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ABSTRACT 

Motivation 

Single-cell RNA-sequencing (scRNAseq) experiments are becoming a standard tool 

for bench-scientists to explore the cellular diversity present in all tissues. On one hand, 

the data produced by scRNASeq is technically complex, with analytical workflows that 

are still very much an active field of bioinformatics research, and on the other hand, a 

wealth of biological background knowledge is often needed to guide the investigation. 

Therefore, there is an increasing need to develop applications geared towards bench-

scientists to help them abstract the technical challenges of the analysis, so that they 

can focus on the Science at play. It is also expected that such applications should 

support closer collaboration between bioinformaticians and bench-scientists by 

providing reproducible science tools. 

Results 

We present SCHNAPPs, a computer program designed to enable bench-scientists to 

autonomously explore and interpret single cell RNA-seq expression data and 

associated annotations. The Shiny-based application allows selecting genes and cells 

of interest, performing quality control, normalization, clustering, and differential 

expression analyses, applying standard workflows from Seurat (Stuart et al., 2019) or 

Scran (Lun et al., 2016) packages, and most of the common visualizations. An R-
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markdown report can be generated that tracks the modifications, and selected 

visualizations facilitating communication and reproducibility between bench-scientist 

and bioinformatician. The modular design of the tool allows to easily integrate new 

visualizations and analyses by bioinformaticians. We still recommend that a data 

analysis specialist oversees the analysis and interpretation. 

Availability 

The SCHNAPPs application, docker file, and documentation are available on GitHub: 

https://c3bi-pasteur-fr.github.io/UTechSCB-SCHNAPPs; Example contribution are 

available at the following GitHub site: https://github.com/ 

baj12/SCHNAPPsContributions. 
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Introduction  

A successful and efficient analysis of data from single cell experiments requires a 

close interaction between bioinformaticians and bench-scientists. While the first feeds 

the data through an analysis pipeline, the second interprets the results. This is a 

challenging collaboration since the bioinformatician usually doesn’t have the biology-

specific knowledge to select the cells and/or genes of interest and the bench-scientist 

may have difficulties handling the technical aspects of the analysis. It is common that 

a pipeline must be rerun multiple times to remove cells or genes from the analysis 

because they belong to cell types or to biological processes that are not relevant to 

the scientific question. For example, mitochondrial and ribosomal gene expression is 

separate from most biological processes and should be excluded during analysis. This 

implies numerous iterations to discuss intermediate results. 

Many tools are being developed to tackle this challenge, some of which are covered 

in a recent review (Çakır et al. 2020). Among the most accomplished are iSEE (Rue-

Albrecht et al. 2018), Cerebro (Hillje R.,et al. 2020), ASAP (Gardeux et al. 2017), iS-

CellR (Patel MV 2018), and singleCellTK (Jenkins D, et al. 2019). 

Here, we present SCHNAPPs (Single Cell sHiNy APPlication(s)), an R/Shiny 

application that has been designed to aid the communication between bench-

scientists and bioinformaticians. Thus, many meetings can be avoided and the time 

for analyzing the data can be significantly reduced. The bench-scientist is enabled to 

characterize individual cells and genes starting from the initial normalization steps of 

raw counts to differential expression analysis. The selection process is captured in a 

report that can be used by a bioinformatician to validate and optimize the results. The 

software architecture of the application makes it easy for bioinformaticians to integrate 

new visualizations and analyses.  

SCHNAPPs, has been successfully applied to validate a human “in a dish” model for 

a valvular disease (Neri T, et al, 2019) and to show that epicardium activation during 
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a cardiomyopathy gives rise to both adipocytes and fibroblasts (Suffee N, et al., 2020). 

It is a standard tool for the analysis of scRNAseq data at our facility. 

Implementation 

Input to the application is either a simple count matrix of comma-separated values 

(CSV), with rows representing features/genes and columns representing cells, or a 

SingleCellExperiment object (Lun A. and Risso D., 2019) with a sparse matrix holding 

the non-normalized counts and annotations for the cells (covariates) and annotation 

data for the features/genes. The singleCellExperiment object must have the following 

gene information for each gene: “symbol”, the gene-symbol; “id”, a potentially different 

unique identifier; “Description”, descriptive information for the gene. Cell specific 

information must include “sampleNames”, a string/factor to distinguish cells from 

different samples; and “barcode”, a unique barcode per sample. In practice, additional 

gene specific annotations like functional annotations from Ensembl (Yates et al. 2020), 

or cell specific annotations like cell type predictions using from SingleR (Aran D. et al., 

2019) are computed by the bioinformatician during data preparation on the command 

line and integrated into the singleCellExperiment object. 

Examples for generating these objects are given on GitHub 

(https://github.com/baj12/SCHNAPPsContributions#prepare-data-for-schnapps). 

Additional annotations for cells or genes can be loaded via CSV files.  This way other 

types of information can be exploited by SCHNAPPs including cell-specific cytometry 

data from MARS-seq (Jaitin et al., 2014), chromatin accessibility data from ATAC-seq 

(Buenrostro et al., 2015), or other single-cell approaches. It is then possible to 

visualize cytometry results from MARS-Seq experiments together with gene 

expression data from sequencing. Different samples are tracked analogously. The 

processed data can be exported as singleCellExperiment objects. This allows creating 

a SingleCellExperiment object from a CSV file that is useable with iSEE or other tools 

based on the SingleCellExperiment object. Multiple SingleCellExperiment files can be 

loaded and analyzed together.  
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Reproducibility is achieved by creation of a compressed directory that holds an R-

markdown file (Allaire JJ et al. 2019) with associated data archiving all major data 

manipulations (removal of data, normalization, clustering) and plots that can be saved 

on request.  Thus, a bioinformatician can reproduce the cell selection, validate the 

analysis steps and optimize the graph for final publication. 

All user modifiable parameters in SCHNAPPs can be set individually before starting 

the application. This is useful when sharing sessions. It is similar to bookmarking with 

the advantage that no data directory holding the server-side settings has to be shared.  

The shiny framework (Chang et al., 2019) is used as the underlying framework with 

the dashboard design (Chang and Borges Ribeiro, 2018) for the graphical user 

interface (GUI).  It can be run from within RStudio (RStudio Team, 2016) or as a stand-

alone web application.   

The function schnappsLite allows publishing precomputed results using the shiny 

sever. Here, the compute intensive components (normalization, clustering …) have 

been removed and the number of cells can also be limited. Thus, publication results 

can be easily made available to the general public. See 

http://hub05.hosting.pasteur.fr/scProjects/ for examples. 

Internally, the SingleCellExperiment object is used to store count matrices and user-

supplied annotation. To take full advantage of the reactive concept with its 

dependency graph (Chang et al., 2019), individual computations (normalizations, 

projections/covariates) are stored in distinct objects. This approach avoids 

recalculating objects that do not depend on parameters that have changed. Due to the 

low coverage and dropouts associated with most single cell sequencing experiments, 

sparse matrices are used to represent raw and normalized read counts, reducing the 

memory footprint. Parallel implementations are used when available, such as for tSNE 

(Donaldson, 2016), UMAP (Melville, 2019), and self-organizing maps (SOM; Wittek et 

al., 2017; can be found in the contributions). Shiny modules allow reuse and 
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standardization of visualizations. Violin plots, 2D plots, and tables are modularized 

and can be used by any other contributed functionality. The 2D plot module, for 

example, allows to select cells, re/define/name groups of cells, log transform data, or 

to normalize it by e.g. gene count per cell, just for the given plot. Selected cell names 

can optionally be shown and thus copied and pasted. This provides the ability to refine 

the analysis by e.g. sub-clustering a set of cells within a given cluster and represents 

an important tool for the bench-scientist who is looking to identify the phenotype and 

potential fate of cells. 

Contributions allow adding analyses or visualization tools; the end-user provides the 

directory where the contributions are located on the file system during startup of the 

application. The application then looks for specific file names that contain sources for 

the GUI elements and reactive objects.  Contributions for trajectory inference 

(SCORPIUS (Cannoodt R. et al., 2016), ElPiGraph.R (Albergante, 2019)), for 

imputation (DCA (Eraslan G et al., 2019), and SOMs are already available at 

github.com/baj12/SCHNAPPsContributions. A dummy contribution is available that 

holds example code for key features (adding projections, normalizations/imputations, 

visualizations, and reports), which allows developers an easy entry point. New 

normalization and imputation methods can be integrated as well as differential 

expression methods. This concept allows reducing the functionality to only those tools 

that are useful for a given biological question and thus reduce the complexity of the 

application. 

A key concept within SCHNAPPs is that all single attributes of a cell (other than the 

count for a given gene) are treated equally. That means that we don’t distinguish 

between cluster assignment and projections as both are numerical (or factorial) 

vectors and we call them all projections (they allow plotting the high dimensional data 

into lower (2/3) dimensions). Cell-type assignments are added as new projections as 

well as time assignments coming from a trajectory inference. 
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A computer with substantial memory and CPUs is recommended for the use of 

SCHNAPPs (e.g. 64GB RAM allows working with ~40,000 cells and ~15,000 genes), 

though the supplied example data (200 cells, 800 genes) should be loadable on any 

modern computer.  

Example use case and discussion  

 

A typical workflow on how to use the application is described in the following, 

showing a non-exhaustive list of key features. An in-depth walkthrough and 

comparison to a scran workflow (https://bioconductor.org/packages/release/ 

bioc/vignettes/scran/inst/doc/scran.html) is given in the supplements. 

1. Prepare input data by creating a SingleCellExperiment object in R with all available 

metadata and save this in an “RData” file. This step is best performed by a trained 

bioinformatician who can prefilter and precompute different properties of the data set. 

The supplementary also gives an example on how to setup the data.  

2. Lanuch SCHNAPPs and load the input data.  

3. Check the quality of the data by looking at the unique molecular identifiers (UMIs) 

(General QC - UMI histogram, figure 1A), the distribution of samples (General QC - 

Sample histogram, figure1,B), and the distribution of highly expressed genes (General 

QC - Scater QC, figure1 C).  
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Figure 1. Selection of quality control figures. Data shown is from the workflow that follows 
the scran data analysis vignette (Supplementary document) with data from (Grun D. et al., 
2016). A: histogram of UMIs per cell and sample (indicated by color). The number of bins 
can be chosen by the user, zooming is available to identify a threshold for min/max 
expression per cell. B: histogram of cells per sample. C: distribution of reads per cell for 
highly expressing genes (y-axis). Individual dashes represent the abundance of a given 
gene for an individual cell colored by sample. X-axis shows the number of UMIs. 

 

4. Using the 2D plot under “Co-expression - selected” identify cells that should be 

removed (figure 2, A). Copy the cell names that are shown after checking “show more 

options” followed by checking “show cell names” (figure 2, B). 
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Figure 2. Selecting cells in 2D plot. The precalculated ”altexps_ERCC_percent” (X-axis) is 
used to select cells that should be removed. A: Manual selection of cells. B: Show cell names 
to copy and paste in the appropriate field to remove cells. See supplementary document 1 for 
more details. 

5. Paste this selection under “Cell selection - Cells to be removed”, alternatively select 

cells that are pertinent for the question at hand (Cell selection - cells to keep (remove 

others)) then click “apply changes” in Cell selection to update the underlying data. This 

will trigger recalculating all projections and renormalizing of the data. It is also possible 

to apply thresholds for minimal/maximal number of UMIs, require that certain genes 
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are either expressed or not. Genes can be removed using regular expressions for the 

gene symbol or minimal number UMIs over all cells. 

Eight different normalization methods are implemented. Parameters for principle 

component analysis (PCA) can be changed, including the number of variable genes 

to be used and how to calculate these highly variable genes, among others. Different 

cluster methods are available based on the standard workflows from Seurat 

(https://satijalab.org/seurat/vignettes.html) and scran .  

 6. Verify that the number of cells is correct by looking at the summary statistics on the 

sidebar. These summary statistics list the number of cells before and after 

normalization (certain normalization methods remove genes), the file names being 

used, and the median number of UMIs and genes. 

7. Repeat 4-6 until satisfied with the cell selection.  

8. Identify genes of interest by performing a comparative analysis between two groups 

of cells (Subcluster analysis - DGE analysis).  

 

Figure 3. Differential gene expression analysis. A: Selection of cells that should be compared. 
It is possible to pre-filter cells. Here, only cells from clusters 4 and 6 are shown. The t-test is 
selected as method to use. B: resulting Volcano plot. The selected genes are named above 
the plot and copied from there. C: table with differentially expressed genes and key analysis 
and descriptive values. 

9. Investigate how different genes are co-expressed using any of the following: Co-

expression - All cluster shows in a heat-map clusters/samples of a given set of genes, 

or the genes that distinguish between clusters (findMarkers from the scran package) 
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if the gene list is empty; Co-expression - Violin plot, which visualizes the number of 

cells expressing a set of genes or any combination of them (Figure 4 A); Co-expression 

- SOM cluster, which calculates a SOM and shows genes that co-cluster with a gene 

of interest; Data Exploration - Panel plot, which shows 2D projections for a given set 

of genes.  

 

Figure 4. Two examples of plots that can be generated using SCHNAPPs. A: Violin plot 
showing the co-expression of three genes for each sample. B: Alluvial plot between cluster 
association and samples.  

 

10. Select cells based on criteria like the expression of a given gene (Co-expression - 

selected - more options - group name) and name the selection (this creates a new 

projection that can be used elsewhere).  

11. Export data as RData file with all parameters used. This can also be used in the 

SCHNAPPs-lite version enabling faster access to the data with less compute 

resources.  

12. Download the history of associated data and HTML report as a compressed 

directory as described earlier. Transmit this to a bioinformatician for validation and 

optimization.  

13. It is also possible to bookmark a given state of the application, and thus come back 

to a given state of the analysis. 
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Colors used for samples and clusters can be changed. Projections can be combined, 

renamed, and factors can be releveled. This allows creating and annotating groups of 

cells and comparing different analysis strategies. Basic analyses of cell populations 

can be performed using histograms, violin plots, or heatmaps. Nine different methods 

for differential gene expression analysis are implemented.   

This gives just a small glimpse of the possibilities. The 2D plot alone, with its potential 

to show any combination of projections, meta-data, and groupings, allows for many 

quality control and cell selection opportunities. To better guide the user there are 

several vignettes, FAQs and other information on GitHub (https://c3bi-pasteur-

fr.github.io/UTechSCB-SCHNAPPs/articles/pkdown/SCHNAPPs_usage.html #co-

expression).   

SCHNAPPs is an established (Neri T, et al, 2019; Suffee N, et al., 2020) analysis and 

visualization tools for a) bench-scientists to autonomously explore and communicate 

his data and b) bioinformaticians to validate and continue this work and easily integrate 

new functionality. 
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