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Hervé Cardot & Pierre Calka

CHANGE-POINT DETECTION, SEGMENTATION, AND RELATED TOPICS

Jean-Marc Bardet1, Vincent Brault2, Serguei Dachian3, Farida Enikeeva4 and

Bruno Saussereau5

Abstract. Recent contributions to change-point detection, segmentation and inference for non-regular

models are presented. Various problems are considered including the multiple change-point estimation

with adaptive penalty for time series with di�erent dependency structures, estimation of the singularity

point in cusp-type models, inference for thresholded autoregressive models, and cross-segmentation of

matrices.

Résumé. Des contributions récentes dans les problèmes de détection de rupture, de ségmentation

et de l'inférence pour des modèles non-réguliers sont présentées. Les problèmes considérés incluent

l'estimation de plusieurs points de rupture avec une pénalité adaptative pour des séries temporelles

avec di�érentes structures de dépendance, l'estimation d'un point de singularité pour des modèles de

type cusp, l'inférence pour des modèles auto-régressifs à seuil et la segmentation croisée des matrices.

Introduction

This article presents some recent results on the statistical inference for models with abrupt changes in the
parameters and for related non-regular problems. The results were presented at the session �Change-point
detection and segmentation� of the Journées MAS 2016, organized by Farida Enikeeva. Each section of the
article is based on one of four talks given by Jean-Marc Bardet, Vincent Brault, Sergueï Dachian and Bruno
Saussereau. Farida Enikeeva has written the introduction and coordinated the present article.

The models with irregularities such as the abrupt changes in a signal or noise parameters have received a lot
of attention for decades. These problems arise naturally in many applications such as quality control, network
tra�c data analysis, seismography, analysis of DNA sequences, audio signal processing and many others [8].
A number of methods had been developed for the problems of detecting a single change in a parameter (often
the signal mean) of an observed process in the iid noise case and under dependency conditions (see [17], [25]).
Later on those methods were generalized to the problem of estimating multiple change points with known or
bounded number of changes. The early techniques include, for example, the binary segmentation [81], the least
squares estimation [62], and the dynamic programming approach [51] that allows to estimate the unknown
change-points in quadratic time with respect to the sample length. Several techniques were proposed for the
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estimation in case of unknown number of change-points such as the wild binary segmentation [39], the SMUCE
technique [38], the model selection approach [63], estimating with total variation penalty [44]. Another method
of estimation of multiple change-points based on the slope heuristic procedure is presented in this article.

An important generalization of the classical change point detection is the problem of segmentation of multidi-
mensional observations such as matrix or image segmentation (see for example [53] for some theoretical results).
Other generalizations include thresholded models with unknown threshold parameter [78] and non-regular mod-
els with cusp-type singularity at an unknown location (see [27] and the numerous references therein). Let us
note that unlike classical change-point models (where the change is discontinuous), in models with a cusp-type
singularity, the change is continuous (though still quite abrupt). So, sometimes these models are classi�ed as
�smooth� change-point models.

The �rst section contains an overview of di�erent results on the multiple change-point estimation using an
adaptive penalty in several semi-parametric frameworks. This section was written by J.-M. Bardet and presents
the results obtained in the joint works with C. Dion [4], A. Guenaizi [5], W. Kengne and O. Wintenberger [6],
and with C. Faure, J. Lacaille and M. Olteanu [35].

The second section written by V. Brault is on the problem of estimating the boundaries of homogeneous
blocks of an observed matrix by cross-segmentation. This contribution is based on the joint work with
J.-C. Quinton and A. Samson and is already partially presented at two conferences (see [16] and [14]). In
this section two models and the associated segmentation procedures are presented. The obtained results and
the di�erences between two methods are discussed.

The author of the third section is S. Dachian. This part presents a survey of recent results on change-point
location estimation for di�erent observation models in presence of a cusp-type singularity in the driving function
(density, signal, intensity function, drift, etc.) at the change-point. The survey follows a recent paper [27] by
S. Dachian, N. Kordzakhia, Yu. Kutoyants and A. Novikov. For each model, the asymptotic behavior of the
Bayesian and the maximum likelihood estimators is studied.

The last section is written by B. Saussereau. It presents the results on inference for Threshold Autoregressive
(TAR) models obtained jointly with A. M. Elmi [33]. The authors study asymptotic properties of least square
estimators for weak TAR models and show that they are strongly consistent under some mixing assumptions.

1. Offline detection of multiple changes using an adaptive penalty

Consider the following example of a real dataset, i.e. log-ratio of the closing values of the FTSE (The Financial
Times Stock Exchange 100 Index) index from 27 july 2005 to 18 march 2011 (Figure 1). In such an example,
once the trajectory is observed, we might be interested in the detection of eventual changes in the dynamics of
this time series. Using the semi-parametric methods that will be presented below, we obtain the division of the
observed time series into 4 distinct zones, with the break instants corresponding to the dates of beginning or
end of �nancial crises (typically September 2008).

In the sequel we present a general method for solving such a problem of o�ine detection of changes in three
di�erent semi-parametric frameworks (we denote (ξt)t∈Z a sequence of centered i.i.d.r.v.) once (X1, . . . , Xn) is
observed:

(1) Signal + Noise model: Here, we assume that for any θ ∈ Θ ⊂ Rd, there exists a function sθ : Z → R,
which is known, such as:

Xt = sθ(t) + ξt ∀t ∈ Z;

(2) Causal a�ne time series: Here, we assume that for any θ ∈ Θ ⊂ Rd, there exists two functions fθ :
RN → R and Mθ : RN → R, which are known, and such as

Xt = Mθ(Xt−1, Xt−2, . . .) ξt + fθ(Xt−1, Xt−2, . . .) ∀t ∈ Z;

(3) Long memory process: Here we assume that (Xt)t∈Z is a long memory second order stationary process
with a spectral density satisfying the following expansion: there exist d ∈ (0, 0.5), c0, c1 and β three
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Figure 1. Log-ratio of the closing values of the FTSE index from July 27, 2005 to March 18,
2011 (n = 1428).

positive real numbers such as

fX(λ) = |λ|−2d
(
c0 + c1|λ|β + o(|λ|β)

)
as λ→ 0.

We assume that (X1, . . . , Xn) has an unknown number K∗ − 1 of semi-parametric changes. More precisely, in
each of the three frameworks, (Xt) is a time series depending on the changing parameter θ with the values θ∗k
for t ∈ {t∗k−1 + 1, t∗k−1 + 2, . . . , t∗k}, where k = 1, . . . ,K∗, with t∗0 = 0 and t∗K∗ = n by convention. The number
of changes K∗ − 1, the change-points (t∗k)1≤k≤K∗−1 and the changing parameters (θ∗k)1≤k≤K∗ are unknown.

Our aim is to estimate K, (tk)1≤k≤K−1, and (θk)1≤k≤K . In the following we will �rst consider the situa-
tion of known number of changes K∗. In Section 1.1 we give a general overview of the estimation methods
based on the minimization of an appropriately contrast function for a known K∗. Next, in Section 1.2 we will
consider several penalization criteria applied in the case of unknown number of changes. The results on the
consistency and asymptotic of the obtained estimators of K, (tk)1≤k≤K−1, and (θk)1≤k≤K will be given for each
of three frameworks (1)�(3) stated above. Finally, in Section 1.3 the slope heuristic procedure of an adaptive
penalization is presented.

1.1. The case of known number of changes

Let (Z1, . . . , Zm) be an observed sample of random variables (Zt)t∈Z (in the sequel, (Z1, . . . , Zm) will notably
correspond to certain portions of the trajectory (X1, . . . , Xn)), with a probability distribution depending on a
true and unknown parameter θ∗ ∈ Θ ⊂ Rd. For any θ ∈ Θ ⊂ Rd, de�ne a contrast Φθ(Z1, . . . , Zm) such that

θ∗ = lim
m→∞

Argmin
θ∈Θ

E [Φθ(Z1, . . . , Zm)] .

Typically, the following contrast functions are considered:

• Φθ is a Least Squares (LS) criterion: Φθ(Z1, . . . , Zm) =
∑m
j=1

(
Zj − tUj θ

)2
or Least Absolute Value

(LAV) criterion: Φθ(Z1, . . . , Zm) =
∑m
j=1

∣∣Zj − tUj θ
∣∣, with (Uj)1≤j≤m a family of observed vectors (for

instance observed exogenous variables);
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• Φθ(Z1, . . . , Zm) = −2 log
(
Lθ(Z1, . . . , Zm)

)
where Lθ is the likelihood;

• Φθ(Z1, . . . , Zm) = −2 log
(
L̂θ(Z1, . . . , Zm)

)
where L̂θ is the quasi-likelihood.

We consider the general multiple change framework de�ned below.

Assumption. We observe a sample (X1, · · · , Xn) such that Xt is a time series depending on the parameter
θ∗k for t ∈ {t∗k−1+1, t∗k−1+2, . . . , t∗k}, k = 1, . . . ,K∗, with the change-points 0 = t∗0 < t∗1 < · · · < t∗K∗−1 < t∗K∗ = n

and unknown parameters (θ∗k)1≤k≤K∗ ∈ ΘK∗ such that θ∗k 6= θ∗k+1 for 1 ≤ k ≤ K∗ − 1.

In order to estimate all these parameters, for K ∈ N∗, 1 ≤ t0 < t1 < · · · < tK = n and (θi)1≤i≤K ∈ ΘK ,

de�ne În
(
K, (ti)1≤i≤K−1, (θi)1≤i≤K

)
as the sum of contrasts within each interval,

În
(
K, (ti)1≤i≤K−1, (θi)1≤i≤K

)
=

K∑
i=1

Φθi(Xti−1+1, . . . , Xti)

The estimators of parameters minimize this sum of contrasts.

De�nition 1.1. Let K∗ be known. De�ne(
(t̂i)1≤i≤K∗−1 , (θ̂i)1≤i≤K∗

)
= Argmin

(ti)1≤i≤K∗−1, (θ)1≤i≤K∗

În
(
K∗, (ti)1≤i≤K∗−1, (θi)1≤i≤K∗

)
Note that a consequence of this de�nition is the following: if we denote by

θ̃ti−1,ti = Argmin
θ∈Θ

Φθ(Xti−1+1, . . . , Xti),

the estimate of θ withing the interval (ti−1, ti], then the estimates of change-points t̂i are obtained as the solution
of the following minimization problem:

(t̂i)1≤i≤K∗−1 = Argmin
1<t1<···<tK∗−1<n

În
(
K∗, (ti)1≤i≤K∗ , (θ̃ti−1,ti)1≤i≤K∗

)
.

Thus the initial minimization problem is reduced to the computation of (t̂i)1≤i≤K∗−1, which normally requires

to study O(nK
∗−1) di�erent values of (t̂i)1≤i≤K∗−1. By use of the dynamic programming (see [35]), this problem

is reduced to O(n2) for any K∗.

1.2. The case of unknown number of changes

When K∗ is unknown, we can de�ne a penalized sum of contrasts, i.e. for 0 ≤ K ≤ Kmax, where Kmax is a
�xed real integer number supposed to be larger or equal to K∗, we set

Ĵn
(
K, (ti)1≤i≤K−1, (θi)1≤i≤K

)
= În

(
K, (ti)1≤i≤K−1, (θi)1≤i≤K

)
+ κn pen(K)

where (κn) is a sequence of positive numbers and K ∈ N 7→ pen(K) is an increasing function.

De�nition 1.2. Let K∗ be unknown. De�ne(
K̂ , (t̂i)1≤i≤K̂−1 , (θ̂i)1≤i≤K̂

)
= Argmin
K, (ti)1≤i≤K−1, (θ)1≤i≤K

Ĵn
(
K, (ti)1≤i≤K−1, (θi)1≤i≤K−1

)
.

The estimators of this type arise in three following well known situations.
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• The case of multiple least square regression (see for instance [3]) with

Φθi(Xti−1+1, . . . , Xti) =

ti∑
j=ti−1+1

(
Xj − tUjθi

)2
, pen(K) = (d+ 1)K − 1 and κn = 2σ2,

always with (Uk)1≤k≤n a family of observed vectors in Rd. This is the classical Mallows Cp criterion;

• The general case of maximum likelihood estimation with

Φθi(Xti−1+1, . . . , Xti) = −2 log
(
Lθi(Xti−1+1, . . . , Xti)

)
, pen(K) = (d+ 1)K − 1 and κn = 2.

This is the classical AIC criterion;
• The general case of maximum likelihood estimation with

Φθi(Xti−1+1, . . . , Xti) = −2 log
(
Lθi(Xti−1+1, . . . , Xti)

)
, pen(K) = (d+ 1)K − 1, and κn = log(n).

This is the classical BIC criterion.

Let us make additional assumptions:

• t∗k = [n τ∗k ] with τ∗0 = 0 < τ∗1 < · · · < τ∗K = 1;
• the explicit form or expansion of functions sθ in the "signal + noise" model, fθ and Mθ in the case
of causal a�ne time series and the expansion of the spectral density fX(λ) in case of long memory
processes are known.

• K∗, (τ∗k )1≤k≤K∗−1, (θ
∗
k)1≤k≤K∗ and the distribution of ξ are unknown.

In the sequel we will use the following notation:

• t∗ = (t∗1, . . . , t
∗
K∗−1), t̂ = (t̂1, . . . , t̂K̂−1), τ∗ = (τ∗1 , . . . , τ

∗
K∗−1) and τ̂ = (τ̂1, . . . , τ̂K̂−1);

• θ∗ = (θ∗1 , . . . , θ
∗
K∗) and θ̂ = (θ̂1, . . . , θ̂K̂).

Now, we consider the three di�erent frameworks and state some asymptotic results.

1.2.1. Framework 1: signal + noise model

We observe (X1, . . . , Xn) where the underlying process (Xt)t∈Z satis�es the relationship

Xt = sθ∗i (t) + ξt for all t ∈ {t∗i−1 + 1, . . . , t∗i },

for i = 1, . . . ,K∗ and with an explicit function t→ sθ(t) depending on θ ∈ Θ ⊂ Rd.

Example 1.3. In a typical situation we consider sθ(t) = θ ∈ R and therefore d = 1. Then, for di�erent contrast
functions Φθ we have the following estimators of θ:

• for the contrast Φ
(2)
θ (X1, . . . , Xn) = n log

( n∑
t=1

(
Xt − sθ(t)

)2)
which is equivalent to the LS criterion,

we have θ̂n = 1
n

n∑
t=1

Xt;

• for the contrast Φ
(1)
θ (X1, . . . , Xn) = n log

( n∑
t=1

∣∣Xt − sθ(t)
∣∣) which is equivalent to the LAV criterion,

we have θ̂n = median(X1, . . . , Xn).
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Both for Φ
(1)
θ (see [2]) and Φ

(2)
θ (see [3] or [62]), the following theorem establishes the consistency of the

corresponding estimators.

Theorem 1.4. If κn −→
n→+∞

∞ and κn/n −→
n→+∞

0 with pen(K) = K and Kmax ≥ K∗, then:

(K̂n, τ̂ , θ̂)
P−→

n→+∞
(K∗, τ∗, θ∗)

More precisely, lim
δ→∞

lim
n→∞

P(‖̂t− t∗‖d > δ) = 0.

Remark 1.5. For the contrast Φ
(2)
θ the results are also valid under mixing conditions on (ξt).

1.2.2. Framework 2: general causal a�ne models

We observe a sample (X1, . . . , Xn) where

Xt = Mθ∗i
(Xt−1, Xt−2, . . .) ξt + fθ∗i (Xt−1, Xt−2, . . .) for all t ∈ {t∗i−1 + 1, . . . , t∗i },

for i = 1, . . . ,K∗ and explicit functions x ∈ RN → fθ(x) and x ∈ RN →Mθ(x) for θ ∈ Θ.

Example 1.6. The following usual time series can be represented as particular cases of causal a�ne models:

• For AR(∞) processes (and therefore ARMA processes), we have Xt = ξt +

∞∑
i=1

aiXt−i and therefore

fθ(Xt−1, Xt−2, . . .) =
∑∞
i=1 ai(θ)Xt−i and Mθ(Xt−1, Xt−2, . . .) = σ2;

• For ARCH(∞) processes (and therefore GARCH processes): Xt = ξt
(
a0 +

∞∑
i=1

aiX
2
t−i
)1/2

and therefore

fθ(Xt−1, Xt−2, . . .) = 0 and Mθ(Xt−1, Xt−2, . . .) =
(
a0 +

∑∞
i=1 ai(θ)X

2
t−i
)1/2

;
• the processes ARMA(p, q)-GARCH(p′, q′), APARCH(p, δ, q), TARCH(p, q) are other examples (see [7]).

Denote now for any θi ∈ Θ,{
f tθi = fθi(Xt−1, Xt−2, . . .)
M t
θi

= Mθi(Xt−1, Xt−2, . . .)
for t ∈ {t∗i−1 + 1, . . . , t∗i }.

In case of general causal a�ne processes we can use a Gaussian Quasi-Maximum Likelihood (QML) estimation.
We will use the short abbreviation QMLE is we talk about Quasi-Maximum Likelihood estimator.

(1) If (ξt)t are i.i.d.r.v. N (0, 1), the conditional (w.r.t. (Xt)t≤ti−1
) log-likelihood of (Xti−1+1, · · · , Xti) is

LGi (θi) =

ti∑
t=ti−1+1

qGt (θi) with qGt (θi) = −1

2

(
Xt − f tθi

)2(
M t
θi

)2 + log
(
M t
θi

)
.

However X0, X−1, . . . are unobserved! Thus de�ne for θ ∈ Θ{
f̂ tθ = fθ(Xt−1, . . . , X1, 0, · · · )
M̂ t
θ = Mθ(Xt−1, . . . , X1, 0, · · · )

for t ∈ {1, . . . , n}.

Then the Gaussian QML on {ti−1 + 1, . . . , ti} is given by

L̂Gi (θi) =

ti∑
t=ti−1+1

q̂Gt (θi), where q̂Gt (θi) = −1

2

(
Xt − f̂ tθi

)2(
M̂ t
θi

)2 + log
(
M̂ t
θi

)
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and the Gaussian QMLE is θ̂Gi = Argmax
θi∈Θ

L̂Gi (θi).

(2) If (ξt)t are i.i.d.r.v. from the Laplace distribution, the conditional log-likelihood of (X1, · · · , Xn) is

LLi (θi) =

ti∑
t=ti−1+1

qLt (θi) with qLt (θi) = −
∣∣Xt − f tθi

∣∣
M t
θi

+ log
(
M t
θi

)
Then we can de�ne the Laplacian QML by

L̂Li (θi) =

ti∑
t=ti−1+1

q̂Lt (θi) with qLt (θi) = −
∣∣Xt − f̂ tθi

∣∣
M̂ t
θi

+ log
(
M̂ t
θi

)

and the Laplacian QMLE as θ̂Li = Argmax
θi∈Θ

L̂Li (θi).

De�nition 1.7. De�ne the contrasts ΦGθi and ΦLθi as follows,

ΦGθi(Xti−1+1, . . . , Xti) = −2 L̂Gi (θi) and ΦLθi(Xti−1+1, . . . , Xti) = −L̂Li (θi).

Finally, we will assume that there exists two sequences of Lipschitzian coe�cients (αi(f))i≥1 and (αi(M))i≥1

respectively for fθ and gθ, i.e satisfying for any x, y ∈ RN,

sup
θ∈Θ

∣∣fθ(x)− fθ(y)
∣∣ ≤ ∞∑

i=1

αi(f) |xi − yi| and sup
θ∈Θ

∣∣Mθ(x)−Mθ(y)
∣∣ ≤ ∞∑

i=1

αi(M) |xi − yi|.

Theorem 1.8. For ΦGθ we prove in [6] that

• if pen(K) = K and Kmax ≥ K∗, if r ≥ 2, under identi�ability conditions on fθ and Mθ, if there exists
M > 0 such as for any x ∈ RN and any θ ∈ Θ, Mθ(x) ≥M and if κn ∧ nκ−1

n →∞ and

∑
k≥2

κ
−(r/4∧1)
k

( ∑
`≥k/ log(k)

α`(f) + α`(M)
)(r/4∧1)

<∞

then (K̂n, τ̂ , θ̂)
P−→

n→+∞
(K∗, τ∗, θ∗).

• Moreover, if r ≥ 4 and if κn =
√
n, under conditions on the �rst and second derivatives of fθ and Mθ

(see more details in [6]), then

lim
δ→∞

lim
n→∞

P(‖̂t− t∗‖m > δ) = 0 and
√
n
√
τ∗j − τ∗j−1

(
θ̂j − θ∗j

) D−→
n→∞

Nd
(
0, G(θ∗j )

)
Remark: Note that the convergence rate is the same as if (X1, . . . , Xn) was a family of independent random

variables.

1.2.3. Framework 3: Long memory processes

In this case, the spectral density of (Xti−1+1, . . . , Xti) is

fX(λ) = |λ|−2d∗i
(
c∗0,i + c∗1,i|λ|β

∗
i + o(|λ|β

∗
i )
)

as λ→ 0,
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where d∗i ∈ (0, 1/2), c∗0,i, c
∗
1,i and β∗i are positive real numbers. Robinson [75] introduced the local Whittle

contrast for estimating d∗i . Hence, for di ∈ (0, 1/2), and m ∈ N∗, de�ne

Wi(di,m) = log
( 1

m

m∑
k=1

( k
m

)2di
Ii(λk)

)
− 2 di

m

m∑
k=1

log(k/m), where λk = 2π
k

ti − ti−1

and

Ii(λ) =
1

2π(ti − ti−1)

∣∣∣ ti∑
k=ti−1+1

Xke
−i k λ

∣∣∣2,
is the periodogram. Using this contrast we can de�ne the local Whittle estimator of the long memory parame-
ter d∗i

d̂i = Argmin
di∈(0,1/2)

{
Wi(di,m)

}
.

De�nition 1.9. De�ne the contrast ΦLMθ by

ΦLMθi (Xti−1+1, . . . , Xti) = (ti − ti−1)Wi(di,m).

In [5], we prove the following theorem.

Theorem 1.10. If m = o
(
n2β∗/(1+2β∗

)
, where β∗ = min

1≤i≤K∗+1
β∗i and if max

(κn
n
,
n log n

κn
√
m

)
−→

n→+∞
0, then

(K̂, τ̂ , d̂)
P−→

n→+∞
(K∗, τ∗, d∗).

We also obtain the following rates of convergence:

√
m
∥∥d̂− d∗∥∥ P−→

n→+∞
0 and lim

δ→∞
lim
n→∞

P
(√m
n

∥∥t̂− t∗∥∥ ≥ δ) = 0.

1.3. An adaptive penalization: the slope heuristic procedure

The heuristic slope procedure has been introduced in [1]. It was applied in the three previous framework (see
respectively [4] or [35], [6] and [5]) for deducing a data-driven penalization. In the sequel we detail the case of
long-memory change detection.
Instead of a �xed sequence (κn), we can use a data-driven penalty rate κ̂n = 2 × |ŝ|, with ŝ the slope of the

least square regression of În(K, t̂, d̂) onto K for K large enough. Let

K̂H = Argmin
0≤K≤Kmax

{
În(K, t̂, d̂) + 2× |ŝ| ×K

}
be an estimator of the number of changes using the data-driven procedure. Figure 1.3 shows a graphical
illustration of this procedure in the long memory processes framework: Using the Monte�Carlo experiments
we have shown that this data-driven procedure leads to more accurate results than the procedures based on
penalization with a sequence (κn) chosen a priori (see in [4] and [35] for the result for Framework 1, [6] for
Framework 2, and [5] for the case of Framework 3).
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Figure 2. The graphs of În(K, t̂, d̂) (in black) and of În(K, t̂, d̂) + 2× |ŝ| ×K (in black) for
n = 5000 observations with K∗ = 4 change-points of a FARIMA(0, d, 0) process.

2. Cross-segmentation of columns and rows of a matrix: comparison of two

procedures with an application to the study of autonomous vehicle

2.1. Introduction

In the research about the autonomous vehicles, the cost of a high performance GPS is a problem and a
solution proposed is to study the environment of the vehicles to guide the latter in the case of regular trips. For
this, we need to synthesize large videos footage of the environment (see [54]) by separating the distinct places
(e.g. straight line, intersection...) (see [10]).

This problem is similar to the analysis of the biological Hi-C data (see [30]) and some algorithms exist.
Notably, Brault et al. [12] have developed an algorithm of quick segmentation for a block-wise constant matrix,
Brault et al. [15] have studied the segmentation method based on rank statistics.

In Figure 3, we display an example of a trip and the similarity matrix of the associated video images: the
redder a cell (t1, t2) is, the stronger is the resemblance between the two associated images at times t1 and t2.
We can observe some color blocks in the matrix and our goal is to segment the rows and columns to bring out
homogeneous blocks (either with uniform coloring or with the same types of colors).

To estimate the change-points in the matrix, two procedures have been developed for the Hi-C data called
respectively BlockSeg (see [12]) and MuChPoint (see [15]). In this presentation, we compare the two methods
with respect to their complexities and theoretical guarantees (see also [16] and [14]).

2.2. Statistical framework

In this part, we develop each modelization.

2.2.1. BlockSeg method

In their article [12], the authors consider estimating n?1 = (n?1,1, . . . , n
?
1,L?1

) and n?2 = (n?2,1, . . . , n
?
2,L?2

) from

the random matrix Y = (Yi,j)1≤i,j≤n de�ned by

Y = C + E where Ci,j = µ?k,` if n?1,k−1 ≤ i < n?1,k and n?2,`−1 ≤ j < n?2,`, (1)

with the convention n?1,0 = n?2,0 = 1 and n?1,L?1+1 = n?2,L?2+1 = n + 1. Then C = (Ci,j)1≤i,j≤n is a blockwise

constant matrix and the entries Ei,j of the matrix E = (Ei,j)1≤i,j≤n are iid zero-mean random variables. With
such a de�nition the Yi,j are assumed to be independent random variables with a blockwise constant mean.
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Figure 3. On the left are the GPS coordinates of the route made by a vehicle whose �lm was
studied. On the right is the matrix of similarities of the associated video images.

Let T be a n×n lower triangular matrix with non-zero elements equal to one andB a sparse matrix containing
null entries except for the Bi,j such that (i, j) ∈ {n?1,0, . . . , n?1,L?1}×{n

?
2,0, . . . , n

?
2,L?2
}. Then, (1) can be rewritten

as follows:

Y = TBT> + E, (2)

where T> denotes the transpose of the matrix T. Let Vec(X) denote the vectorization of the matrix X formed
by stacking the columns of X into a single column vector, then Vec(Y) = Vec(TBT>) + Vec(E). Thus (2)
can be rewritten as Y = XB + E with Y = Vec(Y), X = T ⊗ T, where ⊗ denotes the Kronecker product,
B = Vec(B) and E = Vec(E). By virtue of these transformations, Model (1) has thus been rephrased as a
sparse high dimensional linear model where Y and E are n2 × 1 column vectors, X is a n2 × n2 matrix and B is
n2×1 sparse column vectors. Multiple change-point estimation problem (1) can thus be addressed as a variable
selection problem:

B̂(λn) = Argmin
B∈Rn2

{
‖Y − XB‖22 + λn‖B‖1

}
, (3)

where ‖u‖22 and ‖u‖1 are de�ned for a vector u in Rn2

by ‖u‖22 =
∑n2

i=1 u
2
i and ‖u‖1 =

∑n2

i=1 |ui|. Criterion (3)
is related to the popular Least Absolute Shrinkage and Selection Operator (LASSO) in least-square regression.

Due to the sparsity enforcing property of the `1-norm, the estimator B̂ of B is expected to be sparse and to

have non-zero elements matching with those of B. Hence, retrieving the positions of the non zero elements of B̂
thus provides estimators of (n?1,k)1≤k≤L?1 and of (n?2,k)1≤k≤L?2 . More precisely, let us de�ne by Â(λn) the set of
active variables:

Â(λn) =
{
j ∈ {1, . . . , n2} : B̂j(λn) 6= 0

}
.

For each j in Â(λn), consider the Euclidean division of (j − 1) by n, namely (j − 1) = nqj + rj then

n̂1 = (n̂1,k)1≤k≤|Â1(λn)| ∈ {rj + 1 : j ∈ Â(λn)}, n̂2 = (n̂2,`)1≤`≤|Â2(λn)| ∈ {qj + 1 : j ∈ Â(λn)}
where n̂1,1 < n̂1,2 < · · · < n̂1,|Â1(λn)|, n̂2,1 < n̂2,2 < · · · < n̂2,|Â2(λn)|. (4)
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In (4), |Â1(λn)| and |Â2(λn)| correspond to the number of distinct elements in {rj : j ∈ Â(λn)} and {qj : j ∈
Â(λn)}, respectively.

2.2.2. MuChPoint method

In their article [15], the authors assume that Y = (Yi,j)1≤i,j≤n is a symmetric matrix such that the Yi,j 's
are independent random variables for i ≥ j. Let n0 = 1 < n1 < n2 < · · · < nL? < n + 1 = nL?+1 be a
given L?-uplet in {2, . . . , n}, the authors assume that for each ` ∈ {0, . . . , L? − 1}, there exists at least one row
i ∈ {1, . . . , n} and two distinct laws Li,` and Li,`+1 such that (Yi,j)j∈{n`,n`+1,...,n`+1−1} are independent and
identically distributed following Li,`, (Yi,j)j∈{n`+1,n`+1+1,...,n`+2−1} are independent and identically distributed
following Li,`+1 and the variables (Yi,j)j∈{n`,n`+1,...,n`+2−1} are independent.

To estimate the change-points, they propose to use a test statistic inspired by the one designed by Lung-Yut-
Fong et al. [67] which extends the well-known Wilcoxon-Mann-Whitney rank-based test to deal with multivariate
data and obtain the following statistic:

Sn (n1, . . . , nL?) =
4

n2

L?∑
`=0

(n`+1 − n`)
n∑
i=1

(
R

(i)

` −
n+ 1

2

)2

with R
(i)

` =
1

n`+1 − n`

n`+1−1∑
j=n`

n∑
k=1

I1{Yi,k≤Yi,j},

where
∑n
k=1 I1{Yi,k≤Yi,j} is the rank of Yi,j in the row i and R

(i)

` is its mean rank in the group `.
To estimate the change-points, the authors propose to maximize the statistic:

n̂ = (n̂1, . . . , n̂L?) ∈ argmax
1<n1<n2<···<nL?<n+1

Sn (n1, . . . , nL?)

using dynamic programming strategy [51]. By symmetry, we obtain at the end (L? + 1)2 blocks with the same
distribution of elements for each block.

2.3. Comparison

In this part, we compare the consistency and the complexity of the two procedures.

2.3.1. Consistency

From a theoretical point of view, the two procedures are consistent but not under the same assumptions. We
compare the assumptions according to the characteristics of each:

• Assumption on the laws:
(B1) (Ei,j) are iid zero mean random variables such that ∃β > 0,∀ν ∈ R,

E [exp(νE1,1)] ≤ exp(βν2).
(M1) Yi,j 's are independent random variables when i ≥ j and the cumulative distributions functions of

the Yi,j 's are continuous.
• Assumption on the separation of the blocks:
(B2) If we denote J?

min
= min1≤k≤L?1 ‖µ

?
k+1,· − µ?k,·‖∞ ∧min1≤`≤L?2 ‖µ

?
·,`+1 − µ?·,`‖∞ where ‖ · ‖∞ is the

maximum norm, there exists (δn)n∈N ∈ (R+)
N
non increasing such that

δn −→
n

0 and n/ log nδnJ
?
min

2 −→
n

+∞.

(M2) For each ` ∈ {0, . . . , L?}, there exists i ∈ {1, . . . , n}, such that if X follows the law Li,` and Y is
distributed according to Li,`+1, then E [FX(Y )] 6= E [FY (X)], where FX is the distribution function
of X

• Assumption on the repartition of the observations:
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(B3) min0≤k≤L?1 |n
?
1,k+1 − n?1,k| ∧min0≤k≤L?2 |n

?
2,k+1 − n?2,k| ≥ nδn.

(M3) There exists 0 < τ?1 < · · · < τ?L? < 1, such that for each ` ∈ {1, . . . , L?}, n?`/n→n τ?` .

• Assumption for the LASSO:

(B4) There exists (λn)n∈N such that |Â1(λn)| = L?1, that |Â2(λn)| = L?2 and

λn
nδnJ?min

−→
n

0.

Under these assumptions, we obtain the following theorem:

Theorem 2.1. Under the assumptions (B1), (B2), (B3) and (B4), the estimator of the BlockSeg procedure is
consistent.
Under the assumptions (M1), (M2) and (M3), the estimator of the MuChPoint procedure is consistent.

The proofs are available respectively in [12] (Proposition 1 of Section 2.2) and in [15] (Theorem 4 of Sec-
tion 3.1).

2.3.2. Complexity

Since the B is sparse (due to the number of blocks that is �xed), the complexity of the BlockSeg procedure
is linear with the number of cases of the matrix while the complexity of the MuChPoint procedure is slightly
worse.

Proposition 2.2. The complexities of the BlockSeg procedure is O(n2) and of the MuChPoint procedure is
O
(
n3
)
.

The procedures are implemented in the software respectively in the packages [11] and [13].

2.4. Perspectives

In theory, the BlockSeg procedure is faster than the MuChPoint procedure but its consistency conditions are
more restrictive. In practice, the model selection in the �rst procedure requires estimating several times the
change-point while in the second a model selection criterion can be used. Moreover, it is possible to improve
the estimation of the BlockSeg procedure using the symmetry of the matrix. It is also important to automate
the selection of the number of breaks. These two perspectives are the object of a future work.

3. On parameter estimation in non-regular situations of cusp type

In this section we present a survey of recent (and less recent) results on change-point location estimation
for di�erent observation models (i.i.d. observations, signal in white Gaussian noise, inhomogeneous Poisson
processes, ergodic di�usion processes, etc.), in presence of a cusp-type singularity (the function is continuous,
but has an in�nite derivative) in the driving function (density, signal, intensity function, drift, etc.) at the
change-point. The survey follows a recent paper [27] by Dachian, Kordzakhia, Kutoyants and Novikov, though
here we consider a slightly more general situation of asymmetric (having di�erent multiplicative constants at
the left and at the right) cusp. For each model, we study the asymptotic behavior of the maximum likelihood
estimator (MLE), as well as that of the Bayesian estimators (BEs).

Let us recall that it is well-known that in regular statistical models (irrespectively of the nature of the
observations), both the MLE and the BEs are asymptotically normal and asymptotically e�cient. This comes
from the fact that regular statistical models are locally asymptotically normal (LAN).

The situation is quite di�erent for non-regular statistical models. For classical change-point models (the
function is discontinuous at the change-point), the limiting distributions of the MLE and of the BEs are no
longer Gaussian, and we can cite at least three di�erent kinds of asymptotic behavior.
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• For i.i.d. observations with discontinuous density (see Cherno� and Rubin [22], as well as Ibragimov
and Khasminskii [46,47,50]) and for Poisson processes with discontinuous intensity function (see Kuto-
yants [57,59]), the limiting distributions of the MLE and of the BEs are given by some random variables
which are (di�erent) functionals of a two-sided Poisson process, and the BEs are asymptotically e�cient.

• For a discontinuous signal in white Gaussian noise (see Ibragimov and Khasminskii [49,50]), for change-
point type dynamical systems with small noise (see Kutoyants [57, 58]), for ergodic di�usion processes
with discontinuous drift (see Kutoyants [57,60]), for change-point type delay di�erential equations with
noise (see Küchler and Kutoyants [56]), for a discontinuous signal in time inhomogeneous di�usion (see
Höpfner and Kutoyants [45]), as well as for many other change-point models, the limiting distributions
of the MLE and of the BEs are given by some random variables which are (di�erent) functionals of a
two-sided Brownian motion (Wiener process), and the BEs are asymptotically e�cient.

• For the two-phase regression model (see Koul and Qian [55] for the linear case, as well as Ciuperca [24]
for the nonlinear case) and for the threshold auto-regressive (TAR) model (see K.S. Chan [18], as well
as N.H. Chan and Kutoyants [20, 21]), the limiting distributions of the MLE and of the BEs are given
by some random variables which are (di�erent) functionals of a two-sided compound Poisson process,
and the BEs are asymptotically e�cient.

Below, we consider the problem of change-point location estimation in presence of a cusp-type singularity at
the change-point for several models of observation. Interestingly, unlike the classical (discontinuous) change-
point models, and somewhat like regular statistical models, the asymptotic behavior of the MLE, as well as that
of the BEs, is the same through all the models: the limiting distributions of the MLE and of the BEs are given
by some random variables which are (di�erent) functionals of a (two-sided) fractional Brownian motion (fBm),
and the BEs are asymptotically e�cient.

In all the considered models, the asymptotic behavior of the estimators is studied using the likelihood ratio
analysis method introduced by Ibragimov and Khasminskii in [50]. The method consist in �rst showing that
the normalized likelihood ratio process (with a suitable normalization) converge to some limiting likelihood ratio
process, and then deducing the properties of the estimators (and, namely, the limiting distributions of the MLE
and of the BEs given by some functionals of the limiting likelihood ratio process, as well as the asymptotic
e�ciency of the BEs). It turns out that in all the considered models, the limiting likelihood ratio process is the
same and is an exponential of a fBm with a power drift (see below for more details).

Though historically the �rst model in which a cusp-type singularity at the change-point was studied was the
model of i.i.d. observations (which will be considered in Section 3.2), we will start our survey by presenting in
Section 3.1 the signal in white Gaussian noise model, in which the fBm based limiting likelihood ratio process
appears the most naturally. Further, in Sections 3.3 and 3.4, we will consider inhomogeneous Poisson processes
and ergodic di�usion processes, respectively. Finally in Section 3.5, we present some numerical simulations
concerning the limiting distributions of the MLE and of the BEs.

In conclusion, let us note that some other models of observations were equally studied in presence of a cusp-
type singularity at the change-point by di�erent authors. For nonlinear regression models we refer to Prakasa
Rao [73], Döring [31], as well as to Döring and Jensen [32]; for delay di�erential equations with noise we refer
to Gushchin and Küchler [40]; and for dynamical systems with small noise we refer to Kutoyants [61]. These
authors still obtain the same (fBm based) asymptotic behavior of the MLE and of the BEs. So, the asymptotic
behavior seems to be universal in presence of a cusp-type singularity at the change-point, and it would be
interesting to study more observation models to con�rm (or in�rm) this conjecture.

3.1. Signal in white Gaussian noise

Suppose we observe a deterministic signal in white Gaussian noise, that is, a realization of a stochastic

process X(ε) =
(
X

(ε)
t , t ∈ [0, T ]

)
starting from X

(ε)
0 = 0 and satisfying the equation

dX
(ε)
t = Sθ(t) dt+ ε dWt, t ∈ [0, T ], (5)
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where T > 0 is the observation time, ε > 0 is the noise level, θ ∈ Θ = (α,β) ⊂ (0, T ) is the unknown parameter,
and Sθ is the deterministic signal supposed to have the form

Sθ(t) = d(t− θ)|t− θ|p + h(t− θ) (6)

with some continuously di�erentiable function h. Here and throughout the survey, the process (Wt, t ∈ R)
is a standard two-sided Brownian motion (Wiener process), 0 < p < 1/2 (note that for p > 1/2, the Fisher
information is �nite and the statistical model becomes regular) and

d(x) =

{
a, if x < 0,

b, if x > 0,
(7)

with a2 + b2 > 0.
We are interested in the estimation of the parameter θ in small noise asymptotics, that is, as ε→ 0. Let us

note that the long observation time asymptotics can be reduced to this case in the following way. Suppose we

observe Y (nτ) =
(
Y

(nτ)
t , t ∈ [0, nτ ]

)
starting from Y

(nτ)
0 = 0 and satisfying the equation (5) with T = nτ , ε = 1

and some τ -periodic signal Sθ (the period τ > 0 is supposed to be known). Then, putting

Xt =
1

n

n∑
j=1

(
Y(j−1)τ+t − Y(j−1)τ

)
, 0 ≤ t ≤ τ,

we obtain a stochastic process satisfying (5) with T = τ and ε = n−1/2 (and a di�erent noise Wiener process).
The likelihood of our model is given by (see, for example, Liptser and Shiryaev [66])

L
(
θ,X(ε)

)
= exp

{
1

ε2

∫ T

0

Sθ(t) dX
(ε)
t −

1

2ε2

∫ T

0

S2
θ (t) dt

}
, θ ∈ Θ.

Using this likelihood, we can introduce the maximum likelihood estimator (MLE) θ̂ε and the Bayes estimator

(BE) θ̃ε for a given strictly positive and continuous prior density p on Θ (and for quadratic loss function) by
usual relations

L
(
θ̂ε, X

(ε)
)

= max
θ∈Θ

L
(
θ,X(ε)

)
and θ̃ε =

∫
Θ
θ p(θ)L

(
θ,X(ε)

)
dθ∫

Θ
p(θ)L

(
θ,X(ε)

)
dθ

. (8)

In order to describe the properties of the MLE and of the BEs, we need to introduce some more notations
which will be used throughout the survey.

For any H ∈ (0, 1), we denote
(
WH(u), u ∈ R

)
the fractional Brownian motion (fBm) of Hurst parameter H,

that is, a centered Gaussian process with continuous trajectories and having covariance function of the form

E
[
WH(u1)WH(u2)

]
=

1

2

[
|u1|2H + |u2|2H − |u1 − u2|2H

]
. (9)

Further, we introduce the processes

ZH(u) = exp
{
WH(u)− 1

2
|u|2H

}
, u ∈ R,

and, for any γ > 0, the process
Zγ,H(u) = ZH(γu), u ∈ R.

We also introduce the random variables ξ̂H and ξ̃H by the relations

ZH
(
ξ̂H
)

= max
u∈R

ZH(u) and ξ̃H =

∫
R uZH(u) du∫
R ZH(u) du

.
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Note that the random variable ξ̂H is well de�ned, since with probability one the process ZH attains its maximum
in a unique point (see, for example, Ermakov [34]). Note also that similar random variables associated to the

process Zγ,H are nothing but ξ̂H/γ and ξ̃H/γ.
Finally for 0 < p < 1/2 and a, b from (7), we introduce the constant

Ip(a, b) =

∫ +∞

−∞

(
d(s− 1) |s− 1|p − d(s)

∣∣s|p)2

ds.

Note that this constant have the following explicit expressions (see Ibragimov and Khasminskii [50]):

Ip(a, b) =
Γ
(
1 + p

)
Γ
(

1
2 − p

)
22p
√
π (2p+ 1)

(
a2 + b2 − 2ab cos(πp)

)
= B

(
p+ 1, p+ 1

) ( a2 + b2

cos(πp)
− 2ab

)
.

Now we can state the man result of this section.

Theorem 3.1. Denote γ =
(
Ip(a, b)

)1/(2p+1)
.

(1) We have the following asymptotic lower bound on the mean squared error of an arbitrary estimator θ̄ε:

lim
δ↘0

lim
ε→0

sup
|θ−θ0|≤δ

ε−
4

2p+1 Eθ
(
θ̄ε − θ

)2 ≥ E
(
ξ̃p+ 1

2
/γ
)2
, θ0 ∈ Θ.

(2) The MLE θ̂ε and the BEs θ̃ε are consistent, have the following limiting distributions:

ε−
2

2p+1
(
θ̂ε − θ)

L−−→ ξ̂p+ 1
2
/γ and ε−

2
2p+1

(
θ̃ε − θ)

L−−→ ξ̃p+ 1
2
/γ,

the convergence of moments holds for the above convergences in law, and the BEs are asymptotically
e�cient, that is,

lim
δ↘0

lim
ε→0

sup
|θ−θ0|≤δ

ε−
4

2p+1 Eθ
(
θ̃ε − θ

)2
= E

(
ξ̃p+ 1

2
/γ
)2
, θ0 ∈ Θ.

The proof of this theorem can be found in Chernoyarov, Dachian and Kutoyants [23] and consist in checking
the condition of Theorems 1.9.1, 1.10.1 and 1.10.2 of Ibragimov and Khasminskii [50], which provide all the
desired results. The main ingredient hidden behind this theorems is the weak convergence (in a suitable
functional space) of the normalized likelihood ratio process

(
Z(ε)(u), u ∈ R

)
to the limiting likelihood ratio

process Zγ,p+ 1
2
. The process Z(ε) is de�ned by

Z(ε)(u) =
L
(
θ + uϕε, X

(ε)
)

L
(
θ,X(ε)

) =
1

ε

∫ T

0

[
Sθ+uϕε(t)− Sθ(t)

]
dWt −

1

2ε2

∫ T

0

[
Sθ+uϕε(t)− Sθ(t)

]2
dt

for u ∈
(
ϕ−1
ε (α − θ), ϕ−1

ε (β − θ)
)
↑ R, where ϕε = ε

2
2p+1 , and can be continuously extended to the whole R so

that it decreases to 0 at ±∞.
Let us give an heuristic argument explaining the convergence of the process Z(ε) to the process Zγ,p+ 1

2
. It is

based on the following representations of the fBm (see Kordzakhia, Kutoyants, Novikov and Hin [52]).

Lemma 3.2. The process

Y (u) = I−1/2
p (a, b)

∫ +∞

−∞

[
d(v − u)|v − u|p − d(v)|v|p

]
dWv, u ∈ R,
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is a fBm of Hurst parameter p+ 1
2 .

Proof. Obviously,
(
Y (u), u ∈ R

)
is a centered Gaussian process with continuous trajectories. It remains to

check that its covariance function is of the form (9). Indeed, denoting gv,u = d(v − u)|v − u|p − d(v)|v|p for the
sake of shortness, we can write

E
[
Y (u1)Y (u2)

]
= I−1

p (a, b)

∫ +∞

−∞
gv,u1

gv,u2
dv

=
1

2Ip(a, b)

∫ +∞

−∞
g2
v,u1

dv +
1

2Ip(a, b)

∫ +∞

−∞
g2
v,u2

dv − 1

2Ip(a, b)

∫ +∞

−∞

[
gv,u2

− gv,u1

]2
dv

=
1

2

(
|u1|2p+1 + |u2|2p+1 − |u2 − u1|2p+1

)
.

Here we used the elementary equality 2ab = a2 + b2− (a− b)2 and the change of variable v = su1

(
resp. v = su2

and v = u1 + s(u2 − u1)
)
in the �rst (resp. second and third) integral. �

For the process Z(ε), denoting st,u = d(t − θ − uϕε) for the sake of shortness and noting that for h de�ned
in (6)

1

ε2

∫ T

0

[
h(t− θ − uϕε)− h(t− θ)

]2
dt ≤ C ϕ2

ε

ε2
≤ C ε

4
2p+1−2 −→ 0,

we obtain

lnZ(ε)(u) =
1

ε

∫ T

0

[
st,u|t− θ − uϕε|p − st,0|t− θ|p

]
dWt −

1

2ε2

∫ T

0

[
st,u|t− θ − uϕε|p − st,0|t− θ|p

]2
dt+ o(1).

Further,

1

2ε2

∫ T

0

[
st,u|t− θ − uϕε|p − st,0|t− θ|p

]2
dt =

u |u|2p ϕ2p+1
ε

2ε2

∫ T−θ
uϕε

− θ
uϕε

[
d(s− 1)|s− 1|p − d(s)|s|p

]2
ds

−→ |u|
2p+1

2
Ip(a, b) =

1

2
|γu|2p+1,

where we used the change of variable t = θ + uϕεs.
Similarly, using the change of variable t = θ + ϕεv, we obtain

1

ε

∫ T

0

[
st,u|t− θ − uϕε|p − st,0|t− θ|p

]
dWt =

ϕ
p+ 1

2
ε

ε

∫ T−θ
ϕε

− θ
ϕε

[
d(v − u)|v − u|p − d(v)|v|p

]
dW v

L−−→ I1/2
p (a, b)W p+ 1

2
(u) = Wp+ 1

2
(γu),

where W is a Wiener process, while W p+ 1
2
and Wp+ 1

2
are fBms of Hurst parameter p+ 1

2 .

Combining all the above, we �nally get

Z(ε)(u)
L−−→ exp

{
Wp+ 1

2
(γu)− 1

2
|γu|2p+1

}
= Zγ,p+ 1

2
(u),

which is the desired convergence.
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3.2. I.i.d. observations

Suppose we observe an i.i.d. sample X(n) = (X1, . . . , Xn) with marginal density fθ(x) = f(x − θ), where
θ ∈ (α, β) ⊂ R is the unknown parameter, and the function f is given by

f(t) = h(t) exp
{
d(t)|t|p

}
, t ∈ R,

with some continuously di�erentiable function h satisfying h(0) 6= 0. The problem of estimation of the param-
eter θ was considered by Prakasa Rao in [72], by Ermakov in [34], as well as by Ibragimov and Khasminskii
in [46,48,50].

The MLE θ̂n and the BE θ̃n for a given strictly positive and continuous prior density p on Θ are de�ned by
usual relations similar to (8) with the likelihood

L
(
θ,X(n)

)
=

n∏
i=1

f(Xi − θ), θ ∈ Θ,

and their asymptotic behavior as n→ +∞ is described by the following theorem.

Theorem 3.3. Denote γ =
(
eh(0) Ip(a, b)

)1/(2p+1)
.

(1) We have the following asymptotic lower bound on the mean squared error of an arbitrary estimator θ̄n:

lim
δ↘0

lim
n→+∞

sup
|θ−θ0|≤δ

n
2

2p+1 Eθ
(
θ̄n − θ

)2 ≥ E
(
ξ̃p+ 1

2
/γ
)2
, θ0 ∈ Θ.

(2) The MLE θ̂n and the BEs θ̃n are consistent, have the following limiting distributions:

n
1

2p+1
(
θ̂n − θ)

L−−→ ξ̂p+ 1
2
/γ and n

1
2p+1

(
θ̃n − θ)

L−−→ ξ̃p+ 1
2
/γ,

the convergence of moments holds, and the BEs are asymptotically e�cient.

For the proof of this theorem we refer to Ibragimov and Khasminskii [50, Chapter 6].

3.3. Inhomogeneous Poisson processes

Suppose we observe n independent realizations on the interval [0, T ] of an inhomogeneous Poisson process
having a strictly positive intensity function λθ of the form

λθ(t) = d(t− θ)|t− θ|p + Ψ(θ, t), t ∈ [0, T ],

where T > 0 is �xed, θ ∈ Θ = (α,β) ⊂ (0, T ) is the unknown parameter, and the function Ψ is continuous
and, uniformly in t, Hölder continuous of order µ > p + 1

2 with respect to θ. We denote the observations

X(n) =
(
X1, . . . , Xn

)
, where Xi =

{
Xi
t , t ∈ [0, T ]

}
is the i-th realization, i = 1, . . . , n.

The likelihood of this model is given by (see, for example, Liptser and Shiryaev [66])

L
(
θ,X(n)

)
= exp

{
n∑
i=1

∫ T

0

lnλθ(t) dXi
t − n

∫ T

0

[
λθ(t)− 1

]
dt

}
, θ ∈ Θ.

Using this likelihood, the MLE θ̂n and the BE θ̃n for a given strictly positive and continuous prior density p
on Θ are de�ned by usual relations similar to (8), and their asymptotic behavior as n → +∞ is described by
the following theorem.
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Theorem 3.4. Denote γθ =
(
Ip(a,b)
Ψ(θ,θ)

)1/(2p+1)

.

(1) We have the following asymptotic lower bound on the mean squared error of an arbitrary estimator θ̄n:

lim
δ↘0

lim
n→+∞

sup
|θ−θ0|≤δ

n
2

2p+1 Eθ
(
θ̄n − θ

)2 ≥ E
(
ξ̃p+ 1

2
/γθ0

)2
, θ0 ∈ Θ.

(2) The MLE θ̂n and the BEs θ̃n are consistent, have the following limiting distributions:

n
1

2p+1
(
θ̂n − θ)

L−−→ ξ̂p+ 1
2
/γθ and n

1
2p+1

(
θ̃n − θ)

L−−→ ξ̃p+ 1
2
/γθ,

the convergence of moments holds, and the BEs are asymptotically e�cient.

For the proof of this theorem we refer to Dachian [26].

3.4. Ergodic di�usion processes

Suppose we observe a realization XT =
(
Xt, t ∈ [0, T ]

)
of the ergodic di�usion process

dXt = Sθ(Xt) dt+ σ(Xt) dWt, X0, t ∈ [0, T ],

where T > 0 is the observation time, θ ∈ Θ = (α,β) ⊂ R is the unknown parameter, and the drift Sθ is supposed
to be of the form Sθ(x) = d(x−θ)|x−θ|p+h(x−θ) with some Hölder continuous of order µ > p+ 1

2 function h.
Moreover, we suppose that the conditions ES, EM andA0(Θ) from [60] are ful�lled. These conditions guarantee,
in particular, the existence and uniqueness of the solution of the above equation, as well as the existence of the
invariant density

fθ(x) =
1

G(θ)σ2(x)
exp

{
2

∫ x

θ

Sθ(v)

σ2(v)
dv

}
, x ∈ R,

where G(θ) > 0 is the normalizing constant.
The likelihood of this model is given by (see, for example, Liptser and Shiryaev [66])

L
(
θ,XT

)
= exp

{∫ T

0

Sθ(Xt)

σ2(Xt)
dXt −

1

2

∫ T

0

S2
θ (Xt)

σ2(Xt)
dt

}
, θ ∈ Θ.

Using this likelihood, the MLE θ̂T and the BE θ̃T for a given strictly positive and continuous prior density p
on Θ are de�ned by usual relations similar to (8), and their asymptotic behavior as T → +∞ is described by
the following theorem.

Theorem 3.5. Denote γθ =
(

Ip(a,b)
G(θ)σ4(θ)

)1/(2p+1)

.

(1) We have the following asymptotic lower bound on the mean squared error of an arbitrary estimator θ̄n:

lim
δ↘0

lim
T→+∞

sup
|θ−θ0|≤δ

T
2

2p+1 Eθ
(
θ̄T − θ

)2 ≥ E
(
ξ̃p+ 1

2
/γθ0

)2
, θ0 ∈ Θ.

(2) The MLE θ̂T and the BEs θ̃T are consistent, have the following limiting distributions:

T
1

2p+1
(
θ̂T − θ)

L−−→ ξ̂p+ 1
2
/γθ and T

1
2p+1

(
θ̃T − θ)

L−−→ ξ̃p+ 1
2
/γθ,

the convergence of moments holds, and the BEs are asymptotically e�cient.

For the proof of this theorem we refer to Dachian and Kutoyants [28].
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3.5. Numerical simulations

It is interesting to compare the limiting mean squared errors of the MLE and of the BEs for di�erent values

of H = p+ 1
2 . In Novikov, Kordzakhia and Ling [69], it was shown via numerical simulations that E ξ̂

2

H can be

essentially larger than E ξ̃
2

H . The results are presented in Figure 4 for H ∈ (0.4, 1].

In Figure 5, we present the densities of the random variables ξ̂H and ξ̃H obtained by numerical simulations in
Kordzakhia, Kutoyants, Novikov and Hin [52]. Note that on Panel B: H = 0.5, the solid curve is plotted using
the analytic expression of the density of the MLE. This is the only case where the density is known explicitly.

Figure 4. Plots of lnE ξ̂
2

H (solid

curve) and lnE ξ̃
2

H (dashed curve).

Panel A: H = 0.3
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Figure 5. Densities of ξ̂H and ξ̃H

for H = 0.3, H = 0.5 and H = 0.75.

4. Statistical inference for threshold d autoregressive models with

independent innovations

4.1. Introduction

The Threshold Autoregressive (TAR) models are introduced by [78] and were studied by many authors such
that [18, 70, 71] and references therein. This model captures the dynamic behavior of time series by switching
the regimes. The TAR model plays an important role in nonlinear time series and have been widely used
to nonlinear phenomena in various �elds, for example economics, environment, hydrology, physics, population
dynamics, biological sciences, and among others. The TAR process is able to capture asymmetric limit cycles,
as the main motivation for these models was to describe limit cycles of cyclical time-series [80]. For an update
overview on TAR models, we can see [79]. The popularity of TAR models is due to the fact that they produce
a simpli�ed way of presenting a complex stochastic system in terms of decomposing it into a set smaller sub-
system.

The main goal of TAR model related problems is to study the asymptotic properties of the estimated pa-
rameters and the estimated threshold. In [18], the author showed that under some regularity conditions, the
least squares estimators of a stationary ergodic TAR models is strongly consistent. Qian, in [74], establishes the
results similar to [18] for the maximum likelihood estimators for the same model under some regularity condi-
tions on the errors density, not necessarily Gaussian. Moreover, [64] provided a numerical method to tabulate
the limiting distribution of the estimated threshold in practice. In [41�43], the authors developed a statistical
theory for threshold estimation in the context of regression. Under the assumption that the threshold e�ect is
vanishingly small, he obtained the distribution and a parameter free limit of the estimated threshold.
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Up to now, the existing papers have been treating the case where the models rely on strong assumptions on
the noise processes, such as independence or martingale di�erence. A natural sequel is therefore to investigate
the case where the strong hypothesis on the non-linear innovation do not hold. In other words, we will work
in the framework of a noise sequence that is no more an independent sequence of random variables but just
a sequence of uncorrelated random variables. This implies that the TAR process is no longer Markovian and
is no more geometrically mixing. Therefore we adopt the framework of [36] in which the authors studied
the Autoregressive and Moving-Average (ARMA) models, under a mixing property (and a stronger moment
condition) on the observed process. They called these models weak ARMA models in opposition to strong
ARMA models when the noise is an independent and identically distributed (iid for short) sequence. In link
with weak ARMA models, we name these models weak TAR models. After the pioneering work of [36], many
articles have been devoted to the study of weak models when one works with non independent innovation
process. Nevertheless, to our knowledge, no study has addressed the question of weak TAR models.

In this work, we study the least square estimation (LSE) of weak TAR models and the asymptotic properties
of the estimators. Under reasonable mixing assumptions for the time series process, we will prove that the LSE is
strongly consistent and study the asymptotic laws. Although the consistency result is not really a�ected by our
context, the asymptotic distribution needs further attention. For the parameters arising in the autoregressive
formulation, we will be able to adapt the techniques of [36] using the mixing assumptions and as usual in this
case, an extra moment assumption. Indeed, we shall require that the process has moments of order strictly
greater than 4 whereas in the classical case, the fourth order moments are su�cient to investigate the asymptotic
normality.

The asymptotic behaviour of the distribution of the threshold parameter is certainly the main novelty of our
work. When the noise is strong (that means it is an iid sequence), the time series process is an ergodic Markov
chain which is geometrically mixing. This is a stronger statement than the ones we do in our context because
we will assume only α−mixing property of the process. The results presented in [18,64] heavily depend on the
geometrically mixing property of the Markov chain. So we have to adapt their methodology in our case and this
is feasible thanks to a weak convergence result of sums over triangular arrays to the compound Poisson limit
under mixing assumptions. This technique is new in the time series context and we hope that it shall be used
in other problems. All the proof of the announced results can be found in [33].

4.2. Model, assumptions and main results

A time series {Xt}t∈Z is said to be a weak TAR model if it satis�es

Xt =

{
α0Xt−1 + εt, for Xt−1 ≤ r0

β0Xt−1 + εt, for Xt−1 > r0
(10)

where the noise ε = (εt)t∈Z is a weak noise satisfying the following assumption.

(H1): The sequence (εt)t∈Z is strictly stationary, square integrable, and satis�es
• for any t, E(εt) = 0
• for any s, t, E(εtεs) = δs,t σ

2 where δt,s = 1 if s = t and 0 otherwise
• for any t, Eε4

t <∞
In model (10), r0 is called the true threshold parameter and it is supposed to be unknown. Without loss of

generality, we assume that there exist two �nite constants r, r such that r0 ∈ [r, r] := I. When r0 = −∞ or
r0 = +∞, the model reduces to a weak autoregressive (AR) model which is not of our interest.

The true parameter is denoted by θ0 = (α0, β0, r0)′ ∈ R2 × [r, r] = R2 × I and a generic parameter is
θ = (α, β, r) ∈ R2 × I. We assume that the parameter space Θ is a compact subspace of R2 × I. We assume
that σ is known (and equals 1). If σ is not known, it can be estimated by classical methods as soon as we know
how to estimate the parameter θ.

We will also use the restricted parameter λ = (α, β)′ ∈ Λ. One has θ′ = (α, β, r) = (λ′, r) and one may write
that Θ = Λ× I where Λ is also assumed to be compact.
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For any θ = (α, β, r) ∈ Θ, we denote

εt(θ) = Xt −
(
α+ (β − α)1{Xt−1>r}

)
Xt−1 = Xt −At−1(θ)Xt−1, (11)

where obviously

At−1(θ) = α+ (β − α)1{Xt−1>r} = β + (α− β)1{Xt−1≤r}. (12)

Let {X1, . . . , Xn} be a sample from model (10) with the true parameter θ0. Given the initial value X0 =
{Xt; t ≤ 0} (that we may assume to be equal to 0 or, equivalently, that εt(θ) = 0 for t ≤ 0), we consider the
following sum of squares errors:

Ln(θ) =
1

n

n∑
t=1

ε2t (θ).

The minimizer θ̂n of Ln(θ) is called the least squares estimator of θ0, that is,

θ̂n = inf
θ∈Θ

Ln(θ)

Since the function Ln(θ) is discontinuous in r, a way to obtain θ̂n is as follows:

• for a �xed r, one minimizes Ln(θ) = Ln(λ, r) and gets its minimizer λ̂n(r) = (α̂n(r), β̂n(r))′ and the

minimum L∗n(r) = Ln(α̂n(r), β̂n(r), r),
• since L∗n(r) takes only a �nite number of possible values, its minimizer is easy to �nd, which will

immediately lead to the estimator θ̂n.

Throughout this work, we assume that |α| + |β| < 1. This condition in su�cient to ensure the invertibility
of the model (see Theorem A1 in [65]). Even if we do not use the invertibility in our proof, since the main
assumptions will be made on the process X, this condition is necessary to prove that the initial values X0 will

not a�ect the asymptotic properties of the estimator θ̂n (see [64] for further details).

Before stating the result on convergence of θ̂n towards θ, we will need further assumptions on the process
(Xt)t∈Z.

(H2): The process (Xt)t∈Z is ergodic, strictly stationary and has fourth order moments. Moreover, for
any t, the probability distribution function of Xt is absolutely continuous. Its density is denoted by π
and is bounded away from 0 and ∞ over each bounded set. The function π is also assumed to be a
Lipschitz function.

Supposing that |α|+ |β| < 1 implies the ergodicity in (H2) as it was noticed in [18]. See also the work of Chan
and Tong [19] for some general su�cient conditions for stationarity and ergodicity.

We will also need the following hypothesis.

(H3): The threshold r0 in R is the discontinuity point of autoregressive function, that is (β0 − α0) 6= 0.

The above hypothesis is natural because if α0 = β0, then our model becomes a simple auto-regressive AR(1)
model. Under this assumption, we can state the following consistency result.

Theorem 4.1. Let (Xt)t∈Z be the TAR process satisfying (10). We assume that (H1), (H2) and (H3) hold.

Then θ̂n → θ0 a.s., as n→ +∞.

The proof of this result is classical. The fact that the noise is a weak noise does not a�ect the arguments
of [18] and [74].

Next, we study the limiting distribution of θ̂n.
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We introduce the notation related to the mixing property that will be assumed. First, recall that for two
random variables X and Y , the mixing coe�cient α(X,Y ) is de�ned by

α(X,Y ) = sup
A∈σ(X),B∈σ(Y )

|P (A ∩B)− P (A)P (B)|,

where σ(X) is the sigma-�eld generated by X. We will make use of the Davydov inequality (see [29] or [37])
that states that for p, q and r three positive numbers such that 1/p+ 1/q + 1/r = 1, there exists a constant K
such that we have

|Cov(X,Y )| ≤ K‖X‖Lp‖Y ‖Lq |α(X,Y )| 1r . (13)

Now, let F t−∞ and F∞t+k be the σ-�elds generated by {Xu : u ≤ t} and {Xu : u ≥ t + k}, respectively. The
strong mixing property coe�cients (αX(k))k∈N∗ of the stationary process (Xt) are de�ned by

αX(k) = sup
A∈Ft−∞,B∈F∞t+k

|P (A ∩B)− P (A)P (B)|. (14)

We formulate the following hypothesis.

(H4): (Xt)t∈Z satis�es the strong mixing condition: there exists ν > 0 such that

∞∑
k=0

{αX(k)}
ν

2+ν <∞ . (15)

The above strong mixing condition will be used hereafter by means of the Davydov inequality (13). Therefore,
the following moment condition will be also needed.

(H5): (Xt)t∈Z satis�es E|Xt|4+2ν <∞ with the real ν from Assumption (H4).

When the noise is iid, the time series process satis�es a geometric mixing property which is stronger than
our assumptions (H4) and (H5) and plays an important role in the work of [18, 64] and in all related works
using their techniques.

In order to state the asymptotic normality result we need the following notation. We recall that we have
denoted λ = (α, β) the restricted parameter being such that θ = (λ, r) ∈ Λ× I = Θ.

Theorem 4.2. If Assumptions (H1) to (H5) hold, then λ̂n(r̂n) =

(
α̂n(r̂n)

β̂n(r̂n)

)
satis�es

√
n(λ̂n(r̂n)− λ0) =

√
n(λ̂n(r0)− λ0) + oP(1)

and
√
n(λ̂n(r0)− λ0) has a normal limiting distribution with mean 0 and covariance matrix J−1IJ−1 with

J = 2

(
E(X2

11{X1≤r0}) 0
0 E(X2

11{X1>r0})

)
and I = lim

n→∞
Var

(√
n
∂Ln(λ0, r0)

∂λ

)
.

4.3. Asymptotic behaviour of r̂n

Now, we study the limiting distribution of n(r̂n − r0). The arguments follow the ideas of [18]. Nevertheless,
many precisions about this method are given in [64] and we further need to give more speci�c details due to
our context.

In order to explain our the strategy, we consider the following pro�le sum of squares errors function de�ned
for s ∈ R by

φ̃n(s) = nLn

(
λ̂n(r0 + s/n), r0 + s/n

)
− nLn

(
λ̂n(r0), r0

)
. (16)
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Suppose that the sequence of processes ((φ̃n(s)s∈R)n≥1 converges in the Skorohod space D(R) of c.a.d.l.a.g.
functions on R (details will be given hereafter) to a process (φ(s))s∈R. Then one uses a continuity result on the
Skorohod space established in [76, 77]. This result asserts that the argmin will also converge to the argmin of
the process (φ(s))s∈R (if it exists).

To prove this convergence, we show that the sequence (φ̃n(·))n≥1 can be approximated in D(R) by the
sequence of processes (φn(·))n≥1 de�ned by

φn(s) = nLn (α0, β0, r0 + s/n)− nLn(α0, β0, r0). (17)

Using (11) and easy calculus, one may write φn as

φn(s) =

n∑
t=1

ζ1,t(s)1{s<0} +

n∑
t=1

ζ2,t(s)1{s≥0} (18)

ζ1,t(s) =
(

2XtXt−1(α0 − β0) +X2
t−1(β2

0 − α2
0)
)
1{r0+s/n<Xt−1≤r0} (19)

ζ2,t(s) =
(

2XtXt−1(β0 − α0) +X2
t−1(α2

0 − β2
0)
)
1{r0<Xt−1≤r0+s/n} . (20)

We also denote

Γ1,t = 2XtXt−1(α0 − β0) +X2
t−1(β2

0 − α2
0) (21)

Γ2,t = 2XtXt−1(β0 − α0) +X2
t−1(α2

0 − β2
0). (22)

We will prove that the φn converges to a two sided compound Poisson process φ in the Skorohod space. In
order to de�ne the limiting process, one introduces F1(.|r0) the conditional distribution of Γ1,t given Xt−1 = r−0
and F2(.|r0) the conditional distribution of Γ2,t given Xt−1 = r+

0 . This measure exists and is the limiting
conditional distribution of Γ2,t given {r0 < Xt−1 ≤ r0 + δ} as δ ↓ 0. Analogously, F1(.|r0) exists as the
limiting conditional distribution of Γ1,t given {r0 − δ < Xt−1 ≤ r0} as δ ↓ 0. The existence of this limit follows
from the results of Neveu (see [68], page 124). By stationarity, F2(.|r0) is also the conditional distribution of
Γ2,2 = 2X2X1(β0 − α0) +X2

1 (α2
0 − β2

0) given X1 = r+
0 .

We de�ne a two-sided compound Poisson process (CPP) (φ(s))s∈R as follows:

φ(s) = φ1(−s)1{s<0} + φ2(s)1{s≥0},

where {φ1(s), s ≥ 0} and {φ2(s), s ≥ 0} are two independent Poisson processes with φ1(0) = φ2(0) = 0 a.s.,
with the same jump rate π(r0) > 0, where π(x) is the density of X1.

As soon as we have proved that φn converges to the two sided compound Poisson process φ in the Skorohod
space, we use Theorem 3.1 of [77]. Then there exists a unique random interval [M−,M+] on which the process
φ attains its global minimum a.s. and then n(r̂n − r0) converges to M−.

Now we can state our convergence result but we need an additional mixing assumption of the process X.

(H6): There exists a real a with ν/(2 + ν) < a < 1, a constant C and a real 0 < β < 1 such that for any
u, r ∈ I we have

lim
n→∞

n∑
k=1

∑
j;|j−k|≤na,j 6=k

E
(
1{r<Xk−1≤r+1/n}1{r<Xj−1≤r+1/n}

)
= 0 and (23)

n∑
k=1

∑
j;|j−k|≤na,j 6=k

E
(
1{r0+r/n<Xj−1≤r0+u/n}1{r0+r/n<Xk−1≤r0+u/n}

)
≤ C(u− r)β . (24)
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Let us make a few comments about this assumption. By stationarity, (23) is equivalent to

lim
n→∞

n

na∑
h=1

E
(
1{r<X1≤r+1/n}1{r<Xh+1≤r+1/n}

)
= 0 .

This is a local mixing assumption and is clearly satis�ed in the independent case and if (H2) is satis�ed. In
the context of [18,64], it is deduced from a conditional argument and the Markovian context which implies that
the process is geometrically mixing. Hence (H6) is a technical assumption but we emphasize the fact that this
condition is written in the same spirit as Assumption (II) in [9] so it is quite natural in our non Markovian
context.

Now we can state our other main result as follows:

Theorem 4.3. We suppose that Assumptions (H1) to (H6) hold and that the density π is Lipschitz. Then

n(r̂n− r0)→M− and n(r̂n− r0) is asymptotically independent of
√
n(α̂n(r0)−α0, β̂n(r0)−β0)′ which is always

asymptotically normally distributed (regardless of whether r0 is known or not).
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