X105 monomers (each
with the molecular weight 71.08g/mol) can be estimated as about 50µm,

92



if a monomer length of 0.2nm is assumed. It is significantly larger than
the contour length of the λ-phage DNA (which is equal to about 16µm)and
twice smaller than the width of the micro-channel. The simple consider-
ations presented above suggest that a direct comparison with the case of
macroscopic curvilinear flows in a regime of elastic turbulence, Groisman
and Steinberg [2001], is not justified and the question whether elastic tur-
bulent states can be excited in a microscopic channel had to be addressed
experimentally.

7.2 Passive scalar field measurements

The mixing experiments have been conducted by evenly injecting two
streams of dilute polymer solution one of which contained also a small
amount of fluorescent dye (Fig. 61 A). The mixing efficiency is studied
at different locations downstream (or versus time, if one assumes that Tay-
lor hypothesis is valid for this flow 11) by monitoring the brightness of the
passive scalar field. A critical requirement during the experiments was to
visualise the mixing patterns in a narrow horizontal plane, in order to avoid
space averaging which could lead to wrong conclusions on the mixing effi-
ciency.

This is achieved by imaging the passive scalar fields through a Confocal
Scanning System (Fluoview FV500 by Olympus), Fig. 59. It was equipped
with a 40X,NA = 0.85 infinity corrected objective and a 12-bit photomul-
tiplier. The scanning was done at a rate of 56 lines per second and 512
pixels per line corresponding to a step of 0.18µm per pixel.

Prior to discussing the decay regime of mixing in a random microscopic
flow, we illustrate the chaotic flow structure as revealed by confocal scanning
microscopy, Fig. 60.

As already discussed in detail in Sec. 6, the flow is dominated by a large
scale vortex evolving randomly in time.

7.3 Decay regime of mixing in a random micro flow

Mixing of a low diffusivity passive tracer by a turbulent flow particularly
in a region of small scales, attracted recently significant attention from both
theoryShraiman and Siggia [1994], Chertkov et al. [1995b], Shraiman and
Siggia [2000], Falkovich et al. [2001], Son [1999] and experiment Jullien et al.
[2000], Groisman and Steinberg [2001].

11A detailed discussion of the validity of the Taylor Hypothesis in a similar flow was

presented in section 1.5.
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Figure 59. Confocal scanning system: PMT-photo-multiplier, PH-pin
hole, L1-focusing lens ,FF-fluorescence filter, DM-dichroic mirror, EF-
excitation light selection filter, L-laser, Y-SM-Y direction scanning mirror,
X-SM-X direction scanning mirror, L2-objective lens, M-micro-channel.

Figure 60. Middle plane horizontal confocal snapshot. The flow is seeded
with 0.2µm fluorescent spheres. The driving pressure is 120Pa per channel
segment

This so-called Batchelor regime of mixing exists in a viscous-convective
range of wave numbers, kK < k < kB , where the random-in-time velocity
field can be treated as smooth. Here kK = (ε/ν3)1/4 is the Kolmogorov
dissipation scale, kB = (ε/νD2)1/4 is the Batchelor wave number, ν and
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D are the kinematic viscosity and the diffusion constant, respectively, and
ε is the rate of energy dissipation Batchelor [1959a]. The inverse injection
scale should be used here instead of kK , if the former is larger than kK .
The range of the Batchelor regime is defined by the value of the Schmidt
number Sc = ν/D, which can be rather large for a viscous fluid with a low
diffusivity tracer. The smoothness of the velocity field for developed tur-
bulence below the Kolmogorov scale is explained by an exponential decay
of the velocity spectrum there. The Batchelor-Kraichnan approach Batche-
lor [1959a], Kraichnan [1968] can be extended to an algebraic type velocity
spectrum ∝ k−δ with δ > 3. Then fluctuation spectrum of the velocity gra-
dients scale as k−δ+2, so that the flow becomes increasingly homogeneous
on small scales, and the mixing occurs mainly due to eddies corresponding
to the border of the velocity smoothness. Batchelor and Kraichnan Batch-
elor [1959a], Kraichnan [1968] considered a stationary regime of turbulent
mixing with a tracer continuously injected into a turbulent flow on a large
scale. Then the mixing is produced by stretching and folding of a tracer
blob by the random velocity field creating components of higher and higher
wave numbers up to kB . A more recent theory of the passive scalar decay in
the Batchelor regime of mixing, which is more relevant to a real experiment,
makes predictions about the statistics of the passive scalarSon [1999].

Various theoretical predictions for the stationary and decay cases of the
Batchelor regime of mixing were verified recently in macro-systems Jullien
et al. [2000], Groisman and Steinberg [2001]. However, the theories men-
tioned Batchelor [1959a], Chertkov et al. [1995b], Son [1999] consider an
unbounded case only. As shown by Chertkov and Lebedev, Chertkov and
Lebedev [2003], a non-uniform velocity distribution particularly close to a
wall, can alter significantly the efficiency of mixing in the decay regime due
to turbulent advection. Indeed, due to a reduced velocity near the wall
the boundary layer becomes a sink for the passive tracer. This excess of
the tracer is intermittently injected from the boundary layer into the bulk.
Thus, the tracer decay, e.g. along a channel, is controlled by the rate of
tracer injection from the boundary layer that caused a significant slow down
of the decay compared with an unbounded case. As a result, the scaling
of the mixing length with the Péclet number, Pe = Vavd/D, changes from
logarithmic one to an algebraic, Lmix ∝ Pe1/4. Here Pe defines the relative
rate of advection versus diffusive transport in a flow, Vav is the average lon-
gitudinal velocity, and d is the channel width. Besides, the boundary layer
width for mixing in the decay regime in scales as W ∝ Pe−1/4.

As demonstrated in Sec. 6, above the onset of the elastic instability
the micro-flow is spatially smooth and dominated by a large scale randomly
fluctuating spiral vortex Fig. 60. The small scale homogeneity of the micro-
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flow suggests that the mixing of a passive tracer injected at large scale in the
micro-flow should occur mainly due to the large scale eddies in a Batchelor
regime.
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Figure 61. (A)Epifluorescent microphotograph of the entrance area of a
micro-channel. Wide triangular region in front of a curvilinear channel
allows to adjust equal flow rates for polymer solutions with (from the top)
and without FITCD. (B)Confocal micrograph of the flow in the micro-
channel (at N=30) without polymers added. Left wall of the channel is
shown by a dotted line. Confocal images of mixing in a random micro flow
of a dilute polymer solution at different locations downstream: (C)N=5
(D)N=11 (E)N=17.

7.4 Scaling of the mixing length with Pe

The small scale homogeneity of the micro flow emphasised in the previous
subsection suggests that the mixing of a passive scalar injected at large scales
in the flow should occur mainly due to the large scale eddies in a so called
Batchelor regime of mixing.

Although the Batchelor regime in unbounded systems has been inten-
sively studied theoretically, it has been shown only recently Chertkov and
Lebedev [2003] that the mixing efficiency is significantly altered in bounded
systems where the boundary layer becomes a sink for the passive tracers.
In order to check the theoretical predictions made in Chertkov and Lebe-
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dev [2003], we have varied Pe about 37 times by using fluorescent tracers
with different diffusion coefficients and by varying the mean flow velocity.
The mixing experiments have been carried out by injecting two streams of
polymer solution, one with and one without a fluorescent tracer. The two
streams of polymer solution have been injected at equal flow rates by a
careful adjustment of the driving pressures, Fig. 61 A.

As a passive tracer we have used dextran molecules labelled with flu-
orescein isothiocyanate (FITCD). The molecular weights of the passive
tracers used in different experiments were 10kDa, 70kDa, 500kDa and
2MDa. These different choices of tracers together with variations of the
mean flow velocity allowed us to modify Pe about 37 times in the range
1.6 × 104 ÷ 4.14 × 105. As a result, the Batchelor scale, ηB = d · Pe− 1

2 ,
changed from 1× 10−4 down to 0.15× 10−4 cm.

First, the setup was tested by running experiments with the plain sol-
vents without PAAm added. The flow appeared laminar and steady in the
full range of driving pressures, ∆ps, and the interface between the streams
with and without FITCD remained smooth and sharp along the whole chan-
nel with only a minor smearing by diffusion Fig. 61.B.

The situation was similar when polymer solutions have been injected
in the linear regime corresponding to low values of the driving presures,
∆ps. However, when the driving pressure was raised above the nonlinear
transition threshold, ∆p?s = 50Pa (which corresponds to Wic ' 6.5), the
randomly fluctuating flow velocity produced significant stirring, complex
and chaotically changing tracer fields. In Fig. 61.C-E are displayed typical
scalar fields at different locations downstream. One can easily see that,
as one advances downstream, the scalar field has an increasingly random
appearance.

In Fig. 62 is shown the distribution of tracer concentration in the vertical
cross section of the micro-channel at different locations downstream. Close
to the entrance of the channel (62 A-C), the mixing is mainly carried out at
large scale by a randomly fluctuating vortex. As one advances downstream,
the random stretching and folding of fluid elements results in an increasingly
efficient mixing at small scales. The confocal scans in a horizontal plane,
Fig. 61B-E, were made at a scanning rate of 56 lines per second, contained
750 individual lines, and took about 13s to complete. The vertical scan,
Fig. 62B-E was performed with a scanning rate of 24 lines per second,
contained 45 lines and took about 1.8s to complete. The characteristic time
of concentration variation was about 2.5s. Therefore, although individual
horizontal lines in Fig. 61B-E and vertical lines in Fig. 62 represent virtually
instantaneous passive tracer distributions, the 2D concentration diagrams
in Figs. 61B-E and 62 should not be considered as snapshots and are shown
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Figure 62. Distribution of tracer concentration in the vertical cross-section
of the micro-channel at different locations downstream: (A)N=5 (B)N=7
(C)N=9 (D)N=11 (E)N=13 (F)N=15 (G)N=17 (H)N=25.

only for purpose of illustration. However, none of these diagrams was used
for any quantitative measurements.

Corresponding to each value of Pe tested, mixing efficiency has been
investigated by focusing on the long time statistics of the concentration
distribution across the micro-channel at different positions,N ,downstream.
Typical time averaged concentration distributions across the micro-channel,
c, are displayed in Fig. 63. One can see that the concentration distribu-
tion close to the inlet, at N = 7, is strogly influenced by the asymmetric
conditions at the channel entrance. As one can learn from the curve cor-
responding to N = 11, however, the imprint of the initial conditions is
clearly fading out as the liquid is advancing downstream and the stirring
becomes increasingly efficient. Further downstream, at N = 41, asymmetry
in the tracer distribution introduced by the initial conditions disappears
completely.

Fading of the initial condition influence with time and restoration of
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Figure 63. Time average of FITCD concentration , c, as a function of
the normalized coordinate across the micro-channel at different locations
downstream: red-N = 7, green-N = 11 and blue-N=41.

symmetry in flow in the statistical sense are both distinct features of chaotic
and turbulent flows. Therefore, the curves displayed in Fig. 63 provide
further evidence for truly chaotic nature of the microscopic flow. Variation
of tracer concentration profiles with time at different distances from the
inlet is illustrated by the space-time plots displayed in Fig. 64. One can
see that the tracer concentration appears to fluctuate quite randomly in
time. Next, as one can see in Fig. 64.A, which refers to N = 5, that the
left side of the channel, where the tracer was initially injected, looks much
brighter and has a higher average concentration of the tracer. Although also
noticeable in Fig.64.B taken further downstream at N = 18, this feature is
clearly weaker here.

A quantitative measure of the mixing efficiency is given by the ith order
moments, Mi, of a probability distribution function (PDF) of FITCD con-

centration, c, defined by Mi = 〈|c−c|i〉
ci

. Statistics of concentration has been
carried out over about 6× 106 points, that is over 104 individual concentra-
tion profiles across the micro-channel (Fig. 64). In Fig. 65 are presented the
dependencies of M1 and M2 on the position along channel, N , correspond-
ing to the largest value of Pe we investigated. As shown in Fig. 65, both
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Figure 64. Space-time plots of FITCD distribution across the channel
at different locations downstream: (A)N=5 (B)N=13 (C)N=21 (D)N=35.
Confocal scanning was done along the same line across the channel in the
midplane at equal distances from the half-ring interconnections, with even
time intervals of 0.0177 s.
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Figure 65. The first (squares) and second(circles) order moments decay
vs. position, N, at Pe = 4.15× 105 ; solid lines are the fit. Inset: the decay
exponents of the moments, γi, as a function of the moment order, i, at
different Pe: diamonds, Pe = 1.6×104; up triangles, Pe = 3.3×104; squares,
Pe = 9.09× 104; circles, Pe = 1.74× 105; down triangles, Pe = 4.15× 105.

moments exhibit exponential decay up to N ' 40 as predicted by theory
Son [1999], Chertkov and Lebedev [2003].

Second, the rate of decay of M2 is twice as high as that of M1. And third,
M1 is reduced more than 30 times and reaches the noise level at N > 40,
as well as M2. In the inset of Fig. 65 are shown the decay exponents of the
higher order moments, γi, as a function of their order, i, for each value of
Pe. One can notice that the saturation occurs for all curves at about the
same value of i = 6, but the saturated value of the decay exponents depends
on Pe.

The mixing length, measured in the number of units, Nmix, and obtained
from the exponential rate of decay of M2, is presented in Fig. 66 as a
function of Pe. The data are well fitted by Nmix ∝ Pe0.26±0.01, which is in
good agreement with theory Chertkov and Lebedev [2003].

The latter results indicates that the efficiency of the chaotic mixing is
reduced due to finite size effects, which increase the mixing length in an
bounded system compared to that in an unbounded one.
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Figure 66. The mixing length, measured in the number of turns, Nmix, vs.
Pe: squares are the data, the solid line is the fit, and the dotted line shows
the logarithmic dependence.

7.5 Analysis of the mixing boundary layer

In order to establish the source of the algebraic dependence of the mixing
length instead of logarithmic, as predicted for an unbounded system, we
have studied the Pe dependence of the mixing boundary layer width, W .
The latter was identified from the spatial distribution across the micro-
channel of the first and second order moments of the probability distribution
function of FITCD concentration fluctuations(Fig. 67).

We have associated well defined peaks in a spatial dependence of the
moments with the boundary layer edge (note in Fig. 67 the asymmetry
in the left and the right peak locations due to the flow asymmetry). The
average value of the right peak location for the first moment (averaged along
the micro-channel) as a function of Pe is presented in the inset of Fig.
67 together with the fit: W ∝ Pe−0.28±0.06. This result is once more in
fair agreement with the theoretical prediction W−

1
4 Chertkov and Lebedev

[2003].
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Figure 67. Spatial dependence of the first (blue line) and second (black
line) order moments of FITCD concentration fluctuations across microchan-
nel. Inset: width of the boundary layer, W , vs. Pe. The solid line is the
fit.

7.6 Spatial and temporal correlations of the passive scalar fluc-
tuations

The spatial correlation across the micro-channel and temporal correla-
tion functions of passive scalar concentration fluctuations in the bulk and
in the boundary layer were studied at different Pe. The spatial correla-
tion functions decay logarithmically at distances above the diffusion length
(which was varied from 1 to 4µm) and are almost independent on Pe (Fig.
68 A ). The relatively narrow spatial range of the correlation function decay
does not allow one to reliably distinguish between the logarithmic and power
law behavior, if the exponent is small, as predicted by theory Chertkov and
Lebedev [2003] (the exponent ∼ Pe− 1

4 ). This logarithmic like decay can be
explained by the fact that the mixing in the bulk occurs rather efficiently.
The mixing boundary layer permanently supplies the passive scalar into
the bulk which mimics the Batchelor stationary regime of mixing Batchelor
[1959a] and leads to logarithmic decay.

The temporal correlation functions in the bulk and in the boundary layer
(Fig. 68 B,C) show similar behaviour with about twice as large correlation
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Figure 68. (A) Correlation coefficients for the tracer concentration vs.
∆x/d. (B) Correlation coefficients for the tracer concentration vs. t in
the bulk of the microdcopic flow. (C) Time auto correlation functions for
the tracer concentration vs. near the boundary of the microscopic flow.
The colours are: black-Pe = 4.15 × 105, red-Pe = 1.74 × 105, blue-Pe =
9.09× 104, green-Pe = 3.37× 104, orange-Pe = 1.68× 104.
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time in the boundary layer as in the bulk (t 1
2
≈ 13s instead of 6s in the

bulk).

8 Macroscopic heat transport by Elastic Turbulence

The efficient transport of mass and heat within fluids is of paramount im-
portance in many industrial settings such as the develop- ment of efficient
heat exchangers, cooling the magnetic coils of particle accelerators and the
central processing units (CPU’s) of personal computers. The natural mech-
anisms by which the mass and the heat are transported within a fluid are
the molecular diffusion and the thermal conduction, respectively. These
mechanisms, however, are the least efficient ones in the sense that the char-
acteristic times over which they take place are significantly large. An in-
crease in the efficiency of the mass and heat transport can be obtained by
generating flows with divergent Lagrangian trajectories which are able to
efficiently stretch, fold and breakup the fluid elements down to sufficiently
small spatial scales when the molecular diffusion and the thermal conduction
can effectively homogenise the mass/temperatures distributions. One way
of generating random fluid motion is to trigger inertial turbulent flow states
by ensuring sufficiently large values of the Reynolds number Re = ρUL/η.
Here ρ stands for the density of the fluid, L for the characteristic size of the
flow container, U for the scale of the fluid velocity and η for the viscosity
of the fluid.

It has been demonstrated that inertial turbulent flows transport effi-
ciently both mass and heat Gollub et al. [1991a], Lane et al. [1993], Warhaft
[2000], Shraiman and Siggia [2000], Lee and Hyun [1999], Kim and Hyun
[1997a]. There exist, however, various practical situations when increasing
the Reynolds number is a difficult task, particularly when the characteris-
tic size of the fluid container L is small, e.g. in a micro channel. In such
situations, it is desirable to replace the inertial nonlinearity in the momen-
tum equation with other types of nonlinearities. Exponentially divergent
Lagrangian fluid trajectories can be generated by the laminar chaotic ad-
vection Aref [1990], Ottino [1989] and, consequently, such flows are able to
efficiently transport both mass and heat Toussaint et al. [1995, 2000], Hobbs
and Muzzio [1997], El Omari and Le Guer [2010], Acharya et al. [1992], Mota
et al. [2007]. Triggering the laminar chaotic advection at moderate Re re-
quires, however, a special design of the flow channel and/or a particular flow
control, e.g. controlled pulsations. This can also become quite challenging
in the case of microscopic flows due to technical limitations/difficulties in
manufacturing elaborated three dimensional microstructures.
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8.1 Experimental setup and methods

The experimental setup is schematically illustrated in Fig. 69. It consists
of an acrylic made fluid container FC with the radius Rc = 40 mm and
optically transparent walls. The flow is driven by a rotating top disk D with
a radiusRd = 39mmmounted on the shaft of a commercial rheometer, Mars
III (from Thermofischer). The use of the commercial rheometer in driving
the flow is justified by the accurate control of both the rotation speed Ω and
the driving torque M . The distance between the top disk and the bottom
of the fluid container was H = 60 mm for all the experiments reported in
the paper.

The temperature of the bottom of the fluid container is controlled via
a circulating fluid bath CFB fed with de-ionised water by a thermally sta-
bilised fluid circulator (Lauda, model Proline RP 855). To avoid triggering
the thermal convection, the temperature within the circulating fluid bath
CFB is set to Tb = 13oC which is smaller than the room temperature
T0 = 23oC. To ensure a good repeatability and reproducibility of the ex-
periments, the room temperature has been regulated (with an accuracy of
±0.5oC) at all times and for each of the experiments reported herein by an
air conditioning system installed in the experimental room.

The distribution of the temperature into the flow is point-wise monitored
by an array of six thermocouples T1−6 (Chromel-Alumel, 100 µm in size)
disposed equidistantly along the vertical direction z and positioned at the
radial position r = Rc/2, Fig. 69. The thermocouples are mounted through
thin metal tubes which allows one to scan the temperature distribution
along the radial direction. The signals of the thermocouples are passed to
the digitising block A2D via the reference box RB. The subtraction of the
reference temperature by the reference box RB diminishes the instrumental
error of the temperature readings down to roughly 0.5% of the measured
value.

Together with the point-wise measurements of the temperature, the flow
has been investigated by local measurements of the flow fields by the Digital
Partical Image Velocimetry (DPIV) technique. For this purpose, a green
laser beam (λ = 514nm) with a power of 500 mW emitted by the solid state
laser L (from Changchun Industries, Model LD-WL206) is deflected by a
system of planar mirrors to a cylindrical optics block CO which reshapes it
in a horizontal laser sheet LS, Fig. 69. The cylindrical optics block is com-
posed of a glass rod with a short focal distance f1 = 2 mm and a cylindrical
lens with a larger focal distance, f2 = 7cm. The two optical elements are
mounted orthogonally to each other and in a telescopic arrangement such
as the primary horizontal laser sheet generated by the glass rod is focused
on the vertical direction in the middle of the flow channel by the second lens
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Figure 69. Schematic view of the experimental setup: R - the shaft of the
rheometer, D - rotating disk, FC - fluid container, CFB - circulating fluid
bath, T1−6 - thermocouples, RB - reference box, A2D - analogue to digital
converter , L - solid state laser, LS - laser sheet, COB - cylindrical optics
block, M - planar mirror, CCD - video camera, PC - personal computer.

minimising thus its thickness in the measurement region. The thickness of
the generated laser sheet is roughly 80µm in the beam waist region which is
positioned at the centre of the fluid container FC. The horizontal laser sheet
has been positioned in the vicinity of the thermocouple T4, Fig. 69. The
working fluid was seeded with an amount of 200 parts per million (ppm) of
polyamide particles with a diameter of 20µm (from Dantec Dynamics).

Time series of the velocity fields were obtained by a iterative multi-grid
DPIV algorithm implemented in house under Matlab Raffel et al. [Septem-
ber 2007], Scarano and Rhiethmuller [2001]. For this purpose, a sequence of
flow images has been acquired with a colour CCD camera which visualises
the illuminated flow section through the planar mirror M. The total image
acquisition time was one minute within the laminar regime and five minutes
within the transitional and fully developed elastic turbulent regimes which
allowed one to properly capture the flow de-correlation beyond the onset
of the primary elastic instability. The inter-frame has been adapted to the
measured flow speed in order to maintain the average displacement of the
tracer particles in the optimal range of 5 − 15 pixels. Together with this,
the size of the smallest interrogation window has been adapted to the mean
flow velocity corresponding to the value angular speed of the top rotating
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Figure 70. (a) Flow curves measured during controlled rate flow ramps.
The insert presents the temperature dependence of the viscosity measured
at γ̇ = 1s−1 and the full line is an Arrhenius fit. (b) Stress relaxation data.
The full lines are exponentially decaying functions characterising the slow re-
laxation mode. The dash-dot line is a guide for the eye, σ/σ0 ∝ e−t/2.6(±0.2),
highlighting the fast decay mode. The temperature dependence of the
longest relaxation time is presented in the insert. The error bars are defined
via the nonlinear fitting error. In each panel, the symbols refer to different
operating temperatures: squares (�) - T = 17oC, circles (◦) -T = 19oC,
triangles (4) -T = 21oC.

disk D which sets a scale for the mean displacement of the flow tracers in
the field of view. The spatial resolution of the measured flow fields was
3 mm. Using this adaptive DPIV protocol the instrumental error of the
measured velocity fields does not exceed 7% through all the experiments
reported herein.

A 100 parts per million (ppm) anionic polyacrylamide (PAAM) solution
with the molecular weightMw = 22·106 Da has been used as a working fluid.
The solvent was a 65%(wt) aqueous solution of sucrose. The anhydrous
sucrose was not of an analytical grade (pure) but simply a commercially
available sugar (Sucre Crystal from Béghin Say, France). The viscosity of
the Newtonian solvent was ηs = 114 mPas (at the room temperature T0)
which ensures large characteristic relaxation times of the polymer solution.

The polymer solutions were prepared according to the following protocol.
First we dissolved 0.9g of anhydrous PAAM and 3 g of NaCl into 275 ml of
de-ionised water by gentle shaking. NaCl was added to fix the ionic contents
within the polymer solution. Next the solution was mixed for 3 h in a com-
mercial mixer with a propeller at a moderate speed. The rationale for this
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step is to cause a controlled mechanical degradation of the longest PAAM
molecules, in order to cut the tail of the molecular weight distribution of the
broadly dispersed PAAM sample. In a solution with a broad distribution of
polymer molecular weights, the heaviest molecules, which are most vulnera-
ble to mechanical degradation, bring the major contribution to the solution
elasticity, but may break in the course of the experiment. This can lead
to inconsistency of the experimental results. We found empirically that the
procedure of pre-degradation in the mixer leads to substantial reduction of
degradation during the experiments and to substantial improvement of their
consistency. Finally, 9g of isopropanol was added to the solution to preserve
it from ageing and water was added up to 300g. The final concentrations of
PAAM, NaCl, and isopropanol in the stock solution were 3000 ppm, 1%,
and 3%, respectively. This master solution was used to prepare 100 ppm
PAAM solution in a Newtonian solvent. To prevent the bacterial growth
and allow the storage over extended periods of time we have finally added
to the polymer solutions an amount of 250 ppm of sodium azide (NaN3).

The density of the polymer solution was measured at room temperature
by accurately weighting fixed volumes of fluid, ρ = 1200 kgm−3.

The thermal properties of the polymer solution have been investigated
using a hot disk thermal conductivity analyser. The Transient Plane Source
(TPS), or the Hot-Disk method is a commonly used experimental technique
for measuring thermal properties of materials in either a solid or fluid state
proposed by Gustaffson in early 90′s, Gustafsson [1991], Gustavsson et al.
[1994].

The thermal diffusivity of the pure solvent was measured κs = 2.21 ·
10−7m2 s−1. The thermal diffusivity coefficient of the polymer solution
was measured κ = 1.31 · 10−7m2 s−1 and the characteristic time associated
to the thermal diffusion may be estimated as td = H2/κ ≈ 25714 s. We also
note that within the temperature range explored through our experiments
no significant temperature dependence of the thermal diffusivity coefficient
was observed.

The rheological properties of the solvent and of the polymer solution
were measured with the same Mars III rheometer around which the com-
plete experimental setup was built. The shear viscosity of the solution was
measured with a cone and plate geometry (D = 60 mm, 2 deg truncation)
via a controlled rate flow ramp at three temperatures which are relevant
during the heat transfer process, T = 17oC, 19oC, 21oC. Corresponding to
each value of the imposed shear rate the stress was allowed to equilibrate
during 50 s and the averaging was performed during the last 10 s. The
choice of this temperature range was based on the value of the room tem-
perature and of the thermal equilibrium temperature achieved during our
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experiments, Te ≈ 16.9oC. The temperature was controlled during the rhe-
ological measurements by a Peltier system. The geometry has been enclosed
by a teflon made solvent trap in order to minimise the sample evaporation
and insure the reliability of the measurements. For each temperature, the
viscosity measurement has been repeated three times with a freshly loaded
sample in order to check the reliability and specify an error bar. The re-
sults of the shear viscosity measurements performed in a range of shear
rates and temperatures relevant to the heat transport experiments are pre-
sented in Fig. 70(a). The viscosity follows an Arrhenius time dependence

on the temperature (see the full line in the insert of Fig. 70(a)), η ∝ e
E
η
a

R T ,
where R is the ideal gas constant. The viscosity activation energy is found
Eηa ≈ 40.625(±1.2)kJ/(mol K). The largest polymer relaxation time has
been assessed using the stress relaxation method, Liu et al. [2007, 2009].
For this purpose, a constant rate of shear γ̇ = 1s−1 has been maintained
for 50 s. At the time instant t0 = 0 the rate of shear has been set to 0 and
the time decay of the stress has been monitored. As compared to the small
amplitude oscillatory measurements, the relaxation time assessed via this
technique is independent on the value of the initial shear (if the initial shear
rate is sufficiently small so the inertial effects associated to both the shaft
of the rheometer and the measuring geometry don’t play a significant role),
Liu et al. [2007]. In addition to that, the largest relaxation time obtained
via this method is directly comparable to the relaxation time measured via
the relaxation of single molecules observed via fluorescent microscopy, Liu
et al. [2007]. Relaxation measurements performed at the same temperatures
as the shear measurements are illustrated in Fig. 70(b) . At each tempera-
ture a two mode exponential decay is observed. The fast mode highlighted
by the dash-dotted line has a characteristic time λ1 = 2.6 s(±0.2 s) which
is independent on the operating temperature. The largest relaxation time
λ associated to the slow mode (see the full lines in Fig. 70(b) ) depends on

the temperature according to an Arrhenius type law λ ∝ e
Eλa
R T , the insert

in Fig. 70(b) . Although it is commonly believed that the viscosity acti-
vation energy should be close to the relaxation time activation energy, we
obtain a significantly larger value, Eλa ≈ 193.5(±4)kJ/(mol K). A possible
explanation for this rather unexpected result is that the changes of the re-
laxation time with the temperature for this polymer solution are triggered
not only by the changes of the solvent viscosity but some other changes in
the molecular properties of the polymer chains. By taking into account the
shear thinning of the viscosity illustrated in Fig. 70(a), the Reynolds num-

ber was calculated according to Re =
ΩR2

cρ
η(γ̇) where Ω is the angular speed of

the top driving disk D. Corresponding to the largest value of Wi we have
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explored and considering an average value of the shear viscosity within the
relevant temperature range, we have found Re ≈ 26. The main conclusion
of the thermorheological analysis presented above is that in spite of a rather
limited temperature range non-negligible changes in both the shear viscos-
ity and the largest polymer relaxation time are observed. Thus, even in the
absence of a buoyancy term in the momentum equation (in which case the
temperature acts as an active scalar field), one can not a priori establish
a similarity between the dynamics of a passive scalar in a random smooth
flow and the transport of heat by elastic turbulence. This further reinforces

the motivation of our study. The Prandtl number Pr = η(γ̇)
ρκ which quanti-

fies the balance between the viscous momentum diffusion and the thermal
diffusion varied during our experiments (because of the shear thinning be-
haviour of the viscosity and its T dependence) in the range Pr ∈ [744; 1336].
The balance between natural and forced convection is quantified by the
Richardson number which may be defined as Ri = gβ∆T

RcΩ2 h
3 where g is the

acceleration of gravity, β ≈ 2 ·10−4K−1 is the thermal expansion coefficient,
∆T = T0 − Tb and h = H/Rc is the geometric aspect ratio of the flow cell.
By varying the angular speed of the top disk, the Richardson number was
varied during our experiments in the range Ri ∈ [4.7; 48.8].

8.2 Observation and characterisation of elastic turbulent flow
states

We focus in the following on a brief characterisation of the transition to
elastic turbulence and its main flow features in isothermal conditions at the
room temperature T0. At an integral scale, the transition to elastic turbu-
lence via a primary elastic instability can be monitored by measurements of
the statistics power P injected into the flow as a function of the Weissenberg
number. The injected power is calculated for the case of a swirling flow as
P = M · Ω where M is the torque acting on the shaft of the rheometer.

The statistics of the power fluctuations measured with the polymer so-
lution as a function of the Weissenberg number is illustrated in Fig. 71.
The Weissenberg number was calculated as Wi = γ̇ · λ. Based on the mea-
surements presented in Fig. 70(b), we have chosen λ = 5.5 s which is the
average value within the temperature interval considered. Corresponding
to a a critical value of the Weissenberg number Wic ≈ 2, an increase of
the flow resistance is observed in the form of an increase of the averaged
injected power beyond its laminar value P̄lam, Fig. 71(a). This corresponds
to a primary elastic instability that occurs in the flow. Simultaneously
with this, an increase of the rms of the power fluctuations is observed,
Fig. 71(b). The experimentally determined scaling laws of both the flow
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Figure 71. (a) Dependence of the normalised time averaged injected power
P̄ /P̄lam on the Weissenberg number Wi. The full line is a guide for the
eye, P̄ /P̄lam ∝ Wi0.67. (b) Dependence of the reduced rms of the power
fluctuations P rms/P rmslam on the Weissenberg number Wi. The full line is
a guide for the eye, P rms/P rmslam ∝ Wi3. The full/empty symbols refer to
increasing/decreasing Wi. The vertical arrow indicates the onset of the
primary elastic instability Wic.

resistance P̄ /P̄lam ∝ Wi0.67 and of the reduced rms of the fluctuations,
P rms/P rmslam ∝ Wi3, are consistent with previous measurements, Burghelea
et al. [2007], Burghelea [2005].

The evolution of the flow structure with the Weissenberg number is illus-
trated in Fig. 72. The DPIV measurements are performed in an horizontal
plane located in the vicinity of the thermocouple T4 at z ≈ H/2 (Fig. 69).
The top row of Fig. 72 presents the flow fields averaged over times typically
10 times larger than the polymer relaxation time λ and the bottom row
presents the time averaged in plane vorticity 〈ωz〉t.

The flow field measured below the onset of the primary elastic instability
at Wi = 0.8 is dominated by a stationary and off-centred Ekman vortex,
Ekman [1905]. This flow structure is different from that of the laminar flow
observed in Ref. Burghelea et al. [2007] (see Fig. 10(a) therein) which was
consistent with a rigid body rotation around the symmetry axis of the fluid
container FC and had no vertical velocity component. This difference can
be explained by the presence of the array of thermocouples which perturb
the base flow, see Fig. 69. The off-centred flow topology observed in the
laminar regime is consistent with the presence of a steady vertical flow
component which may slightly enhance the heat transfer (as compared to
the purely conductive state) even below the onset of the elastic instability.
The effect of the thermocouples on the laminar flow can also be noticed
in the map of the time averaged vorticity presented on the second row of
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Figure 72. Top row: time averaged flow patterns for various Weissenberg
numbers indicated in the top inserts. The colour map refers to the modulus
of the in-plane velocity. For the clarity of the presentation, the overlapped
vector fields were down-sampled by a factor of 2 along each direction. Bot-
tom row: time averaged vorticity, 〈ωz〉t. The measurements were performed
in isothermal conditions at the room temperature T0.

Fig. 72. The topology of the mean flow and vorticity field changes as
one moves towards the transitional (Wi = 7.7) and fully developed elastic
turbulent (Wi = 15.4) flow regimes. Within the transitional regime, the flow
is dominated by an unsteady toroidal vortex. Within the elastic turbulent
regime, the flow topology changes to a randomly fluctuating spiral vortex, in
agreement with the previous results on the elastic turbulence in von Karman
flows, Burghelea et al. [2007], Burghelea [2005]. Within the elastic turbulent
regime the flow is spatially smooth, strongly correlated over space and its
characteristic correlation length is comparable to the radius Rc of the fluid
container FC, Burghelea et al. [2005, 2004b]. The main flow illustrated
above are consistent with previous experimental results Burghelea et al.
[2007], Burghelea [2005] and recommend the elastic turbulence as a potential
candidate to efficiently transport the heat within the von Karman flow.

8.3 Heat transport by Elastic Turbulence

Prior to investigating the heat transfer process in a regime of elastic
turbulence, we focus on the heat transfer within the flow of the sucrose sol-
vent at Re ≈ 125 which is significantly larger than the largest Re number
investigated during the experiments with the polymer solution. Transient
measurements of the reduced temperature θ = T0−T

T0−Tb performed at various
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Figure 73. (a) Time series of the reduced temperature measured with the
sucrose solvent at Re ≈ 125: circle (◦) - T1, square (�) - T2, up trian-
gle (4) - T3, down triangle (O) - T4, left triangle (/) - T5, hexagon (7)
- T6. All measurements were performed at a distance r = Rc/2 from the
symmetry axis of the flow container FC. The full lines are nonlinear fitting
functions (see explanation in the text). The dependence of the fit param-
eter B (see text for explanation) on the vertical coordinate is presented in
the insert.(b) Time series of the reduced temperature measured at three
Weissenberg numbers indicated in the inserts of each panel. The symbols in
each panel refer to the vertical position of the thermocouple (see Fig. 69):
circle (◦) - T1, square (�) - T2, up triangle (4) - T3, down triangle (O) - T4,
left triangle (/) - T5, hexagon (7) - T6. All measurements were performed
at a distance r = Rc/2 from the symmetry axis of the flow container FC..
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vertical positions z and r = Rc/2 are presented in Fig. 73(a). Each tran-

sient data set may be formally 12 fitted by θ = A ·erfc
(
B√
t

)C
(the full lines

in Fig. 73(a)) where erfc is the complementary error function, the param-
eter A describes the equilibrium temperature and B = z

(4κ)1/2
describes the

local intensity of the heat transfer process. By fitting linearly the values
obtained for the coefficient B against the positions z of the thermocouples
(see the insert in Fig. 73(a)) one obtains for the thermal diffusivity of the
solvent κs ≈ 2.6 · 10−7 m2s−1

(
±2.3 · 10−8 m2s−1

)
which is fairly close to

the measured value. The equilibrium reduced temperatures reached by each
thermocouple are strongly dependent on the vertical coordinate z indicating
that no efficient mixing occurs in the flow which is consistent with the lam-
inar and linear flow behaviour of the solvent alone. In addition to that, no
fluctuations of the reduced temperature can be noted in Fig. 73(a) which
is once more consistent with a laminar flow behaviour. To conclude, the
tests performed with the Newtonian sucrose solvent alone at the largest
Reynolds number explored through the experiments with the polymer solu-
tion revealed a conductive like heat transport mechanism characterised by
a strong spatial dependence of the equilibrium temperatures and a lack of
temperature fluctuations. We now turn our attention to the case when the
polymer solution is used and the Elastic Turbulence is triggered.

Measurements of the time series of the reduced temperature θ performed
within each flow regime are presented in Fig. 73(b). The horizontal axis
is normalised by the characteristic diffusion time td. Due to the presence
of the secondary flow, one can no longer resort to the complementary error
function nonlinear fit used in the case of the pure solvent illustrated in Fig.
73(a). On the other hand it can be noted that, regardless the value of the
Weissenberg number and the measuring position, each reduced temperature
time series exhibits a logarithmic scaling part (note that the data is plotted
in lin-log coordinates) θ ∝ a + b · ln(t/td) before reaching a steady state
plateau corresponding to t/td ≈ 1.

The six data sets acquired within the laminar regime at Wi = 0.8 never
collapse indicating that a temperature gradient along the vertical direction z
exists at all times, top panel in Fig. 73(b). Secondly, the local slope b of the
log scaling part of the reduced temperature series decreases monotonically
from the bottom plate (the data set marked by a circle) to the top plate
of the fluid container. This indicates that the intensity of the heat transfer

12This functional dependence with C = 1 is an exact solution for the 1 − D transient

heat transfer problem only in the case of a semi-infinite planar domain with a constant

temperature boundary condition. Deviations from the analytically exact result related

to finite size effects may be accounted for by letting C vary as an extra fit parameter.
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is strongly inhomogeneous along the vertical direction and it is the highest
near the heat sink (the bottom plate) which is what one would expect in
the case of a conduction dominated heat transfer regime. Prior to entering
the logarithmic scaling regime, the time series of the reduced temperature
pass through a local minimum θmin < 0. The magnitude of this minimum
decreases as one moves from the top part of the fluid container to its cooled
bottom and it practically disappears at the level of the thermocouple T1.
We interpret this effect in terms of local viscous heating of the polymer
solution.

The reduced temperature time series acquired within the transitional
regime (Wi = 7.7) are presented in middle panel in Fig. 73(b). As com-
pared to the laminar case, several differences may be noted. First, within
the logarithmic scaling range, the separation between the measurements
performed at the six vertical positions is much smaller and so are the dif-
ferences in the plateaus observed around t ≈ td. This is an indication that
the unsteady vortical flow observed within the transitional regime (see Fig.
72) homogenises the vertical distribution of the temperature more efficiently
than the steady laminar vortex. Second, one can clearly observe in the mid-
dle panel of Fig. 73(b) a fluctuating component of the temperature signal
which is most pronounced near the bottom plate of the flow container (the
data set labeled by a circle). Third, the local minimum of the temperature
series acquired near the top plate is more pronounced than in the laminar
case and occurs earlier which corroborates with our interpretation in terms
of local viscous heating.

The six temperature time series acquired within the fully developed elas-
tic turbulent regime at Wi = 15.4 nearly collapse onto a single master
curve which indicates a perfectly homogeneous distribution of the temper-
ature within the system, bottom panel of Fig. 73(b). Together with this,
an increased level of fluctuations is observed within the logarithmic scaling
range. No local minimum related to viscous heating is observed which can
be explained by an efficient transport of the heat from the top of the flow
cell (note the viscous heating is more effective near the top driving disk D
due to the inhomogeneous shear in a von Karman flow configuration) to the
colder bottom via the randomly fluctuating spiral vortex. For a quantitative
assessment of the local intensity of the heat transfer at various Weissenberg
numbers we resort to the logarithmic slope b introduced above. The depen-
dence of the intensity factor b obtained from the data acquired at various
vertical positions on the Weissenberg number Wi is presented in Fig. 74.

Because the base flow does have a non-zero vertical component, an in-
crease of the local intensity of the heat transfer related to the increase of
the in plane vorticity is observed even below the onset of the primary elastic
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Figure 74. Dependence of the efficiency factor b obtained at various vertical
positions indicated in the insert on the Weissenberg number. The symbols
refer to the position along the vertical axis z (see Fig. 69): (�)- T1, (◦)- T2,
(4)- T3, (5)- T4, (�)- T5, (/)- T6. The vertical dashed line indicates the
onset of the primary elastic instability Wic.

instability, Wi = Wic.

As compared to the purely conductive case, the transition to the elastic
turbulence is accompanied by a roughly 3.5 − 4 fold increase of the local
intensity of the heat transfer at the position of the thermocouples T4 − T6.
At large Wi the intensity reaches a plateau which is related to the plateau
of the mean flow vorticity.

We also note that an increase of the local intensity of the heat transfer
is observed in the vicinity of the top driving disk slightly below the onset
of the primary elastic instability. This is due to the presence of the laminar
Ekman vortex induced by the intrusive presence of the thermocouples and
pictured in Fig. 72 (first column, top row). Unfortunately, this effect can
be neither removed nor decoupled from the elastic turbulence contribution
and this is a clear drawback of our experimental technique.

It is interesting to compare the increase in the intensity of the heat trans-
port by elastic turbulence with similar experiments performed with Newto-
nian fluids at large Re in a regime of inertial turbulence. In Ref. Gollub
et al. [1991b] Gollub and his coworkers asses the efficiency of the heat trans-
fer via the effective thermal diffusivity D∗ = K∗/ρcp where the global heat
transport coefficient K∗ is obtained from the ratio of the total measured
heat flux and the local temperature gradient, ρ is the density of the fluid,
and cp is its the heat capacity. As illustrated in Fig. 2 of their paper, an
increase of the efficiency of up to a factor of ten is observed at Re = 6000.
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The local increase in the heat transport intensity of roughly 3.5 − 4 times
we have measured within a regime elastic turbulence at Wi = 15.4 corre-
sponds to the increase observed in Ref. Gollub et al. [1991b] at Re ≈ 1600.
It is equally interesting to compare our results with numerical simulations
performed for the case of a von Karman flow of a Newtonian fluid. Prior to
discussing this, we note however that a rigorous and systematic comparison
of the increase of the heat transfer efficiency by elastic turbulence with the
Newtonian counterpart in a swirling flow is not possible for several reasons.
First, unlike in numerical simulations, we are unable to measure the Nus-
selt number and we have provided only a local measure of the intensity of
the transfer by the coefficient b. Secondly, during our experiments, when
the Weissenberg number is increased, both the Richardson and the Prandtl
numbers are varied and their range does not necessarily match that stud-
ied in numerical simulations (both numbers are larger in our case). Last
but not least, the flow structure within a regime of elastic turbulence and
its evolution with the Weissenberg number depart significantly from the
Newtonian case. For these reasons only a qualitative (and most probably
incomplete) comparison with the case of a Newtonian swirling flow will be
attempted below. Corresponding to Pr = 1 and Re = 2000 the numerical
simulations presented by Iwatsu in Ref. Iwatsu [2004] for the von Karman
swirling flow of a Newtonian fluid predict a maximal increase of the heat
transport efficiency (quantified by the space averaged Nusselt number) of
roughly 9 times corresponding to Ri = 0.01. As they increase the Richard-
son number, however, the increase in the transport efficiency at Re = 2000
decreases down to roughly 1.5 times corresponding to Ri = 1, see Fig. 15 in
Ref. Iwatsu [2004]. Similar numerical results are found by Kim and Hyun
in Refs. Kim and Hyun [1997b,c] for Pr = 0.7, Re = 2000 and Ri ranging
from 0.01 to 10.

The central conclusion of this part is that the efficiency of the heat
transport by elastic turbulence is comparable in magnitude to that of the
Newtonian counterpart studied by others although during our experiments
both Ri and Pr were larger. In addition to that, based on the data pre-
sented in Fig. 74 the intensity of the heat transport by elastic turbulence
is practically insensitive to these non-dimensional numbers if Wi is suffi-
ciently large. This is a significant difference (and perhaps an advantage)
with respect to the swirling flow of a Newtonian fluid where an increase of
both Pr and Ri translates into a decrease of the transport efficiency. As
the elastic turbulent flow field has a single relevant spatial scale set by the
dimensions of the fluid container FC and there exists no physical equivalent
of the cascade towards smaller scales observed in the inertial turbulence, a
natural question to be answered in the following is how does the intensity
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Figure 75. Dependence of the intensity factor b on the vertical coordinate.
The symbols refer to the Weissenberg number: rhombs (�) - Wi = 0, squares
(�) - Wi = 0.8, triangles (4) - Wi = 7.7, circle (◦) - Wi = 15.4.

of the heat transfer depend on the position z in the flow. To address this
point, we plot in Fig. 75 the local intensity factor b versus the vertical posi-
tion z for various Weissenberg numbers spanning the relevant flow regimes.
In the absence of a flow (Wi = 0) when the heat is transported solely by
thermal conduction, a strong spatial dependence of the intensity factor is
observed (the rhombs in Fig. 75). As expected for a purely conductive
case, the intensity of the heat transport decreases monotonically as one
moves away from the heat sink located at z = 0 cm. A slight increase of the
local intensity factor is observed within the laminar and steady flow regime
(Wi = 0.8), particularly in the proximity of the top driving disk D (the
squares). This slight increase in the intensity of the heat transfer process
may be explained by the presence of the steady Ekman vortex induced by
the array of the thermocouples (Fig. 72). A notable increase of the heat
transport intensity is observed at any measuring position within the tran-
sitional and the fully developed elastic turbulent regimes (the triangles and
the circles). We point out that within these flow regimes the intensity is in-
dependent on the flow coordinate consistently with a full homogenisation of
the temperature field. The largest increase in the local intensity is observed
near the top disk D and accounts for nearly 4 times the intensity measured
in a purely conductive state, Fig. 75.

8.4 Statistical and scaling properties of the temperature fluctu-
ations: passive or active scalar?

In a random flow the scalar temperature field may act either as a passive
scalar when it does not react back on the flow field or, if it does, as an active
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scalar. A classical example where the temperature acts as an active scalar is
that of a fluid heated from below: the density gradient may induce a thermo-
convective instability and thus the temperature reacts back on the flow field.
In the passive case the homogenisation of the temperature field by a random
and spatially smooth flow field in a regime of Elastic Turbulence is similar
to the mixing problem studied in detail in Refs. Burghelea et al. [2004a,c],
Burghelea [2005] and several fundamental features have been highlighted:

1. The probability distributions of the passive scalar fluctuations have
exponential tails and the second order moment of these distributions
decays exponentially in time.

2. The temporal correlations of the passive scalar fluctuations decay over
times of the same order of magnitude with the correlation times of the
flow field and the largest relaxation time of the polymer molecules.

3. The spectra of the passive scalar fluctuations decay algebraically, P ∝
kδ, with δ ≈ −1.

For all the experiments we reported above, the fluid has been cooled from
below. Thus, thermo-convective instabilities are ruled out and, at least at
a first glance, one would be tempted to believe that the temperature field
acts as a passive scalar meaning that the heat transport process is physically
equivalent to the mixing problem. At a more careful inspection this is actu-
ally not granted. As illustrated in Fig. 70, the rheological properties (shear
viscosity and relaxation time) are strongly dependent on the temperature.
Thus, the temperature field is directly coupled to the stress tensor which
may in turn act on the flow field. Thus, whether the temperature acts as a
passive or an active scalar remains to be investigated experimentally which
sets the main scope of this section.

To get a first insight into the statistics of the temperature fluctuations at
various Weissenberg numbers, we extract the fluctuating part of each time
series of the reduced temperature presented in Fig. 73(b) by subtracting
from the original signal its pedestal P obtained via a fifth degree polynomial
fit, θr (t/td) = θ (t/td)− P (t/td).

As by in situ measurements of the apparent viscosity ηa of the polymer
solution during the heat transfer process we have observed that at high Weis-
senberg numbers the mechanical degradation occurs (manifested through a
significant decrease of ηa) at very late stages of the process (t/td > 0.5), the
whole statistical analysis we present below was restricted to time windows
within the logarithmic scaling range, 0.1 < t/td < 0.3 and no conclusions
were drawn from the temperature data acquired beyond this range. In the
absence of a flow (Wi = 0) the pedestal of the signal characterises the
purely conductive heat transport and in a laminar regime (0 < Wi < Wic)
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Figure 76. Time series of the fluctuating part of the reduced temperature
θr obtained from the measurements of the thermocouple T4 (see Fig. 69 )
at various Weissenberg numbers: (a) Wi = 0 (b) Wi = 0.8, (c) Wi = 7.7,
(d) Wi = 15.4.

it describes the summed contributions of the conduction and the laminar
convective transport carried on by the stable vortex illustrated in Fig. 72.
Several time series of the fluctuating part of the reduced temperature θr
obtained according to the procedure described above from the raw data
acquired by the thermocouple T4 positioned at r = Rc/2 (see Fig. 69) at
various Weissenberg numbers increasing from the top to the bottom are
presented in Fig. 76.

In the absence of a flow (Wi = 0) and below the onset of the primary
elastic instability (Wi = 0.8) these fluctuations are of a purely instrumental
nature. Upon an increase of the Weissenberg number within the fully devel-
oped elastic turbulent regime a significant increase of the level of fluctuations
beyond the instrumental level is observed, Fig. 76 (c,d). At Wi = 15.4 the
randomly fluctuating temperature time series also exhibits some intermit-
tency.

The spatial distribution of the root mean squared of the fluctuations of
the reduced temperature within each flow regime is illustrated in Fig. 77.

In the absence of a flow and within the laminar regime, no dependence
of the level of the fluctuations on the vertical coordinate z can be observed
(which was expected, as the six thermocouples are identical, i.e. the instru-
mental error of their measurements is the same). Within the transitional
regime and the fully developed elastic turbulent regime a clear spatial de-
pendence of the temperature fluctuations can be observed (the triangles and
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Figure 77. Space distribution of the rms of the fluctuations of the reduced
temperature, θrmsr measured at various Weissenberg numbers: rhombs (�)
- Wi = 0, squares (�) - Wi = 0.8, triangles (4) - Wi = 7.7, circle (◦) -
Wi = 15.4.

the squares in Fig. 77). Due to the particular topology of the randomly
fluctuating spiral vortex illustrated in Fig. 72 at Wi = 15.4, the fluctuations
are the largest in the vicinity of the bottom plate of the flow container FC
and decrease monotonically as one approaches the level of the top driving
disk D. Near the bottom plate, the temperature fluctuations due to the ad-
vection of the temperature field by the random flow field are about 3.5 times
larger than the instrumental fluctuations observed in the laminar regime.
We point out that in spite of the clear anisotropy of the temperature fluc-
tuations within the fully developed elastic turbulent regime, the intensity
of the heat transport quantified by the parameter b introduced above is
practically independent on the spatial coordinate (the circles in Fig. 75).

The dependence of the level of fluctuations measured in the fully devel-
oped elastic turbulent regime near the bottom plate of the fluid container on
the vertical coordinate indicates the possible existence of a boundary layer
for the heat transfer with its edge roughly located around z = 15 mm, Fig.
75. As the spatial resolution of our measuring technique along the vertical
direction is limited and the construction of the experimental apparatus does
not allow one to move the thermocouples along this direction, a systematic
investigation of this fact similar to that performed for the velocity boundary
layer presented in Ref. Burghelea et al. [2007] or the passive scalar bound-
ary layer presented in Ref. Burghelea et al. [2004a] was not possible and
should to be addressed by future experimental studies.

The probability density functions (pdf’s) of the fluctuations of the re-
duced temperature measured by the thermocouple T4 are presented in Fig.
78(a). In the absence of a flow (the rhombs) and within a laminar flow
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Figure 78. (a) Probability density functions (pdf’s) of the fluctuations of
the reduced temperature, T rmsr , obtained from the measurements of the
thermocouple T4. The full line is a Gaussian fit, the dash-dotted lines are
guides for eye highlighting the exponential tails of the pdf’s. (b) Time
dependence of the second order moment M2 of the distribution of the tem-
perature fluctuations obtained from the measurements of the thermocouple
T4. The full line is an exponential decay fit, M2 ∝ e−t/7523. In both pan-
els, the symbols refer to different Wi: rhombs (�) - Wi = 0, squares (�) -
Wi = 0.8, triangles (4) - Wi = 7.7, circles (◦) - Wi = 15.4.

regime (the squares) the pdf’s can be fitted by a Gaussian function (the full
line).

Upon an increase of the Weissenberg number beyond the onset of the
primary elastic instability (the triangles and the circles) the distributions
become significantly broader and exhibit exponential tails (see the dash-dot
lines).

A certain degree of asymmetry of the pdf’s which may be associated to
the intermittency of the temperature fluctuations visible in Fig. 76(c-d) can
be equally observed.

The decay of the second order moments M2 of the probability density
functions is illustrated in Fig. 78(b). Within the elastic turbulent regime
(the circles) an exponential decay of the second order moment is observed,
M2 ∝ e−t/tmix . Here tmix is a characteristic time scale for the decay of
the temperature fluctuations and is equivalent to the mixing time in the
passive scalar problem. By an exponential fit of the data presented in Fig.
78(b) one obtains tmix ≈ 7523 s which is about 3.4 times smaller than the
characteristic time diffusion time td. This result corroborates with the 3.5
times increase in the efficiency of the heat transfer quantified by the slope

124



Figure 79. Pdf’s of the fluctuations of the reduced temperature measured
at various vertical positions and several Wi: (a) Wi = 0 (b) Wi = 0.8
(c) Wi = 7.7 (d) Wi = 15.4. In each panel the symbols refer to different
thermocouples (see Fig. 69): squares (�) - T1, circles (•) - T2, up triangles
(N) - T3, down triangles (H) - T4, rhombs (♦) - T5, left triangles (J) - T6.
The full lines in panels (a,b) are Gaussian fitting functions.

b and illustrated in Figs. 74, 75.

The pdf’s of the fluctuations of the reduced temperature measured at
each vertical position for various Wi are presented in Fig. 79. In the absence
of a flow and within the laminar regime the pdf’s acquired at each of the
six vertical positions collapse onto a single master curve which can be well
fitted by a Gaussian distribution (panels (a-b)).

Within the transitional regime (Wi = 7.7) a strongly intermittent dis-
tribution is observed particularly in the vicinity of the bottom plate (the
squares and the circles in panel (c)). The degree of intermittency decreases
as one approaches the top disk but does not vanish.

In the fully developed elastic turbulent regime the pdf’s exhibit an in-
termittent behaviour and exponential tails regardless the vertical position,
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Figure 80. 80(a) Temporal autocorrelation functions C of the fluctuations
of the reduced temperature .(b) Spectra of the fluctuations of the reduced
temperature. The data were measured by the thermocouple T4 (see Fig.
69). The symbols in both panels refer to various Weissenberg numbers:
rhombs (♦) - Wi = 0, squares (�) - Wi = 0.8, triangles (N) - Wi = 7.7,
circle (•) - Wi = 15.4. The dash - dot line is a guide for the eye, P ∝ f−1.1.

panel (d).

These results on the statistics of the fluctuations of the reduced tempera-
ture presented above are in a good agreement with the theoretical prediction
for the decay of a passive scalar in a random smooth flow, Chertkov et al.
[1995a], Balkovsky and Fouxon [1999], and with the experiments on the
mixing of a passive scalar in a macroscopic curvilinear channel, Groisman
and Steinberg [2001], and in a micro channel, Burghelea et al. [2004c,a].

The temporal auto-correlation functions of the fluctuations of the re-
duced temperature measured within each relevant flow regime are presented
in Fig. 80(a).

In the absence of a flow and within the laminar regime the fluctuations
of the reduced temperature are solely related to the instrumental noise of
the temperature measurements and, consequently, the signals are short cor-
related (the curves labeled by a rhomb and a square in Fig. 80(a)). Within
the transitional and the fully developed elastic turbulent regimes the re-
duced temperature de-correlates over characteristic times τc comparable to
the relaxation time of the polymer λ. This behaviour is quite similar to the
behaviour of the time autocorrelation functions of the azimuthal velocity
component, see Fig. 24 in Ref. Burghelea et al. [2007] which is probably
due to the coupling between the flow field and the temperature field.
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