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Introduction

Dans ce papier, nous proposons une modélisation des réseaux dynamiques où les temps de transfert sont variables avec le flux. En effet, la prise en compte de la variation du temps de transfert est essentielle dans certaines applications, telles que la propagation des ondes hydrauliques [START_REF] Braga | MULTIOBJECTIVE REAL-TIME RESERVOIR OPERATION WITH A NETWORK FLOW ALGORITHM 1[END_REF]. Nous considérons qu'un flux se décompose en plusieurs blocs de flux, et que chaque bloc met un retard de parcours. La fonction du temps de transfert d'un arc suit une fonction affine par morceaux, monotone du flux normalisé.

Problématique

Soit !" = " (#, $) un réseau dynamique, avec # l'ensemble des sommets et $ l'ensemble des arcs. Soit % &' le temps de transfert de l'arc * &' avec + le sommet d'origine etle sommet terminal. Lorsque les temps de transfert des arcs sont indépendants des flux qui y circulent, le réseau de transport étendu [START_REF] Fulkerson | Flow networks and combinatorial operations research[END_REF] permet le passage d'un réseau dynamique à un réseau statique. Dans plusieurs applications, le temps de transfert de l'arc est une fonction du flux . qui y circule : % &' = /(.). Fonoberova [START_REF] Fonoberova | Algorithms for finding optimal flows in dynamic networks[END_REF] (1) 

Conclusion

Cette modélisation permet de simuler des événements où le flux sortant un arc est le résultat de plusieurs blocs de flux entrants à différents instants. La modélisation proposée est basée sur la duplication des sommets pour construire un réseau étendu, et en considérant une contrainte de répartition pour le flux.
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 1 Figure 1: Fonction évolutive du temps de transfert
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 2 Figure 2: Illustration de la modélisation proposée