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Removing inessential points in c-and A-optimal design

Luc Pronzato* and Guillaume Sagnol�

June 15, 2020

Abstract

A design point is inessential when it does not contribute to an optimal design, and can

therefore be safely discarded from the design space. We derive three inequalities for the de-

tection of such inessential points in c-optimal design: the �rst two are direct consequences of

the equivalence theorem for c-optimality; the third one is derived from a second-order cone

programming formulation of c-optimal design. Elimination rules for A-optimal design are ob-

tained as a byproduct. When implemented within an optimization algorithm, each inequality

gives a screening test that may provide a substantial acceleration by reducing the size of the

problem online. Several examples are presented with a multiplicative algorithm to illustrate the

e�ectiveness of the approach.

Keywords: A-optimal design; c-optimal design; Inessential Point; Screening Test; Support Point.

AMS subject classi�cations: 62K05, 62J07, 90C46

1 Introduction

Let H = {Hi, i = 1, . . . , q} denote a set of m ×m symmetric non-negative de�nite matrices and

denote by H its convex hull. We assume that the linear span of H contains a nonsingular matrix.

A design corresponds to a probability measure on H, that is, to vector of weights w = (w1, . . . , wq)
>

in the probability simplex Pq = {w ∈ Rq, wi ≥ 0 for all i and
∑q

i=1wi = 1}. The extension to

designs ξ de�ned as probability measures on an arbitrary compact set of matrices Ht is straightfor-

ward, but for the sake of simplicity in the rest of the paper we shall restrict the presentation to the

discrete case. A c-optimal design, associated with a nonzero vector c ∈ Rm, is de�ned by a vector

w∗ that minimizes

φ(w) = Φ[M(w)] = c>M−(w)c (1.1)

with respect to w, with M(w) the (information) matrix

M(w) =

q∑
i=1

wi Hi (1.2)

and M− a pseudo-inverse of M. We set φ(w) =∞ when c does not belong to the column space of

M(w); the value of φ(w) does not depend on the choice of the pseudo-inverse M−.
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A typical example is when Hi = aia
>
i for all i, with ai the vector of regressors in the model

with observations

Yi = a>i θ + εi , (1.3)

parameters θ and i.i.d. errors εi having zero mean and variance σ2. Suppose that n observations

are collected according to the design w ∈ Pq, with w such such that nwi ∈ N for all i. Then,

σ2 φ(w)/n is the variance of c>θ̂
n
, with θ̂

n
the Best Linear Unbiased Estimator (BLUE) of θ.

When the observations Yi are multivariate, with Yi = A>i θ+ εi in R
q where the errors εi have

the q × q covariance matrix Σi, σ
2 φ(w)/n is still equal to var(c>θ̂

n
), with now

Hi = AiΣ
−1
i A>i (1.4)

in M(w), and each Hi may have rank larger than 1; see for instance Harman and Trnovská (2009) for

the case of D-optimal design that maximizes det[M(w)]. When setting a normal prior N (θ0,Σ)
on θ in the regression model (1.3), with Σ having full rank, and when the errors εi are normal

N (0, σ2), the posterior variance of c>θ after n observations is σ2 φ(w)/n, with φ(w) given by (1.1)

and

Hi = aia
>
i + σ2 Σ−1/n = [ai n−1/2σΣ−1/2] [ai n−1/2σΣ−1/2]> (1.5)

in (1.2); one may refer in particular to Pilz (1983) for a thorough exposition on optimal design

for Bayesian estimation (Bayesian optimal design). When Hi is given by (1.5), c-optimal design

is equivalent to the minimization of c′>M−(w)c′ where c′ = Σ1/2c, M(w) =
∑q

i=1wi H
′
i, and

H′i = Σ1/2aia
>
i Σ1/2 + (σ2/n) Im for all i, so that we can assume that Σ = Im, the m-dimensional

identity matrix, without any loss of generality. Other cases of interest correspond to A- and L-
optimality, they will be considered in Section 4.

In general, not all Hi contribute to an optimal design w∗ as some of the weights w∗i equal

zero. We shall say that such an Hi, which does not support an optimal design, is inessential. In

Section 2 we show that any design w yields two simple inequalities that must be satis�ed by an Hi

that contributes to an optimal design. Any Hi that does not satisfy these screening inequalities is

therefore inessential and can be safely eliminated from H � we shall sometimes speak of (design-)

point elimination instead of matrix elimination, which is all the more appropriate when Hi has

the form (1.5) and the ai are seen as points in Rm. The idea originated from Pronzato (2003)

and Harman and Pronzato (2007) for D-optimal design (and for the construction of the minimum-

volume ellipsoid containing a set of points); it was further extended to Kiefer's ϕp criteria (Pronzato,
2013), to E-optimal design (Harman and Rosa, 2019), and to the elimination of inessential points in

the smallest enclosing ball problem (Pronzato, 2019). In Section 3, we use the Second-Order Cone

Programming formulation of c-optimal design of Sagnol (2011) to derive a third screening inequality.

Since A-optimal design can be seen as c-optimal design in a higher dimensional space, see Sagnol

(2011), the same screening inequalities can be used to eliminate inessential points in A-optimal

design. This is considered in Section 4, where a comparison is made with the elimination method of

Pronzato (2013). The inequalities proposed in the paper become more stringent when w approaches

an optimal design w∗, which can be used to accelerate the construction of an optimal design. The

examples of Section 5 provide an illustration for the particular case of a �multiplicative algorithm�,

classical in optimal design, but elimination of inessential could bene�t any other algorithm.
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2 Elimination of inessential points by the equivalence theorem

2.1 Optimality conditions

The function M → Φ(M) = c>M−c is convex on the set M≥ of symmetric non-negative de�nite

matrices. When M has full rank, the directional derivative of Φ at M in the direction M′, de�ned
by

FΦ(M,M′) = lim
α→0+

Φ[(1− α)M + αM′]− Φ(M)

α
,

equals

FΦ(M,M′) = −c>M−1(M′ −M)M−1c .

Denote Φ∗ = Φ(M∗) = minw∈Pq Φ[M(w)], with M∗ = M(w∗) a c-optimal matrix in H , and

de�ne

δ = δ(M) =
maxM′∈H c>M−1M′M−1c− c>M−1c

c>M−1c
, (2.1)

where the maximum is attained for M′ equal to some Hi ∈ H. The convexity of Φ implies that

Φ(M′) ≥ Φ(M) + FΦ(M,M′) for all M, M′ in H , that is,

Φ(M′) ≥ 2 Φ(M)− c>M−1M′M−1c for all M, M′ ∈H .

Similarly, using the stronger property that the function M→ 1/Φ(M) is concave, we obtain

Φ(M′) ≥ Φ2(M)

c>M−1M′M−1c
for all M, M′ ∈H . (2.2)

A matrix M∗ is c-optimal if and only if FΦ(M∗,M) ≥ 0 for all M ∈ H . Therefore, when M∗ has
full rank (which is necessarily the case when rank(H) = m for all H ∈ H), M∗ is c-optimal if and

only if

c>M−1
∗ HM−1

∗ c ≤ Φ∗ for all H ∈ H . (2.3)

Substituting Hi for H, since M∗ =
∑

i:w∗i>0 w∗iHi we obtain that

c>M−1
∗ HiM

−1
∗ c = Φ∗ for all Hi such that w∗i > 0 . (2.4)

The properties (2.3, 2.4) correspond to what is called �equivalence theorem� in optimal design,

which is central to major developments in the �eld since the pioneering work of Kiefer and Wolfowitz

(1960) on D-optimal design; see for instance Silvey (1980); Pukelsheim (1993). The equivalence

theorem takes a more complicated form when M∗ is singular, so that Φ is not di�erentiable at M∗;
see Pukelsheim (1993, Chap. 2, 4). When c belongs to the column space of M, the directional

derivative at M in the direction M′ is then

FΦ(M,M′) = max
A:MAM=M

−c>A>(M′ −M)Ac ,

and the equivalence theorem indicates that M∗ is c-optimal if and only if c belongs to the column

space of M∗ and there exists a generalized inverse M−
∗ of M∗ (i.e., such that M∗M

−
∗M∗ = M∗)

satisfying c>M−>
∗ HM−

∗ c ≤ Φ∗ for all H ∈ H, with equality for all Hi with w
∗
i > 0.
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When all Hi have rank one, Elfving's theorem (1952) gives a simpler necessary and su�cient

condition for c-optimality; see also (Pukelsheim, 1993, p. 50). In (Sagnol, 2011), Elfving's theorem

is extended to the case of matrices Hi having rank larger than one; see also Section 3. The

following lemma summarizes the properties that we shall use to derive screening bounds based

on the equivalence theorem.

Lemma 2.1. A c-optimal matrix M∗ = M(w∗) satis�es

1

1 + δ
Φ(M) ≤ Φ∗ = Φ(M∗) ≤ Φ(M) for any full rank matrix M ∈H (2.5)

and there exists a generalized inverse M−
∗ of M∗ such that

c>M−
∗HiM

−
∗ c = Φ∗ for all Hi such that w∗i > 0 . (2.6)

Proof. The �rst inequality in (2.5) is obtained by substituting M∗ for M′ in (2.2) and using (2.1) and
maxM′∈H c>M−1M′M−1c ≥ c>M−1M∗M

−1c; the second inequality follows from the optimality

of M∗; (2.6) is part of the equivalence theorem.

2.2 Elimination rule

The following property allows us to eliminate inessential matrices Hi from H. The proof is given

in Appendix A. We denote by λmax(A) and λmin(A) the maximum and minimum eigenvalues,

respectively, of the matrix A.

Theorem 2.1. Let M be any full rank matrix in H , δ = δ(M) be given by (2.1), and Hi be a

matrix in H such that

B1(M,Hi) =

[
1−∆i

(
δ

1 + δ

)1/2
]

Φ(M)− c>M−1HiM
−1c > 0 , (2.7)

or

B2(M,Hi) = γ(κi, ϕ) Φ(M)− c>M−1HiM
−1c > 0 , (2.8)

where ∆i = λmax(Ωi)− λmin(Ωi), κi = λmax(Ωi)/λmin(Ωi), with Ωi = M−1/2HiM
−1/2, and

γ(κ, ϕ) =
cos2(ω − ϕ) + κ sin2(ω − ϕ)

cos2(ω) + κ sin2(ω)
, with ω = ω(κ, ϕ) =

1

2

{
arccos

[
κ− 1

κ+ 1
cos(ϕ)

]
+ ϕ

}
,

ϕ = arccos[(1 + δ)−1/2] and M−1/2 a square-root matrix of M−1. Then Hi does not support a

c-optimal design.

Remark 2.1. (i) In Theorem 2.1, (2.7) remains valid when the matrices Hi do not have full rank

provided that M is nonsingular. In that case, on the one hand λmin(Ωi) = 0 and ∆i can be

computed more e�ciently as ∆i = λmax(Ωi) = λmax(AT
i M−1Ai) when we write Hi = AiA

T
i . On

the other hand, κi becomes in�nite and γ(κi, ϕ) = 0 in (2.8), which therefore cannot be used to

eliminate singular matrices from H. The examples in Section 5.1 will also illustrate that B2(M,Hi)
is more sensitive than B1(M,Hi) to badly conditioned matrices Hi.

(ii) The precise knowledge of ∆i is not necessary to be able to eliminate a matrix Hi: any Hi

such that c>M−1HiM
−1c <

{
1−∆i [δ/(1 + δ)]1/2

}
Φ(M) with ∆i > ∆i can be safely removed

from H. Also, for a �xed ϕ, γ(κ, ϕ) is a decreasing function of κ, so that an overestimation of

λmax(Ωi) and an underestimation of λmin(Ωi) still provide a safe elimination of Hi via (2.8).

(iii) The factor
{

1−∆i [δ/(1 + δ)]1/2
}
tends to one as δ tends to zero, which renders the sieve

based on (2.7) �ner as M gets closer to an optimal matrix M∗. Since for a given κ, γ(κ, ϕ) is a

decreasing function of ϕ, the sieve based on (2.8) becomes also �ner as δ decreases.
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The following result indicates that the bounds in Theorem 2.1 cannot be improved by a constant

factor. The proof is given in Appendix B.

Theorem 2.2. For any δ, ε > 0 and any dimension m ≥ 2, there exists a set H, a matrix M in H
(that is, a design on H) and a Hi ∈ H supporting an optimal design such that δ equals δ(M) given

by (2.1) and B1(M,Hi) + ε > 0, B2(M,Hi) + ε > 0.

The arti�cial example used for the proof of Theorem 2.2 suggests that (2.8) can be more accurate

than (2.7). It is not always the case, however, and Example 1 of Section 5 will present situations

where (2.7) eliminates more points than (2.8).

3 Elimination of inessential points by the generalized Elfving the-

orem

3.1 A criterion based on Second Order Cone Programming

Write each Hi in H as Hi = AiA
>
i with Ai a m × ` matrix; see for instance (1.4) and (1.5).

Sagnol (2011) gives a generalization of Elfving theorem to multiresponse models; see also Dette and

Holland-Letz (2009) for the case heteroscedastic regression models and Dette (1993) for a model-

robust version of c-optimality. A consequence of this generalized Elving theorem is that c-optimal

design is equivalent to a Second Order Cone Programming problem (Sagnol, 2011); Theorem 3.2

exploits this equivalence to derive a su�cient condition for elimination of an inessential Hi.

Theorem 3.1 (Sagnol, 2011). Let u∗ and (µ∗,h∗1, . . . ,h
∗
q) be respectively primal and dual solutions

of the second-order cone programs:

P− SOCP : max
u∈Rm

c>u subject to ‖A>i u‖ ≤ 1 for all i = 1, . . . , q ,

D− SOCP : min
µ∈Rq ,hi,...,hq∈R`

q∑
i=1

µi subject to c =

q∑
i=1

Aihi and ‖hi‖ ≤ µi for all i = 1, . . . , q .

Then, w∗ = µ∗/(
∑q

i=1 µ
∗
i ) de�nes a c-optimal design; that is, it minimizes φ(w) given by (1.1) with

respect to w ∈ Pq. Moreover, φ(w∗) = (
∑q

i=1 µ
∗
i )

2 = (c>u∗)2 and strictly positive w∗i correspond

to indices i such that ‖A>i u∗‖ = 1.

Theorem 3.2. Let M = M(w) be any full-rank matrix in H . Any matrix Hi ∈ H such that

B3(M,Hi) = 1 + sup
β≥λmax(A>i M−1Ai)

{
Φ(M)

(1 + δ)[c>(βM−Hi)−1c]
− β

}
> 0 (3.1)

does not support a c-optimal design.

The proof is given in Appendix C. It relies on the construction of an upper bound t∗ on

supz∈F (u) ‖A>i z‖, where F (u) = {z ∈ Rm : c>z ≥ c>u and ‖A>j z‖ ≤ 1 , j = 1 . . . , q}; Hi

can be safely eliminated when t∗ < 1. The value of t∗ is obtained by solving a one-dimensional

optimization problem,

t∗ = inf
β≥λmax(A>i M−1Ai)

β − (c>u)2

c>(βM−Hi)−1c
, (3.2)

where the function to be minimized is de�ned by continuity at β = λmax(A>i M−1Ai), see Sec-

tion 3.2.
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Remark 3.1. (i) Theorem 3.2 is valid whatever the rank of matrices Hi. We have λmax(A>i M−1Ai) =
λmax(Ωi), where Ωi = M−1/2HiM

−1/2 is used in Theorem 2.1.

(ii) The determination of t∗ in (C.1) need not be very precise: any upper bound smaller than

one also allows us to safely eliminate Hi. Similarly, restricting β to be larger that an upper bound

on λmax(A>i M−1Ai) only makes the screening test more conservative.

The following theorem extends the result of Theorem 2.2 to the bound B3, showing that it

cannot be improved by a constant factor. The proof is in Appendix B.

Theorem 3.3. For any δ, ε > 0 and any dimension m ≥ 2, there exists a set H, a matrix M in H
(that is, a design on H) and a Hi ∈ H supporting an optimal design such that δ equals δ(M) given

by (2.1) and B3(M,Hi) + ε > 0.

3.2 Numerical calculation of B3(M,Hi)

Consider the function f(·) involved in the determination of t∗, see (C.1),

f(β) = β − Φ(M)

(1 + δ)[c>(βM−Hi)−1c]
, β > βmin = λmax(A>i M−1Ai) ,

for which we de�ne by continuity f(βmin) = βmin. For β > βmin, its �rst and second derivatives f ′

and f ′′ are

f ′(β) = 1− Φ(M)[u>Mu]

(1 + δ)[c>u]2
, f ′′(β) = 2

Φ(M)
{

[uTM(βM−Hi)
−1Mu][c>u]− [u>Mu]2

}
(1 + δ)[c>u]3

where we have denoted u = (βM−Hi)
−1c. Since f ′′(β) > 0 follows from Cauchy-Schwarz inequal-

ity, f is convex and can easily be minimized on [βmin,∞). (The convexity of f is already clear by

construction, as we obtained Problem (C.1) by partial minimization over a subset of variables of

a convex semi-de�nite program, see the proof of Theorem 3.2 in Appendix C.) In the examples of

Section 5 we use the simple dichotomy line search presented hereafter. The search can be stopped

as soon as a β is found such that f(β) < 1 (and Hi can be eliminated), or when a lower bound f on

f(β) for β ∈ [βmin,∞) has been determined and is such that f ≥ 1 (and Hi cannot be eliminated).

Similarly to the de�nition of f(βmin), we de�ne by continuity

f ′(βmin) = 1− Φ(M)

(1 + δ) (c>M−1/2PiDiP>i M−1/2c)
,

where PiDiP
>
i corresponds to the eigen-decomposition of Ωi = M−1/2HiM

−1/2 and Di is the

diagonal matrix with {Di}k,k = 1 if {D}k,k = βmin and {Di}k,k = 0 otherwise.

The fact that f in Stage 2 gives a lower bound on f is a simple consequence of its convexity.

The procedure converges exponentially fast since the search interval is halved at each iteration of

Stage 2: when k1 expansions are needed at Stage 1, k2 = k1−1+d1/ log2(ε)e iterations are required
at Stage 2, and in general k1 is very small (with often k1 = 1). Also, the initial tests at Stage 0 and
the tests f(c) < 1 and f ≥ 1 at Stage 2 frequently yield early termination.

3.3 The special case Hi = aia
>
i

Elimination with (2.8) cannot be used when Hi = aia
>
i since B2(M,Hi) = 0, see Remark 2.1-(i).

However, (2.7) and (3.1) remain valid, with ∆i = λmax(A>i M−1Ai) = λmax(Ωi) = a>i M−1ai. More

importantly, the minimum t∗ in (C.1) can be expressed explicitly, so that no iterative minimization

is needed, and B1(M,aia
>
i ) > 0 implies B3(M,aia

>
i ) > 0; that is, B3 is more e�cient than B1 in

c-optimal design with Hi = aia
>
i .
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Determination of t∗ in (C.1) by dichotomy line search.

0) (Initial tests) Compute βmin = λmax(A>i M−1Ai);
if βmin < 1, stop: Hi can be eliminated; otherwise, compute f ′(βmin);
if f ′(βmin) ≥ 0, stop: Hi cannot be eliminated.

1) (Determination of a search interval [a, b])
Set a = βmin, f

′
a = f ′b = f ′(βmin).

while f ′b < 0, do
| b = 2 a, compute f ′b = f ′(b); if f ′b < 0, set a = b, f ′a = f ′b.

2) (Minimization of f in [a, b])
Take 0 < ε� 1; compute fa = f(a), fb = f(b).
while b− a > ε βmin, do

| set c = (a+ b)/2 and compute fc = f(c); if fc < 1, stop: Hi can be eliminated;

| compute f ′c = f ′(c);
| if f ′c < 0, set a = c, fa = fc and f

′
a = f ′c;

| otherwise, set b = c, fb = fc and f
′
b = f ′c;

| compute a lower bound on f : f = [f ′b (fa − a f ′a)− f ′a (fb − b f ′b)]/(f ′b − f ′a);
| if f ≥ 1, stop: Hi cannot be eliminated.

Theorem 3.4. For any full rank matrix M in H and Hi = aia
>
i in H, B3(M,aia

>
i ) de�ned by

(3.1) satis�es

B3(M,aia
>
i ) > 0⇐⇒ a>i M−1ai ∈ [0, 1) ∪

(
δ

(3)
i ,∆

(3)
i

)
, (3.3)

where

δ
(3)
i =

(1 + δ) (c>M−1ai)
2

Φ(M)
, ∆

(3)
i = 1 +

1

δ

[
1− (δ

(3)
i )1/2

]2
.

Moreover, if Hi satis�es (2.7), then it also satis�es (3.1).

Proof. Using the Sherman-Morrison-Woodbury formula for matrix inversion, we obtain that the

function f(β) in (C.1) is

f(β) = β − β Φ(M)

(1 + δ)
[
Φ(M) + (c>M−1ai)2

β−a>i M−1ai

] . (3.4)

Direct calculation shows that f ′(a>i M−1ai) = 1 − (a>i M−1ai)/δ
(3)
i , so that f ′(a>i M−1ai) ≥ 0 is

equivalent to ∆i = a>i M−1ai ≤ δ(3)
i , with δ

(3)
i ≤ (δ + 1)2 from the de�nition (2.1) of δ.

When f ′(a>i M−1ai) < 0, the minimizer β∗ equals τ [τ + (c>M−1ai)
2]/[δΦ(M)(c>M−1ai)

2],
where τ = |c>M−1ai| δ1/2 [Φ(M)(a>i M−1ai)−(c>M−1ai)

2]1/2 (with Φ(M)(a>i M−1ai) ≥ (c>M−1ai)
2

from Cauchy-Schwarz inequality). We then obtain that f(β∗) < 1 is equivalent to ∆i < ∆
(3)
i , with

∆
(3)
i − δ

(3)
i = (1 + 1/δ) [(c>M−1ai)/Φ

1/2(M)− 1]2 ≥ 0, which completes the proof of (3.3).

Suppose that (2.7) is satis�ed; that is, B1(M,aia
>
i ) > 0. It is equivalent to

∆i < ∆
(1)
i =

(
1 + δ

δ

)1/2 [
1− (c>M−1ai)

2

Φ(M)

]
.
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If ∆i < 1, then B3(M,aia
>
i ) > 0. Therefore, we only need to consider the case when ∆i ≥ 1. We

have

B1(M,aia
>
i ) > 0⇐⇒ (c>M−1ai)

2 < T
(1)
i = Φ(M)

[
1−∆i

(
δ

1 + δ

)1/2
]
.

Denote T
(3)
i = Φ(M) ∆i/(1 + δ). T

(3)
i − T (1)

i is an increasing function of ∆i, and for ∆i = 1 we

have T
(3)
i − T

(1)
i = Φ(M) {[δ(1 + δ)]1/2 − δ}/(1 + δ) > 0, showing that T

(3)
i − T

(1)
i > 0 for all

∆i ≥ 1. Therefore, B1(M,aia
>
i ) > 0 and ∆i ≥ 1 imply (c>M−1ai)

2 < T
(3)
i , which is equivalent to

∆i > δ
(3)
i . It just remains to show that ∆

(1)
i ≤ ∆

(3)
i . Direct calculation gives

∆
(3)
i −∆

(1)
i =

1

δ (1 + δ)

{
(δ

(3)
i )1/2 − 1

1 + [δ/(1 + δ)]1/2

}2

≥ 0 ,

which completes the proof.

Figure 1 shows the regions B1(M,aia
>
i ) > 0 and B3(M,aia

>
i ) > 0 in the plane with x variable

Ri = (c>M−1ai)
2/Φ(M) and y variable ∆i. The yellow area is a forbidden zone, due to Cauchy-

Schwarz inequality ∆i ≥ Ri and the de�nition of δ which imposes Ri ≤ δ + 1. B1(M,aia
>
i ) > 0

is equivalent to ∆i lying below the red line; it corresponds to the region colored in red. De�ne

ψ = (1 + 1/δ)1/2 > 1. The line B1 = 0 crosses the main diagonal ∆i = Ri at point A, with both

coordinates equal to Ri(A) = ψ/(1+ψ). The blue diagonal dashed-line corresponds to ∆i = δ(3)(Ri)
and the blue dashed curve to ∆i = ∆(3)(Ri). It is tangent to the line B1 = 0 at point B with

coordinates (1/[δ (1 + ψ)2], 2ψ/(1 + ψ)); it is also tangent to the horizontal line ∆i = 1 at point

C with coordinates (1/(1 + δ), 1) and tangent to the main diagonal at point D with coordinates

(1 + δ, 1 + δ); C is also on the line ∆i = δ(3)(Ri). The region B3(M,aia
>
i ) > 0 corresponds to the

red region B3(M,aia
>
i ) > 0 augmented by the blue region, showing the superiority of B3 over B1.

Figure 1: Regions B1(M,aia
>
i ) > 0 (red) and B3(M,aia

>
i ) > 0 (red and blue) in the plane (Ri,∆i),

with Ri = (c>M−1ai)
2/Φ(M); the plot is for δ = 1/3.
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4 Elimination of inessential points in A-optimal design

4.1 New elimination rules for A-optimal design

Denote by vec(A) the operation that stacks the columns of the m × n matrix A into a single mn
dimensional column vector and by A ⊗B the Kronecker product of matrices A and B. Then, for

any m × m matrix A and c = vec(Im) we have c>(Im ⊗ A) c = trace(A), and therefore, for an

information matrix M(w) given by (1.2),

c>(Im ⊗M−1(w)) c = trace[M−1(w)] = ΦA[M(w)] = φA(w) ,

with φA the A-optimality criterion. Denoting M(w) = Im ⊗M(w) =
∑q

i=1wi (Im ⊗Hi), we get

φA(w) = c>M
−1

(w)c , (4.1)

showing that the screening bounds of Theorems 2.1 and 3.2 can also be used to eliminate inessential

Hi in A-optimal design. We use M
−1

instead of M
−
in (4.1) since the property that c belongs to

the column space of the optimal matrix M∗ implies that the corresponding M∗ is nonsingular, with
φA(w) = ∞ for a singular M(w). We thus obtain the following result, where we use the property

that, for any m×m matrix A, Im ⊗A has the same eigenvalues as A (with multiplicities m).

Corollary 4.1. Let M be any full rank matrix in H and Hi be a matrix in H such that

B1,A(M,Hi) =

[
1−∆i

(
δ

1 + δ

)1/2
]

ΦA(M)− trace(M−2Hi) > 0 , (4.2)

or

B2,A(M,Hi) = γ(κi, ϕ) ΦA(M)− trace(M−2Hi) > 0 ,

or

B3,A(M,Hi) = 1 + sup
β≥λmax(A>i M−1Ai)

{
ΦA(M)

(1 + δ) trace[(βM−Hi)−1]
− β

}
> 0 , (4.3)

where

δ = δ(M) = max
i=1,...,q

trace(M−2Hi)

ΦA(M)
− 1 , (4.4)

and ∆i and γ(κi, ϕ) are de�ned in Theorem 2.1. Then Hi does not support an A-optimal design.

The case Hi = aia
>
i deserves special attention here too. We cannot directly use the results of

Section 3.3 since the matrix Hi = Im⊗Hi = (Im⊗ai)(Im⊗a>i ) is not of rank 1. However, similarly

to Section 3.3, simpli�cations are obtained for B1,A and B3,A since ∆i = λmax(A>i M−1Ai) =
a>i M−1ai and the test for B3(M,aia

>
i ) > 0 can be made explicit. Again, B1,A(M,aia

>
i ) > 0

implies B3,A(M,aia
>
i ) > 0, indicating that B3,A is more e�cient than B1,A for A-optimal design

with Hi = aia
>
i .

Theorem 4.1. For any full rank matrix M in H and Hi = aia
>
i in H, B3,A(M,aia

>
i ) de�ned by

(4.3) satis�es

B3,A(M,aia
>
i ) > 0⇐⇒ a>i M−1ai ∈ [0, 1) ∪

(
δ

(3,A)
i ,∆

(3,A)
i

)
, (4.5)

9



where

δ
(3,A)
i =

(1 + δ) a>i M−2ai
ΦA(M)

, ∆
(3,A)
i = 1 +

1

δ

[
1− (δ

(3,A)
i )1/2

]2
.

Moreover, if Hi satis�es (4.2), then it also satis�es (4.3).

Proof. Using the Sherman-Morrison-Woodbury formula for matrix inversion, we obtain that the

function f(β) involved in the computation of B3,A is

f(β) = β − β ΦA(M)

(1 + δ)
[
ΦA(M) +

a>i M−2ai
β−a>i M−1ai

] ,
that is, an expression similar to (3.4) with a>i M−2ai substituted for (c>M−1ai)

2. The proof of

(4.5) is thus similar to that of (3.3), with now β∗ = τ [τ + a>i M−2ai]/[δΦA(M) a>i M−2ai] where
τ = (δ a>i M−2ai)

1/2 [ΦA(M)(a>i M−1ai)−a>i M−2ai]
1/2 and a>i M−2ai ≤ (a>i M−1ai)λmax(M−1) <

(a>i M−1ai) ΦA(M). The condition B1(M,aia
>
i ) > 0 is equivalent to

∆i < (1 + 1/δ)1/2
[
1− (a>i M−2ai)/ΦA(M)

]
.

The rest of the proof is identical to that of Theorem 3.4, with a>i M−2ai substituted for (c>M−1ai)
2.

Remark 4.1. More generally, following the same line as in Sagnol (2011, Section 4.1), similar

results can be derived for L- (linear) optimality � sometimes also called AK-optimality by some

authors � where the criterion to be minimized is ΦL[M(w)] = trace[C M−(w)], with C symmetric

nonnegative de�nite. Indeed, for C = KK>, with K an m × r matrix, r ≤ m, we can write

trace(C M−) = trace(K>M−K) = c>M
−

c, with c = vec(K) and M = Ir ⊗M, so that L-
optimal design corresponds to a particular case of c-optimal design in a higher dimensional space.

In particular, when Hi = aia
>
i , the function f(β) in the computation of B3 is

f(β) = β − β ΦL(M)

(1 + δ)
[
ΦL(M) +

a>i M−1CM−1ai
β−a>i M−1ai

] ,
and the result of Theorem 4.1 remains valid when ΦA(M) is replaced by ΦL(M) and a>i M−2ai by
a>i M−1CM−1ai in δ

(3,A).

4.2 Comparison between screening bounds

In (Pronzato, 2013) a screening rule is proposed for all criteria of the form Φp(M) = trace(M−p),
for p ∈ (−1,∞). The specialization of this result to A-optimal design, which corresponds to p = 1,
writes as follows.

Theorem 4.2 (Pronzato, 2013). Let M be any full rank matrix in H and Hi be a matrix in H

such that

B4,A(M,Hi) = ω2 ΦA(M)

1 + δ
− trace(M−2Hi) > 0 ,

where ω is the unique root in the interval (α1/2, 1) of the fourth degree polynomial P (x) = (α −
x2) (1 + δ − αx)2 + (1 − α)3 x2, with δ given by (4.4) and α = λmin(M−1)/ΦA(M) < 1. Then Hi

does not support an A-optimal design.
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Besides the resolution of a fourth-order polynomial equation, the calculation of B4,A(M,Hi)
requires the computation of the minimum eigenvalue of M−1 (or equivalently of the maximum

eigenvalue of M).

The comparison of B4,A with B1,A and B3,A is complicated due to the absence of an explicit

expression for ω and its dependence on λmin(M−1).
Consider the particular situation where M = αM∗ for some α ∈ (0, 1), with M∗ the A-optimal

matrix in H . Denote γi = trace(M−2
∗ Hi)/φ

∗
A, where φ

∗
A = ΦA(M∗) and γi ∈ (0, 1] for all i from

the optimality of M∗. Direct calculation gives trace(M−2Hi) = (γi/α
2)φ∗A, δ = 1/α − 1 and

trace(M−1Hi) = trace(M−1
∗ Hi)/α > trace(M−2Hi)/ΦA(M) = γi/α, with α = φ∗A/ΦA(M) the

A-e�ciency of M.

For Hi = aia
>
i , denote t

∗
i = trace(M−1

∗ Hi) = a>i M−1
∗ ai. The de�nition (4.2) of B1,A gives

B1,A(M,aia
>
i ) =

[
1− t∗i

(1− α)1/2

α
− γi
α

]
ΦA(M) <

{
1− γi

α
[1 + (1− α)1/2]

}
ΦA(M) .

Therefore, B1,A(M,aia
>
i ) > 0 is equivalent to t∗i < t1(α, γi) = (1 − γi/α)α/(1 − α)1/2 and implies

γi < γ1(α) = α [1+(1−α)1/2]−1. From ω < 1 we obtain that B4,A(M,aia
>
i ) > 0 implies γi < α2. If

we compare with the necessary condition γi < γ1(α) for B1,A(M,aia
>
i ) > 0, we see that elimination

with B4,A is more demanding than with B1,A for small α, but less demanding for α > ϕ, the
Golden-Section number (

√
5− 1)/2 ' 0.6180, that is, when M is close to being optimal.

To make the comparison more precise, we specialize the example to the case M∗ = Im, with
therefore a>i M−2

∗ ai = ‖ai‖2 ≤ φ∗A = m and M = αIm, α ∈ (0, 1). It may correspond for instance

to A-optimal design in the hypercube [−1, 1]m but also covers other situations. We obtain that

B1,A(M,aia
>
i ) > 0 is equivalent to ‖ai‖2 < C1(α,m) = mα/[1+m (1−α)1/2], and B3,A(M,aia

>
i ) >

0 is equivalent to ‖ai‖2 < α for α ∈ (0, 1/m], and to ‖ai‖2 < C3(α,m) = m/{1 + [(m − 1)(1/α −
1)]1/2}2 for α ∈ (1/m, 1) (and C3(α,m) ≥ α, with C3(1/m,m) = 1/m). Moreover, B4,A(M,aia

>
i ) =

mω2−‖ai‖2/α, with ω = ω(m,α) de�ned in Theorem 4.2, and B4,A(M,aia
>
i ) > 0 is equivalent to

‖ai‖2 < C4(α,m) = mα2 ω2(m,α).
The left panel of Fig. 2 shows the bounds C1(α,m), C3(α,m) and C4(α,m) as functions of α

for m = 3. C1(α,m) < C3(α,m) for α ∈ (0, 1) and any m ≥ 2 since B3,A is always more e�cient

than B1,A, see Theorem 4.1. On the one hand, C4(α,m) < C1(α,m) on the left (and major) part

of the interval [0, 1], which makes B4,A the less powerful for those α. On the other hand, for any

m ≥ 2 there exist α∗1(m) < α∗3(m) in (0, 1) such that C4(α,m) > C1(α,m) for α > α∗1(m) and

C4(α,m) > C3(α,m) for α > α∗3(m), which makes B4,A the most powerful close to optimality.

The right panel of Fig. 2 shows the A-e�ciency levels α∗1(m) and α∗3(m) above which B4,A is more

powerful than B1,A and B3,A, respectively, form = 2 to 25. The numerical comparison in Section 5.3

indicates, however, that this behavior is not generic, B4,A being there much less powerful than B1,A

and B3,A.

5 Examples

We use rank-one matrices Hi = aia
>
i in Section 5.3 on A-optimal design, but full rank matrices

Hi = aia
>
i + λ Im, λ > 0, in the examples of Sections 5.1 and 5.2 which concern c-optimal design.

When Hi = aia
>
i for all i, c-optimal design corresponds to a linear programming problem (Harman

and Jurík, 2008), and elimination of inessential Hi is less a problem than in the more di�cult

situation where rank(Hi) > 1.
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Figure 2: Left: C1(α,m) (red F), C3(α,m) (magenta +) and C4(α,m) (black ♦), such that Hi is

eliminated by Bj,A when ‖ai‖2 < Cj , as functions of the A-e�ciency α ∈ (0, 1) for m = 3. Right:
A-e�ciencies α∗1(m) (red F) and α∗3(m) (magenta +) above which B4,A is more powerful than B1,A

and B3,A for m = 2, . . . , 25.

To illustrate the potential interest of the elimination of inessential Hi in the construction of an

optimal design, we consider the multiplicative algorithm of Fellman (1974), de�ned by

wk+1
i =

wki
[
c>M−1(w)HiM

−1(w)c
]1/2∑q

j=1w
k
i [c>M−1(w)HjM−1(w)c]

1/2
(5.1)

for c-optimality, and

wk+1
i =

wki trace1/2
[
M−2(w)Hi

]∑q
j=1w

k
i trace1/2 [M−2(w)Hj ]

(5.2)

for A-optimality; see also Yu (2010).

5.1 Example 1: quadratic regression

In this example Hi = aia
>
i + λ I2 with ai = a(ti) = (ti, t

2
i )
> (m = 2) and ti ∈ [0, 1] for all i. We

take c = (1, c)>. When λ = 0, the c-optimal design over the compact set of matrices Ht with

t ∈ [0, 1] is the probability measure

ξ∗0 =

{
α∗ δ√2−1 + (1− α∗) δ1 if c ∈ [0,

√
2− 1] ∪ [1,∞),

δc otherwise,

where α∗0 = (
√

2/2) (1 − c)/[2(
√

2 − 1) − c] and δt denotes the Dirac delta measure at t. In the

rest of the example, we take c = (
√

2 − 1)/2, which gives a 2-point optimal design with α∗0 =
(
√

2/2) (1−
√

2/3)/(
√

2− 1) ' 0.902369.
Direct calculation based on the optimality condition (2.3) shows that for λ ≥ λ0 = (1/2) (15 +

16
√

2)/(18 + 11
√

2), the optimal design is ξ∗λ = δ1. For λ0 ≥ λ ≥ λ1 = (
√

2− 1)3/(4
√

2), ξ∗λ = δt,
with t = 1 for λ = λ0, t =

√
2 − 1 for λ = λ1, and t and λ related by λ = t3 (

√
2 + 1) (2t + 1 −√

2)/[2(t+ 1 +
√

2)] in between. For λ < λ1, ξ
∗
λ is supported on the two points

√
2− 1 and 1, like
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ξ∗0 , and α
∗ can be computed numerically, with α∗ ' 0.980081, α∗ ' 0.910140 and α∗ ' 0.902377

for λ = 10−2, λ = 10−3 and λ = 10−6, respectively.

First, we test and compare the capability of the inequalities Bj(M(w),Hi) > 0, for j = 1, 2, 3,
to eliminate inessential Hi on a set of N random designs. These designs have a �xed support H of

size q, corresponding to t1 =
√

2− 1 and ti = (i− 2)/(q− 2) for i = 2, . . . , q; the associated weights

are wi = (γi + ζi)/[
∑q

i=1(γi + ζi)], where γ1 = α∗, γq = (1− α∗), γi = 0 for i 6= 1, q, and where the

ζi are i.i.d. in [0, s]. For λ small enough, the designs are close to optimality when s is close to 0.

For each design generated, characterized by a vector of weights w, we compute how many Hi are

eliminated by Bj(M(w),Hi) > 0, j = 1, 2, 3.
Figure 3 present box plots, constructed from the N random design, of the proportions of inessen-

tial Hi detected when using each testBj(M,Hi) > 0 separately (Tj), when using pairs of tests jointly
(Tj U Tk), and when using the three tests altogether (T1 U T2 U T3). We take q = 500, s = 10−3,

N = 1 000 and λ = 10−3 (left), λ = 10−6 (right); ε = 0.01 in the dichotomy procedure to compute

B3. As anticipated in Remark 2.1-(i), T2 is rather ine�cient when λ is small, a typical situation

when λ Im is just a regularization term introduced to avoid singularity of the Hi. T1 is more pow-

erful than T2 for the two values of λ considered, but not uniformly better for λ = 10−3 since the

combination of T1 and T2 eliminates more points than T1 alone. Although the Hi have full rank,

so that Theorem 3.4 does not apply, T3 always performs best on this example and combination with

another bound is not helpful.

Figure 3: Box plots for 1 000 random design (q = 500, s = 10−3) of proportions of inessential

Hi when using each test separately (Tj), by pairs (Tj U Tk), and altogether (T1 U T2 U T3), for

λ = 10−3 (left) and λ = 10−6 (right).

The left panel of Fig. 4 shows B1(M,H(t)), B2(M,H(t)) and 10B3(M,H(t)) as functions of

t ∈ [0, 1], for H(t) = a(t)a>(t) + 10−3 I2 and M = M(w1 000) the matrix obtained after 1 000

iterations of the multiplicative algorithm (5.1), initialized at the uniform measure on H that gives

weight 1/q at each of the q matrices Hi = H(ti) (q = 500). All Hi such that one of the Bj(M,Hi)
is positive can be safely removed from H. The right panel plots the proportions ρj(k) of Hi such

that Bj(M(wk),Hi) > 0 as a function of the iteration number k, for k = 1, . . . , 1 000.
In the rest of the example, we investigate the potential interest of eliminating inessential points

in terms of computational cost (time). We take q = 500, λ = 10−3 and ε = 0.01 for B3.

The left panel of Fig. 5 shows the evolution of δ given by (2.1) as a function of computational

time T for the multiplicative algorithm (5.1), initialized as above, when no Hi is removed (black

squares) and when inessential Hi are eliminated at iteration k if Bj(M(wk),Hi) > 0. T is measured
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Figure 4: Left: B1(M,H(t)) (red F), B2(M,H(t)) (blue O) and 10B3(M,H(t)) (magenta +) as

functions of t ∈ [0, 1], with H(t) = a(t)a>(t) + 10−3 I2 and M = M(w1 000) obtained after 1 000

iterations of algorithm (5.1); all parts above the horizontal line can be removed. Right: proportion

of inessential Hi as a function of the iteration number k (j = 1: red F, j = 2: blue O, j = 3:
magenta +).

in seconds (calculations with Matlab, on a PC with a clock speed of 2.50 GHz and 32 Go RAM),

but only the comparison between curves in meaningful. It indicates that, for the multiplicative

algorithm, it is more e�cient not to perform any screening test than to try to eliminate points at

every iteration with one of the screening test proposed in the paper. In particular, B3(M,Hi) has a
non negligible computational cost due to dichotomy search. If we consider that the computational

cost of one iteration (5.1) is roughly proportional to the size of w, q (1 − ρj(i)) at iteration i for

elimination by Tj, we may rescale the iteration counter k into
∑k

i=1(1− ρj(i)) which counts pseudo

iterations accounting for the decreasing size of wk. The right panel of Fig. 5 provides such a

comparison of computational costs that neglects the costs of the screening tests, and only shows

performance in terms of proportions of points eliminated; this is in agreement with Fig. 4-right.

To reduce the total computational cost, we now perform the screening tests more rarely, every

500 iterations only. Figure 6 presents the same information as Fig. 5 in this periodic screening

situation. The left panel shows that the test based on B1(M,Hi) is then the most powerful on this

example and provides a signi�cant acceleration of the algorithm. The curves on the right panel are

confounded up to iteration k = 500 when the �rst test is performed, compare with Fig. 5.

We have stopped the algorithm after 10 000 iterations. Figure 6 indicates that removing inessen-

tial points can accelerate the algorithm by lightening the iterations, but does not reduce the number

of iterations required to reach a given accuracy, as the value of δ reached after the 10 000 iterations

is approximately always the same.

5.2 Example 2: uniform points in the ball Bm(0, 1)

We take Hi = aia
>
i + λ Im with the ai in the m-dimensional unit ball Bm(0, 1). When the design

space is the whole ball, the delta measure at a∗ = c/‖c‖ is c-optimal, with Φ(M∗) = ‖c‖2/(λ+ 1)
and, for any ai ∈ Bm(0, 1), c>M−1

∗ HiM
−1
∗ c − Φ(M∗) = [(c>ai)

2 − c>c]/(λ + 1)2 ≤ 0. We take

c = (1, 0, . . . , 0)> throughout the example.

We �rst visualize, for the case m = 2, regions of the disk where design points are eliminated
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Figure 5: Left: Evolution of δ given by (2.1) as a function of computational time T for 10, 000
iterations of algorithm (5.1) with and without elimination of inessential Hi. Right: δ as a function
of pseudo iteration number. No elimination: black �, elimination by T1 (red F), T2 (blue O), or
T3 (magenta +), with screening at every iteration.

Figure 6: Same as Fig. 5 but with a screening test every 500 iterations only.

by the di�erent screening tests. Figure 7 shows the outside contours of those regions, de�ned by

the curves Aj = {ai ∈ B2(0, 1) : Bj(M(w),Hi) = 0}, for λ = 1 (left) and λ = 0.1 (right). The

matrix M(w) corresponds to a w close to optimality, obtained with a similar approach to previous

example: we set a1 = c and generate q−1 other random ai independently and uniformly distributed

in Bm(0, 1); the q associated weights are wi = (γi + ζi)/[
∑q

i=1(γi + ζi)], where γ1 = 1 and γi = 0
for i > 1, and where the ζi are i.i.d. in [0, s]. We have taken q = 105 and s = 10−5, and the designs

we use are such that Φ[M(w)]/Φ(M∗) ' 1.14 and 1.29 for λ = 1 and λ = 0.1, respectively. On the

left panel, the regions for T2 and T3 are hardly distinguishable and the two tests dominate T1; on

the right panel, T3 dominates T1 and T2, but none of them dominates the other. The complicated

shapes of the contours, even in such a simple example, indicates the di�culty of determining which

of the three tests is best in a given situation.

We take λ = 0.1 through the rest of the example. Figure 8 presents box plots of the proportions
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Figure 7: Outside contours of regions eliminated by the screening test T1 (red F), T2 (blue O), or
T3 (magenta +), for random matrices close to optimality; λ = 1 (left) and λ = 0.1 (right).

of inessential points detected when using each screening test separately (Tj), when using pairs of

tests jointly (Tj U Tk), and when using the three tests altogether (T1 U T2 U T3). The plots

are obtained from N random designs generated as above, with m = 5, q = 1 000, s = 10−4 and

N = 1 000. Here T1 is the less powerful, while T2 and T3 perform almost equally. There is no clear

bene�t in using several tests jointly.

Figure 8: Box plots for 1 000 random design (m = 5, λ = 10−1, q = 1 000, s = 10−4) of proportions

of inessential Hi when using each test separately (Tj), by pairs (Tj U Tk), and altogether (T1 U T2

U T3).

As in Example 1, we investigate the e�ect of point elimination on computational time: we

perform 2 000 iterations of the multiplicative algorithm, initialized at the uniform design on a set

of q points independently and uniformly distributed in Bm(0, 1), with m = 50 and q = 1 000.
Figure 9 presents the same information as Fig. 6, but when screening tests are performed more

frequently, every 100 iterations. The staircase shape of the curves on the left panel is due to the

long computational time required by the evaluation of Bj(M(wk),Hi) for all Hi not eliminated yet:
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there are 20 steps along each of the two curves, one every 100 iterations, shorter and shorter as more

Hi are discarded. The left panel shows that T3 is hardly competitive due to its high computational

cost; it becomes the most powerful if we omit this cost, see the right panel. T2 is more powerful

than T1 and quicker to compute than T3; it is the most e�cient in this example.

Figure 9: Left: Evolution of δ given by (2.1) as function of computational time T for algorithm

(5.1) with and without elimination of inessential Hi. Right: δ as a function of pseudo iteration

number. No elimination: black �, elimination by T1 (red F), T2 (blue O), or T3 (magenta +),

with screening every 100 iterations.

5.3 Example 3: A-optimal design

We consider A-optimal design for a product-type regression model where ai = a(xi), xi ∈ X =
[−1, 1]2 and, for x = (a, b), a(x) = (1, a, a2, b, b2, a b, a2 b, a b2, a2 b2)> ∈ R9. The A-optimal

design is the cross product of two A-optimal designs for quadratic regression on [−1, 1], given by

(1/4) δ−1 + (1/2) δ0 + (1/4) δ1, with trace(M−1
∗ ) = 64. To compute optimal designs, we discretize

X into a regular grid with 201× 201 points, which yields a set H of q = 40 401 rank-one matrices

Hi = aia
>
i .

The left panel of Fig. 10 shows the evolution of δ given by (2.1) as a function of computa-

tional time T for the multiplicative algorithm (5.2), initialized with the uniform distribution on H,

when no Hi is removed (black squares) and when inessential Hi are eliminated at iteration k if

Bj,A(M(wk),Hi) > 0, for j = 1, 3, 4. Although the screening tests are performed at every iteration,

we see that elimination of inessential points with T1 and T3 yields a signi�cant acceleration of the

algorithm. The higher computational cost of B4,A (it requires the computation of the minimum

eigenvalue of a m×m matrix, with here m = 9) is not the only reason for the poorer performance

of T4: the evolution of δ as a function of the pseudo iteration counter
∑k

i=1(1− ρj(i)) on the right

panel indicates that T4 is much less powerful than T1 and T3 on this example, a situation opposite

to that in Section 4.2. The superiority of T3 over T1 is no due to a smaller computational cost

(see the right panel), but to its more e�cient elimination; see Theorem 4.1. When Hi = aia
>
i , the

easy calculation of B3,A and its good performance in various situations make it the recommended

method for support point elimination in A-optimal design.
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Figure 10: Left: Evolution of δ given by (2.1) as a function of computational time T for 1, 000
iterations of algorithm (5.2) with and without elimination of inessential Hi. Right: δ as a function
of pseudo iteration number. No elimination: black �, elimination by T1 (red F), T3 (magenta +)

or T4 (blue ♦), with screening at every iteration.

6 Conclusion and further developments

We have derived three inequalities that must be satis�ed by any elementary information matrix

Hi that contributes to a c-optimal design. The �rst two, B1 and B2, are direct consequences of

the equivalence theorem for c-optimality; the third one B3 is derived from the dual problem. Each

of those inequalities can be used to safely eliminate, from a set H of q candidates, inessential Hi

that cannot be support points of an optimal design. When implemented within an optimization

algorithm, these inequalities can thereby provide a substantial acceleration by reducing the size of

the problem online. Screening tests do not need to be done every iteration, and examples have been

presented showing the value of periodic screening.

In the general situation where rank(Hi) > 1, elimination by B3 necessitates an iterative opti-

mization, which induces a non-negligible computational cost and makes it less useful than B1 and

B2. When rank(Hi) = m, both B1 and B2 can be used, and the major contribution to their com-

putational cost comes from the calculation of the maximum and minimum eigenvalues of a m×m
matrix. B2 is less e�cient than B1 when Hi is badly conditioned, but may perform better otherwise;

since there is a priori no strict superiority of one bound compared to the other, we recommend to

use both in parallel. When 1 < rank(Hi) < m, B2 cannot be used and we recommend to use B1

due to its much easier calculation than B3. The situation is somewhat reverse when rank(Hi) = 1:
B3 can be calculated explicitly and Theorem 3.4 shows that it is more e�cient than B1.

Since A-optimal design can be seen as a particular case of c-optimal design in a higher dimen-

sional space, these results extend directly to A-optimal design, and the same recommendations as

above can be made. In particular, when rank(Hi) = 1, B3 can still be calculated explicitly and The-

orem 4.1 indicates that it is more e�cient than B1. Numerical examples show that in general both

B1 and B3 outperform a screening bound already proposed for Kiefer's ϕp class of criteria, although
an example has been provided indicating that the situation is reverse in particular situations.

The fact that concurrent inequalities have been derived suggests that there may still be room for

improvement. The equivalence between c-optimal design and a lasso problem (Sagnol and Pauwels,

2019) is also a strong motivation for trying to derive other screening tests with low computational
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cost, especially for situations with large m and q.

Appendix

A Proof of Theorem 2.1

The proof relies on the following property.

Lemma A.1. Let Ω be a m×m symmetric non-negative de�nite matrix with minimum and max-

imum eigenvalues λa and λb, respectively. Then for any pair of unit vectors u, v in Rm making an

angle ϕ ∈ (−π/2, π/2), we have

min
u,v

u>Ωu− v>Ωv = −(λb − λa) | sin(ϕ)| , (A.1)

and

min
u,v

u>Ωu

v>Ωv
=
λa cos2(ω − ϕ) + λb sin2(ω − ϕ)

λa cos2(ω) + λb sin2(ω)
, (A.2)

where

ω =
1

2

{
arccos

[
λb − λa
λb + λa

cos(ϕ)

]
+ ϕ

}
. (A.3)

The minimum is attained for u and v lying in the plane spanned by eigenvectors ea, eb respectively
associated with λa and λb. In that plane, there exist four con�gurations that yield the minimum in

(A.1), respectively in (A.2), obtained by changing the sign of one coordinate, or of both coordinates,

of u and v (simultaneously) in the basis formed by ea and eb. For (A.1), one of these con�gurations

corresponds to u (respectively v) making an angle of π/4−|ϕ|/2 (respectively, π/4 + |ϕ|/2) with ea.
For (A.2), one con�guration corresponds to u (respectively v) making an angle of ω−ϕ (respectively,

ω) with ea. When λa = 0, ω = ϕ and minu,v(u>Ωu)/(v>Ωv) = 0.

Proof. (i) Denote f(u,v) = u>Ωu− v>Ωv. We assume that λb > λa to avoid the trivial solution

f(u,v) = 0 for all unit vectors u and v. The minimum of f cannot be achieved for u and v belonging

to the null space of Ω, since otherwise u>Ωu = v>Ωv = 0. Therefore, suppose that span(u,v) in-
tersects the column space of Ω, and denote by 0 ≤ λ1 < λ2 the eigenvalues of Πu,vΩΠu,v, with Πu,v

the orthogonal projector onto the plane (u,v), and by e1 and e2 the canonical orthornormal basis de-

�ned from the associated eigenvectors. In this coordinate system, we can write u = [cos(α), sin(α)]>

and v = [cos(β), sin(β)]>, which gives f(u,v) = λ1 [cos2(α) − cos2(β)] + λ2 [sin2(α) − sin2(β)] =
(λ2 − λ1) sin(α + β) sin(α − β) and u>v = cos(α − β) = cos(ϕ). The minimum of f for u,v in

this plane is thus equal to −(λ2 − λ1) | sin(ϕ)| and is attained when u and v are in one of the

con�gurations indicated in the lemma. The overall minimum of f is achieved when u and v lie in

the plane de�ned by eigenvectors ea and eb associated with λa and λb.
(ii) Denote now g(u,v) = (u>Ωu)/(v>Ωv). When Ω is singular (λa = 0), g reaches its

minimum value zero when u is in the null space of Ω. We thus suppose that λa > 0 and proceed as

above by writing u = [cos(α), sin(α)]> and v = [cos(β), sin(β)]> in the coordinate system de�ned

by e1 and e2. Since u>v = cos(α− β) = cos(ϕ), we obtain

g(u,v) =
λa cos2(β − ϕ) + λb sin2(β − ϕ)

λa cos2(β) + λb sin2(β)
.
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Direct calculation shows that the derivative with respect to β is proportional to (λ1 + λ2) cos(2β−
ϕ) − (λ2 − λ1) cos(ϕ), and the minimum g∗ of g(u,v) is achieved at β∗ obtained by substituting

λ1 and λ2 for λa and λb in (A.3). Finally, β∗ and g∗ only depend on λ1 and λ2 through their ratio

κ = λ2/λ1, with g∗ being a decreasing function of κ. The overall minimum of g is thus achieved

when u and v lie in the plane de�ned by ea and eb.

Proof. (of Theorem 2.1) We show that any Hi such that w∗i > 0 for some c-optimal design w∗

satis�es

(i) c>M−1HiM
−1c ≥

{
1−∆i [δ/(1 + δ)]1/2

}
Φ(M)

and

(ii) c>M−1HiM
−1c ≥ γ(κi, ϕ) Φ(M),

where ∆i, κi, ϕ and γ(κ, ϕ) are de�ned in the theorem.

Let M∗ = M(w∗) be a c-optimal matrix in H , and denote by M−
∗ its generalized inverse in the

equivalence theorem, see Section 2.1. Denote u = M−1/2c, v = M1/2M−
∗ c, û = u/‖u‖, v̂ = v/‖v‖

and Ωi = M−1/2HiM
−1/2 (the choice of the square root matrix unimportant). We have

u>u = Φ(M) ,

u>v = Φ∗ ,

v>v = c>M−
∗MM−

∗ c ≤ Φ∗ ,

where the last equality follows from the equivalence theorem for c-optimality. Also, c>M−1HiM
−1c =

u>Ωiu and the equivalence theorem gives c>M−
∗HiM

−
∗ c = v>Ωiv = Φ∗ = u>v. Moreover, de-

noting by ψ the angle between u and v, we have

cos(ψ) =
u>v

‖u‖ ‖v‖
≥
[

Φ∗
Φ(M)

]1/2

≥ 1

(1 + δ)1/2
,

see (2.5).

We �rst prove (i). Using (A.1), we have

c>M−1HiM
−1c = u>Ωiu = ‖u‖2 û>Ωiû

≥ ‖u‖2
(
v̂>Ωiv̂ −∆i | sin(ψ)|

)
= Φ(M)

(
Φ∗

c>M−
∗MM−

∗ c
−∆i | sin(ψ)|

)
≥ Φ(M) (1−∆i | sin(ψ)|) ≥ Φ(M)

{
1−∆i [δ/(1 + δ)]1/2

}
.

This proves (i) and therefore (2.7).

We now prove (ii). Denote Ri = (c>M−1HiM
−1c)/Φ(M) = (u>Ωiu)/(u>u). We can write

Ri =
Φ∗
‖v‖2

û>Ωiû

v̂>Ωiv̂
≥ û>Ωiû

v̂>Ωiv̂
.

Applying (A.2) of Lemma A.1 to the right-hand side and using the property that for a �xed κ
γ(κ, ψ) is a decreasing function of the angle ψ, with γ(κ, 0) = 1 and γ(κ, π/2) = 1/κ, we obtain

that Ri ≥ γ(κi, ϕ) with ϕ such that cos(ϕ) = 1/(1 + δ)1/2. This proves (ii) and thus (2.8).
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B Proof of Theorems 2.2 and 3.3

Proof. (of Theorem 2.2) The dimension is irrelevant, since for m > 2 we can consider block matrices

Am of the form

Am =

(
A2 O2,m−2

Om−2,2 Im−2

)
,

with A2 a 2× 2 matrix, Op,q the p× q null matrix, and a vector c = (c1, c2, 0, . . . , 0)>. We can thus

restrict our attention to the case m = 2. Take H = {H1,H2,M} with

H1 =

(
1 0
0 1 + a+ t

)
, H2 =

(
1 + a+ t 0

0 1

)
and M =

(
1 + t 0

0 1

)
,

with a, t > 0.
For c = (

√
2/2) (1, 1)>, the c-optimal matrix is M∗ = (H1 + H2)/2, with Φ∗ = Φ(M∗) =

2/(2 + a+ t) < Φ(M) = (2 + t)/[2(1 + t)]. We have

c>M−1H1M
−1c− c>M−1H2M

−1c =
t(2 + t)(a+ t)

2(1 + t)2

which is positive for a, t > 0, and therefore δ = (c>M−1H1M
−1c)/Φ(M) − 1 = [t2 + at + a/(2 +

t)]/(1 + t). The matrix Ω2 = M−1/2H2M
−1/2 is

Ω2 =

(
1+a+t

1+t 0

0 1

)
.

Consider �rst the bound (2.7) and denote b1(a, t) = B1(M,H2) = {1−∆2 [δ/(1+δ)]1/2}Φ(M)−
c>M−1H2M

−1c, with ∆2 = λmax(Ω2)− λmin(Ω2) = a/(1 + t). We obtain

b1(a, t) = −a {(2 + t) [δ/(1 + δ)]1/2 + 1}
2 (1 + t)2

.

The expression of δ gives

a = aδ(t) =
(2 + t)(δ + δt− t2)

(1 + t)2
, (B.1)

which is positive for 0 < t < tδ = {δ+[δ(4+δ)]1/2}/2. We then obtain b1(aδ(t), t) < 0 for t ∈ (0, tδ),
with b1(aδ(tδ), tδ) = 0 and db1(aδ(t), t)/dt

∣∣
t=tδ

> 0 for all δ > 0, with db1(aδ(t), t)/dt
∣∣
t=tδ

= 0 for

δ = 0, db1(aδ(t), t)/dt
∣∣
t=tδ

= 2 δ1/2 − 3 δ + (3/4) δ3/2 + O(δ2) for small δ, and db1(aδ(t), t)/dt
∣∣
t=tδ

reaching its maximum ' 0.409910 at δ ' 0.257688.
We proceed similarly for the bound (2.8). Denote b2(a, t) = B2(M,H2) = γ(κ, ϕ) Φ(M) −

c>M−1H2M
−1c, with κ = λmax(Ω2)/λmin(Ω2) = 1 + a/(1 + t) and ϕ = arccos[(1 + δ)−1/2]. We

get b2(aδ(t), t) < 0 for t ∈ (0, tδ), b2(aδ(tδ), tδ) = 0 and db2(aδ(t), t)/dt
∣∣
t=tδ

> 0 for all δ > 0;

db2(aδ(t), t)/dt
∣∣
t=tδ

= 0 at δ = 0, equals 2 δ1/2 − 11 δ + (99/4) δ3/2 + O(δ2) for small δ, with a

maximum ' 0.121304 at δ ' 0.022087. (b2(aδ(t), t) > b1(aδ(t), t) for all t ∈ (0, tδ), δ > 0, which
suggests that here (2.8) is more accurate than (2.7).)

For any ε > 0, we can thus choose a t∗ ∈ (0, tδ) such that b2(aδ(t∗), t∗)+ε > 0 and b1(aδ(t∗), t∗)+
ε > 0. For t = t∗ and a = aδ(t∗), the inequalities B1(M,H2) + ε > 0 and B2(M,H2) + ε > 0 are

thus satis�ed although H2 supports the optimal design.
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Proof. (of Theorem 3.3) We use the same construction as in the proof of Theorem 2.2, and denote

b3(a, t) = B3(M,H2). We get λmax(A>2 M−1A2) = 1 + a/(1 + t) in (C.1), the optimal β is

β∗ =
δ2 (t+ 1) + δ (2 t+ 1) + [t/(1 + t)]1/2 [δ (t+ 1)− t2]

δ (1 + t)2
.

It gives b3(aδ(t), t) < 0 for 0 < t < tδ = {δ + [δ(4 + δ)]1/2}/2, with aδ(t) given by (B.1), and

b3(aδ(tδ), tδ) = 0. Also, db3(aδ(t), t)/dt
∣∣
t=tδ

> 0 for all δ > 0, with db3(aδ(t), t)/dt
∣∣
t=tδ

= 0 for

δ = 0, db3(aδ(t), t)/dt
∣∣
t=tδ

= 2 δ1/2 − 2 δ − (3/4) δ3/2 + O(δ2) for small δ, and db3(aδ(t), t)/dt
∣∣
t=tδ

reaching its maximum ' 0.510064 at δ ' 0.346719. For any ε > 0, we can thus choose a t∗ ∈ (0, tδ)
such that b3(aδ(t∗), t∗) + ε > 0, and for t = t∗ and a = aδ(t∗) we have B3(M,H2) + ε > 0 although

H2 supports the optimal design.

C Proof of Theorem 3.2

Proof. De�ne the set

F (u) = {z ∈ Rm : c>z ≥ c>u and ‖A>j z‖ ≤ 1 , j = 1 . . . , q} ,

where u = M−1c/(maxj ‖A>j M−1c‖) is feasible for P− SOCP. Then, supz∈F (u) ‖A>i z‖ < 1 im-

plies that ‖A>i u∗‖ < 1 and, from Theorem 3.1, Hi cannot support an optimal design. Checking

the condition supz∈F (u) ‖A>i z‖ < 1 requires the solution of a non-convex quadratic optimization

problem, but a much simpler condition can be derived using the so-called S-procedure; see, e.g.,

Pólik and Terlaky (2007). Let t be an upper bound on supz∈F (u) ‖A>i z‖, so that ‖A>i z‖ ≤ t for
any z ∈ F (u). This is equivalent to(

1
z

)>( −(c>u)2 0>m
0m cc>

)(
1
z

)
≥ 0 and

(
1
z

)>(
1 0>m

0m −Hj

)(
1
z

)
≥ 0 for all j = 1 . . . , q

=⇒
(

1
z

)>(
t 0>m

0m −Hi

)(
1
z

)
≥ 0 ,

with 0m the null vector of length m. A su�cient condition for this implication is the existence of

nonnegative µ and τj (j = 1, . . . , q) such that(
t 0>m

0m −Hi

)
� µ

(
−(c>u)2 0>m

0m cc>

)
+

q∑
j=1

τj

(
1 0>m

0m −Hj

)
,

or equivalently, t ≥
∑q

j=1 τj − µ (c>u)2 and
∑q

j=1 τj Hj −Hi � µ cc>, where, for A and B two

square matrices of the same size, A � B means that A−B is nonnegative de�nite.

Finding the smallest t ≥ 0 such that the above linear matrix inequality holds for some nonnega-

tive µ and τj is a Semi-De�nite Program (SDP), the solution of which would allow the elimination

of Hi when t < 1. However, solving this SDP is probably as hard (if not harder) than solving the

original problem, and we restrict the search for solutions to τ = (τ1, . . . , τq)
> being proportional

to w, that is, to τ = βw with β > 0. This shows that Hi can be safely eliminated if the optimal

value t∗ of the following simpli�ed SDP is strictly less than 1:

t∗ = inf
β,µ≥0

β − µ (c>u)2 subject to βM−Hi � µ cc> .
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Any feasible β must satisfy βM � Hi, that is, β ≥ λmax(AT
i M−1Ai), and a simple application of

the Schur-complement lemma shows that the largest feasible µ is µ∗ = [c>(βM−Hi)
−c]−1. Hence

the computation of t∗ reduces to solving a one-dimensional optimization problem,

t∗ = inf
β≥λmax(A>i M−1Ai)

β − (c>u)2

c>(βM−Hi)−1c
, (C.1)

where the function f(·) to be minimized is de�ned by continuity at βmin = λmax(A>i M−1Ai) by

f(βmin) = βmin, and Hi can be eliminated when t∗ < 1. From the de�nition (2.1) of δ, we have

(c>u)2 = Φ(M)/(1 + δ), so that the condition t∗ < 1 is equivalent to B3(M,Hi) > 0, which
concludes the proof.
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