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ABSTRACT

Since many machine learning algorithms require a distance metric to capture dis/similarities between
data points, metric learning has received much attention during the past decade. Surprisingly, very few
methods have focused on learning a metric in an imbalanced scenario where the number of positive
examples is much smaller than the negatives, and even fewer derived theoretical guarantees in this
setting. Here, we address this difficult task and design a new Mahalanobis metric learning algorithm
(IML) which deals with class imbalance. We further prove a generalization bound involving the
proportion of positive examples using the uniform stability framework. The empirical study performed
on a wide range of datasets shows the efficiency of IML.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Metric learning [2, 19], subfield of representation learn-
ing, consists of designing a pairwise function able to mea-
sure the dis/similarity between two data points. This issue is
key in machine learning where such metrics are at the core
of many algorithms, like k-nearest neighbors (kNN), SVMs,
k-Means, etc. To construct a dis/similarity measure suitable
for a given task, most metric learning algorithms optimize a
loss function which aims at bringing closer examples of the
same label while pushing apart examples of different labels.
In practice, metric learning is usually performed with can-
not link/must link constraints—x and x′ should be dis/similar
[8, 24, 31, 33, 34, 35]—or relative constraints—x should be
more similar to x′ than to x′′ [20, 26, 31, 37].

In this paper, we focus on the family of metric
learning algorithms that construct a Mahalanobis distance
dM(x, x′) =

√
(x − x′)>M(x − x′) parameterized by a positive

semidefinite matrix M. Learning a Mahalanobis distance leads
to several nice properties: (i) dM is a generalization of the Eu-
clidean distance; (ii) it induces a projection such that the dis-
tance between two points is equivalent to their Euclidean dis-
tance after a linear projection; (iii) M can be low rank implying
a projection in a lower dimensional latent space; (iv) it involves
optimization problems that are often convex and thus easy to

∗∗Corresponding author:
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solve. Two famous representatives of Mahalanobis distance
learning are LMNN (Large Margin Nearest Neighbor [31]) and
ITML (Information-Theoretic Metric Learning [8]), which are
both designed to improve the accuracy of the kNN classification
rule in the latent space. The principle of LMNN is the follow-
ing: for each training example, its k nearest neighbors of the
same class (the target neighbors) should be closer than exam-
ples of other classes (the impostors). ITML uses a LogDet reg-
ularization and minimizes (resp. maximizes) the distance be-
tween examples of the same (resp. different) class. Another re-
cent Mahalanobis distance learning algorithm is GMML (Ge-
ometric Mean Metric Learning) [35] where the metric is com-
puted using a closed form solution of an unconstrained opti-
mization problem involving similar and dissimilar pairs. In
light of these learning procedures, it is worth noticing that the
loss functions optimized in LMNN, ITML and GMML (and in
most pairwise metric learning methods) tend to favor the ma-
jority class as there is no distinction between the constraints
involving examples of the majority class and the constraints on
the minority class. This strategy is thus not well suited when
dealing with imbalanced datasets. An illustration of this phe-
nomenon on the spectfheart dataset from the UCI repository is
shown in Figure 1. We observe that decreasing the proportion
of minority examples tends to generate a metric which classifies
(with a kNN rule) all the examples as the majority class, thus
leading to an accuracy close to 1. On the other hand, the F1-
measure, which is much more adapted to imbalanced scenarios
(it involves both the false positive and false negative rates), de-
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Fig. 1. Illustration on the spectfheart dataset of the negative impact of clas-
sic metric learning algorithms when facing an increasing imbalance in the
dataset. On the left, as the proportion of minority examples decreases, the
metric learning algorithms tend to classify all the examples as the majority
class, with an accuracy close to 1. On the right, using the F1-measure, we
note that the learned metrics plugged in a kNN actually miss many posi-
tives, usually considered as the examples of interest.

creases with the proportion of positives, showing that the classi-
fier missed many positives, usually considered as the examples
of interest.

This problem of learning from imbalanced data has been
widely tackled in the literature [4, 17]. Classic methods typi-
cally make use of over/under-sampling techniques [10, 12, 23,
1] or create synthetic samples in the neighborhood of the minor-
ity class—e.g., using SMOTE-like strategies [6, 7, 16] or resort-
ing to adversarial techniques [9]. However, these methods may
lead to over or under-fitting and are often subject to an inabil-
ity to generate enough diversity, especially in a highly imbal-
anced scenario. Other strategies aim at addressing imbalanced
situations directly during the learning process. They include
cost-sensitive methods [11, 36] which require prior knowledge
on the miss-classification costs, the optimization of imbalance-
aware criteria [14, 25, 28] which are often non convex, or en-
semble methods based on bagging and boosting strategies [15]
that can be computationally expensive.

Unlike the state of the art, we suggest in this paper to address
the problem of learning from imbalanced data by optimizing
a metric suited to scenarios where the positive data are very
scarce. As far as we know, very few methods were designed
in this setting. Feng et al. [13] propose to regularize a standard
metric learning problem by using the KL-divergence between
the classes. Wang et al. [29] proposed IMLS that learns a clas-
sic metric and then performs a sampling on the training data to
account the imbalance. However, as we will see in our experi-
mental study, better performances can be achieved by resorting
to a metric dedicated specifically to deal with the imbalance of
the application at hand. Note that deep metric learning methods
have also received attention by the community to address the
problem of imbalanced data [22, 30]. However these methods
often require large training datasets, like in visual tasks. How-
ever, this requirement is not always fulfilled by the application
at hand. Moreover, it is worth noticing that none of the pre-
vious approaches come with theoretical guarantees, a gap we
will fill in this paper. In order to implicitly control the rates of
false positives and false negatives, we propose a new algorithm,
called IML for Imbalanced Metric Learning, which accounts
carefully the nature of the pairwise constraints (by decompos-

ing them with respect to the labels involved in the pairs) and
weights their impact in the loss function so as to maximize the
F1-measure. Beyond this algorithmic contribution, we further
provide a theoretical analysis of IML using the uniform sta-
bility framework [3]. We derive a generalization bound which
has the advantage to involve the proportion of minority exam-
ples. This bound provides some insight into the way to tune the
weighting parameters to counterbalance the negative impact of
imbalanced datasets.

The paper is organized as follows. Section 2 describes our
algorithm IML which takes the form of a simple regularized
convex problem. Section 3 is dedicated to the theoretical anal-
ysis. We perform an experimental study of our approach in
Section 4 before concluding in Section 5.

2. IML: Imbalanced Metric Learning

2.1. Notations and Setting

In this paper, we deal with binary classification tasks where
X ⊆ Rd is a d-dimensional input space and Y = {−1,+1} is the
binary output space. We further define Z = X × Y as the joint
space where z = (x, y) ∈ Z is a labeled example. In supervised
classification, an algorithm is provided with a learning sample
S = {zi=(xi, yi)}ni=1 of n observations. These observations are
drawn i.i.d. from a fixed yet unknown distribution D over Z.
We denote this set of n i.i.d. observations as S ∼ Dn. We as-
sume that the learning sample is defined as S = S+ ∪ S−, with
S+ the set of positive examples and S− the set of negative ex-
amples such that the number of positives n+ = |S+| is smaller
than the number of negatives n− = |S−| (we say that +1 is the
minority class and −1 the majority one). The final objective
of the learner is to construct a classifier f : X → Y (from a
hypothesis space F ) which behaves well on unseen data drawn
fromD. Here, we aim at constructing a Mahalanobis distance
which induces a new space in which a kNN will work well on
both classes. The Mahalanobis distance is a type of metric pa-
rameterized by a positive semidefinite (PSD) matrix M ∈ Rd×d

that can be decomposed as M = LT L, where L ⊆ Rr×d is a
projection induced by M (where r is the rank of M). A nice
property is that the Mahalanobis distance between two points x
and x′ is equivalent to the Euclidean distance after having pro-
jected x and x′ in the r-dimensional space, i.e.,

d2
M(x, x′) = (x − x′)>M(x − x′) = (Lx − Lx′)>(Lx − Lx′) .

2.2. Problem Formulation

Classic Mahalanobis metric learning algorithms [2, 5, 18] are
usually expressed as follows:

min
M�0

F(M) =
1
n2

∑
(z,z′)∈S2

`(M, z, z′) + λReg(M), (1)

where one wants to minimize the trade-off between a convex
loss ` over all pairs of examples and a regularization Reg under
the PSD constraint M � 0.

The major drawback of this formulation is that the loss gives
the same importance to any pair of examples (z, z′) whatever the
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labels y and y′. Intuitively, this is not well suited to imbalanced
data where the minority class is the set of examples of interest.
Some metric learning algorithms [31, 35] allow to weight the
role played by the must-link and cannot-link constraints. How-
ever, the problem still holds because the labels of the examples
are not directly taken into account.

Our simple idea is to decompose further the sets of pairs of
examples based on their labels. Each set can then weighted
differently during the optimization to reduce the negative effect
of the imbalance.

Let us define the loss function of our IML algorithm as fol-
lows:

`(M, z, z′) =


a`1(M, z, z′) if y= + 1 and y′ = +1,
(1−a)`1(M, z, z′) if y= − 1 and y′ = −1,
b`2(M, z, z′) if y= + 1 and y′ = −1,
(1−b)`2(M, z, z′) if y= − 1 and y′ = +1,

(2)

with the two functions `1 and `2 defined as `1(M, z, z′) =

[d2
M(x, x′)− 1]+ and `2(M, z, z′) = [1+m−d2

M(x, x′)]+ and where
[value]+ = max(0, value) is the Hinge loss and m ≥ 0 a margin
parameter. The idea of `1 is to bring examples of the same class
at a distance less than 1 while `2 aims to push far away exam-
ples of different classes at a distance larger than 1 plus a given
margin m.

Both parameters a and b take values in [0, 1]. The parame-
ter a controls the trade-off between bringing closer the minority
examples and bringing closer the majority examples. While the
second parameter b controls the trade-off between keeping far
away the majority examples from the neighborhood of minority
ones, and keeping far away minority examples from the neigh-
borhood of majority ones.

Moreover, we set the regularization term of Equation (1) as
Reg(M) = ‖M−I‖2F where I is the identity matrix and ‖.‖F is the
Frobenius norm. It aims at avoiding overfitting by enforcing M
to be close to the identity matrix I. Said differently, we aim at
being close to the Euclidean distance while satisfying the best
the semantic constraints.

All things considered, our IML algorithm takes the form of
the following convex problem:

min
M�0

F(M) =
1
n2

( ∑
(z,z′)∈Sim+

a`1(M, z, z′) +
∑

(z,z′)∈Sim−
(1−a)`1(M, z, z′) +

∑
(z,z′)∈Dis+

b`2(M, z, z′) +
∑

(z,z′)∈Dis−
(1−b)`2(M, z, z′)

)
+ λ‖M − I‖2F ,

(3)

where the four sets Sim+, Dis+, Dis− and Sim− are defined as
subsets of S × S respectively as: Sim+ ⊆ S+ × S+, Dis+ ⊆

S+ × S−, Dis− ⊆ S− × S+ and Sim− ⊆ S− × S−.
If we look more closely at the proposed Equation (3), when

all pairs from S × S are involved, Sim+ and Sim− contain re-
spectively n+n+ and n−n− pairs while Dis+ and Dis− contain
respectively n+n− and n−n+ pairs. This means that the pairs
in Dis+ and Dis− are symmetric and these two sets might be
merged. However, metric learning methods rarely consider all
the possible pairs as it becomes quite inefficient in the presence

of a large number of examples. Possible strategies to select
the pairs include a random subsampling [8, 33, 34, 35] or a se-
lection based on the nearest neighbors rule [24, 31]. For this
reason, it might make sense to separate the two sets Dis+ and
Dis− and allows us to weight them differently as (i) they may
not consider the same subsets of pairs, and (ii) may not capture
the same geometric information. Another interpretation of such
a decomposition in an imbalanced learning setting is the fol-
lowing: if z′ is selected as belonging to the neighborhood of z,
the minimization of the four terms of Equation (3) can be seen
as a nice way to implicitly optimize with a kNN rule the true
positive, false negative, false positive and true negative rates
respectively.

3. Generalization bound for IML

In this section, we provide a theoretical analysis of our algo-
rithm using the uniform stability framework [3]. This frame-
work can be adapted to any metric learning algorithm A [2, 18]
taking the following form:

min
M�0

G(M) =
∑

(z,z′)∈S2

`A(M, z, z′)︸                ︷︷                ︸
R̂(M)

+λReg(M) , (4)

where R̂(M) is the empirical loss of M on S, and `A is any loss
function that is q-Lipschitz1 and (σ, p)-admissible2. To prove
a uniform stability-based generalization bound the algorithm A
has to be stable—meaning that its output does not change sig-
nificantly under a small modification of S— according to the
following definition.

Definition 1 ([18] Eq. (5)). A metric learning algorithm A
has uniform stability in β ≥ 0 w.r.t. the loss function `A if
∀i ∈ {1, . . . , n} the following holds

∀S ∈ Zn, sup
z,z′

∣∣∣`A(M, z, z′) − `A(Mi, z, z′)
∣∣∣ ≤ β ,

where M is learned from S, and Mi is learned from Si, the set
obtained by replacing the ith example in S by another also i.i.d.
fromD.

If an algorithm has uniform stability, then it is possible to
derive an upper bound on its generalization error using the Mc-
Diarmid inequality [3] recalled below.

Theorem 1 (McDiarmid Inequality, [3] Th. 2). Let
G : Zn → R be any function for which there exists con-
stants ci, ∀i ∈ {1, . . . , n} s.t. supS∈Zn,z′i∈Z

|G(S) − G(Si)| ≤ ci,
then

∀ε>0, PS
[∣∣∣∣G(S) − ES

[
G(S)

]∣∣∣∣ ≥ ε] ≤ 2 exp
 −2ε2∑n

i=1 c2
i

 .
1A function f is q-Lipschitz w.r.t. its first argument if for any u, v, | f (u) −

f (v)| ≤ q|u − v|.
2A loss `A is (σ, p)-admissible w.r.t. its first argument M if it is convex in M

and if ∀z1, z2, z3, z4, |`A(M, z1, z2)−`A(M, z3, z4)|≤σ|y12−y34 |+p with yi j=+1 if
yi=y j and yi j= − 1 otherwise.
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where PS denotes the probability with respect to the random
draw of the sample S from Dn. Then, one can derive the fol-
lowing theorem.

Theorem 2 ([2] Th. 8.11). Let S be a sample of n randomly
selected training examples and M be the PSD matrix learned
from an algorithm A with stability β. Assuming that the loss `A

is q-Lipschitz and (σ, p)-admissible, with probability at least
1− δ over the random choice of S ∼ Dn, we have the following
bound on the true risk R(M)

R(M) ≤ R̂(M) + 2β +
(
2nβ + 2(2σ + p)

)√ ln 2/δ
2n

.

Unlike standard PAC results [27], this kind of generaliza-
tion bound has two advantages: (i) it takes into considera-
tion properties of the algorithm, and (ii) it offers tools to deal
with the fact that the pairs of examples are usually not drawn
i.i.d. fromD×D [2]. In the rest of this section, we first show
that our loss is q-Lipschitz; then, we prove that our algorithm is
stable, and finally, we derive a generalization bound on its true
risk using the McDiarmid inequality. Note that in the follow-
ing, we assume that the norm of any example is upper-bounded
by a constant, i.e., ∀x ∈ Rd, ‖x‖ ≤ B.

Lemma 1. Let M, M′ be any matrices and (z, z′) any pair of
labeled examples, then the loss `, as defined in Equation (2), is
q-Lipschitz w.r.t. its first argument, i.e., we have∣∣∣∣`(M, z, z′) − `(M′, z, z′)

∣∣∣∣ ≤ q‖M −M′‖F ,

with q = 4B2.

Proof. See Appendix A.

Let M be the matrix learned fromS and Sim+, Dis+, Dis− and
Sim− be the subsets of pairs coming from S × S as described
in Section 2. The true and empirical losses are respectively
defined as:

R(M) = E
z∼D,z′∼D

`(M, z, z′)

and R̂(M) =
1
n2

( ∑
(z,z′)∈Sim+

a`1(M, z, z′) +
∑

(z,z′)∈Sim−
(1−a)`1(M, z, z′) +

∑
(z,z′)∈Dis+

b`2(M, z, z′) +
∑

(z,z′)∈Dis−
(1−b)`2(M, z, z′)

)
.

where E
z∼D,z′∼D

denotes the expectation with respect to the

random draw of z and z′ according toD. Thus Problem (3) can
be reformulated as:

min
M�0

F(M) = R̂(M) + λ‖M − I‖2F .

Uniform Stability of IML. We now proceed to show that our
algorithm satisfies Definition 1. For that purpose, we introduce
a lemma similar to Lemma 20 in [3] and Lemma 8.6 in [2].

Lemma 2. Let matrices M∗ and M∗i be the minimizers of F on
S and Si respectively. Let ∆M∗ = M∗i −M∗ and ρ = n+

n the

proportion of minority examples. Then for any t ∈ [0, 1] we
have

‖M∗−I‖2F − ‖M
∗+t∆M∗−I‖2F + ‖M∗i−I‖2F − ‖M

∗i−t∆M∗−I‖2F

≤

(
a(2ρ − 1) + 2(1 − ρ)

λn

)
2qt‖M∗i −M∗‖F .

Proof. See Appendix B.

Note that the parameter b of Problem (3) does not appear
in this Lemma. While in the experiments, in order to scale
to large datasets, the pairs will be generated by using the k-
neighborhood of the examples, we derived the proof in Ap-
pendix B by using all the pairs, that allowed us to get rid of
the parameter b. This enables us to provide a more general re-
sult that does not depend on additional parameters (here the k
of the k-nearest-neighbor rule).

Along with the q-Lipschitz property of Lemma 1, Lemma 2
allows us to prove that IML is stable.

Lemma 3. IML has uniform stability with

β =
2q2

(
a(2ρ − 1) + 2(1 − ρ)

)
λn

.

Proof. See Appendix C.

Derivation of the main result. To prove our bound, we fol-
low the derivation of Theorem 8.11 in [2]. We first provide two
lemmas, and then we use them in conjunction with the McDi-
armid inequality to derive a generalization bound.

First, we introduce a lemma that bounds the difference on the
empirical risk over S and Si.

Lemma 4. Let M∗ be the optimal solution of Problem (3). We
have ∣∣∣∣R̂(M∗) − R̂i(M∗)

∣∣∣∣
≤

2
(
a(2ρ − 1) + 1 − ρ

)
4B2‖M∗‖F + 2(1 − ρ)(1+m)

n
.

where R̂ and R̂i denote respectively the empirical risk over S
and Si.

Proof. See Appendix D.

Using Lemma 4 and the stability of Lemma 3, we introduce
a lemma similar to Lemma 8.10 in [2].

Lemma 5. Let matrices M∗ and M∗i be the minimizers of F on
S and Si respectively. As IML has stability β, we have∣∣∣∣∣∣R(M∗) − R̂(M∗) −

(
R(M∗i) − R̂i(M∗i)

)∣∣∣∣∣∣ ≤ 2nβ + D
n

= ci,

with
D = 2

(
a(2ρ − 1) + 1 − ρ

)
4B2‖M∗‖F + 2(1 − ρ)(1+m).

Proof. See Appendix E.

We are now able to state our main result.
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Theorem 3 (Generalization bound for IML). LetS be a sample
of n = n+ +n− randomly selected training examples with ρ = n+

n
the proportion of minority examples and let M∗ be the optimal
solution learned from problem (3) having stability β. With prob-
ability at least 1−δ over the random choice of S ∼ Dn, we have

R(M∗) ≤ R̂(M∗) + 2β + (2nβ + D)

√
ln 2/δ

2n

with β =
2q2

(
a(2ρ − 1) + 2(1 − ρ)

)
λn

and D = 2
(
a(2ρ − 1) + 1 − ρ

)
4B2‖M∗‖F + 2(1 − ρ)(1+m) .

Proof. See Appendix F.

Discussion. The difference between our Theorem 3 and clas-
sic bounds of the form of Theorem 2 is that proportion of mi-
nority examples ρ = n+

n and the weight of the similar minority
pairs a appear in the two terms β and D. Classic metric learn-
ing bounds are derived in a balanced setting where ρ = 0.5 (i.e.
positives and negatives are balanced) and where the parameters
a and b are equal to 0.5. It is worth noting that plugging these
values in our bound allows us to retrieve the constant β =

2q2

λn
as derived in Theorem 8.7 in [2]. This means that our β for-
mulation is a generalization of the standard stability constants
in Metric Learning. Regarding the term D, the decomposition
into four terms allows us to get a tighter bound by a factor 4
with D = 4B2‖M‖F + (1 + m) while D = 16B2‖M‖F + 4(1 + m)
in [2].

Another interesting interpretation of our bound is that when
ρ tends to 0, i.e., the dataset is more and more imbalanced, a
classic metric learning method (with a = b = 0.5) will converge
slower. Indeed, in such a situation, we get a stability constant
β which would tend to 3q2

λn > 2q2

λn while by parameterizing by a,

we have 2q2(−a+2)
λn . In this case, a value of a close to 1 allows us

to reduce the negative effect of the imbalance.

4. Experiments

Datasets. In this section, we provide an empirical study of IML
on 22 datasets. They come mainly from the UCI3 and Keel4

repositories. The ‘splice’ dataset comes from LIBSVM5. All
datasets are normalized such that each feature has a mean of 0
and a variance of 1.

For the sake of simplicity, we have chosen binary datasets,
described in Table 1 where the minority class is given by the
columns “Label”. Note that IML can easily be generalized
to multiclass problems by learning one metric per class in
a standard “one-versus-all” strategy, and then applying a
majority vote.

3https://archive.ics.uci.edu/ml/datasets.html
4http://sci2s.ugr.es/keel/datasets.php
5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

datasets/binary.html#splice

Optimization Details. Like most Mahalanobis metric learn-
ing algorithms, IML requires that the learned matrix M is
PSD. There exist different methods to enforce the PSD con-
straint [19]. A classic solution consists in performing a Pro-
jected Gradient Descent where one alternates a gradient descent
step and a (costly) projection onto the cone of PSD matrices.
The advantage is that the problem remains convex w.r.t. M [34],
ensuring that one will attain the optimal solution of the problem
by correctly setting the projection step in the gradient descent.
Another solution [32] is based on the fact that if M is PSD, it
can be rewritten as M = L>L. Therefore, instead of learning
M, one can enforce M to be PSD in a cheaper way by directly
learning the projection matrix L ∈ Rr×d (where r is the rank of
M). This can be done thanks to a gradient descent by comput-
ing the gradient of the problem w.r.t. L (instead of M). The im-
plementation6 we propose is based on this latter approach [32]
where we make use of the L-BFGS-B algorithm [38] from the
SciPy Python library to optimize our problem: it takes as input
our initial point (the identity matrix), the optimization problem
of Equation (3), and its gradient, then it performs a gradient
descent that returns the projection matrix L minimizing Prob-
lem (3). To prevent us from tuning r and finding the best r-
dimensional projection space, we set r = d in the experiments.

As discussed at the end of Section 2, the pairs of examples
considered by IML in its four terms are chosen using the
nearest neighbors rule. Indeed, we noted experimentally that
the algorithms using this strategy (LMNN [31], IMLS [29] and
IML) perform better than the ones using a random selection
strategy (ITML [8] and GMML [35]).

Experimental setup. All along our experiments, we use a 3NN
classifier after projection of the training and test data using
the metric learned. The metrics considered in the compara-
tive study are the Euclidean distance and the ones learned by
LMNN [31], ITML [8], GMML [35], IMLS [29] and IML.
For each dataset, we generate randomly 20 stratified splits of
70% training examples and 30% test data (same class propor-
tions in training and test) and report the mean results over the
20 splits. The parameters are tuned by 5-fold cross-validation
on the training set through a grid search using the following
parameter ranges: for LMNN and IMLS, µ ∈ {0, 0.05, . . . , 1}
(k is fixed to 3); for ITML, γ ∈ {2−10:10}; for GMML t ∈
{0, 0.05, . . . , 1}; and for IML we fix a = b = n−

n and we tune
m ∈ {1, 10, 100, 1000, 10000} and λ ∈ {0, 0.01, 0.1, 1, 10} (k is
also fixed to 3). Note that to study the impact of the hyper-
parameters a and b and the impact of how the pairs of exam-
ples were selected, we performed an experiment where we ar-
tificially decreased the proportion of minority examples in the
datasets. The results of this experiment are given in Appendix
G.

The results of the first experiment are reported in Table 2.
On average, the F1-measure of 72.3% obtained by IML is the
best in comparison to 70.8% for LMNN and IMLS, 70.1%
for ITML, 69.3% for GMML and 67.3% for the Euclidean
distance. Overall, IML has also the best average rank of 1.52.

6We will make the source code available online in case of acceptance.
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Table 1. Description of the datasets (n: number of examples, d: number of features, c: number of classes) and the class chosen as positive (Label), its
cardinality (n+) and its percentage (%).

Name n d c Label n+ % Name n d c Label n+ %

splice 3175 60 2 -1 1527 48.10% glass 214 11 6 1 70 32.71%
sonar 208 60 2 R 97 46.64% newthyroid 215 5 3 2, 3 65 30.23%
balance 625 4 3 L 288 46.08% german 1000 23 2 2 300 30.00%
australian 690 14 2 1 307 44.49% vehicle 846 18 4 van 199 23.52%
heart 270 13 2 2 120 44.44% spectfheart 267 44 2 0 55 20.60%
bupa 345 6 2 1 145 42.03% hayes 160 4 3 3 31 19.38%
spambase 4597 57 2 1 1812 39.42% segmentation 2310 19 7 window 330 14.29%
wdbc 569 30 2 M 212 37.26% abalone 4177 10 28 8 568 13.60%
iono 351 34 2 b 126 35.90% yeast 1484 8 10 ME3 163 10.98%
pima 768 8 2 1 268 34.90% libras 360 90 15 1 24 6.66%
wine 178 13 3 1 59 33.15% pageblocks 5473 10 5 3, 4, 5 231 4.22%

Table 2. Average F1-measure ± standard deviation over 20 splits using
different metric learning algorithms.

Dataset Euclidean LMNN ITML GMML IMLS IML

hayes 44.9 ± 13.2 57.2 ± 12.5 55.4 ± 8.7 52.7 ± 10.8 57.2 ± 12.5 54.9 ± 9.2
wine 94.9 ± 2.2 96.0 ± 2.9 96.3 ± 3.3 95.3 ± 3.1 96.0 ± 2.9 96.6 ± 2.1
sonar 69.2 ± 5.3 70.6 ± 6.5 70.6 ± 5.9 69.1 ± 5.0 71.1 ± 6.7 74.6 ± 3.7
glass 66.0 ± 3.4 63.6 ± 5.2 62.6 ± 5.2 67.2 ± 3.6 63.6 ± 5.2 66.6 ± 4.3
newthyroid 83.4 ± 4.2 88.1 ± 5.2 89.8 ± 5.2 91.1 ± 2.5 88.1 ± 5.2 91.3 ± 2.6
spectfheart 34.8 ± 12.3 39.1 ± 8.4 34.4 ± 7.9 29.1 ± 11.4 38.6 ± 8.7 42.4 ± 8.7
heart 76.8 ± 2.1 74.8 ± 3.2 76.8 ± 2.9 76.9 ± 3.6 74.6 ± 3.1 77.1 ± 3.1
bupa 49.8 ± 4.4 50.1 ± 5.0 51.3 ± 4.8 52.0 ± 5.3 50.1 ± 5.0 52.5 ± 5.1
iono 67.8 ± 6.7 70.8 ± 3.9 73.4 ± 5.4 72.0 ± 5.4 71.0 ± 4.0 76.1 ± 2.9
libras 48.4 ± 15.1 68.3 ± 12.2 65.5 ± 15.3 56.1 ± 16.3 66.6 ± 10.3 67.9 ± 12.1
wdbc 94.2 ± 1.3 93.5 ± 1.7 94.3 ± 1.1 94.4 ± 1.3 93.4 ± 2.2 95.2 ± 1.1
balance 87.4 ± 1.8 89.8 ± 1.3 93.0 ± 1.4 90.3 ± 1.3 89.8 ± 1.3 90.6 ± 1.2
australian 79.9 ± 1.7 81.7 ± 2.0 82.0 ± 1.9 81.0 ± 2.6 81.4 ± 2.0 81.9 ± 1.8
pima 56.2 ± 1.9 55.9 ± 3.3 57.5 ± 3.0 56.7 ± 3.0 55.9 ± 3.3 57.2 ± 2.7
vehicle 80.5 ± 2.4 92.6 ± 1.0 90.2 ± 2.4 90.1 ± 1.7 92.5 ± 1.2 91.8 ± 1.9
german 35.3 ± 2.8 37.3 ± 3.9 37.4 ± 3.3 37.1 ± 3.3 37.8 ± 3.7 38.4 ± 3.5
yeast 73.2 ± 2.3 74.9 ± 2.8 74.2 ± 3.1 73.5 ± 2.6 74.5 ± 2.7 75.4 ± 2.4
segmentation 81.8 ± 2.4 85.3 ± 2.1 79.6 ± 3.0 80.8 ± 3.1 85.6 ± 2.3 86.0 ± 2.5
splice 76.3 ± 0.7 86.5 ± 0.8 79.7 ± 1.4 76.3 ± 1.3 88.0 ± 0.9 87.4 ± 0.6
abalone 22.6 ± 2.1 22.1 ± 2.1 21.2 ± 3.0 21.6 ± 1.7 22.1 ± 2.1 23.0 ± 1.9
spambase 85.3 ± 0.9 88.4 ± 0.8 87.8 ± 1.0 86.8 ± 0.8 88.7 ± 0.5 89.3 ± 0.8
pageblocks 71.9 ± 3.0 71.8 ± 3.2 69.7 ± 5.1 73.7 ± 2.9 71.8 ± 3.1 73.4 ± 2.6

Mean 67.3 ± 4.2 70.8 ± 4.1 70.1 ± 4.3 69.3 ± 4.2 70.8 ± 4.0 72.3 ± 3.5

Average Rank 5.00 3.57 3.57 4.00 3.35 1.52

We note that IML generally gives better performances on the
datasets considered no matter how much they are balanced or
not. This means that our reweighting scheme of the pairs can
not only improve the performances in an imbalanced setting
but is also competitive in more classic scenarios.

Second experiment. To address imbalanced data issues, clas-
sic machine learning algorithms typically resort to over/under-
sampling techniques [1] or create synthetic samples in the
neighborhood of the minority class—e.g., using SMOTE-like
strategies [6]. We now aim at studying the behavior of those
methods when used as a pre-process of the metric learning pro-
cedures. We consider the results of Table 2 as baselines. We
compare them to the performances obtained after performing
prior to metric learning an over-sampling using SMOTE and a
Random Under Sampling (RUS) strategy of the negative data.
We use the implementations of these methods from the Python
library imbalanced-learn [21].

The results obtained are reported in Table 3 for SMOTE and
in Table 4 for RUS. Note that the results from Tables 2, 3 and
4 where computed using the same training/test splits and the

Table 3. Same experiment as in Table 2 after having applied the SMOTE
algorithm [6] until n+ = n−.

Dataset Euclidean LMNN ITML GMML IMLS IML

hayes 68.0 ± 6.8 64.4 ± 7.6 67.8 ± 7.8 69.5 ± 7.2 64.2 ± 7.6 68.6 ± 7.2
wine 92.7 ± 2.8 95.3 ± 3.0 96.3 ± 2.6 94.4 ± 3.2 95.4 ± 2.9 96.7 ± 2.2
sonar 72.6 ± 4.2 73.0 ± 6.4 72.6 ± 4.5 71.2 ± 4.2 72.7 ± 6.0 75.2 ± 4.8
glass 66.6 ± 2.9 66.1 ± 4.0 64.6 ± 3.2 67.4 ± 3.8 66.1 ± 4.2 66.2 ± 3.5
newthyroid 87.6 ± 3.5 88.7 ± 4.0 91.6 ± 3.2 89.9 ± 4.3 88.7 ± 4.0 90.7 ± 2.2
spectfheart 47.4 ± 2.3 41.9 ± 8.5 46.7 ± 6.9 49.1 ± 4.4 40.9 ± 7.3 46.1 ± 7.8
heart 77.3 ± 2.0 75.0 ± 2.6 75.7 ± 4.1 77.2 ± 3.9 74.4 ± 3.0 76.9 ± 2.3
bupa 54.1 ± 3.1 55.4 ± 3.4 53.9 ± 3.7 55.9 ± 4.1 55.4 ± 3.4 54.8 ± 3.5
iono 78.4 ± 2.6 77.7 ± 3.7 77.5 ± 3.8 78.2 ± 3.9 76.9 ± 3.9 79.9 ± 3.9
libras 68.3 ± 8.1 76.7 ± 8.5 69.7 ± 13.8 69.2 ± 11.0 69.0 ± 14.7 78.1 ± 9.4
wdbc 93.4 ± 1.3 93.5 ± 2.2 94.0 ± 1.4 93.6 ± 1.5 93.0 ± 2.2 94.8 ± 1.3
balance 87.4 ± 1.9 89.6 ± 1.5 92.1 ± 1.4 89.8 ± 1.9 89.5 ± 1.5 90.5 ± 1.4
australian 80.3 ± 1.6 80.7 ± 3.2 82.4 ± 1.5 81.1 ± 1.8 81.1 ± 3.2 82.1 ± 1.6
pima 60.1 ± 2.6 60.1 ± 2.1 60.8 ± 2.2 60.3 ± 2.8 60.1 ± 2.1 61.2 ± 2.0
vehicle 80.6 ± 2.1 92.0 ± 1.6 89.9 ± 3.1 89.5 ± 2.1 92.3 ± 1.5 91.1 ± 1.4
german 46.3 ± 2.2 45.4 ± 3.5 46.4 ± 1.8 46.0 ± 2.3 45.1 ± 3.4 47.1 ± 2.0
yeast 65.9 ± 2.9 67.1 ± 3.7 70.4 ± 2.8 68.4 ± 2.3 68.2 ± 3.7 70.4 ± 3.0
segmentation 82.0 ± 1.9 83.8 ± 2.9 81.6 ± 2.2 81.5 ± 1.8 84.8 ± 3.2 84.8 ± 2.2
splice 74.9 ± 0.9 86.3 ± 0.8 79.6 ± 1.2 76.4 ± 1.3 87.9 ± 1.1 87.2 ± 0.6
abalone 32.3 ± 0.7 31.4 ± 1.7 31.9 ± 0.8 31.7 ± 1.1 31.5 ± 1.2 32.3 ± 1.0
spambase 85.9 ± 0.7 88.5 ± 0.6 87.4 ± 0.9 87.2 ± 0.8 88.8 ± 0.8 89.4 ± 0.8
pageblocks 62.0 ± 2.9 61.5 ± 4.1 55.5 ± 4.0 61.5 ± 3.5 61.0 ± 4.1 62.5 ± 3.5

Mean 71.1 ± 2.7 72.5 ± 3.6 72.2 ± 3.5 72.2 ± 3.3 72.1 ± 3.9 73.9 ± 3.1

Average Rank 4.26 3.91 3.39 3.39 4.17 1.87

same validation folds and are thus comparable. In each of the
three settings considered, IML obtains the best results showing
that it is more appropriate for improving the F1-measure. We
also note that SMOTE allows one to increase significantly the
performances of all methods, while there is no gain with RUS
in comparison with an approach without sampling.

This increase of performance tells us that SMOTE and IML
are more complementary than competitors with different objec-
tives (re-balancing for the former and representation learning
for the latter).

5. Conclusion and perspectives

In this paper, we propose to revisit the classic formulation of
metric learning algorithms that learn a Mahalanobis metric in
the light of imbalanced data issues. Unlike the state of the art
methods that do not make any distinction between the labels of
similar pairs, we propose to decompose the usual loss with re-
spect to the different possible labels involved in the pairs. This
decomposition allows us to give specific weights to each type
of pairs in order to improve the performance on the minority
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Table 4. Same experiment as in Table 2 after having applied a Random
Under Sampling of the negative examples until n− = n+.

Dataset Euclidean LMNN ITML GMML IMLS IML

hayes 63.4 ± 9.0 67.7 ± 7.4 64.7 ± 6.7 66.4 ± 8.1 67.7 ± 7.4 66.0 ± 7.6
wine 91.2 ± 2.6 94.1 ± 2.8 94.2 ± 3.8 92.7 ± 3.7 94.1 ± 2.9 93.9 ± 3.2
sonar 70.4 ± 5.2 73.1 ± 6.3 70.2 ± 5.7 69.9 ± 5.5 71.1 ± 9.2 74.4 ± 4.8
glass 64.6 ± 3.5 63.2 ± 4.5 61.1 ± 4.9 64.6 ± 3.1 62.7 ± 5.0 64.5 ± 4.7
newthyroid 86.6 ± 4.6 91.4 ± 5.0 91.1 ± 4.9 90.6 ± 3.3 91.4 ± 5.0 92.3 ± 2.6
spectfheart 44.2 ± 3.9 42.6 ± 8.0 46.7 ± 4.6 45.9 ± 5.6 42.6 ± 8.0 48.8 ± 6.3
heart 77.4 ± 2.0 75.8 ± 3.3 76.6 ± 2.5 77.3 ± 1.9 75.5 ± 3.3 77.1 ± 2.1
bupa 53.8 ± 4.1 54.1 ± 4.8 54.6 ± 4.1 55.7 ± 3.6 54.1 ± 4.8 55.0 ± 3.2
iono 73.1 ± 5.2 73.3 ± 4.1 75.4 ± 3.4 74.7 ± 3.2 73.3 ± 4.1 77.3 ± 3.0
libras 34.3 ± 10.6 35.6 ± 10.9 38.2 ± 12.2 36.4 ± 12.6 35.6 ± 10.9 39.3 ± 13.8
wdbc 93.7 ± 1.2 92.9 ± 1.6 93.6 ± 1.8 93.2 ± 2.1 92.3 ± 2.5 94.7 ± 1.4
balance 87.5 ± 1.5 90.1 ± 1.3 92.8 ± 1.5 90.1 ± 1.7 90.2 ± 1.3 90.7 ± 1.4
australian 80.4 ± 1.7 81.7 ± 2.2 82.2 ± 1.6 81.5 ± 2.3 81.7 ± 2.2 82.5 ± 2.2
pima 60.8 ± 2.7 60.5 ± 2.1 62.2 ± 1.7 60.8 ± 2.4 60.4 ± 2.1 61.2 ± 2.5
vehicle 74.0 ± 3.1 89.7 ± 1.6 87.7 ± 2.6 85.5 ± 3.1 89.7 ± 2.0 89.3 ± 1.9
german 46.7 ± 1.6 46.9 ± 2.5 47.3 ± 2.3 47.5 ± 1.6 46.2 ± 2.0 48.0 ± 1.8
yeast 57.2 ± 4.5 60.8 ± 4.6 60.9 ± 3.8 59.7 ± 3.8 61.2 ± 4.9 61.9 ± 3.9
segmentation 64.6 ± 3.1 70.4 ± 2.4 65.7 ± 3.4 64.3 ± 2.9 72.4 ± 2.9 74.2 ± 1.8
splice 75.9 ± 0.7 86.5 ± 0.6 79.5 ± 1.6 76.2 ± 1.2 87.9 ± 0.9 87.2 ± 0.6
abalone 32.8 ± 1.1 32.5 ± 1.4 32.5 ± 1.3 31.6 ± 1.0 32.2 ± 1.3 32.6 ± 1.4
spambase 85.0 ± 1.0 88.1 ± 1.1 86.8 ± 1.2 86.2 ± 1.2 88.4 ± 0.7 88.7 ± 0.8
pageblocks 46.8 ± 3.7 50.2 ± 4.8 43.0 ± 5.2 48.3 ± 4.5 49.6 ± 5.6 49.1 ± 4.0

Mean 66.6 ± 3.5 69.1 ± 3.8 68.5 ± 3.7 68.1 ± 3.6 69.1 ± 4.0 70.4 ± 3.4

Average Rank 4.83 3.65 3.30 3.96 3.43 1.83

class. We derive a generalization bound specific to the imbal-
anced setting showing a convergence term depending on the
class imbalance and illustrating the hardness of learning from
imbalanced data. Our experimental evaluation shows that we
are able to outperform state of the art metric learning algorithms
in terms of F1-measure over balanced and imbalanced datasets.

We believe that our work gives rise to exciting perspectives
when facing imbalanced data. Among them, we want to study
how our algorithm could be adapted to learn non-linear metrics.
From an algorithmic point of view, we would like to extend our
method by deriving a closed form solution in a similar way as
done by Zadeh et al. [35] to drastically reduce the computation
time while maintaining good performances.
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