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In the context of experimental modeling for a Scanning Tunneling Microscope (STM) prototype, a reduced order observer is proposed for parameter adaptation in the tunneling current model. The underlying dynamical model is first recalled, and the proposed observer is then presented, and discussed. The approach is finally illustrated with real data taken from the prototype.

Towards observer-based tunneling current calibration in an experimental STM device.

Gildas Besançon * Alina Voda * Andrei Popescu *

INTRODUCTION

Nanosciences are a source of challenging problems in estimation and control (Voda, 2010;Clévy et al., 2011;[START_REF] Eleftheriou | Control Techno. for Emerging Micro & Nanoscale Systems[END_REF][START_REF] Fleming | Design, Modeling and Control of Nanopositioning Systems[END_REF]. In the specific area of Scanning Probe Microscopy, the socalled Scanning Tunneling Microscope (STM) is the one which first gave birth to the whole field, in the early eighties [START_REF] Binnig | Scanning tunneling microscopy[END_REF]. As meant by its name, it is based on the tunneling current phenomenon, and is the first instrument that allowed surface imaging at atomic resolution.

Even though now pretty well known, this approach still presents challenges in control, as addressed in [START_REF] Bonnail | Variable structure control of a piezoelectric actuator for a scanning tunneling microscope[END_REF] or some former studies of ours [START_REF] Ahmad | Controller design for a closed-loop scanning tunneling microscope[END_REF][START_REF] Ahmad | Robust digital control approach for high performance tunneling current measurement system[END_REF][START_REF] Ryba | Modelling and control of 3d stm-like scanning device with application to surface reconstruction[END_REF] for instance, up to more recent works of [START_REF] Tajaddodianfar | Stability analysis of a scanning tunneling microscope control system[END_REF][START_REF] Tajaddodianfar | On the effect of local barrier height in scanning tunneling microscopy: Measurement methods and control implications[END_REF]. In particular, it requires specific calibrations for the device to be properly operated, and in the present paper, a simple observer approach is proposed to identify a parameter that enters into the dynamical description of tunneling effect, thus making it instrumental in the use of an STM for surface imaging (see e.g. [START_REF] Besançon | Experimental nanosurface imaging with a scanning-tunneling-like device under 3D control[END_REF][START_REF] Popescu | Control-observer technique for surface imaging with an experimental platform of scanning-tunnelingmicroscope type[END_REF]). This work is based on an experimental device which was developed in Gipsa-lab for the purpose of such studies [START_REF] Blanvillain | Pullin control during nanometric positioning by near field position sensing[END_REF][START_REF] Blanvillain | Subnanometer positioning and drift compensation with tunneling current[END_REF].

The formal statement of the estimation problem under study is first given in section 2, together with the presentation of the underlying device. The observer solution, finally given under the form of a reduced order one, is then discussed in section 3, and related application results based on real data from our experimental device are presented in section 4. Some conclusions and considerations for future works end the paper in section 5.
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PROBLEM STATEMENT

STM device under consideration

Standard STM operation (Julian [START_REF] Chen | Introduction to Scanning Tunneling Microscopy[END_REF]) in short means approaching a tip to the surface under study, close enough (less than 1nm) so that an applied voltage between both (bias voltage) results in a (quantum) current effect, called tunneling current. The control task is then to regulate this distance.

In the considered Gipsa STM device (shown in figure 1), the vertical motion is driven by a piezo actuator, fed by a voltage generated numerically (via a PC) and appropriately amplified (via a Voltage Amplifier), while the obtained current is in its turn amplified and measured (via a Current Sensor), and brought back to the numerical equipment (PC). For a mathematical description of the whole dynamical behaviour, let us recall modeling basics for each element (see again figure 2 for notations).

First, the piezoactuator dynamics can typically be represented by a second order model (eg as in [START_REF] Ryba | Modelling and control of 3d stm-like scanning device with application to surface reconstruction[END_REF]), that is:

Z p (s) = G p w 2 p s 2 + 2ζ p w p s + w 2 p U a (s) (1) 
where s stands for Laplace variable, Z p (s) and U a (s) Laplace transforms of piezo displacement and its applied (amplified) voltage, respectively, and G p , w p , ζ p the piezo DC gain, natural pulsation, and damping coefficient respectively.

Similarly, the dynamics of both voltage amplifier and current sensor can be captured by simple 1st order models, that is:

U a (s) = G v w v s + w v U (s) and U c (s) = G i w i s + w i I t (s) (2)
respectively, where U, U c and I t refer to Laplace transforms of the applied voltage, the voltage read by the current sensor and the tunneling current respectively, while G v , G i denote voltage and current gains respectively, and w v , w i the corresponding bandwidths.

In practice, the piezo actuator bandwidth in our device being about ten times larger than those of the other elements, its dynamics will be neglected in the present study. This means that piezo model (1) will be restricted to its DC gain G p . Finally, the tunneling current can be usually expressed according to the tip motion z p with respect to the sample position z s , and initial tip-sample surface d 0 , as depicted by figure 3. This results in the following expression:

i t = gV b exp(-k(d 0 + z p -z s ))
(3) where g is a constant depending on the materials, V b is the applied voltage, and k the typical exponential rate of the current variation with respect to tip-sample distance.

This means that we can finally end up with a state space representation of the following form:

ẋ1 (t) = -w i x 1 (t) + G i w i gV b exp(-k(d 0 + x 2 (t) -z s (t))) ẋ2 (t) = -w v x 2 (t) + G p G v w v u(t) y(t) = x 1 (t) (4 
) where x 1 stands for u c , x 2 for z p and u for the applied voltage. 

Estimation problem under consideration

Typically in the above model, z s will vary in some unknown way during a scanning operation mode, and from the knowledge of everything else, its variation can be recovered, giving an image of the surface (Julian [START_REF] Chen | Introduction to Scanning Tunneling Microscopy[END_REF]). In the present paper instead, we will focus on the characterization of the tunneling parameters, and in particular coefficient g, which may be inaccurately known in practice. This step thus comes prior to any scanning, and can be also an opportunity to calibrate the operation with respect to values of d 0 and initial sample level z s for instance. In other words, we consider here the problem of estimating parameter gV b exp(-k(d 0 + z s )) when z s is supposed to be constant (no scanning). Of course if d 0 and z s are known, then g can be obtained, and conversely, whenever gV b is known, z s + d 0 can be estimated. Notice that those parameters cannot be separately identified.

Setting θ := gV b exp(-k(d 0 + z s )) then, we are brought to an observer problem for the following system:

ẋ1 (t) = -w i x 1 (t) + θG i w i exp(-kx 2 (t)) ẋ2 (t) = -w v x 2 (t) + G p G v w v u(t) y(t) = x 1 (t) (5)
where y denotes the available measurement, and u the known applied voltage, while θ (and state variable x 2 ) are to be estimated.

OBSERVER SOLUTION

High gain approach

It is clear that model ( 5) can be extended with unknown parameter θ as an additional state variable in the following way:

ẋ1 (t) = -w i x 1 (t) + θG i w i exp(-kx 2 (t)) ẋ2 (t) = -w v x 2 (t) + G p G v w v u(t) θ = 0 y(t) = x 1 (t) (6)
and that an observer can be built for this extended model. So called uniform observability property [START_REF] Gauthier | Observability for any u(t) of a class of nonlinear systems[END_REF] can indeed here be checked, and a diffeomorphism can be found to turn the model into an appropriate form for a well-known high gain observer design [START_REF] Gauthier | A simple observer for nonlinear systems-applications to bioreactors[END_REF]:

Proposition 1. The system below:

ξ = Aξ -Λ(λ)K(Cξ -y) + ϕ(ξ, u) (7)   x1 x2 θ   =      ξ 1 ξ 3 kw v ξ 2 ξ 2 G i w i exp( ξ 3 w v ξ 2 )      (8) with A = 0 1 0 0 0 1 0 0 0 , C = (1 0 0), Λ(λ) =   λ 0 0 0 λ 2 0 0 0 λ 3   and ϕ(ξ, u) =    -w i ξ 1 -kG p G v w v ξ 2 u -w v ξ 3 + kG p G v w 2 v ξ 2 u -kG p G v w v ξ 3 u + ξ 2 3 ξ 2   
provides an observer for system (6), in the sense that xi (t) -x i (t) for i = 1, 2, and θ(t) -θ, can asymptotically decay to zero for any initial condition, whenever K is chosen such that A -KC is Hurwitz, ϕ is saturated according to some bounded domain of x 1 , x 2 , θ, and λ is large enough.

The formal verification follows classical lines of high gain observers, and is omitted here, since it will not be the approach finally chosen. The usual advantage indeed in such an approach is the guarantee of convergence even in the presence of nonlinearities, as well as the single tuning coefficient λ (high gain).

But a classical counterpart is the possible amplification of the measurement noise effect (see [START_REF] Astolfi | Sensitivity to high-frequency measurement noise of nonlinear high-gain observers[END_REF] for instance), which is quite significant in our application, and makes this high gain technique indeed too sensitive to the noise. One could think of some possible improvements (e.g. as in [START_REF] Ahrens | High-gain observers in the presence of measurement noise: A switched-gain approach[END_REF][START_REF] Boizot | An adaptive high-gain observer for nonlinear systems[END_REF], but we instead propose here to consider a more simple approach, presented in next section.

Reduced order approach

As an alternative approach, owing to the property that trajectories in x 2 all converge to each other, we can propose a more simple reduced order observer (e.g. in the spirit of [START_REF] Besançon | Remarks on nonlinear adaptive observer design[END_REF]) as follows: Proposition 2. For system (5) with u such that x 1 and x 2 remain within positive bounded intervals, the system below provides asymptotic estimates x2 and θ for x 2 and θ respectively, for any γ > 0:

ẋ2 (t) = -w v x2 (t) + G p G v w v u(t) ζ(t) = -γG i w i exp(-kx 2 (t))[ ζ(t) + γy(t)] + γw i y(t) θ(t) = ζ(t) + γy(t) (9) 
Proof. The verification goes as follows: first set ζ := θ-γx 1 and notice that the parameter estimation error θ -θ then coincides with e ζ := ζ -ζ. This means that we are brought to the study of the latter. Then, one can check that:

ėζ = -γG i w i exp(-kx 2 )e ζ -γG i w i [exp(-kx 2 ) -exp(-kx 2 )] × [ ζ + γy] =: -γG i w i exp(-kx 2 )e ζ + δ
(10) where δ depends on the difference between x2 and x 2 , as well as ζ and y. It is clear, from the system and observer equations, that e 2 := x2 -x 2 satisfies: ė2 = -w v e 2 meaning that x2 exponentially approaches x 2 . In addition, from equations ( 9) and boundness of y, it results that ζ is also bounded. This means that δ is exponentially vanishing. Now since x 2 remains bounded, e ζ is clearly ISS w.r.t. δ, and since δ goes to zero, so does e ζ (in addition, it is also clear that one can tune the rate of decay via the choice of parameter γ).

Beyond its simplicity (second order only, and still with a single tuning parameter, γ), this approach also ensures some properties with respect to the noise effect (similarly to the adaptive observer approach of [START_REF] Zhang | Adaptive observer for mimo linear time varying systems[END_REF] for instance): in short, the error is guaranteed to converge in mean value, and the tuning parameter γ can even be chosen according to a filtering purpose. If indeed the measurement takes the form:

y = x 1 + ν (11) 
where ν stands for some measurement noise assumed to be a gaussian white noise, the estimation error e ζ with the above notations, now satisfies:

ėζ = -γG i w i exp(-kx 2 )e ζ -γ 2 G i w i exp(-kx 2 )ν + γw i ν -γG i w i [exp(-kx 2 ) -exp(-kx 2 )] × [ ζ + γx 1 + γν] =: -γG i w i exp(-kx 2 )e ζ -γ 2 G i w i exp(-kx 2 )ν + γw i ν +δ 1 (12)
where δ 1 is still vanishing. It is here clear that x 2 and x2 are independent of ν, so that the mean value of e ζ satisfies:

dē ζ dt = -γG i w i exp(-kx 2 )ē ζ + δ1 (13) 
where . refers to the mean. From this, and the fact that δ 1 vanishes, we get that ēζ also asymptotically decays to zero.

In a similar way, it can be checked that the variance of e ζ asymptotically behaves as the solution

Q of: Q = -2γG i w i exp(-kx 2 )Q + γ 2 w 2 i (γG i exp(-kx 2 ) + 1) 2 V (14
) where V stands for the noise intensity. From this, the smaller γ is, the smaller this variance is in turn.

ESTIMATION RESULTS WITH REAL DATA

The above approach has been tested with data recorded from our Gipsa-lab STM prototype [START_REF] Blanvillain | Subnanometer positioning and drift compensation with tunneling current[END_REF] The corresponding numerical values for model ( 5) are summarized in table 1 below.

Gv 15 V /V fv 4 kHz G i 1e9 V /A f i 13 kHz k 16.5nm -1 Gp 1.2 nm/V
Table 1. Numerical data For this system, measurements are obtained when operating the STM in a fixed position, under simple PI regulation of the distance between tip and sample (via output direct regulation).

The corresponding output measurement and available control input are presented in figures 5 and 6 respectively, over 5 seconds (under a setpoint control during 3 seconds first, then followed by a square wave tracking configuration). The estimation for coefficient gV b with the above reduced order observer is then tested with those data, and considering some rough estimate for d 0 + z s here set to 52.13 nm.

Noting yet, from the control profile, that after about 1.5 second, a drift-like disturbance appears (as often with piezoactuation in such devices [START_REF] Rakotondrabe | Complete open loop control of hysteretic, creeped, and oscillating piezoelectric cantilevers[END_REF]), the estimation of gV b is here considered on earlier times only, say up to time 1.4 second. This means that the convergence should be fast enough (γ large enough), but with enough noise attenuation (γ not too large).

A first estimation result is displayed on fig. 7, obtained with γ = 1e10: the convergence can be seen to be here very fast (notice that the parameter estimate is initialized at 0), but the estimate is very noisy (it seems to reach a value of about 1e -3, but with variations up to 7 times this value). A second result with a lower γ (1e8) is then presented in figure 8, illustrating the noise effect reduction (as expected from the discussion after proposition 2), and emphasizing a final value around 0.0011. This is confirmed by the superposed result of an additionally filtered version of this estimate, displayed in dahsed line on the same figure (just using a low-pass filter). Notice then that the estimate of gV b can be frozen after time t = 1.4 second for instance, and going on with the same observer allows now to estimate the drift, in terms of tip-sample distance.

The corresponding estimation result is shown in figure 9. Notice finally that combining this drift estimate with the frozen estimate of gV b and that of x 2 , the actual tunneling current can be estimated in its turn, and the corresponding result is presented in figure 10. An additionally filtered estimate is displayed as well, emphasizing the current regulation around a value of about 0.3nA. From the estimated gV b and the available output measurement, this means a distance of about 0.92 nm. 

CONCLUSIONS

In this paper an observer approach has been discussed for a problem of parameter estimation in tunneling current modeling. The approach has been formally presented, and illsutrated on the basis of real data taken from a prototype experiment. The focus has been made on a single parameter (or combination of parameters), which can be either related to tunneling current characteristics, or to tip-sample distance.

The extension to the full parametric characterization of the tunneling current will be part of future developments, as well as its possible use in control and imaging purposes.
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 1 Fig. 1. STM prototype.This operation is summarized by the schematic view of figure 2 below. Full technical details on this instrumentation can be found in[START_REF] Popescu | Control-observer technique for surface imaging with an experimental platform of scanning-tunnelingmicroscope type[END_REF] for instance.
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 4 Fig. 4. Real tip and its reflection.
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 5 Fig. 5. Measured output (as delivered by current sensor, under closed loop operation).
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 6 Fig. 6. Control input (as fed to the voltage amplifier, during closed loop operation).
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 7 Fig. 7. Estimation result for gV b with γ = 1e10.
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 8 Fig. 8. Estimation result for gV b with γ = 1e8 (and filtered version in dashed red line).
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 9 Fig. 9. Estimation result for distance drift, started after time 1.4 sec (and based on the estimate for gV b obtained before time 1.4 sec).
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 10 Fig. 10. Tunneling current estimate (reconstructed from gV b and drift estimates) -top: direct estimate, bottom: filtered estimate.

  (see tip picture in fig. 4 hereafter).
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