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In this article, we are interested in some subspaces of the exterior algebra of a simple Lie algebra g. In particular, we prove that some graded subspaces of degree d generate the g-module d (g) for some integers d.

Introduction

In this note, the base field k is algebraically closed of characteristic 0, g is a simple Lie algebra of finite dimension, ℓ is its rank, and G is its adjoint group.

1.1. Main results. Let b be a Borel subalgebra of g, h a Cartan subalgebra of g, contained in b and u the nilpotent radical of b. Set b g := dim b and n := b gℓ. For k a nonnegative integer, let k (g) be the component of degree k of the exterior algebra (g) of g. The adjoint action of G in g induces an action of G in (g). For all k, k (g) is invariant under this action.

For p parabolic subalgebra of g, containing b, denote by p u the nilpotent radical of p, l the reductive factor of p, containing h, z the center of l and p -,u the complement to p in g, invariant under the adjoint action of h. Let d be the derived algebra of l and d 1 , . . . , d n its simple factors. Set:

E p := p -,u ⊕ z ⊕ p u , n i := dim d i ∩ u,

I k := {( j 1 , . . . , j n ) ∈ N n | j 1 ≤ n 1 , . . . , j n ≤ n n , j 1 + • • • + j n = k}
for k positive integer. Denote by V ′ k,p and V k,p the subspaces of k (g),

V ′ k,p := ( j 1 ,..., j n )∈I k j 1 (d 1 ) ∧ • • • ∧ j n (d n ) and V k,p := k i=0 i (E p ) ∧ V ′ k-i,p .
The goal of this note is the following theorem:

Theorem 1.1. Let k = 1, . . . , n. Then k (g) is the G-submodule of k (g) generated by V k,p .

This result arises from the study of the commuting variety of g (see [START_REF] Charbonnel | Projective dimension and the Commuting variety of a reductive Lie algebra[END_REF]). One of the main step of the proof is to consider the orthogonal complements to some subspaces of k (g) in k (g) with respect to the canonical extension of the Killing form of g to k (g).

1.2. Notations. • Let k * := k \ {0}. For E a finite set, its cardinality is denoted by |E|. For k, m positive integers, set:

N m k := {( j 1 , . . . , j m ) ∈ N m | j 1 + • • • + j m = k}. As usual, for i = (i 1 , . . . , i m ) in N m , |i| := i 1 + • • • + i m .
• For V vector space, denote by (V) the exterior algebra of V. This algebra has a natural gradation. For i integer, denote by i (V) the space of degree i of (V). In particular, for i negative, i (V) is equal to {0}. As g is a G-module for the adjoint action, so is i (g) for all i.

Lemma 1.2. Let A be a subgroup of G, k a positive integer, i a positive integer smaller than k, V a subspace of i (g) and W the A-submodule of i (g) generated by V. Then, for all A-submodule W ′ of k-i (g), W ∧ W ′ is the A-submodule of k (g) generated by V ∧ W ′ .

Proof. Let W ′′ be the A-submodule of k (g) generated by V ∧ W ′ . Let ω and ω ′ be in W and W ′ respectively. For some ω 1 , . . . , ω m in V and g 1 , . . . , g m in A,

ω = g 1 .ω 1 + • • • + g m .ω m , whence ω ∧ ω ′ = g 1 .(ω 1 ∧ g -1 1 .ω ′ ) + • • • + g m .(ω m ∧ g -1 m .ω ′ ) and W ′′ = W ∧ W ′ .
• The Killing form of g is denoted by ., . . For k positive integer, the Killing form of g has a natural extension to k (g) and this extension is not degenerate.

• For a a semisimple Lie algebra, denote by b a the dimension of its Borel subalgebras and ℓ a its rank.

• Let R be the root system of h in g, R + the positive root system of R defined by b and Π the basis of R + . For α in R, H α is the coroot of α, the corresponding root subspace is denoted by g α and a generator x α of g α is chosen so that x α , x -α = 1.

• We consider on Π its structure of Dynkin diagram. As g is simple, Π is connected and has three extremities when Π has type D ℓ , E 6 , E 7 , E 8 , one extremity when Π has type A 1 and 2 otherwise. The elements β 1 , . . . , β ℓ of Π are ordered as in [Bou02, Ch. VI].

• Let X be a subset of Π. We denote by R X the root subsystem of R generated by X and we set

< X >:= R + ∩ R X so that R X =< X > ∪-< X > .
Let p X be the parabolic subalgebra of g,

p X := b ⊕ α∈<X> g -α ,
p X,u its nilpotent radical, l X the reductive factor of p X containing h, z X the center of l X , d X the derived algebra of l X , p X,-,u the complement to p X in g, invariant under ad h and E X the sum of z X , p X,u , p X,-,u . When X is empty, p X is the Borel subalgebra b.

• Let X be a nonempty subset of Π and X 1 , . . . , X n X its connected components. For i = 1, . . . , n X , denote by n i the cardinality of < X i > and d i the subalgebra of g generated by g ±β , β ∈ X i . Then d 1 , . . . , d n X are the simple factors of d X . For k positive integer, set:

V k,p X := n 1 j 1 =0 • • • n n X j n X =0 j 1 (d 1 ) ∧ • • • ∧ j n X (d n X ) ∧ k-j 1 -•••-j n X (E X )
and denote by V k,X the G-submodule of k (g) generated by V k,p X .

Orthogonal complement

Let ℓ ≥ 2 and X a nonempty subset of Π. Set:

p := p X , p u := p X,u , l := l X , p -,u := p X,-,u , p ±,u := p u ⊕ p -,u , p -:= l ⊕ p -,u , d := dim p u .
2.1. General fact. Let A be a subgroup of G. For k positive integer and W subspace of k (g), denote by W ⊥ the orthogonal complement to W in k (g). As the bilinear form on k (g), defined by the Killing form, is not degenerate,

dim W + dim W ⊥ = dim k (g).
Lemma 2.1. Let k be a positive integer smaller than dim g. Let V be a subspace of k (g). Denote by W the A-submodule of k (g) generated by V.

Then W ⊥ is the biggest A-submodule of k (g), contained in V ⊥ . Proof. Denote by W # the biggest A-submodule contained in V ⊥ . As W is a A-module, so is W ⊥ . Then W ⊥ is contained in W # . Moreover, V is contained in the orthogonal complement to W # in k (g). Hence W is orthogonal to W # since the orthogonal complement to W # is a A-module. As a result, W # = W ⊥ .
2.2. Orthogonality. Let V be a finite dimensional vector space with a non degenerate symmetric bilinear form on V. For k positive integer, it induces a non degenerate symmetric bilinear form on k (V). Let V 1 , . . . , V m be pairwise orhogonal subspaces of V such that V is the direct sum of these subspaces. For i = (i 1 , . . . , i m ) in N m k , set:

C i,V := i 1 (V 1 ) ∧ • • • ∧ i m (V m ). If V m is the direct sum of two isotropic subspaces V m,+ and V m,-, for i = (i 1 , . . . , i m+1 ) in N m+1 k , set: i * := (i 1 , . . . , i m-1 , i m+1 , i m ) and C ′ i,V := i 1 (V 1 ) ∧ • • • ∧ i m-1 (V m-1 ) ∧ i m (V m,+ ) ∧ i m+1 (V m,-). Lemma 2.2. Let k be a positive integer. (i) For i, i ′ in N m k , if i i ′ then C i,V is orthogonal to C i ′ ,V . (ii) Suppose that V m is the direct sum of two isotropic subspaces V m,+ and V m,-. For i, i ′ in N m+1 k , if i ′ i * then C ′ i,V is orthogonal to C ′ i ′ ,V .
Proof. Denote by ., . the symmetric bilinear form on V and k (V). As V 1 , . . . , V m are pairwise orthogonal and V is the direct sum of these subspaces, for i = 1, . . . , m, the restriction to V i × V i of ., . is non degenerate. For j = 1, . . . , m, let n j be the dimension of the sum

V 1 ⊕ • • • ⊕ V j
and v 1 , . . . , v n m an orthonormal basis of V such that {v 1 , . . . , v n j } is contained in the union of V 1 , . . . , V j for j = 1, . . . , m.

(i) Let i and i ′ be in N m k such that i i ′ . If k > n m , there is nothing to prove. Suppose k ≤ n m . For j = j 1 , . . . , j k in {1, . . . , n m } such that 1 ≤ j 1 < • • • < j k ≤ n m , set:

w j := v j 1 ∧ • • • ∧ v j k .
Setting n 0 := 0, w j is in C i,V if and only if |{l ∈ {1, . . . , k} | n s-1 + 1 ≤ j l ≤ n s }| = i s for s = 1, . . . , m. Denote by I i the set of j satisfying this condition so that w j , j ∈ I i is a basis of C i,V .

Let ( j, j ′ ) be in

I i × I i ′ . By definition, w j , w j ′ = det ( v j l , v j ′ l ′ , 1 ≤ l, l ′ ≤ k). As the basis v 1 , . . . , v n m ′ is orthonormal, v j l , v j ′ l ′ = δ j l , j ′ l ′
with δ s,s ′ the Kronecker symbol. As a result, if all the lines of the above matix are all different from 0 then

|{l ∈ {1, . . . , k} | n s-1 + 1 ≤ j l ≤ n s }| = |{l ∈ {1, . . . , k} | n s-1 + 1 ≤ j ′ l ≤ n s }| for s = 1, . . . , m since V 1 , .
. . , V m are pairwise orthogonal. Then w j , w j ′ = 0 since i i ′ , whence the assertion.

(ii) Let i and i ′ be in N m+1 k such that i ′ i * . By (i), we can suppose that i s = i ′ s for s = 1, . . . , m -1. Since V m,+ and V m,-are isotropic, they have the same dimension m 0 and V m has a basis u 1 , . . . , u 2m 0 such that

{u 1 , . . . , u m 0 } ⊂ V m,+ , {u m 0 +1 , . . . , u 2m 0 } ⊂ V m,-, u s , u s ′ +m 0 = δ s,s ′ for 1 ≤ s, s ′ ≤ m 0 . Let v ′ 1 , . . . , v ′ n m be the basis of V such that v ′ l = v l for l = 1, . . . , n m-1 and v ′ l ′ = u l ′ -n m-1 for l ′ = n m-1 + 1, . . . , n m . For j = j 1 , . . . , j k in {1, . . . , n m } such that 1 ≤ j 1 < • • • < j k ≤ n m , set: w ′ j = v ′ j 1 ∧ • • • ∧ v ′ j k . Then w ′ j is in C ′ i,V if and only if |{l ∈ {1, . . . , k} | n m-1 +1 ≤ j l ≤ n m-1 +m 0 }| = i m , |{l ∈ {1, . . . , k} | n m-1 +m 0 +1 ≤ j l ≤ n m }| = i m+1 , |{l ∈ {1, . . . , k} | n s-1 + 1 ≤ j l ≤ n s }| = i s for s = 1, . . . , m -1. Denote by I i the set of j satisfying this condition so that w ′ j , j ∈ I i is a basis of C ′ i,V . Let ( j, j ′ ) be in I i × I i ′ . By definition, w ′ j , w ′ j ′ = det ( v ′ j l , v ′ j ′ l ′ , 1 ≤ l, l ′ ≤ k). Then j l ≤ n m-1 =⇒ v ′ j l , v ′ j ′ l ′ = δ j j , j ′ l ′ , j l > n m-1 and j ′ l ′ > n m-1 =⇒ v ′ j l , v ′ j ′ l ′ = δ | j j -j ′ l ′ |,m 0 .
As a result, if all the lines of the above matix are all different from 0 then

|{l ∈ {1, . . . , k} | n m-1 + 1 ≤ j l ≤ n m-1 + m 0 }| = |{l ∈ {1, . . . , k} | n m-1 + m 0 + 1 ≤ j ′ l ≤ n m }| since i s = i ′ s for s ≤ m -1 and V 1 , .
. . , V m are pairwise orthogonal. Then w j , w j ′ = 0 since i ′ i * , whence the assertion.

For i = (i 1 , i 2 , i 3 ) in N 3 , set:

C i := i 1 (l) ∧ i 2 (p u ) ∧ i 3 (p -,u ) and denote by i * the element (i 1 , i 3 , i 2 ) of N 3 . Corollary 2.3. Let k be a positive integer. (i) For i, i ′ in N 3 k , C i is orthogonal to C i ′ if i * i ′ . (ii) For i in N 3 k , the orthogonal complement to C i in k (g) is equal to i ′ ∈N 3 k \{i * } C i ′ .
Proof. (i) Let i and i ′ be in N 3 k such that i * i ′ . By Lemma 2.1(ii), C i is orthogonal to C i ′ since l and p ±,u are orthogonal and p u and p -,u are isotropic.

(ii

) Since k (g) is the direct sum of C i ′ , i ′ ∈ N 3 k , the orthogonal complement to C i in k (g) is the direct sum of C i ′ , i ′ ∈ N n+3 k \ {i * } by (i). Corollary 2.4. Let k = 1, . . . , d. (i) The orthogonal complement to k (p -,u ) in k (g) is equal to p -∧ k-1 (g). (ii) The orthogonal complement to k (p ±,u ) in k (g) is equal to l ∧ k-1 (g).
Proof. (i) Let I 1 be the subset of

N 3 k , I 1 := {(i 1 , i 2 , i 3 ) ∈ N 3 k | i 1 = i 2 = 0}. The complement to I * 1 in N 3 k is equal to {(i 1 , i 2 , i 3 ) ∈ N 3 k | i 1 > 0 or i 3 > 0}, whence the assertion by Corollary 2.3 since k (p -,u ) = i∈I 1 C i . (ii) Let I 2 be the subset of N 3 k , I 2 := {(i 1 , i 2 , i 3 ) ∈ N 3 k | i 1 = 0}. The complement to I * 2 in N 3 k is equal to {(i 1 , i 2 , i 3 ) ∈ N 3 k | i 1 > 0}, whence the assertion by Corollary 2.3 since k (p ±,u ) is the sum of C i , i ∈ I 2 .

Action of the unipotent radical of a parabolic subgroup

Let ℓ ≥ 2 and X a subset of Π. Set:

p := p X , p u := p X,u , l := l X , p -,u := p X,-,u , p ±,u := p u ⊕ p -,u , p -:= l ⊕ p -,u , d := dim p u .
Denote by L and H the connected closed subgroups of G whose Lie algebras are l and h respectively. Let P and P -be the normalizers of p and p -in G and P u and P -,u their unipotent radicals.

Invariant subspaces. Let

k = 1, . . . , d, W k the biggest P u -submodule of k (g) contained in p -∧ k-1 (g) and V k,u the P u -submodule of k (g) generated by k (p -,u ). Lemma 3.1. Let W k,0 be the subspace of elements of p -∧ k-1 (g) invariant under u. (i) The subspace W k of k (g) is invariant under u. (ii) The subspace W k,0 of k (g) is contained in W k and generated by highest weight vectors. (iii) The subspace U(u -).W k,0 of k (g) is the biggest G-submodule of k (g) contained in p -∧ k-1 (g). Proof. (i) Denote by W ′ k the L-submodule of k (g) generated by W k . As p -∧ k-1 (g) is invariant under L, W ′ k is contained in p -∧ k-1 (g). For x in p u and g in L, x.g.W k = g.Adg -1 (x).W k ⊂ W ′ k , since p u is invaraint under the adjoint action of L in g. Then W ′ k is invariant under P u , whence W k = W ′ k . As a result, W k is a u-submodule of k (g) since u is contained in p. (ii) For ω in W k,0 , the subspace of k (g) generated by ω is a P u -submodule contained in p -∧ k-1 (g). Hence W k,0 is contained in W k . Moreover, for x in u and g in H, x.g.ω = g.Adg -1 (x).ω = 0. Hence W k,0 is invariant under H. As a result, W k,0 is generated by highest weight vectors. (iii) By (ii), U(u -).W k,0 is the G-submodule of k (g) generated by W k,0 . As u -is contained in p -, p -∧ k-1 (g) is a U(u -)-submodule of k (g) so that U(u -).W k,0 is contained in p -∧ k-1 (g). Since a G-submodule of k (g) is generated by highest weight vectors, U(u -).W k,0 is the biggest G-submodule of k (g) contained in p -∧ k-1 (g). Corollary 3.2. (i) The subspace W k of k (g) is the biggest G-submodule contained in p -∧ k-1 (g). (ii) The subspace V k,u of k (g) is a G-submodule of k (g). Proof. (i) Denote by W k the biggest G-submodule of k (g) contained in p -∧ k-1 (g). Then W k is contained in W k . Let W k,1 be a complement to W k in k (g), invariant under G. Then W k is the direct sum of W k and W k ∩ W k,1 . By Lemma 3.1(i), W k ∩ W k,1 is invariant under u. Then, by Lie's Theorem, W k,0 ∩ W k,1 {0} if W k ∩ W k,1 {0}. Hence W k = W k since W k,0 is contained in W k by Lemma 3.1(iii).
(ii) By Corollary 2.4(i) and Lemma 2.1, W k is the orthogonal complement to V k,u in k (g). Hence V k,u is a G-module by (i).

3.2.

A particular case. In this subsection, for some β in Π, X := Π \ {β}. Denote by h β the orthogonal complement to H β in h. Let Z be the subset of elements α of < X > such that β + α is a root. Set:

Y := R + \ (< X > ∪{β}), Z ′ :=< X > \Z, E := α∈Y g α , E -:= α∈Y g -α , u 0 := α∈Z g α , u 0,+ := α∈Z ′ g α , u 0,0 := α∈Z g -α , u 0,-:= α∈Z ′ g -α . Then g := E -⊕ g -β ⊕ u 0,-⊕ u 0,0 ⊕ kH β ⊕ h β ⊕ u 0 ⊕ u 0,+ ⊕ g β ⊕ E. For i = (i 1 , . . . , i 10 ), set: C i := i 1 (E -) ∧ i 2 (g -β ) ∧ i 3 (u 0,-) ∧ i 4 (u 0,0 ) ∧ i 5 (kH β )∧ i 6 (h β ) ∧ i 7 (u 0 ) ∧ i 8 (u 0,+ ) ∧ i 9 (g β ) ∧ i 10 (E). For k positive integer, k (g) is the direct sum of C i , i ∈ N 10 k .
For α in Z, denote by ω ′ α and ω α the elements of 2 (g),

ω ′ α := H β ∧ [x β , x α ] + 2x β ∧ x α , ω α := H β ∧ [x -β , x -α ] + c α x -β ∧ x -α , with c α := - 1 2 H β , H β [x β , x α ], [x -β , x -α ] so that ω α is orthogonal to ω ′ α . Lemma 3.3. Let k = 1, . . . , d. Denote by I the subset of elements i of N 10 k such that i 1 + • • • + i 8 ≥ 2, M ′ the subspace of elements µ α , α ∈ Z of k-1 (E) Z such that α∈Z [x β , x α ] ∧ µ α = 0
and M the image of M ′ by the map

k-1 (E) Z / / k (g) , (µ α , α ∈ Z) -→ α∈Z x α ∧ µ α . The space W k is contained in the subspace of k (g) generated by M, ω ′ α ∧ k-2 (E), α ∈ Z, C i , i ∈ I. Proof. By Corollary 2.4(i) and Corollary 3.2, W k is the biggest G-module contained in p -∧ k-1 (g). Denoting by I ′ the subset of elements i of N 10 k such that i 1 + • • • + i 8 > 0, p -∧ k-1 (g) is the sum of C i , i ∈ I ′ . Then for i in I and x in g, x.C i is contained in p -∧ k-1 (g). The complement to I in I ′ is equal to the subset of elements i of I ′ such that i 9 + i 10 = k -1. For i in I ′ \ I such that i 5 = i 7 = 0, x β .C i is contained in p -∧ k-1 (g) since [x β , E -] ⊂ p -, [x β , g -β ] ⊂ p -, [x β , u 0,-+ u 0,0 + h β + u 0,+ ] = {0}. For i in I ′ \ I, i 7 = 1 and i 9 = 0 =⇒ x β .C i ⊂ C i ⊕ k (E), i 7 = 1 and i 9 = 1 =⇒ x β .C i ⊂ C i ⊕ g β ∧ k-1 (E), i 5 = 1 and i 9 = 0 =⇒ x β .C i ⊂ C i ⊕ g β ∧ k-1 (E), i 5 = 1 and i 9 = 1 =⇒ x β .C i ⊂ C i .
As a result, for ω and

µ α , α ∈ Z in k-1 (E) and µ ′ α , α ∈ Z in k-2 (E) such that ω ′ + H β ∧ ω + α∈Z x α ∧ µ α + α∈Z x β ∧ x α ∧ µ ′ α ∈ W k for some ω ′ in the sum of C i , i ∈ I, -2ω + α∈Z [x β , x α ] ∧ µ ′ α = 0 and α∈Z [x β , x α ] ∧ µ α = 0 since x β .W k is contained in p -∧ k-1 (g)
, whence the lemma.

For i = (i 1 , . . . , i 10 ) in N 10 , denote by i * the element of N 10 , i * := (i 10 , i 9 , i 8 , i 7 , i 5 , i 6 , i 4 , i 3 , i 2 , i 1 ).

By Lemma 2.2(ii), for k positive integer and i, i

′ in N 10 k , C i is orthogonal to C i ′ if and only if i ′ i * . Corollary 3.4. Let k = 1, . . . , d and α in Z. (i) The space ω α ∧ k-2 (E -) is contained in V k,u . (ii) The space g α ∧ k-1 (E -) is contained in V k,u . (iii) The spaces H α ∧ k-2 (E -) and g -α ∧ k-1 (E -) are contained in V k,u . (iv) The space h β ∧ k-1 (E -) is contained in V k,u .
Proof. (i) Let I 1 be the subset of elements i of N 10 k such that (i 1 = k -1 and i 5 = 1) or

(i 1 = k -2, i 2 = 1, i 4 = 1). Then ω α ∧ k-2 (E -) is contained in the sum of C i , i ∈ I 1 . Hence ω α ∧ k-2 (E -) is orthogonal to C i
for all i in I and for i such that i 7 = 1 and

i 10 = k -1. By Corollary 2.3(i), for all γ in Z, ω α ∧ k-2 (E -) is orthogonal to ω ′ γ ∧ k-2 (E)
since ω α and ω ′ γ are orthogonal, whence the assertion by Lemma 3.3 since V k,u is the orthogonal complement to W k in k (g) by Lemma 2.1.

(ii) The space

g α ∧ k-1 (E -) is contained in C i with i in N 10 k such that i 7 = 1 and i 1 = k -1. Hence g α ∧ k-1 (E -) is orthogonal to C j for all j in I. Moreover, it is orthogonal to C j for j in N 10
k such that j 7 = 1 and j 10 = k-1 and C j ′ for j ′ in I 1 . As a result, g α ∧ k-1 (E -) is orthogonal to W k by Lemma 3.3, whence the assertion since V k,u is the orthogonal complement to W k in k (g) by Lemma 2.1.

(iii) By (ii) and Corollary 3.2(ii), for ω in k-1 (E -),

V k,u ∋ x -α .(x α ∧ ω) = -H α ∧ ω + x α ∧ x -α .ω and x -α .(H α ∧ ω) = 2x -α ∧ ω + H α ∧ x -α .ω. As E -is invariant under the adjoint action of x -α , x α ∧ x -α .ω is in V k,u
by (ii), whence the assertion.

(iv) The space

h β ∧ k-1 (E -) is equal to C i for i such that i 1 = k -1 and i 6 = 1. Then C i is orthogonal to C j for j in I. Moreover, it is orthogonal to g α ∧ k-1 (E) for all α in Z and H β ∧ k-1 (p u ) since h β is orthogonal to H β and u. As a result, h β ∧ k-1 (E -) is orthogonal to W k by Lemma 3.3, whence the assertion since V k,u is the orthogonal complement to W k in k (g) by Lemma 2.1.
Denote by d the derived algebra of l.

Proposition 3.5. Let k = 1, . . . , d, i = 0, . . . , k -1.

(i) Let M be a P u -submodule of i (g). Then the P u -submodule of k (g)

generated by k-i (p -,u )∧ M contains k-i-1 (p -,u ) ∧ d ∧ M.
(ii) Let N be a P -,u -submodule of i (g). Then the P -,u -submodule of k (g) generated by

k-i (p u ) ∧ N contains k-i-1 (p u ) ∧ d ∧ N. Proof. (i) By Lemma 1.2, it is sufficient to prove that V k-i,u contains k-i-1 (p -,u ) ∧ d since M is a P u -module. For α in Z, H α ∈ β(H α ) 2 H β + h β .
So, by Corollary 3.4,(iii) and (iv),

H β ∧ k-i-1 (E -) is contained in V k-i,u . Then, by Corol- lary 3.4(i), V k-i,u ⊃ g -β ∧ g -α ∧ k-i-2 (E -).
As a result, by Corollary 3.4(iii), for all α in Z,

g -α ∧ k-i-1 (p -,u ) is contained in V k-i,u . As g is simple, the l-submodule of g, generated by g α , α ∈ Z is equal to d. By Corollary 3.2(ii), V k-i,u is a l-module. Then, by Lemma 1.2, V k-i,u contains k-i-1 (p -,u ) ∧ d since k-i-1 (p -,u
) is a l-module, whence the assertion.

(ii) For some automorphism g of g, g(p u ) = p -,u , g(p -,u ) = p u , g(h) = h. Then l and d are invariant under g. A a result, by (i), the P -,u -submodule of k (g) generated by

k-i (p u ) ∧ N contains k-i-1 (p u ) ∧ d ∧ N since g(N) is a P u -submodule of i (g).

Proof of Theorem 1.1

Let ℓ ≥ 2 and X a nonempty subset of Π, different from Π. Set:

p := p X , p u := p X,u , l := l X , z := z X , d := d X , n := n X , p -,u := p X,-,u , p ±,u := p u ⊕ p -,u , E := E X , p -:= l ⊕ p -,u , d := dim p u .
Recall that d 1 , . . . , d n are the simple factors of d and for i = 1, . . . , n, n i is the number of positive roots α such that g α is contained in d i . Let P u and P -,u be as in Section 3. For k = 1, . . . , n, set V k,p := V k,p X and V k,X := V k .

A partial result. Let n ′ be the sum n

1 + • • • + n n . For k = 1, . . . , n, denote by V ′ k the subspace of k (g), V ′ k := n ′ j=0 j (d) ∧ k-j (E). Proposition 4.1. Suppose |X| = ℓ -1. Let k = 1, . . . , n. Then k (g) is the G-submodule of k (g) generated by V ′ k . Proof. For k = 1, . . . , d, denote by E k the G-submodule of k (g) generated by k (E). For k = 1, . . . , n ′ , V ′ k = k (g) and for k > n ′ , V ′ k = n ′ (g) ∧ k-n ′ (E). So, by Lemma 1.2, it is sufficient to prove that E k = k (g) for k = 1, . . . , d since n = n ′ + d.
Prove the assertion by induction on k. For k = 1 the assertion is true since g is simple. Suppose k > 1 and the assertion true for k -1. As |X| = ℓ -1, z has dimension 1 and

k (E) = k (p ±,u ) ⊕ z ∧ k-1 (p ±,u ) = k j=0 k-j (p -,u ) ∧ j (p u ) ⊕ k-1 j=0 k-1-j (p -,u ) ∧ z ∧ j (p u ).
For j = 0, . . . , d, j (p u ) and j+1 (p u ) + z ∧ j (p u ) are P u -submodules of j (g) and j+1 (g) respectively. Then, by Proposition 3.5(i),

E k contains k-j-1 (p -,u ) ∧ d ∧ j (p u ) and k-j ′ -2 (p -,u ) ∧ z ∧ d ∧ j ′ (p u )
for j = 0, . . . , k -1 and

j ′ = 0, . . . , k -2. Hence E k contains k-j-1 (p -,u ) ∧ g ∧ j (p u ) and k-j ′ -2 (p -,u ) ∧ z ∧ g ∧ j ′ (p u )
for j = 0, . . . , k -1 and

j ′ = 0, . . . , k -2 since k (E) contains k-j (p -,u ) ∧ j (p u ), k-j-1 (p -,u ) ∧ j+1 (p u ), k-j-1 (p -,u ) ∧ z ∧ j (p u ), k-j ′ -2 (p -,u ) ∧ z ∧ j ′ +1 (p u )
for j = 0, . . . , k -1 and j ′ = 0, . . . , k -2. As a result, E k contains g ∧ k-1 (E). Then, by Lemma 1.2 and the induction hypothesis, E k = k (g), whence the proposition.

Remark 4.2. When X is connected, V k,p = V ′ k,p .
Then, in this case under the assumption |X| = ℓ -1, V k = k (g) by Proposition 4.1.

4.2.

A first particular case. In this subsection, |X| = ℓ -1 so that n ∈ {1, 2, 3}. As a matter of fact, n = 3 only for type D and E. As in Subsection 4.1, n ′ = n 1 + • • • + n n . For i = (i 1 , . . . , i n ) and k = 0, . . . , n, set:

D i := i 1 (d 1 ) ∧ • • • ∧ i n (d n ) and I k := {(i 1 , . . . , i n ) ∈ N n k | 0 ≤ i 1 ≤ n 1 , . . . , 0 ≤ i n ≤ n n }.
For l, l ′ nonnegative integers and i in N n , set:

V l,l ′ ,i := l (p -,u ) ∧ D i ∧ l ′ (p u ) and V ′ l,l ′ ,i := l (p -,u ) ∧ z ∧ D i ∧ l ′ (p u ).
For j in N n and t = 0, . . . , | j|, denote by ∆ j and ∆ j,t the subsets of N n ,

∆ j := { j ′ ∈ N n | j ′ 1 ≤ j 1 , . . . , j ′ n ≤ j n } and ∆ j,t := ∆ j ∩ N n t . Lemma 4.3. Let k = 1, . . . , n, (l, l ′ ) in N 2 such that l + l ′ ≤ 2d, i in I k-l-l ′ and i ′ in I k-l-l ′ -1 . (i) Suppose that V l,l ′ +s, j is contained in V k for all nonnegative integer s such that l + l ′ + s ≤ 2d and all j in ∆ i,|i|-s . Then d ∧ V l-1,l ′ ,i is contained in V k .
(ii) Suppose that V l+s,l ′ , j is contained in V k for all nonnegative integer s such that l + l ′ + s ≤ 2d and all j in

∆ i,|i|-s . Then d ∧ V l,l ′ -1,i is contained in V k .
(iii) Suppose that V ′ l,l ′ +s, j is contained in V k for all nonnegative integer s such that l+l ′ + s ≤ 2d and all j in

∆ i ′ ,|i ′ |-s . Then d ∧ V ′ l-1,l ′ ,i ′ is contained in V k . (iv) Suppose that V ′ l+s,l ′ , j is contained in V k for all nonnegative integer s such that l +l ′ + s ≤ 2d and all j in ∆ i ′ ,|i ′ |-s . Then d ∧ V ′ l,l ′ -1,i ′ is contained in V k . Then V k = k (g).
Proof. Prove the proposition by induction on k. For k = 1, it is true since g is simple. Suppose k > 1 and the proposition true for k -1. By Lemma 1.2 and the induction hypothesis, it is sufficient to prove that g ∧ V k-1,p is contained in V k . As a matter of fact, we have to prove that g ∧ V l,l ′ ,i and g

∧ V ′ l,l ′ ,i ′ are contained in V k for (l, l ′ ) in N 2 such that l + l ′ ≤ 2d, i in I k-l-l ′ -1 and i ′ in I k-l-l ′ -2 since V k-1,p = 2d t=0 (l,l ′ )∈N 2 t i∈I k-t-1 V l,l ′ ,i ⊕ 2d t=0 (l,l ′ )∈N 2 t i ′ ∈I k-t-2 V ′ l,l ′ ,i ′ . Let (l, l ′ ) be in N 2 such that l + l ′ ≤ 2d, i in I k-l-l ′ -1 and i ′ in I k-l-l ′ -2 . If Condition (1) or Condition (2) is satisfied, then l + l ′ < 2d by Proposition A.1. As a result, by Corollary 4.4, g ∧ V l,l ′ ,i and g ∧ V ′ l,l ′ ,i ′ are contained in V k . If Condition (3) is satisfied, l l ′ < 2d or l + l ′ = 2d, i 1 < n 1 , i 2 < n 2 .
In the first case, by Corollary 4.4, g ∧ V l,l ′ ,i and g ∧ V ′ l,l ′ ,i ′ are contained in V k . In the second case, g ∧ V l,l ′ ,i and g ∧ V ′ l,l ′ ,i ′ are contained in V k,p , whence the proposition. Remark 4.6. By the proof of Proposition 4.5, when n = 2, for k = 1, . . . , inf{2d+n 1 -1, 2d+n 2 -1}, V k = k (g).

A second particular case. In this subsection, |X|

= ℓ -1, Π has classical type, n = 2 and 2d + n 1 ≤ n. By Proposition A.1, 2d + n 2 > n, ℓ ≥ 6 for Π of type A ℓ , ℓ ≥ 7 for Π of type B ℓ or C ℓ , ℓ ≥ 8 for Π of type D ℓ .
For i = (i 0 , i 1 , i 2 , i 3 , i 4 ) in N 5 , set:

C i := i 0 (z) ∧ i 1 (d 1 ) ∧ i 2 (d 2 ) ∧ i 3 (p -,u ) ∧ i 4 (p u ).
Let k = 2d + n 1 , . . . , n and j = k -2dn 1 . Set: d, d -1). Lemma 4.7. Denote by M ι and M ι ′ the G-submodules of k (g) generated by C ι and C ι ′ respectively.

ι := (0, n 1 , j, d, d), ι ′ := (1, n 1 , j -1, d, d), ι + := (0, n 1 + 1, j -1, d, d), ι ′ + := (1, n 1 + 1, j -2, d, d), κ := (0, n 1 + 1, j, d -1, d), κ ′ := (1, n 1 + 1, j -1, d -1, d), κ -:= (0, n 1 + 1, j, d, d -1), κ ′ -:= (1, n 1 + 1, j -1,
(i) The subspace M ι of k (g) contains C κ and C κ -, and

M ι ′ contains C κ ′ and C ′ κ ′ - . (ii) The spaces C ι + and C ι ′ + are contained in M ι and M ι ′ respectively. Proof. (i) The subspaces of k-d (g), n 1 (d 1 ) ∧ j (d 2 ) ∧ d (p u ) and n 1 (d 1 ) ∧ j (d 2 ) ∧ z ∧ d (p u ),
are invariant under P u . So, by Proposition 3.5(i), M ι and M ι ′ contain C κ and C κ ′ respectively. The subspaces of k-d (g),

d (p -,u ) ∧ n 1 (d 1 ) ∧ j (d 2 ) and d (p -,u ) ∧ n 1 (d 1 ) ∧ j (d 2 ) ∧ z,
are invariant under P -u . So, by Proposition 3.5(ii), M ι and M ι ′ contain C κ -and C κ ′ -respectively.

(ii) For i = (i 0 , i 1 , i 2 , i 3 , i 4 ) in N 5 , set: i * := (i 0 , i 1 , i 2 , i 4 , i 3 , ). By corollary 2.3(i), for i, j in N 5 , C i is orthogonal to C j if and only if j i * .

Denote by M ⊥ ι and C ⊥ ι the orthogonal complements to M ι and C ι in k (g) respectively. By Lemma 2.1,

M ⊥ ι is the biggest G-module contained in C ⊥ ι . Suppose that C ι + is not contained in M ι . A contradiction is expected. As k (g) is the direct sum of C i , i ∈ N 5 k , C ⊥ ι is the direct sum of C i , i ∈ N 5 k \ {ι} since ι * = ι. By (i), M ⊥ ι is contained in the sum of C i , i ∈ N 5 k \ {ι, κ, κ -}. Since ι * + = ι + , the orthogonal complement to C ι + is the sum of C i , i ∈ N 5 k \ {ι + }. Then M ⊥ ι is not contained in the direct sum of C i , i ∈ N 5 k \ {ι, κ, κ -, ι + } since C ι + is not contained in M ι . Hence for some subspace M of n 1 +1 (d 1 ) ∧ j-1 (d 2 ), M {0} and M ⊥ ι ⊃ d (p -,u ) ∧ M ∧ d (p u ) since d (p -,u ) ∧ d (p u ) has dimension 1.
As a result, by Proposition 3.5, (i) and (ii),

M ⊥ ι ⊃ d-1 (p -,u ) ∧ d 2 ∧ M ∧ d (p u ) M ⊥ ι ⊃ d (p -,u ) ∧ d 2 ∧ M ∧ d-1 (p u ) since M ∧ d (p u ) is a P u -submodule of d+ j+n 1 (g) and M ∧ d (p -,u ) is a P -,u -submodule of d+ j+n 1 (g). As j is smaller than dim d 2 and M is different from zero, d 2 ∧ M {0}. Then C κ +C κ,- is not contained in M ι since C κ + C κ -is orthogonal to C i for all i in N 5 k \ {κ, κ -}, whence the contradiction. Denote by M ⊥ ι ′ and C ⊥ ι ′ the orthogonal complements to M ι ′ and C ι ′ in k (g) respectively. By Lemma 2.1, M ⊥ ι ′ is the biggest G-module contained in C ⊥ ι ′ . Suppose that C ι ′ + is not contained in M ι ′ . A contradiction is expected. As k (g) is the direct sum of C i , i ∈ N 5 k , C ⊥ ι ′ is the direct sum of C i , i ∈ N 5 k \ {ι ′ } since ι ′ * = ι ′ . By (i), M ⊥ ι ′ is contained in the sum of C i , i ∈ N 5 k \ {ι ′ , κ ′ , κ ′ -}. Since ι ′ + * = ι ′ + , the orthogonal complement to C ι ′ + is the sum of C i , i ∈ N 5 k \ {ι ′ + }. Then M ⊥ ι ′ is not contained in the direct sum of C i , i ∈ N 5 k \ {ι ′ , κ ′ , κ ′ -, ι ′ + } since C ι ′ + is not contained in M ι ′ . Hence for some subspace M ′ of n 1 +1 (d 1 ) ∧ j-2 (d 2 ), M ′ {0} and M ⊥ ι ′ ⊃ d (p -,u ) ∧ z ∧ M ′ ∧ d (p u ) since z ∧ d (p -,u ) ∧ d (p u )
has dimension 1. As a result, by Proposition 3.5, (i) and (ii),

M ⊥ ι ′ ⊃ d-1 (p -,u ) ∧ z ∧ d 2 ∧ M ′ ∧ d (p u ) M ⊥ ι ′ ⊃ d (p -,u ) ∧ z ∧ d 2 ∧ M ′ ∧ d-1 (p u ) since z ∧ M ′ ∧ d (p u ) is a P u -submodule of d+ j+n 1 (g) and z ∧ M ′ ∧ d (p -,u ) is a P -,u -submodule of d+i+n 1 (g). As j is smaller than dim d 2 and M ′ is different from zero, d 2 ∧ M ′ {0}. Then C κ ′ + C κ ′ ,-is not contained in M ι ′ since C κ ′ + C κ ′ -is orthogonal to C i for all i in N 5 k \ {κ ′ , κ ′ -}, whence the contradiction. Proposition 4.8. For k = 2d + n 1 , . . . , n, V k is equal to k (g).
Proof. Prove the proposition by induction on k. Let (l, l ′ ) be in

N 2 such that l+l ′ ≤ 2d, i ∈ I k-l-l ′ -1 , i ′ ∈ I k-l-l ′ -2 . If l + l ′ < 2d then g ∧ V l,l ′ ,i and g ∧ V ′ l,l ′ ,i ′ are contained in V k by Corollary 4.4. If l = l ′ = d and i 1 < n 1 then g ∧ V l,l ′ ,i is contained in V k,p since 2d + n 2 > n by Proposition A.1. If
Let Y be as in Lemma 4.9. Then d Y has two simple factors d 1 and a and d 1 is a simple factor of d. Denote by V k,Y the G-submodule of k (g) generated by V k,p Y . Then, by Proposition 4.5, Remark 4.6 and Proposition 4.8, V k,Y = k (g). The intersection q := a ∩ p is a parabolic subalgebra of a. Let E ′ be the intersection of E and a. Then E is the direct sum of E ′ and E Y . As a result, setting n * := b aℓ a ,

V k,p = n 1 i=0 n * j=0 i (d 1 ) ∧ V j,q ∧ k-i-j (E Y ).
Let A be the connected closed subgroup of G whose Lie algebra is a. By the hypothesis, for j = 1, . . . , n * , the A-submodule of j (a), generated by V j,q , is equal to j (a). Hence, by Lemma 1.2,

V k,p Y is contained in V k since d 1 and E Y are invariant under A, whence V k = k (g).
To finish the proof of Theorem 1.1, we have to consider the case when X does not contain all the extremities of Π.

Lemma 4.11. Suppose that X does not contain all the extremities of Π.

(i) There exists a sequence X 0 ⊂ • • • ⊂ X m = Π of connected subsets of Π satisfying the following conditions:

(1)

for i = 1, . . . , m, |X i \ X i-1 | = 1,
(2) X contains the extremities of X 0 . (ii) For i = 0, . . . , m, let a i be the subalgebra of g generated by g ±β , β ∈ X i . Then a i is a simple algebra and p i := p ∩ a i is a parabolic subalgebra of a i .

(iii) For i = 0, . . . , m, E is the direct sum of E i := E ∩ a i and E X i .

Proof. (i) Define X i by induction on i. Let X 0 be a connected subset of Π, containing X of minimal cardinality. By minimality of |X 0 |, X contains the extremities of X 0 . Suppose i > 0 and X i-1 defined. If X i-1 = Π there is nothing to do. Suppose X i-1 Π. As Π is connected, there is some β in Π \ X i-1 , not orthogonal to an extremity of X i-1 . Then X i := X i-1 ∪ {β} is a connected subset of Π since so is X i-1 , whence the assertion. (ii) As X i is connected, a i is a simple algebra. For α in < X i >, g α is contained in a i ∩ p. Hence p i contains the Borel subalgebra of a i generated by h ∩ a i and g β , β ∈ X i , whence the assertion.

(iii) Let α be a positive root such that g α is contained in E. If α is in < X i > then g α and g -α are contained in E i . Otherwise, g α and g -α are contained in E X i by definition.

Let z be in E ∩h. By definition, h∩E X i is the orthogonal complement to a i in h. Then z = z 1 +z 2 with z 1 in a i ∩ h and z 2 in E X i . Hence z 1 is orthogonal to a i ∩ p. As a result, z 1 is in E i and z is in E i + E X i , whence the assertion.

We can now give the proof of Theorem 1.1.

Proof. Prove the theorem by induction on ℓ. First of all, for X empty subset of Π, V k,p X = k (g). For ℓ = 1, n = 1. Hence the theorem is true in this case and we can suppose X nonempty and ℓ ≥ 2. By Proposition 4.1 and Remark 4.2, V k = k (g) when X is connected. In particular, the theorem is true in rank 2. Then, by Proposition 4.10, the theorem is true for ℓ = 3 since in this case X contains all the extremities of Π when it is not connected.

Suppose ℓ > 3 and the theorem true for the simple algebras of rank smaller than ℓ. By induction hypothesis and Proposition 4.10, V k = k (g) when X contains all the extremities of Π. So, we can suppose that X does not contain all the extremities of Π. Let X 0 , . . . , X m be as in Lemma 4.11. For i = 0, . . . , m, set e i := | < X i > | and prove by induction on i the inclusion

e i j=0 j (a i ) ∧ k-j (E X i ) ⊂ V k .
For i = 0, . . . , n, denote by A i the connected closed subgroup of G whose Lie algebra is a i . By Lemma 4.11,(ii) and (iii),

V k,p = e i j=0 V j,p i ∧ k-j (E X i ),
for i = 0, . . . , m. Then, by Proposition 4.10, the induction hypothesis and Lemma 1.2, the inclusion is true for i = 0 since E X 0 is invariant under A 0 . Suppose i > 0 and the inclusion true for i -1. Let E ′ X i be the intersection of E X i-1 and a i . Denote by q i the parabolic subalgebra of a i containing b ∩ a i and such that a i-1 is the derived algebra of the reductive factor of q i containing h ∩ a i . Then

E X i-1 = E ′ X i ⊕ E X i , a i = a i-1 ⊕ E ′ X i , j (a i-1 ) ∧ k-j (E X i-1 ) = k-j l=0 j (a i-1 ) ∧ l (E ′ X i ) ∧ k-j-l (E X i-1 )
for j = 0, . . . , e i-1 . As a result,

e i-1 j=0 j (a i-1 ) ∧ k-j (E X i-1 ) = e i j=0 V j,q i ∧ k-j (E X i ).
By Proposition 4.1 and Remark 4.2, for j = 0, . . . , e i , the A i -submodule of j (a i ) generated by V j,q i is equal to j (a i ) since a i-1 is simple and ℓ a iℓ a i-1 = 1. Then, by Lemma 1.2, the A i -submodule of k (g) generated by

e i-1 j=0 j (a i-1 ) ∧ k-j (E X i-1 ) is equal to e i j=0 j (a i ) ∧ k-j (E X i )
since E X i is invariant under A i , whence the assertion and the theorem since for i = m the sum is equal to k (g).

If the left hand side is nonnegative then

s ≤ 1 6 (2ℓ -3 - √ 4ℓ 2 + 12ℓ + 9) or s ≥ 1 6 (2ℓ -3 + √ 4ℓ 2 + 12ℓ + 9).
The first inequality is impossible since its right hand side is negative. The first inequality is impossible since its right hand side is negative. The second inequality is impossible since 

s ≤ ℓ -

  12ℓ -9) > ℓ -2, whence Assertion (ii) of Proposition A.1.A.3. Type D ℓ . As X is not connected, β is different from β 1 , β ℓ-1 , β ℓ . If β = β ℓ-2 then X has three connected components andd = ℓ(ℓ -1) -2 -1 2 (ℓ -3)(ℓ -2).In this case n < 2d. Suppose ℓ ≥ 5 and β = β s+1 for some s in {1, . . . , ℓ -4}.Thenn 1 = s(s + 1) 2 , n 2 = (ℓs -1)(ℓs -2), d = nn 1n 2 , n -2dn 1 = 5s 2s(4ℓ -7) + ℓ 2 -5ℓ + 4. If n -2dn 1 ≥ 0 then s ≤ 1 10 (8ℓ -13 -√ 24ℓ 2 -8ℓ + 9) or s ≥ 1 10 (8ℓ -13 + √ 24ℓ 2 -8ℓ + 9).As s ≥ 1, the first inequality is possible only if ℓ ≥ 8. The second inequality is impossible since its right hand side is bigger than ℓ -4 and s is at most ℓ -4. By the above equalities,n -2dn 2 = 2s 2 + (-2ℓ + 4)s -2ℓ + 2.If the left hand side is nonnegative thens ≤ -1 or s ≥ ℓ -1.These inequalities are impossible since s is positive and smaller than ℓ -3, whence Assertion (iii) of Proposition A.1.A.4. The exceptional case. Set l := l X , d := d X . Then 2d = dim gdim l. For each case, we give all the possible dimensions of l when |X| = ℓ -1.(a) The algebra g has type G 2 . Then X is connected, whence Assertion (iv) of Proposition A.1 for this case.(b) The algebra g has type F 4 . In this case n = 24 and dim l ∈ {12, 22} whence 2d ∈ {40, 30}and Assertion (iv) of Proposition A.1 for this case. (c) The algebra g has type E 6 . In this case n = 36 and dim l ∈ {20, 28, 36, 46} whence 2d ∈ {58, 50, 42, 32} and Assertion (iv) of Proposition A.1 for this case since d is simple of type D 5 when 2d = 32. (d) The algebra g has type E 7 . In this case n = 63 and dim l ∈ {27, 33, 39, 49, 67, 79} whence 2d ∈ {106, 100, 94, 84, 66, 54} and Assertion (iv) of Proposition A.1 for this case since d is simple of type E 6 when 2d = 54. (e) The algebra g has type E 8 . In this case n = 120 and dim l ∈ {36, 40, 52, 54, 64, 82, 92, 134} whence 2d ∈ {212, 208, 196, 194, 184, 166, 156, 114} and Assertion (iv) of Proposition A.1 for this case since d is simple of type E 7 when 2d = 114.

  The second inequality is possible only if ℓ ≥ 7 since s ≤ ℓ -2. Moreover, it is not possible to have n ≥ 2d + n 1 and Type B ℓ or C ℓ . As X is not connected, n = 2 and β = β s+1 for some s in {1, . . . , ℓ -2}.Thenn 1 = s(s + 1) 2 , n 2 = (ℓs -1) 2 , d = nn 1n 2 , + (-8ℓ + 9)s + 2ℓ 2 -8ℓ + 4).As s ≥ 1, the first inequality is possible only if ℓ ≥ 7. The second inequality is impossible since its right hand side is bigger than ℓ -2 and s is at most ℓ -2. By the above equalities, n -2dn 2 = 2s 2 + (-2ℓ + 5)s -4ℓ + 4.

	n ≥ 2d + n 2 since	1 6	(2ℓ -3 +	√ 4ℓ 2 + 12ℓ + 9) >	1 6	(4ℓ -3 -	√ 4ℓ 2 + 12ℓ + 9),
	whence Assertion (i) of Proposition A.1.	
	A.2. n -2d -n 1 = (5s 2 If n -2d -n 1 ≥ 0 then 1 2 s ≤ 1 10 (8ℓ -9 -√ 24ℓ 2 + 16ℓ + 1) or s ≥	1 10	(8ℓ -9 +	√ 24ℓ 2 + 16ℓ + 1).
	If the left hand side is nonnegative then	
	s ≤	1 4	(2ℓ -5 -	√ 4ℓ 2 + 12ℓ -7) or s ≥	1 4	(2ℓ -5 +	√ 4ℓ 2 + 12ℓ -9).

 

Then M m, j is a P u -submodule of m+| j| (g), M m, j,-is a P -,u -submodule of m+| j| (g), M ′ m, j is a P u -submodule of m+| j|+1 (g), M ′ m, j,-is a P -,u -submodule of m+| j|+1 (g). (i) By hypothesis, V k ⊃ l (p -,u ) ∧ M l ′ ,i ⊃ V l,l ′ ,i . Then by Proposition 3.5(i), d ∧ V l-1,l ′ ,i is contained in V k .

(ii) By hypothesis,

l ′ ,i and p -,u ∧V l,l ′ ,i are contained in V k,p . Moreover, for all nonnegative integer s such that l+l ′ + s+1 ≤ 2d and all j in ∆ i,|i|-s , p u ∧V l,l ′ +s, j , p -,u ∧V l,l ′ +s, j , p u ∧ V l+s,l ′ , j , p -,u ∧ V l+s,l ′ , j are contained in V k,p . Then, by Lemma 4.3,(i) and (ii),

, n. Suppose that one of the following condition is satisfied:

(1) Π is exceptional, (2) Π has type D ℓ and n = 3, (3) Π has classical type, n = 2, 2d + n 1 and 2d + n 2 are bigger than n.

As a result, by our previous remark, V k contains g ∧ V k-1,p , whence the proposition by Lemma 1.2 and the induction hypothesis.

4.4. The general case. First, we consider the case when X contains the extremities of Π.

Lemma 4.9. Suppose ℓ ≥ 2, n ≥ 2 and the extremities of Π contained in X. If |X| is smaller than ℓ -1 then for some β in Π \ X, Y := Π \ {β} has two connected components, X is contained in Y and a connected component of Y is a connected component of X.

Proof. Suppose |X| < ℓ -1. We consider the following cases:

(1) Π has not type D, E, (2) Π has type D ℓ , (3) Π has type E 6 , (4) Π has type E 7 , (5) Π has type E 8 .

(1) Let X 1 be the connected component of X containing β 1 . There is only one element β of Π \ X not orthogonal to X 1 . Then Y := Π \ {β} has two connected components and X 1 is a connected component of Y.

(2) Let X 1 be the connected component of X containing β 1 . As β ℓ and β ℓ-1 are in X, for some i smaller than ℓ -2, β i is not in X since |X| < ℓ -1. Then there is only one element β in Π \ X not orthogonal to X 1 so that Y := Π \ {β} has two connected components and X 1 is a connected component of Y.

(3) As β 1 , β 2 , β 6 are in X, β 3 or β 5 is not in X since |X| < ℓ -1. Setting Y i := Π \ {β i } for i = 3, 5, Y i has two connected components and for some i, X is contained in Y i and a connected component of X is a connected component of Y i .

(4) As β 1 , β 2 , β 7 are in X, β 3 or β 5 or β 6 is not in X since |X| < ℓ -1. Setting Y i := Π \ {β i } for i = 3, 5, 6, Y i has two connected components and for some i, X is contained in Y i and a connected component of X is a connected component of Y i .

(5) As β 1 , β 2 , β 8 are in X, β 3 or β 5 or β 6 or β 7 is not in X since |X| < ℓ -1. Setting Y i := Π \ {β i } for i = 3, 5, 6, 7, Y i has two connected components and for some i, X is contained in Y i and a connected component of X is a connected component of Y i . Proposition 4.10. Let k = 1, . . . , n. Suppose that Theorem 1.1 is true for the simple algebras of rank smaller than ℓ and X contains the extremities of Π. Then V k = k (g).

Proof. As X contains the extremities of Π and is different from Π, ℓ ≥ 3 and n ≥ 2. By Proposition 4.5, Remark 4.6 and Proposition 4.8, V k = k (g) when |X| = ℓ -1. In particular, V k = k (g) when ℓ = 3. Suppose ℓ > 3 and |X| < ℓ -1.

Appendix A. Some remarks on root systems Let β be in Π and X := Π \ {β}. Set p u := p u,X and d := dim p u,X . The goal of the section is the following proposition: Proposition A.1. (i) Suppose Π of type A ℓ and X not connected. Then β = β s+1 for some s in {1, . . . , ℓ -2},

(ii) Suppose Π of type B ℓ or C ℓ and X not connected. Then β = β s+1 for some s in {1, . . . , ℓ -2},

(iv) Suppose that Π is exceptional. If 2d ≤ n then X is connected.

We prove the proposition case by case. So, in the classical case, we suppose ℓ ≥ 3 and X not connected.

A.1. Type A ℓ . As X is not connected, n = 2 and β = β s+1 for some s in {1, . . . , ℓ -2}. Then

If n -2dn 1 ≥ 0 then s ≤ 1 6 (4ℓ -3 -√ 4ℓ 2 + 12ℓ + 9) or s ≥ 1 6 (4ℓ -3 + √ 4ℓ 2 + 12ℓ + 9).

As s ≥ 1, the first inequality is possible only if ℓ ≥ 6. The second inequality is impossible since its right hand side is bigger than ℓ -2 and s is at most ℓ -2. By the above equalities, n -2dn 2 = 3s 2 + (-2ℓ + 3)s -2ℓ.