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Abstract

Avalanche models are increasingly employed for elaborating land-
use maps and designing defense structures, but they rely on poorly
known parameters. Careful uncertainty assessment is thus required
but difficulty arises from the nature of the outputs of these models,
which are commonly both functional and scalar. Hence, so far in
the avalanche field, few sensitivity analyses have been performed. In
this work, we propose to determine the most influential inputs of an
avalanche model by estimating aggregated Sobol’ indices. We propose
a nonparametric estimation procedure based on the Nadaraya-Watson
kernel smoother, which allows to estimate the aggregated Sobol’ in-
dices from a given random sample of small to moderate size. Due to
the limited size of the sample, the kernel estimation is biased. There-
fore, we propose a bootstrap based bias correction before selecting the
bandwidth by cross-validation. After different test-cases showing the
efficiency of our approach, it is applied to a real avalanche case. Results
show that the friction parameters and the snow depth in the release
zone are the most influential parameters determining the avalanche
characteristics.

1 Introduction

In mountain environments, snow avalanches are a constant threat for set-
tlements and their inhabitants [McClung and Schaerer, 2006, Ancey, 2006].
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This creates conflict between development and safety and land-use planning
is an efficient way to reduce death tolls [Gruber and Margreth, 2001, Eckert
et al., 2018]. To this aim, avalanche flow dynamic models are increasingly
employed for elaborating land-use maps and designing defense structures
[Naaim et al., 2010, Favier et al., 2014]. However, all existing physically-
based snow avalanche models remain based on some parameters which are
poorly known [Ancey and Meunier, 2004, Eckert et al., 2008]. This ap-
plies, for instance, to friction parameters representing the behavior of snow
in motion and to initial conditions corresponding to the avalanche release
[Jamieson et al., 2008, Eckert et al., 2010, Naaim et al., 2013]. Thus, a care-
ful assessment of the impact of the uncertainty of the inputs on the outputs
should be carried out [Fischer, 2013]. Difficulty arises from the nature of
the outputs of these models, which are commonly both functional (e.g., the
velocity and flow depth of the avalanche as function of space and time) and
scalar (e.g., the runout distance, aka the point of further reach on the 2D
topography of the avalanche flow path).

One of the main purposes of sensitivity analysis is to determine the in-
puts which are the most influential on the output or outputs of a model
where the model can be of any nature, for example a black-box model or a
complex computational code [Saltelli et al., 2000]. More specifically, Saltelli
et al. [2004] proposed four settings as a guide of objectives of a sensitivity
analysis: factor prioritization, factor fixing, variance cutting and factor map-
ping [Saltelli et al., 2004, Iooss and Prieur, 2017]. It depends on the analyst
to define the objectives of its sensitivity analysis. In the global sensitivity
(GSA) framework, the input parameters are modeled by random variables,
which will be assumed independent in this paper. The probability distri-
bution chosen to model the input vector is often guided by practitioner’s
belief. The output is then random as it depends on the inputs through the
model. In this work, our objective is factor prioritization which consists in
identifying which inputs or factors once fixed would reduce the variance of
the output [Saltelli et al., 2008] at most.

There exist different sensitivity measures in the literature for quantify-
ing the influence of each input on the output: variance based indices, also
known as Sobol’ indices [Sobol’, 1993], density based measures [Borgonovo
et al., 2016], entropy-based sensitivity measures [Auder and Iooss, 2008],
etc. A detailed review of sensitivity measures can be found, e.g., in Iooss
and Lemâıtre [2015] and Borgonovo and Plischke [2016].

We focus our study on variance based Sobol’ indices [Sobol’, 1993] com-
monly used for factor prioritization. Moreover, Sobol’ indices have a natural
extension to multivariate or functional outputs [see, e.g., Lamboni et al.,
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2009, Gamboa et al., 2013] which is the framework of the application that
motivated this study. Another remarkable advantage of Sobol’ indices is
their easy interpretation: a high index shows the input is relevant and a
value close to zero shows that it is not, all the indices are normalized be-
tween 0 and 1 and sum to 1.

In short, Sobol’ indices are constructed as follows: if the output of a
model is scalar, its total variance can be split into partial variances by
using the Hoeffding decomposition [Hoeffding, 1948]. If the inputs are in-
dependent, each of the partial variances is associated to an input or to an
interaction between inputs through the ANOVA decomposition [Efron and
Stein, 1981]. Then, the Sobol’ indices [Sobol’, 1993] are calculated as the
ratio of each partial variance and the total variance.

If the output is multivariate, it is possible to apply sensitivity analysis
to each component of the multivariate output but this could lead to redun-
dancies in the results, particularly in the setting of discretized functional
outputs. It seems therefore interesting to turn to the so-called aggregated
indices first introduced in Lamboni et al. [2009] which summarize the in-
formation. A preliminary step of output dimension reduction such as, e.g.,
principal component analysis (PCA) or partial least-squares may also be
applied first [see, e.g., Campbell et al., 2006]. For our real application in the
avalanche field, dimension reduction was performed by simultaneous PCA
introduced in Ramsay and Silverman [2005] [see also Nanty et al., 2017, and
references therein].

We now discuss the estimation of aggregated Sobol’ indices. There are
many methods to estimate Sobol’ indices: the Fast Amplitude Sensitivity
Test (FAST) [see, e.g., Saltelli et al., 1999, and references therein], Random
Balance Design [Tarantola et al., 2006], Sobol’ pick-freeze schemes [Sobol’,
1993]. The main drawback of all the aforementioned methods [Plischke,
2010] is that they are based on sampling designs of particular type. Never-
theless, for many memory and time consuming real applications, the cost (in
terms of number of model evaluations) of these approaches is prohibitive.
For example, to estimate a single Sobol’ index with an uncertainty of 10%,
it could be required to perform 104 model runs [Iooss and Lemâıtre, 2015].

To overcome the drawback of the aforementioned methods, authors use
approaches not based on structured sampling designs to estimate the indices.
These methods are known as given data or one sample methods. They
also correspond to green sensitivity analysis because available data from
previous model runs can be reused. Among these approaches, let us cite the
effective algorithm for computing global sensitivity indices (EASI) method
proposed by Plischke [2010], which is a spectral method based on the Fast
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Fourier Transform. We also mention the work in Plischke et al. [2013],
which relies on the notion of class-conditional densities, where a class is a
sub-sample stemming from a suitable partition of the dataset. Much more
recently, Antoniano-Villalobos et al. [2019] proposed a fully Bayesian given
data procedure.

In the present paper, we propose a new given data method to esti-
mate first-order Sobol’ indices, based on a nonparametric Nadaraya-Watson
[Nadaraya, 1964, Watson, 1964] bias corrected kernel regression [Racine,
2001]. Our approach is close to the one introduced in Soĺıs [2019]. The
main difference is in the formula we apply to correct the bias, which seems
to be more efficient, at least in the results of our simulation study. We
then extend this estimation procedure to the estimation of the aggregated
Sobol’ indices [Lamboni et al., 2009]. To our knowledge, it is the first time
a nonparametric given data procedure is proposed in this framework. In
the framework of the estimation of non aggregated usual Sobol’ indices, Da
Veiga et al. [2009] proposed a methodology based on local linear regression.
The Nadaraya-Watson estimator can be seen as a particular case of the wider
class of nonparametric estimators, called local polynomial estimators used in
Da Veiga et al. [2009]. Specifically, it corresponds to performing a local con-
stant fit. However the procedure in Da Veiga et al. [2009] is clearly different
from ours, as it consists in spliting the sample in two disjoint sub-samples,
the first one used to emulate the conditional expectation, the second one
used to estimate each first-order Sobol’ index, replacing the conditional
expectation with its corresponding emulator. More recently, Broto et al.
[2018] proposed to estimate Shapley effects introduced by Owen [2014] in
the framework of sensitivity analysis with a nonparametric estimator based
on nearest neighbours.

Within the avalanche field, only a few studies have analyzed the influ-
ence of inputs on the outputs of dynamic propagation models. For exam-
ple, Barbolini and Savi [2001] used a Monte Carlo approach to analyze the
sensitivity of runout distances and impact pressures in the VARA model.
Jamieson et al. [2008] discussed the main sources of uncertainty in the inputs
of avalanche models. Borstad and McClung [2009] developed a sensitivity
analysis of an avalanche model with a Coulomb-type friction law. Bühler
et al. [2011] explored the influence of the digital elevation models resolution
on the outputs of the RAMMS avalanche model. Eventually, Bühler et al.
[2018] developed a sensitivity analysis of released volumes, runout distances
and avalanche velocities in the runout zone with respect to the initial re-
leased volume with the RAMMS avalanche model. However, the previous
studies did not apply formal statistical methods to quantify the respective
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importance of the inputs. Moreover, authors considered only scalar outputs
in their approaches. By contrast, in our paper, we focus on the avalanche
model proposed by Naaim et al. [2004] and we quantify the importance of
its inputs on its outputs by estimating the aggregated Sobol’ indices with
our new nonparametric procedure. The uncertainty on the input parame-
ters was defined based on data obtained from an avalanche released on 13
February 2013 at the Lautaret full-scale test-site [Thibert et al., 2015].

In summary, the aims of this study are: (i) to propose a nonparametric
estimation method for the aggregated Sobol’ indices in a given data frame-
work when sample size is small (ii) to quantify the input importance in
avalanche models, having complex outputs (e.g., a mix of functional and
scalar outputs). The approach can be easily adapted to other avalanche
models and more widely in environmental sciences in the frequent case of
complex models with outputs which are both functional and scalar. This
work is organized as follows: the aggregated Sobol’ indices and the estima-
tion method are described in Section 2. In Section 3, we test the estimation
method on toy functions. Then, in Section 4, the avalanche model is de-
scribed and the results are presented. Finally, in Section 5, the conclusions
and perspectives are discussed.

2 Aggregated Sobol’ indices

Let us denote by f the model which takes as inputs the vector X = (X1, . . . , Xd).
The inputs X1, . . . , Xd are modeled by random variables defined on a proba-
bility space (Ω,F ,P) and valued in a measurable space E = E1×E2 . . .×Ed.
The output of the model f is the p multivariate vector Y = (Y1, . . . , Yp)

T .
It means, we have:

f(X) = f(X1, . . . , Xd) = Y = (Y1, . . . , Yp)
T .

In the following, we assume that E(Y 2
1 + . . . + Y 2

p ) < ∞ and that the
random variables X1, . . . , Xd are independent from each other. This con-
dition guarantees the unicity of the ANOVA decomposition [Sobol’, 1993].
To summarize the importance of each input Xi on the multivariate output
Y, we aim at computing the aggregated Sobol’ index GSi introduced in
Lamboni et al. [2009] [see also Gamboa et al., 2013] defined as:

GSi =

∑p
j=1 Var(Yj)S

j
i∑p

j=1 Var(Yj)
,
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where Sj
i is the first-order Sobol’ index of the output Yj with respect to

the input Xi namely

Sj
i =

Var(E(Yj |Xi))

Var(Yj)
(1)

Notice that GSi ∈ [0, 1]. As in the case of the scalar indices, the main
advantage of the aggregated indices is their easy interpretation: a high value
means the input is important, a value close to zero means it is not, and∑d

i=1GSi = 1.
In the following, we propose to estimate nonparametrically GSi from

given data, proposing a new procedure based on the Nadaraya-Watson kernel
smoother [Nadaraya, 1964, Watson, 1964].

2.1 Nonparametric estimation procedure

Let (X`
i , Y

`
j )1≤`≤n be an independent identically distributed random sample

of (Xi, Yj). The Nadaraya-Watson kernel smoother consists in estimating
the conditional mean of E(Yj |Xi) at a point x in the domain of Xi by:

E(Yj |Xi = x) = mh(x) =

n∑

`=1

Y `
j W`,h(x), (2)

where

W`,h(x) =
K
(
x−X`

i
h

)

∑n
`=1K

(
x−X`

i
h

) , (3)

with K a kernel function and h a bandwidth. In Equation (3), different
weights W`,h can be used, as for example, local linear regression proposed
in [Da Veiga et al., 2009] and nearest neighbor smoothers as proposed by
Broto et al. [2018].

When the sample size is small, the selection of the bandwidth h is critical.
Indeed, to avoid undersmoothing or oversmoothing, an optimal value of h
which balances bias and variance must be found [Tsybakov, 2008, page 17].
An option widely used to select h is cross-validation but if the sample size
is small, the estimator will suffer of finite-sample bias [see Racine, 2001,
Soĺıs, 2019]. Therefore, if the sample size is small, it is recommended to
perform a bias correction to the kernel smoother estimator preliminary to
the bandwidth selection.

6



It is important to underline that the criterion we introduce here to select
the badwidth is different from the one proposed in Soĺıs [2019], which was
based on bagging minimization. The selection of the bandwidth we propose
to apply in our paper is described in the next section.

Once the bandwidth h has been chosen, the estimation of the aggregated
Sobol’ index is straightforward: given a n sample (x`i , y

`
j)1≤`≤n of (Xi, Yj),

ĜSi =

∑p
j=1 V̂ar

[
(y`j)1≤`≤n

]
Ŝj
i

∑p
j=1 V̂ar

[
(y`j)1≤`≤n

] , (4)

where Ŝj
i is the estimation of the first-order Sobol’ index:

Ŝj
i =

V̂ar
[(
m̂h(x`i)

)
1≤`≤n

]

V̂ar
[
(y`j)1≤`≤n

] ,

with V̂ar denoting empirical variance.
Note that the same sample (x`i , y

`
j)1≤`≤n is used for both the estimators

m̂h and V̂ar.

2.2 Bandwidth selection h with bias correction

As mentioned previously, cross-validation is one option to select the band-
width. In more details, given a n sample x = (x1, . . . , xn) of Xi and the
corresponding evaluations y = (y1, . . . , yn) of Yj , the bandwidth can be
selected as:

hcv = argminh>0

1

n

n∑

k=1


yk −

∑n
`=1
`6=k

y`Kh(x` − xk)

∑n
`=1
`6=k

Kh(x` − xk)




2

, (5)

for notation simplicity, Kh(.) denotes K
(
.
h

)
and we dropped all the i

and j subindices, but keep in mind that we refer to a sample of Xi and Yj .
If the sample size is small, it is better to apply a bias correction before

performing bandwidth selection. In our framework of sensitivity analysis,
we adapt the procedure introduced in Racine [2001] to select the bandwidth.
The different steps of our procedure are described hereafter:

1. Given a n sample x = (x1, . . . , xn) of Xi and the corresponding eval-
uations yj = (y1, . . . , yn) of Yj and a bandwidth h > 0 (for example,
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an initial bandwidth value could be h = hcv given by Equation (5)),
we calculate the Nadaraya-Watson kernel regression estimate:

m̂h(xk) =

∑n
`=1
`6=k

y`Kh(x` − xk)

∑n
`=1
` 6=k

Kh(x` − xk)
· (6)

If
∑n

`=1
` 6=k

K(x` − xk) = 0, we set m̂h(xk) = 0.

2. We calculate the errors:

ε̂` = y` − m̂h(x`), ` = 1, . . . , n.

These errors are heteroscedastic because Yj depends also onX1, . . . , Xi−1, Xi+1, . . . , Xd,
therefore, a standardization of the errors must be applied before boot-
straping.

3. The errors {ε̂`}1≤`≤n are standardized as:

υ̂` =
ε̂` − ε̄
r(x`)

, ` = 1, . . . , n

where ε̄ is the empirical mean of {ε̂`}1≤`≤n and r(x`) is an estimation
of the conditional standard deviation of the random variable ε|Xi at
x. r(x`) is estimated using kernel smoother nonparametric estimation.

4. A bootstrap sample y(b) of y is created as:

y(b)` = m̂h(x`) + r(x`)υ(b)`, ` = 1, . . . , n,

where υ(b)` is a bootstrap sample of {υ̂`}1≤`≤n.

5. B bootstrap samples of y are created using Step 4. For each bootstrap

sample (x,y(b)), we estimate the kernel smoother m̂
(b)
h using Equation

(6).

6. The bias of m̂h(x`) is estimated as:

1

B

B∑

b=1

m̂
(b)
h (x`)− m̂h(x`).
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Then, the corrected bias kernel smoother m̂c
h(x`) is calculated as:

m̂c
h(x`) = m̂h(x`)−

(
1

B

B∑

b=1

m̂
(b)
h (x`)− m̂h(x`)

)
(7)

= 2m̂h(x`)− 1

B

B∑

b=1

m̂
(b)
h (x`) (8)

7. Finally, the bandwidth h is selected as

ĥboot = argminh>0

1

n

n∑

`=1

(
y` − m̂c

h(x`)
)2
.

Once m̂c
boot is calculated, the aggregated Sobol’ index GSi is estimated

from (4). In what follows, our estimator with bias correction is denoted by
cnp and the same estimator without bias correction, for which the bandwidth
is selected by solving (5), is denoted by np.

2.3 Dimension reduction based on principal component anal-
ysis

If the output is high-dimensional or even functional, it may be computation-
ally interesting to reduce the output dimension in a preliminary step. There
are different reduction techniques. Principal component analysis, also known
as Karhunen-Loève decomposition in the functional framework, consists in
projecting the output on a new basis so that most information is concen-
trated in the first few components [see, e.g., Pearson, 1901, Loève, 1963].
Note that if the outputs are the descretization of more than one functional
random variable (e.g., velocity and flow depth), simultaneous PCA may pro-
vide efficient reduction. For more details, see e.g., the work of Nanty et al.
[2017] and reference therein.

In brief, simultaneous PCA consists in applying PCA to the matrix com-
posed by the concatenation of the discretized functions divided by a nor-
malization factor. Nanty et al. [2017] show that using the maximum of each
functional as normalization factor provides the best results. Thus, in the
avalanche application, we follow their procedure.

There exist dimension reduction tools specific to functional data, such
as the regularized functional PCA described in Chapter 9 of Ramsay and
Silverman [2005] [see also the work of Yao et al., 2005] which has been
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applied in different fields [e.g., Locantore et al., 1999, Antoniadis et al.,
2012]. Also, it has been shown that in some applications, functional PCA
provides better results than usual PCA applied after a discretization of the
functional data [e.g., Viviani et al., 2005]. On our test cases, usual PCA
applied on the discretized data set and functional PCA provided similar
results. The results we show in this paper are the ones obtained by applying
usual PCA on discretized data.

The PCA consists in decomposing the variance-covariance matrix of the
output. More precisely, let us denote by Σ the variance-covariance matrix of
the output vector Y. The principal component decomposition of Y is based
on the expansion:

Σ =

p∑

j=1

λjvjv
T
j ,

where λ1 ≥ . . . ≥ λp are the eigenvalues and v1, . . .vp are the orthonor-
mal eigenvectors of Σ. Therefore, Y can be decomposed as:

Y = E(Y) +

p∑

j=1

(
(Y− E(Y))Tvj

)
vj

= E(Y) +

p∑

j=1

hjvj

where hj is the jth principal component of Y. The output can be ap-
proximated using the q ≤ p first components which capture the major part
of the output variance:

Y ≈ E(Y) +

q∑

j=1

hjvj .

Then, the aggregated Sobol’ indices can be computed in the first q prin-
cipal components. For example, for input Xi:

GSi ≈
∑q

j=1 λjSi(hj)∑q
j=1 λj

(9)

where Si(hj) denotes the Sobol’ index of hj with respect to input Xi.
The estimation of the aggregated Sobol’ indices will be done for the

reduced output H = (h1, . . . , hq)
T .
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3 Test cases

The cnp method is tested on three toy functions and then, it is applied to
an avalanche dynamic model. The cnp accuracy is compared with np (band-
width selected with cross-validation and without bias correction), Solis2019
[Soĺıs, 2019], and sobolroalhs [Tissot and Prieur, 2015] implemented in R.
The estimator implemented in sobolroalhs is a pick-and-freeze method,
which is particularly interesting in terms of number of model evaluations
required for an accurate estimation of Sobol’ indices.

Because of its regularity properties, the Epanechnikov kernel of order 2
is used:

K(u) =
3

4
(1− u2)I(|u|≤1),

where I denotes the indicator function. All the computations were per-
formed in R Core Team [2019].

3.1 Toy functions

For each toy function, to test the accuracy of the method, the Sobol’ in-
dices were estimated with N = 100 independent samples of sizes n ∈
{100, 200, 300}. For cnp, the number of bootstrap samples was set to B =
100.

3.1.1 Scalar g-sobol function

The scalar g-Sobol function is defined as:

Y = f(X1, . . . , Xd) =

d∏

i=1

|4Xi − 2|+ ai
1 + ai

, ai ∈ R, i ∈ {1, . . . d}

where (X1, . . . , Xd) ∼ U([0, 1]d).
An analytical expression of the scalar Sobol’ indices is available for this

test case:

Si =

1
3(1+ai)2∏d

i=1

(
3(ai)2+6ai+4

3(1+ai)2

)
− 1

, i ∈ {1, . . . , d}.

For this first test case, we chose d = 8 and a = (0, 1, 4.5, 9, 99, 99, 99, 99).
The indices were estimated for N = 100 independent samples of sizes
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n ∈ {100, 200, 300} using the four methods cnp, np, sobolroalhs and
Solis2019. The results can be seen in Figures 1 and 2.

We remark that the cnp procedure we have proposed in this work behaves
well even for small data sets. The bias correction seems to outperform the
usual np procedure, except maybe for n = 100.

The variances of both cnp and np are improved with respect to pick-
freeze procedure sobolroalhs based on replicated sampling of [Tissot and
Prieur, 2015] and even to the nonparametric bagging approach in [Soĺıs,
2019]. At least, we remark a decrease of the efficiency of our approach for
very small Sobol’ indices.

3.1.2 Multivariate g-sobol function

To test our estimation method on a multivariate function, we use a multi-
variate version of the g-Sobol function. The function is defined as:

(Y1, . . . , Yp)
T = f(X1, . . . , Xd) with (X1, . . . , Xd) ∼ U([0, 1]d)

where

Yj =
d∏

i=1

|4Xi − 2|+ aji
1 + aji

, aji , with j ∈ {1, . . . , p}, i ∈ {1, . . . d}.

An analytical expression of aggregated Sobol’ indices is available for this
test case:

GSi =

∑p
j=1

1

3(1+aji )
2

∑p
j=1

∏d
i=1

(
3(aji )

2+6aji+4

3(1+aji )
2

)
− 1

.

We chose p = 2, d = 6 and the coefficients aji , i ∈ {1, . . . , 6}, j ∈ {1, 2}
are coded in the matrix A2 ∈ R6×2:

AT
2 =

(
0 0.5 3 9 99 99
1 1 1 1 1 1

)

Figure 3 shows the estimation of the Sobol’ indices using cnp, np and
sobolroalhs in N = 100 independent samples of sizes n ∈ {100, 200, 300}.
The bias accuracy of cnp compared to the other two methods is the best
(see Figure 3). Furthermore, the variance of cnp estimation is lower than
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Figure 1: Scalar g-Sobol function: estimation of the first-order Sobol’ indices
for X1, X2, X3 and X4 using four estimation methods: cnp, np, Solis2019
and sobolroalhs. To draw the boxplots, the indices were computed in
N = 100 independent samples of sizes n ∈ {100, 200, 300}. For each iteration
of cnp and Solis2019, we used B = 100 bootstrap samples.
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Figure 2: Scalar g-Sobol function: estimation of the first-order Sobol’ indices
for X5, X6, X7 and X8 using four estimation methods: cnp, np, Solis2019
and sobolroalhs. To draw the boxplots, the indices were computed in
N = 100 independent samples of sizes n ∈ {100, 200, 300}. For each iteration
of cnp and Solis2019, we used B = 100 bootstrap samples.
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Input Description Distribution

m mass (kg) U [10, 12]
c damping constant (Nm−1s) U [0.4, 0.8]
k spring constant (Nm−1) U [70, 90]
l initial elongation (m) U [−1,−0.25]

Table 1: Mass spring model: Inputs description and uncertainty intervals.

the other two methods (see Figure 3). Additionally, for this test case, the
bias correction performance is more evident than in the previous case (see
Figures 1 and 2 compared to Figure 3).

3.2 A functional example: the mass-spring model

Before applying our procedure to the avalanche application, we illustrate its
performance on a test case with discretized functional output: the functional
mass-spring model proposed by Gamboa et al. [2013], where the displace-
ment of a mass connected to a spring is considered:

mx′′(t) + cx′(t) + kx(t) = 0, (10)

with initial conditions x(0) = l, x′(0) = 0, and t ∈ [1, 40]. There exists
an analytical solution of Equation (10). This model has four inputs (see
more details in Table 1). The model output is the vector:

Y = f(X) = (x(t1), . . . , x(t800)), ti = 0.05i with i ∈ {1, . . . , 800}.

The discretized output is high-dimensional (p = 800). Therefore, we
first reduce the dimension of the output by using PCA before estimating the
aggregated Sobol’ indices in the first q principal components with q � p.

The indices were estimated for N = 100 independent samples of size
n ∈ {100, 200, 300}. Each sample was also used for PCA. We tested if the
results were more accurate if we used two independent samples, one for PCA
and the other one for the estimation of the Sobol’ indices. At a constant
cost in terms of model evaluations, the results were even better using only
one sample (see Figure 12 in the Appendix in Section 6).

The explained variance as a function of the number of PCs q is shown in
Figure 4. Notice that 70% of the variance is explained with a small number
of PCs (q = 3) and almost all the variance (95%) is explained by 6 PCs.
Thus, the aggregated Sobol’ indices are estimated using the first 6 PCs.
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Figure 3: Multivariate g-Sobol function: estimation of the aggregated Sobol’
indices using cnp, np and sobolroalhs. Boxplots were drawn from N=100
samples of sizes n ∈ {100, 200, 300}. To use cnp, we set B = 100.

16



5 10 15 20

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Basis size

E
xp

la
in

ed
 v

ar
ia

nc
e

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 4: Mass-spring model: Explained variance as a function of the de-
composition basis size (number of PCs). The gray line is displayed at the
95% of the variance explained which corresponds to 6 PCs.

The true aggregated Sobol’ indices for this instance are unknown but
they are considered close to the values estimated with a sample of large size
n = 100 000 using sobolroalhs.

The evolution of the estimation of the aggregated Sobol’ indices using
the three methods in function of the sample size n ∈ {100, 200, 300} are
shown in Figure 5. The cnp estimation has a much smaller variance than
the sobolroalhs estimation. The bias correction allows to correct the bias
of the np estimation procedure, even if a residual bias seems to persist. The
bias decreases as n increases, as expected. As it was mentioned before,
our aim is factor prioritization and this objective is achieved with the cnp

method in the sense that the most influential factor X3 is clearly identified.
In general, the cnp method has a better accuracy compared to the other

methods np, sobolroalhs and Solis2019 in all the test cases we considered.
Therefore, in the following section we apply the cnp method to estimate the
aggregated Sobol’ indices of an avalanche model.

4 Application: the avalanche model

The avalanche model used in this study represents the avalanche motion as
a fluid. The model is based on depth-averaged Saint-Venant equations and
it was proposed by Naaim et al. [2004].
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Figure 5: Mass-spring model: Estimation of the aggregated Sobol’ indices
using cnp, np and sobolroalhs. Boxplots were drawn from N=100 samples
of different sizes n ∈ {100, 200, 300}. To use cnp, we set B = 100.
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In short, the model considers only the dense layer of the avalanche. The
depth of the flow is then small compared to its length. Under this as-
sumption, shallow-water approximations of the mass and momentum equa-
tions can be used. Also, the model assumes the avalanche is flowing on a
curvilinear profile z = l(x), where z is the elevation and x is the projected
runout length distance measured from the starting abscissa point of the
avalanche. The mass and momentum conservation equations of the Saint-
Venant avalanche model are:

∂h

∂t
+
∂hv

∂x
= 0

∂hv

∂t
+

∂

∂x

(
hv2 +

h2

2

)
= h (g sinφ− F)

where v = ‖~v‖ is the flow velocity, h is the flow depth, φ is the local
angle, t is the time, g is the gravity constant and F = ‖~F‖ is a frictional
force. The F frictional force considered in the model is the Voellmy frictional
force:

F = µgcosφ+
g

ξh
v2,

where µ and ξ are the friction parameters (see more details of the
avalanche model in Naaim et al. [2004]). For keeping the same notation
in the document, the avalanche model is hereafter denoted by f .

4.1 The inputs

The avalanche model depends on six inputs: the friction parameters µ and
ξ, the length lstart of the avalanche release zone, the snow depth hstart within
the release zone, the release position of the avalanche denoted by xstart and
the discretized topography of the flow path, denoted by D = (x, z) ∈ RT×2

where x ∈ RT is the vector of projected runout length from the starting
point of the avalanche and z = l(x) ∈ RT is the elevation vector. T is the
number of points of the discretized path.

Additionally to these parameters, we included the term σ to code the
error of the digital elevation model z on the path’s topography. To do
so, a Gaussian error term is added to each element of z to construct a
new topography D′ = (x, z′) for each new model run, whose elevation is
calculated as follows:
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Input Description Distribution

µ Static friction coefficient U [0.177, 0.498]
ξ Turbulent friction [m.s−2] U [306.97, 1475.67]
hstart Snow depth within the release zone [m] U [0.17, 0.33]
lstart Length of the release zone [m] U [24, 34]
σ Digital Elevation Model error [m] U [0, 0.15]

Table 2: Avalanche model: Input description and uncertainty intervals.
U [a, b] denotes an uniform distribution in the interval [a, b].

z′ = z +N (0, ITσ2)

where IT is the T × T identity matrix. This error codes the impreci-
sion of the digital elevation model which allows analysing how it affects the
simulation results.

In this study, we analyzed precisely the sensitivity of the model for the
simulations of a single avalanche event. The input uncertainty intervals are
those corresponding to an avalanche released at the Lautaret full-scale test-
site on 13 February 2013. More details about this avalanche event can be
found in [Pulfer et al., 2013, Heredia et al., 2020]. Thus parameter (x,z) is
not uncertain anymore.

For this avalanche event, the release position of the avalanche xstart is
precisely known because it was fixed by the experimental team (artificial
avalanche release). Thanks to the sophisticated equipment of the test-site,
the uncertainty of this input can therefore be neglected. The lstart and
hstart input uncertainty intervals could be determined thanks to measures
taken during the experiment. By contrast, the inputs µ and ξ cannot be
measured. In another study, we developed a Bayesian calibration approach
to infer these inputs from the measurements made along the flow. Thus,
the uncertainty intervals of µ and ξ considered here correspond to the 95%
credibility intervals of the posterior distribution we obtained [Heredia et al.,
2020]. However, to avoid privileging some values in the sensitivity analysis,
uniform distributions were chosen to model the d = 5 inputs, including the
friction parameters (i.e. we did not directly use their posterior distribu-
tion). The uncertain inputs of the model and their uncertainty intervals are
summarized in Table 2.

20



Inputs Model Outputs

µ ξ σ2

topo lstart hstart
f Y =





v : D ⊂ R → R
h : D ⊂ R → R
xrunout ∈ R+

Figure 6: Avalanche model: Inputs and outputs. xstart is fixed. All other
quantities are taken as random and considerd in the sensitivity analysis.

4.2 The outputs

The outputs of the avalanche model are the functional maximal velocity ~v
and the functional maximal flow depth ~h of the avalanche on the discretized
grid corresponding to the topography D, and the runout distance of the
avalanche denoted by xrunout. In other words, the model has two vectorial
and one scalar outputs.

The vectors whose components are the evaluations on the discretized
topography D of the velocity and flow depth functional outputs are denoted
v = (v1, . . . , vT ) and h = (h1, . . . , hT ), respectively. Note that we have
p = 2 × T + 1 outputs. A brief summary of our framework is drawn in
Figure 6.

The global sensitivity analysis is conducted only on a section of the path
where all the avalanche simulations are flowing. More precisely, considering
e.g., the velocity, our sensitivity analysis is performed on a subset of length
n, v = {v`1, . . . , v`T1

}`∈{1,...n}, with T1 ≤ T and such that v`k > 0 for all
k ∈ {1, . . . , T1}.

Figure 7 shows the functional high density region (HDR) boxplots of
300 velocity (a) and snow depth curves (b) and the boxplot for the runout
distance (c). The functional HDR plots are a tool for visualizing large
amounts of functional data based in the estimation of the bivariate kernel
density function of the two first components of the decomposition of the
functional data [see Hyndman and Shang, 2010, for more details]. The
HDR boxplots show the 50% HDR and the 100% HDR in light and dark
gray, respectively. The modal curve is plotted with a solid line. These
Figures were obtained using the R package rainbow developed by Hyndman
and Shang [2010].
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Figure 7: Avalanche model: a) functional high density region boxplots for
the velocity b) functional high density region boxplots for the flow depth
and, c) boxplot for the runout distance.

4.3 Sobol’ indices

To estimate the sensitivity indices, we developed n = 300 model simulations
using the random input distributions shown in Table 2. Figure 8 shows
the topography of the avalanche path and the gray box shows the region
where all the avalanche simulations are flowing. The output values in this
subset are used in the sensitivity analysis. Also, in Figure 8, we show the
percentage of avalanches flowing in the path as function of the position along
the topography.

4.4 Scalar Sobol’ indices

The scalar Sobol’ indices were calculated using n = 300 samples and they
are shown in Figure 9. For the velocity output, in the first 50 m of the path,
the input µ is the most important, then it is followed by ξ. For the rest of the
path, the input ξ is the most important. For the flow depth output, the hstart

input is the most important. The input σ2 is the less important parameter
for both outputs. The scalar sensitivity indices for the runout distance are
shown in Figure 10. For this output, the hstart input is the most important.
These three figures give us valuable information about the model. However,
it could also be interesting to get a summarized information by computing
aggregated sensitivity indices and this is done in the following section.
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flow depth outputs. The white line corresponds to the path’s topography.
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Figure 10: Avalanche model: scalar Sobol’ indices for the runout distance
output.

4.5 Aggregated Sobol’ indices

To estimate the aggregated indices, we used two ways of aggregating the
output information. In the first one, we performed two PCAs separately:
one for the velocity output and the other one for the flow depth output.
And in the second one, we used simultaneous PCA to estimate the indices
of the three outputs. The results of the aggregated indices using two PCAs
are shown in the panel a) of Figure 11 and using simultaneous PCA in the
panel b) of Figure 11. This summarizes the importance of the inputs.

Let us analyze the results of the aggregated indices calculated when
performing a PCA on each functional output: for the velocity output, the ξ
and µ inputs are the most relevant and for the flow depth output, the hstart

input is by far the most important. These results are consistent with findings
of other studies [e.g., Barbolini and Savi, 2001, Borstad and McClung, 2009,
Fischer et al., 2015].

Finally, let us analyze the results of the aggregated indices calculated
when performing a simultaneous PCA for the whole set of outputs(he two
functional ones and the scalar runout distance): the most important inputs
are ξ, hstart and µ.
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Figure 11: Avalanche model: aggregated indices estimated with two ways
of aggregating the information. a) Two PCAs performed separately for the
two functional outputs: one for the velocity output and the other one for
the flow depth output. b) Simultaneous PCA to estimate the indices of
the three outputs (the two functional ones and the scalar runout distance)
altogether.

5 Conclusions and perspectives

In this work, we proposed a nonparametric method to estimate the aggre-
gated Sobol’ indices from a given random sample with small size, we called
this method cnp. The method is based on the Nadaraya-Watson kernel
smoother. Due to the small size of the sample at hand, the kernel estima-
tion is biased. Therefore, to remove the bias of the estimation, we proposed
a bias correction using bootstrapping samples based on the works of Racine
[2001] and Soĺıs [2019] before bandwidth selection based on cross-validation.

We tested the accuracy of the method on a scalar and two multivariate
test cases. In general, the method cnp is accurate, even if the sample size
is low (n = 300). Also, by comparing cnp with its no bias correction np

variant, the results have shown that the bias is successfully removed. Nev-
ertheless, it still exhibits small bias for very small Sobol’ indices. However,
the objective of our sensitivity analysis was factor prioritization and this
aim is well achieved with our method.

The method was developed to estimate the aggregated indices for an
avalanche model which has three outputs: the functional velocity and flow
depth discretized on a given topography and the runout distance of the
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avalanche. In this work, we developed a sensitivity analysis of a single
avalanche event. The event corresponds to an avalanche released at the
Lautaret test-site the 13 February 2013. The results have shown that for this
particular avalanche event: for the velocity output, the µ and ξ inputs are the
most relevant and for the snow depth output, hstart is the most important.
Finally, for the runout distance output, hstart is the most important. We also
showed how this information can be aggregated in one single set of indices
summing up the model sensitivity which could be a very useful information
for avalanche practitioners.

Note that in this work we proposed a method to quantify the impor-
tance of the inputs of a particular avalanche model but this method can be
widely applied to other avalanche models. Moreover, the method could be
applied to other avalanche events with the same model to generalize the re-
sults. Eventually, it could be adapted to various problems for which complex
models with outputs which are both functional and scalar are employed.

In this paper, we did not provide confidence intervals (CI) associated
to the estimation of Sobol’ or aggregated Sobol’ indices. This would be
an interesting task for a future work. Bootstrap based CI are costly in
that framework as they would involve two boostrap stages: one for the bias
correction and one for the computation of CI.
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6 Appendix

In this appendix, we want to compare the accuracy of Sobol’ index esti-
mation for the mass-spring test case when using a single sample of size
n = 200 for both PCA and Sobol’ index estimation or two independent
samples of size n = 100, one for PCA, the other one for Sobol’ index es-
timation. Boxplots presented in Figure 12 were obtained with N = 100
independent replications.

References

C. Ancey and M. Meunier. Estimating bulk rheological properties of flowing
snow avalanches from field data. Journal of Geophysical Research: Earth
Surface, 109(F1), 2004. doi: 10.1029/2003JF000036. URL https://

agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003JF000036.

Christophe Ancey. Dynamique des avalanches. Presses Polytechniques et
Universitaires romandes & Cemagref, 2006.

Anestis Antoniadis, Cline Helbert, Clmentine Prieur, and Laurence Viry.
Spatio-temporal metamodeling for West African monsoon. Environ-
metrics, 23(1):24–36, 2012. doi: 10.1002/env.1134. URL https://

onlinelibrary.wiley.com/doi/abs/10.1002/env.1134.

Isadora Antoniano-Villalobos, Emanuele Borgonovo, and Xuefei Lu.
Bayesian estimation of probabilistic sensitivity measures. arXiv e-prints,
art. arXiv:1907.09424, Jul 2019.

Benjamin Auder and B. Iooss. Global sensitivity analysis based on entropy.
In Safety, Reliability and Risk Analysis - Proceedings of the ESREL 2008
Conference, pages 2107–2115, Valencia, Spain, 2008. CRC Press.

M. Barbolini and F. Savi. Estimate of uncertainties in avalanche haz-
ard mapping. Annals of Glaciology, 32:299–305, 2001. doi: 10.3189/
172756401781819373.

Emanuele Borgonovo and Elmar Plischke. Sensitivity analysis: A review
of recent advances. European Journal of Operational Research, 248(3):
869–887, 2016. doi: 10.1016/j.ejor.2015.06.032. URL https://doi.org/

10.1016/j.ejor.2015.06.032.

28

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003JF000036
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003JF000036
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.1134
https://onlinelibrary.wiley.com/doi/abs/10.1002/env.1134
https://doi.org/10.1016/j.ejor.2015.06.032
https://doi.org/10.1016/j.ejor.2015.06.032


●

●

●
●

●

●

−
0.

05
0.

05
0.

15
0.

25

X1

 

G
S

I

a)

●

●

●

cnp
np
sobolroalhs

one sample two samples

●

●
●●

●

●
●

●
●● ●

●

●●●●

●

●

●

●

●

●

−
0.

15
−

0.
05

0.
05

0.
10

0.
15

X2

 

G
S

I

b)

one sample two samples

●

●

●

0.
0

0.
1

0.
2

0.
3

0.
4

X3

 

G
S

I

c)

one sample two samples

●

●

●
●●

●

●

●

●
●

●

●

●

●●

−
0.

1
0.

0
0.

1
0.

2

X4

 

G
S

I

d)

one sample two samples
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