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We introduce a simple determinant diagrammatic Monte Carlo algorithm to compute the ground-state
properties of a particle interacting with a Fermi sea through a zero-range interaction. The fermionic sign does
not cause any fundamental problem when going to high diagram orders, and we reach order N = 30. The data
reveal that the diagrammatic series diverges exponentially as (−1/R)N with a radius of convergence R < 1.
Furthermore, on the polaron side of the polaron-dimeron transition, the value of R is determined by a special
class of three-body diagrams, corresponding to repeated scattering of the impurity between two particles of
the Fermi sea. A power-counting argument explains why finite R is possible for zero-range interactions in three
dimensions. Resumming the divergent series through a conformal mapping yields the polaron energy with record
accuracy.

DOI: 10.1103/PhysRevB.101.045134

The Fermi polaron is a quasiparticle that emerges when a
mobile impurity is coupled through a short-range interaction
to a single-component ideal Fermi gas [1]. Its energy, mass,
and quasiparticle residue are renormalized since the bare
particle is dressed by particle-hole excitations of the Fermi
sea. Experimental studies with cold atomic gases [2–10] raise
a considerable theoretical interest in this system. While exact
analytical results can be obtained in one dimension [11–14]
most works in higher dimensions rely on approximate treat-
ments of the strongly correlated many-body problem [15–31].
It is also possible to solve the equilibrium problem in three
dimensions in an unbiased way, as demonstrated by Prokof’ev
and Svistunov by means of a diagrammatic Monte Carlo
(DiagMC) algorithm [32,33]. This study established an impor-
tant benchmark for the Fermi polaron quasiparticle properties
and showed that beyond a critical strength of the (attractive)
interaction, the polaron becomes unstable and a dimeron—
a bosonic quasiparticle composed of the impurity bound
with one fermion, dressed with particle-hole excitations—is
formed instead in the ground state. The work of Prokof’ev
and Svistunov was extended to different observables [34,35],
two dimensions [36,37], and different impurity masses [38].

In DiagMC algorithms, the sum over Feynman diagram
topologies is done by stochastic sampling. In contrast, in
determinant diagrammatic Monte Carlo, one sums exactly
over all topologies at each Monte Carlo step, using the fact
that (for a given set of positions and imaginary times of
the vertices) the sum of all topologies, including discon-
nected ones, can be expressed as a determinant. This ap-
proach, also known as continuous-time interaction-expansion
quantum Monte Carlo, was introduced for quantum impurity
models [39] in Refs. [40,41] and is widely used as impu-
rity solver within dynamical mean field theory [42,43]. This

approach also used for direct evaluation of the many-body
diagrammatic series for the Hubbard model [44,45] including
for the unitary Fermi gas by extrapolating to zero particles per
site [44–49] and for electron-phonon models in 1D [50–52].
These works mostly restricted to special sign-free cases (re-
pulsive half-filled or attractive unpolarized Hubbard model,
dispersionless phonons), because generically, disconnected
topologies (which do not contribute to the final result for local
quantities) cause a sign problem leading to an exponential
increase of CPU time with system size.

In DiagMC simulations of many-body systems, system
size does not play any essential role, since one restricts the
sampling to connected topologies [53]. More generally, it is
easy in DiagMC to discard certain topologies: one-particle
reducible diagrams, as required to compute the self-energy;
diagrams containing bubbles, as required to work with dressed
vertices containing all ladder diagrams; or two-particle re-
ducible diagrams, as required to compute skeleton series built
with fully dressed propagators. This led to results directly in
the thermodynamic limit for various many-body problems,
e.g., the Hubbard model in doped repulsive [54–56] or po-
larized attractive regimes [57], the unitary Fermi gas directly
in the continuous space zero-range limit [58–60], electron-
phonon models without [61] or with additional Coulomb
interaction [62], graphene [63], Weyl semimetals [64], topo-
logical phases of the Haldane-Hubbard-Coulomb model [65],
or frustrated spins [66–68].

Recently a new type of determinant diagrammatic Monte
Carlo algorithm was introduced for the Fermi-Hubbard
model, where disconnected or reducible topologies are re-
moved by recursive formulas [69–72], an approach we will
refer to as CDet, for connected determinant. The recur-
sive formulas require a number of operations that scale
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exponentially with the diagram order, and this is done at each
Monte Carlo step. Still, this pays off because it takes better
advantage of massive cancellations between topologies—the
average sign decreases only exponentially with the order for
CDet, while for DiagMC it decreases factorially, because a
factorial number of topologies needs to be sampled stochas-
tically. The CDet approach was already used to study the
metal-to-insulator crossover in the half-filled Hubbard model
[73,74].

The general idea of using determinants and paying an
exponential price at each Monte Carlo update in order to
remove disconnected diagrams was actually first introduced
for the real-time evolution of the Anderson impurity model
after switching on the interaction, where no recursive formula
is needed as it suffices to sum over Keldysh indices; the
elimination of disconnected diagrams made it possible to
reach the longtime limit, i.e., the steady-state regime, and to
obtain previously unaccessible results [75–77]. A new way of
combining determinants with recursive relations was recently
found to be more efficient than CDet in the hybridization-
expansion approach to the Anderson impurity model in real
time, while CDet remains faster for the interaction expansion
[78]. The strategy of summing over all connected topologies
at each Monte Carlo update was also found to be useful for
the electron gas, even though no determinants were used and
the number of operations for summing over topologies was
factorial in diagram order [79].

In this paper, we introduce a determinant diagrammatic
Monte Carlo algorithm for solving the Fermi-polaron model,
based on several simple observations. First, summing up
topologies using a determinant does not generate any discon-
nected diagram because such diagrams do not exist for Fermi-
polaron problems [80]. Second, a recursive formula allows
us to remove one-particle reducible diagrams and thereby
calculate the polaron self-energy. Third, particle-particle bub-
bles are easily removed by setting to zero appropriate matrix
elements before taking the determinants, which allows us to
use dressed vertices including all ladder diagrams and thus
to work directly with zero-range interactions in continuous
space.

The new algorithm, which we will refer to as PDet, for
polaron determinant, is easier to program than DiagMC and
allows to go to much higher expansion orders. DiagMC
simulations did not go beyond order 12 due to the facto-
rial complexity of sampling a factorial number of diagrams
[32,34]. With the PDet algorithm, however, the scaling with
diagram order is polynomial and we reach diagram order 30.
The data reveal that the series is divergent for all values of
the interaction strength and that the large-order behavior is
essentially determined by particular scale-invariant diagrams
corresponding to the three-body problem as long as the po-
laron is the ground state. Through a conformal mapping, the
divergent series is converted into a convergent one. As a first
illustration we compute the polaron energy at unitarity with
unprecedented level of precision and control.

I. MODEL AND DIAGRAMS

We start by briefly reviewing the Fermi-polaron model and
its diagrammatic formalism. The system can be viewed as a

two-component Fermi gas with only one spin-↓ particle. It is
convenient to start from a lattice model of Hamiltonian

Ĥ =
∑

k∈B,σ=↑,↓

k2

2m
ĉ†

kσ ĉkσ

+ g0

∑
r

b3�̂
†
↑(r)�̂†

↓(r)�̂↓(r)�̂↑(r) (1)

with �̂σ (r) and ĉk,σ
the field operators for annihilating a spin-

σ fermion in position and momentum space, respectively. We
set h̄ = 1 and take the same mass m for the fermions and
the impurity. The components of the position vector r are
integer multiples of the lattice spacing b. Further, g0 is the
bare attractive interaction strength. The wave vectors k are
in the first Brillouin zone B =] − π/b, π/b]3. We consider
zero temperature, so that the spin-↑ particles form a Fermi
sea, occupying states up to the Fermi energy εF and Fermi
momentum kF .

A standard way to arrive at a diagrammatic series that is
well defined in the continuum limit (i.e., b → 0+ and g0 →
0− for a fixed scattering length (a) is to first sum all ladder
diagrams. This calculation gives a dressed interaction line
�0 (which can be viewed as a partially dressed bosonic pair
propagator):

Γ0

= + + + . . .

(2)
where the black dot represents the bare interaction g0 (external
lines are not shown). For more details and an explicit expres-
sion for �0 we refer to Refs. [33,34]. Then, Feynman diagrams
can be built from the free single-particle propagators G0

σ and
the pair propagators �0. Note that at short imaginary time
τ → 0+ and short distance r � √

τ , the propagators behave
as

G0
↓(r, τ ) ∼ 1

τ 3/2
e− m

2τ
r2

, (3)

�0(r, τ ) ∼ 1

τ 2
e− m

τ
r2

. (4)

Since the impurity propagates only forward in time, the
number of possible topologies is greatly restricted compared
to the case of a finite ↓ density (treated in Refs. [58,81]).
Consider the diagrams contributing to the impurity propaga-
tor G(r, τ ) := −〈T ψ↓(r, τ )ψ†

↓(0, 0)〉. Each diagram of order
N (which contains N interaction lines �0) has a backbone
created by the forward moving impurity, see Fig. 1. All
allowed topologies are obtained by connecting the open ends
indicated by the arrows with free propagators G0

↑. There is one
exception in order to avoid double counting: Particle-particle
bubbles

Xj Xj+1

(5)

need to be omitted since they are already included in �0.
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0 X1 X1 X2 X3 X4X4X3X2 X

FIG. 1. Backbone structure of the fourth-order Feynman dia-
grams contributing to the impurity propagator G(X ). Each rectangle
is a dressed interaction line �0 running from space-time point Xi =
(ri, τi ) to X ′

i = (r′
i, τ

′
i ). Each full line is a free G0

↓ propagator running
from X ′

i to Xi+1, with X ′
0 = 0 and X5 = X . All Feynman diagrams of

order 4 are obtained by considering all possible connections of the
spin-↑ open ends with G0

↑ propagators, with the exclusion of ladder
diagrams. All ladder diagrams have already been summed in each �0

line.

II. MONTE CARLO ALGORITHM

We turn to the description of the PDet algorithm. As in
Fig. 1, let (X1, X ′

1, . . . , XN , X ′
N ) =: VN be the internal space-

time coordinates for a diagram of order N . The contribution
of the backbone is given by

B(VN , X ) = G0
↓(X1) �0(X ′

1 − X1) G0
↓(X2 − X ′

1)

×�0(X ′
2 − X2) . . . �0(X ′

N − XN ) G0
↓(X − X ′

N ).

(6)

The sum of all possible ways to close the open ends of the
�0 lines with G0

↑ propagators can be obtained by calculating a
single determinant. The N th order contribution to the impurity
propagator for external X = (r, τ ) is given by

GN (X ) =
∫

dX1 . . .

∫
dX ′

N B(VN , X ) S(VN ) , (7)

with the notation
∫

dXi = ∫
dri

∫ ∞
0 dτi and where the sum of

all possible connections by spin-up propagators is given by

S(VN ) = det[A(VN )] , (8)

with the matrix elements of A given by

Ai, j =
{

G0
↑(Xi − X ′

j ) if i �= j + 1 ,

0 if i = j + 1 .
(9)

The zeros in the matrix A ensure that ladder diagrams are
not double counted, since it eliminates all particle-particle
bubbles (5) in the sum of possible connections. In the con-
ventional diagrammatic Monte Carlo algorithm, all diagram
topologies are sampled explicitly [32,33]. Here, their sum
is given by just one determinant (for a given set of inter-
nal variables). This greatly simplifies the algorithm and the
computer code. The price to pay is that one has to work in
position representation, where the propagators are oscillating
as a function of distance, which might be difficult to deal
with numerically. The conventional DiagMC algorithm, on
the other hand, works in momentum representation, where the
propagators are sign definite as a function of momentum. In
practice, the oscillating propagators do not turn out to be a
limiting factor, and the current algorithm is far superior to the
conventional one.

The PDet algorithm stochastically performs the summation
over the order N and the multidimensional integral over

internal variables [see Eq. (7)] in order to calculate the con-
tributions GN (X ) up to some maximal order. As usual in
diagrammatic Monte Carlo, the external variable X is also
sampled, which allows us to get the X dependence from a
histogram (since we restrict here to zero external momentum,
we only histogram the τ dependence and not the r depen-
dence). Accordingly, a configuration is given by (VN , X ) and
its weight is W (VN , X ) = |B(VN , X )S(VN )|. An ergodic and
efficient sampling can be achieved through a few Monte Carlo
updates:

(i) Time shift. Choose one backbone line at random. Let
the space-time difference of this line be 	X = (	r,	τold ).
Given 	r, choose a new time difference 	τnew for this line
proportional to the short time behavior given in Eq. (3) or
Eq. (4) in case the chosen backbone line is, respectively, a
G0

↓ propagator or a �0 propagator.
(ii) Position shift. Choose one backbone line at random.

Let the space-time difference of this line again be 	X =
(	rold,	τ ). Given 	τ , choose a new position difference
	rnew for this line according to a Gaussian with width 	τ/m
in case of a G0

↓ propagator and with width 	τ/2m in case of
�0 propagator.

(iii) Add. Let the current configuration be (VN , Xold ). The
Add update will try to increase N by one by simply adding one
�0 line and one G0

↓ at the end of the N th order backbone. For
the final configuration of order N + 1 we take XN+1 = Xold,
while a new X ′

N+1 and a new total space-time difference Xnew

are chosen in the following way. First we choose the time dif-
ference 	τN+1 = τ ′

N+1 − τN+1 proportional to the short time
behavior Eq. (4) with r = |r′

N − rN |. Next the time difference
	τnew = τnew − τ ′

N+1 is chosen proportional to the short time
behavior Eq. (3) with r = |rold − r′

N |. These choices of r in
the probability distribution should ensure that we do propose
times which are typical. Indeed, we observed that this gives
good acceptance rates in practice. The new position difference
	rN+1 = r′

N+1 − rN+1 and 	rnew = rnew − r′
N+1 are chosen

from a Gaussian distribution with widths 	τN+1/2m and
	τnew/m, respectively.

(iv) Remove. This update is simply the inverse of the Add
update.

As usual in diagrammatic Monte Carlo, after a new con-
figuration is proposed, it is accepted or rejected using the
Metropolis-Hastings rule, the detailed balance being ensured
separately for each complementary pair of updates (here,
Add-Remove is a complementary pair, while each of the shift
updates is self-complementary). In our code we also use an
additional update changing both time and position difference
of a line, but this is not required for ergodicity. To eliminate
configurations with a very large weight, we introduce a small
lower cutoff on all position differences along the backbone,
which we checked to induce a negligible systematic error.
We also use standard reweighting procedures. Namely, the
function W (VN , X ) is multiplied by an extra factor CN in order
to spend a reasonable amount of simulation time at each order
(we simply choose to spend a constant number of Monte Carlo
steps per order). Moreover we use the freedom to shift the
impurity energy by a free parameter −μ, which amounts to
exponential reweighting in time since each diagram of total
time τ depends on μ through a simple factor eμτ [82]. To
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normalize the series, we use the first order diagram which is
calculated alternatively using Fourier transforms.

In order to calculate the polaron quasiparticle properties
it is preferable to calculate the self-energy 
(X ) rather than
G(X ). To get the contribution 
N (X ) at order N one needs to
exclude all the one-particle reducible diagrams. One has


N (X ) =
∫

dX ′
1

∫
dX2 . . .

∫
dXN B̃(VN ) S̃(VN ) (10)

with the backbone of the self-energy given by

B̃(VN ) = �0(X ′
1) G0

↓(X2 − X ′
1)

×�0(X ′
2 − X2) . . . �0(X − XN ) , (11)

S̃(VN ) is the sum of all connections with spin-up propagators
that create one-particle irreducible diagrams, and X1 ≡ 0 and
X ′

N ≡ X in the set VN for the self-energy. Elimination of
reducible diagrams is achieved by applying the following
recursive relation at each step of the Monte Carlo process:

S̃(Vn) = S(Vn) −
n−1∑
k=1

S̃(Vk ) S(Vn \ Vk ) , (12)

for n = 1, . . . N . The computational cost for calculating S(VN )
is O(N3) since it requires just calculating one determinant.
The cost to calculate S̃(VN ) is still polynomial. If all the
determinants in the recursive formula are calculated in a
straightforward way without any special tricks, the calculation
of S̃(VN ) scales as

∑N
n=1

∑n
k=1 k3 ∼ N5. The Monte Carlo

updates of the PDet algorithm for the self-energy are very
similar to those of the algorithm for calculating G described
above.

Straightforward modifications of the above procedures al-
low one to compute other quantities—such as the fully dressed
pair propagator and the pair self-energy (denoted by � and
� in Ref. [34]), which give access to the dimeron properties
[33,34]—and to treat other fermionic polaron problems—for
example the bare expansion for a finite-range interaction.

III. LARGE-ORDER BEHAVIOR

In this section, we use the new algorithm to evaluate the
diagrammatic series up to high order, which then leads us to
investigate the asymptotic large-order behavior.

A. Exponential divergence

We start by calculating the contributions to the impurity
propagator for kF a = ∞. In Fig. 2 we show the order-N
contribution GN (p = 0, τ ), for the lowest orders N � 5, as a
function of imaginary time τ . The series seems to converge
very rapidly as a function of N , at least for small enough
τ . But a closer inspection at high enough order shows that
this is not the case. In Fig. 3 we show GN (p = 0, ω = 0) =∫ ∞

0 dτ GN (p = 0, τ ) for orders N up to 30: Zooming on the
high orders reveals that the series is actually diverging. The
data is very well fit by an exponential sign-alternating law,
GN (p = 0, ω = 0) = (−R)−N , with R = 0.878(2) (taking a
fitting range N = 24–30). Coming back to the imaginary-
time dependence of GN (p = 0, τ ), Fig. 4(a) shows that at
large order N , a peak develops around τ/εF ≈ 12, with an
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FIG. 2. Contribution to the impurity propagator for the lowest
orders N , at zero momentum, as a function of imaginary time τ . The
interaction strength is kF a = ∞.

amplitude that increases with N . More precisely, Fig. 4(b)
shows a data collapse after multiplication by (−R)N , which
indicates a large-order behavior

GN (p = 0, τ ) �
N→∞

(−R)−N F (τ ) (13)

were F (τ ) is N independent.
In order to understand how such an exponential divergence

of the diagrammatic series can arise, we consider the two dia-
grams shown in Fig. 5. These diagrams have been considered
before in the polaron problem [19,34]. They can be viewed as
three-body T-matrix diagrams, shown in Fig. 6, closed with
two hole propagators. The three-body T-matrix describes the
scattering between the impurity and two particles of the Fermi
sea (and also, in the strong-coupling limit, between a dimer
and a fermion); these are the only diagrams for the three-body
problem in vacuum [83].
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 10  15  20  25  30

FIG. 3. The N th order contribution GN to the impurity propaga-
tor at zero momentum and zero frequency for kF a = ∞. The data
seems to be rapidly converging as a function of the order N . The
zoom however shows an exponential and sign-alternating increase at
high enough order.
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FIG. 4. The order-N contribution to the impurity propagator
G(p = 0, τ ) at zero momentum as a function of imaginary time τ

for high orders. The interaction strength is kF a = ∞. The lower
panel shows RN |GN (p = 0, τ )| as a function of imaginary time. The
collapse of the data illustrates the behavior given in Eq. (13) at large
enough order N .

Figure 7 shows the contribution to GN (p = 0, ω = 0) of
the two diagrams shown in Fig. 5 as function of N . Note that
the contributions of these two diagrams nearly cancel each
other, as noted before in Refs. [34,84]. It turns out that those
two diagrams follow the asymptotic behavior of Eq. (13).
When fitting the exponential increase in the range N = 24–30
for the first dominant diagram, we get R = 0.8782(15). This
value is consistent with the value of R obtained previously
for the sum of all diagrams. Figure 8 shows the function
F (τ ) = RN |GN (p = 0, τ )| for the first dominant diagram and

FIG. 5. Two diagrams contributing to GN obtained by closing
the three-body T-matrix diagrams of Fig. 6 with two spin-up hole
propagators in two different ways.

T3 T3=

=

+

+

+ + . . .

FIG. 6. The three-body T-matrix diagrams, describing the scat-
tering between the impurity and two fermions.

the sum of the two dominant diagrams. We clearly observe
a collapse of the data within the statistical error bars. We
conclude that at unitarity, the leading asymptotic behavior of
the series, (−R)−N , comes from the diagrams shown in Fig. 5.

Note that this conclusion is not related to the observations
of Ref. [34], where these diagrams (without the initial and
final G0

↓ propagators) were identified as qualitatively domi-
nant diagrams when sampling all possible self-energy contri-
butions at any given order through DiagMC, their contribution
being fairly large compared to other diagrams of the same
order because they contain a minimal number of backward
propagating G0

↑ lines [34].
Calculation of 
N (p = 0, τ ) and 
N (p = 0, ω = 0) reveal

behavior very similar to the behavior of GN . We again observe
the behavior given in Eq. (13) with the same value of R as for
the series for G. Figure 9 shows the contributions 
N (p =
0, ω = 0).

While we focused on the unitary limit so far, let us
now look at the large-order behavior for different interaction
strengths. We find again an exponential divergence GN ∼
(−R)−N with R < 1, but for strong coupling the value of R is
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N

FIG. 7. The contribution to GN (p = 0, ω = 0) from the two dia-
grams shown in Fig. 5 as a function of the diagram order N . The red
squares and blue circles correspond to the contribution of the top and
bottom diagram shown in Fig. 5, respectively.
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(lower panel) shown in Fig. 5, with R = 0.8782(15). The width of
the lines in the upper panel reflects the statistical error bars. We
again observe collapse of the data within the error bars, supporting
the behavior Eq. (13) at large enough N .
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order.
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FIG. 10. The contribution |GN (p = 0, ω = 0)| to the impurity
propagator as a function of the diagram order N for the sum of all
diagrams (red squares) and for the sum of the two diagrams (blue
circles) shown in Fig. 5. The four panels correspond to different
values of 1/(kF a).

not determined any more by the three-body diagrams. This is
seen in Fig. 10 which shows the contribution |GN (p = 0, ω =
0)| as a function of N , on the one hand for all the diagrams,
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TABLE I. For various interaction strengths, comparison between
the convergence radius Rall from the sum of all diagrams, and the
convergence radius R2 diag from only the two diagrams of Fig. 5.

1/(kF a) Rall R2 diag

−1 0.890(5) 0.892(5)
0 0.878(3) 0.879(3)
0.5 0.850(4) 0.857(2)
1 0.752(11) 0.809(2)

and on the other hand for the sum of the two diagrams
shown in Fig. 5, for four values of kF a. In all cases, log |GN |
increases linearly with N , but the slopes of the two curves
clearly do not agree any more for 1/(kF a) = 1, which is on the
dimeron side of the polaron to dimeron transition taking place
at 1/(kF a)c = 0.87(2) [34]. In the other three cases, the slopes
agree, although only marginally for 1/(kF a) = 0.5, where we
pushed the calculation to order 40. The values of R are shown
in Table I [85].

We did not find classes of diagrams which would account
for this stronger divergence. We considered the simplest dia-
grams contributing to the four-body propagators T4 (closed in
3! possible ways) and to the five-body propagators T5 (closed
in 4! possible ways). They also show an exponential behavior
as a function of N , but with a value of R larger than 1, i.e.,
they decrease exponentially with N .

The exponential divergence found here for the polaron
problem (i.e., for a single ↓ particle) is entirely different
from the large-order behavior found in Ref. [59] for the
many-body problem (i.e., when both ↑ and ↓ particles have
a finite density). In the many-body case, the divergence is
stronger, ∼(N!)1/5, so that the convergence radius is zero.
This is obtained from a functional integral representation,
with an action that depends not only on a fermionic field—
corresponding to the original fermionic particles—but also
on a bosonic field—corresponding to pairs of fermion with
opposite spin. The factorial divergence essentially comes from
contributions to the functional integral from the large bosonic
field limit [59,86]. This is analogous to the Dyson collapse in
QED [87–91]. In the polaron case, there is no representation
in terms of a complex bosonic field. Physically, the number
of bosonic ↑↓ pairs cannot exceed one. Therefore, the mech-
anism responsible for the factorial divergence is absent in the
polaron case.

B. Power-counting argument

The exponential divergence with diagram order revealed by
the above data contradicts a previous belief that the diagram-
matic series should converge at fixed imaginary time [35].
This belief followed from the observation that time order-
ing normally leads to a factorially convergent diagrammatic
series: For fixed external imaginary time τ , the contribution
to GN (p, τ ) of any individual diagram is an integral over
time-ordered internal times,

∫
0<τ1<...<τ2N <τ

f dτ1 . . . dτ2N , and
under the simplifying assumption that the integrand f is
bounded, this integral is bounded by τ 2N/(2N )! (omitting
N-independent prefactors); since the number of order-N di-
agrams is bounded by N!, one concludes that |GN | is bounded

X̃ X̃

Σ
(N)
1 diag = . . .

Σ
(N+1)
1 diag = . . . . . .

. . .

FIG. 11. For one of the three-body diagrams, increasing the order
from N to N + 1 amounts to inserting the building block represented
in dotted lines.

by (τ/2)2N/N!. This naive conclusion is in contradiction with
our numerical results.

We thus need to perform a more careful analysis, with-
out making the above simplifying assumption. We will see
that in the present case of zero-range interactions in three-
dimensional continuous space, the aforementioned effect of
the time ordering is exactly compensated by the effect of the
short-time divergences of the propagators Eqs. (3) and (4).

As a preliminary exercise, let us consider the simple
integral

In =
∫

0<τ1<...<τn<τ

dτ1 . . . dτn. (14)

The integral can be evaluated exactly,

In = τ n/n! (15)

Let us show how this behavior follows from a heuristic ar-
gument (before generalizing the argument to the polaron self-
energy). In the integral In, typically, the time-ordered variables
τ1, . . . , τn are spread in a roughly uniform way between 0 and
τ . Therefore, each τi is effectively restricted to an interval of
length ∼τ/n. This leads to the estimate In ∼ (τ/n)n, which
agrees with the exact result Eq. (15), up to a factor (constant)n

which is missed by this simple argument.
We now apply a similar kind of argument to the order-N

self-energy contribution 

(N )
1 diag of one of the two “three-body

diagrams.” Once again, let us start from the following assump-
tion: Typically, the time-ordered internal times τ1 . . . τ2N are
roughly uniformly spread between 0 and τ , so that all the time
lengths τdestination − τorigin of the lines in the diagram (either
G0 or �0 lines) are of the same order of magnitude 	τ (N ).
Since the total time length of the backbone ∼2N 	τ (N ) has
to match the external time τ , we have 	τ (N ) � τ for large
N . Now let us consider the ratio 


(N+1)
1 diag /


(N )
1 diag. We can view

the order-(N + 1) diagram as the order-N diagram with an
additional structure

X̃ X̃

(16)

inserted in the middle of the diagram, see Fig. 11. Accord-
ingly, there are two additional internal space-time variables X̃
and X̃ ′.
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From our assumption, the integral over X̃ is effectively
restricted to a small volume (in space time) V of order
(	τ )5/2 [we will consider that 	τ (N ) and 	τ (N + 1) are
close enough to neglect the N dependence of 	τ ]. Indeed, the
integral over τ̃ is restricted to a small interval of length ∼	τ ;
the integral over r̃ is hence effectively restricted to a ball of ra-
dius ∼√

	τ , because the propagators decrease exponentially
outside this ball [see Eqs. (3) and (4)]; the volume of this ball
in three dimensions is ∼(	τ )3/2 which gives V ∼ (	τ )1+3/2.
The same argument applies to the integral over X̃ ′, which is
effectively restricted to a volumes V ′, again of order (	τ )5/2.

This means that increasing the order has a cost: The two
new internal variables have to fit into small regions, which
suppresses the result (as we have already seen for the pre-
liminary exercise). Here the corresponding small multiplica-
tive factor is V V ′ ∼ (	τ )5. However, this is not the entire
story: Increasing the order by one also means adding three
extra lines—two G0 lines and one �0 line (the dotted lines
in Fig. 11). These propagators have large values, of order
1/(	τ )3/2 for the G0 lines, and 1/(	τ )2 for the �0 line [using
again Eqs. (3) and (4), where the exponentials are typically
∼1]. The resulting enhancement factor is ∼1/(	τ )2×3/2+2 =
1/(	τ )5, exactly canceling out the above suppression factor
coming from the smallness of the integration regions. We
conclude that 


(N+1)
1 diag /


(N )
1 diag ∼ (	τ )0 ∼ 1, which suggests

an exponential dependence of 

(N )
1 diag with N . This implies

G(N )
1 diag ∝ (−R)−N , since G(N )

1 diag is just 

(N )
1 diag with an extra G0

line attached at each end.
To summarize, when increasing the diagram order by one

as shown in Fig. 11, a peculiar compensation takes place: The
smallness of the integration regions for the new time variables
(which follows from the time ordering) is exactly compen-
sated by the large values of the new propagators; therefore the
order of magnitude of the diagram remains unchanged. This
scale-invariance property is specific to zero-range interactions
in three-dimensional continuous space, for which the propa-
gators have the ultraviolet divergences Eqs. (3) and (4).

We note that the reality is somewhat more complex than the
above assumption of roughly uniform spreading of the internal
times, but we will argue that this should not change the
conclusion. First, the lines near the two ends of the diagram
have no reason to have the same time length than the lines in
the “bulk” of the diagram; however, these “boundary effects”
should not affect the leading-order scaling coming from the
“bulk” of the diagram. Second, even in the “bulk,” there are
typically some lines with a time length much larger than the
other ones, i.e., one does not have a single chain of short lines,
but rather several bunches of short lines, separated by longer
lines; we observed this by looking at a few configurations
visited by the Monte Carlo process. This can be understood
as an “entropy-energy” compromise: The system decides to
lose in “energy” by having some longer lines (with a smaller
value of the propagators), but win in “entropy” by increasing
the effective accessible phase space. A quantitative study of
this interesting effect is beyond the scope of this paper. The
above scaling argument can be expected to remain valid, since
most of the lines remain short.

The fact that the exponential divergence of the diagram-
matic series comes from ultraviolet behavior is further sup-
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=

30
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τ/εF
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2 diagrams

FIG. 12. The order-30 contribution to the self-energy at p = 0
as a function of imaginary time τ . Red squares: contribution of all
diagrams, blue circles: contribution of only the self-energy insertions
shown in Fig. 5.

ported by the following observation. Suppose that we evaluate
diagrams in momentum-time representation, and we introduce
a cutoff pc on all internal momenta. Then one obtains the
bound

|GN (p, τ )| � α(τ )
CN p3N

c τ
3N
2√

(N − 1)!
(17)

for some C and α(τ ). We thus conclude that the se-
ries would be convergent if there was a momentum cut-
off. To derive Eq. (17), we replaced for simplicity �0 by
the vacuum two-particle propagator at unitarity, �v (p, τ ) =
−4

√
π/(m3τ ) e−( p2

4m −μ−εF )τ , which has the same large-
momentum/short-time behavior as the full �0 [cf. Eq. (4)].
One thus has |�v (p, τ )| � A eBτ /

√
τ with A and B some con-

stants. Moreover, the single-particle propagators are bounded,
|G0

σ (p, τ )| � 1. Hence the N integrals over independent in-
ternal momenta can be simply bounded by a factor ∝ p3N

c ,
and the remaining integrals over internal times can be done
analytically, leading to Eq. (17).

Finally we note that some classes of diagrams do have
a contribution which vanishes factorially at large N . For
example, if we consider all reducible diagrams built from
the lowest order self-energy 
1 [i.e., GN = (G0

↓)N+1(
1)N

in momentum-frequency representation], these diagrams will
vanish as 1/(N!)3/2.

C. Time dependence

The two diagrams of Fig. 5 follow the asymptotic behavior
of Eq. (13), but they are not the only ones since they give a
different function F2 diag(τ ) �= Fall(τ ) ≡ F (τ ). To illustrate the
difference, we show in Fig. 12 the order N = 30 contribution
to 
(p = 0, τ ) for all diagrams and for the two diagrams. We
have investigated whether there exists a particular (simple)
class of diagrams such that their sum reproduces the func-
tion Fall(τ ). The conclusion of this search is that we could
construct many different classes of topologies which lead to
the same value of R, but we did not identify a simple class
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which reproduces the function Fall(τ ). In the Appendix, we
give a number of examples of such topologies. We leave the
question whether there exists a simple class of diagrams which
completely determines the asymptotic large-N behavior as an
open problem.

IV. RESUMMATION

Since the data clearly reveals a finite radius of convergence
for the polaron diagrammatic series and since the physical
answer is outside this radius, we can construct a conformal
mapping in order to resum the series. Note that the Abelian
resummation techniques used in Refs. [34,35] for the Fermi
polaron problem can also deal with a finite radius of conver-
gence and are an alternative way of resumming the series. In
contrast, the resummation methods used in Refs. [32,33] are
strictly speaking not applicable given that the series diverges
exponentially; nevertheless, the results of Refs. [32,33] are
consistent with the ones obtained here and in Ref. [34], which
can be explained by the fact that the exponential divergence
is rather weak (in the sense that the convergence radius is not
much smaller than one) and only develops at orders N � 15,
which were not accessed in previous works.

We start by interpreting the coefficients 
N of the diagram-
matic series for the self-energy 
 as the Taylor coefficients of
a function 
(z) of a formal parameter z:


(z) :=
∞∑

N=1


N zN−1 , (18)

where the physical self-energy corresponds to 
(z = 1).
Given the asymptotic behavior


N ∼
N→∞

(−1)N R−N , (19)

the series in Eq. (18) converges only for |z| smaller than
the radius of convergence R, and the physical point z = 1
is outside the convergence disk. This can be cured by a
conformal mapping, a method used previously in the context
of diagrammatic Monte Carlo in Refs. [59,70,75,77]. One
introduces a conformal mapping z �→ w(z) such that w1 =
w(z = 1) is inside the convergence disk of the transformed
function 
̃(w) = 
(z(w)) in the w-plane. Then, the physical
result is obtained simply by evaluating the Taylor series
of 
̃(w),

Nmax∑
N=0


̃N wN , (20)

which converges in the limit Nmax → ∞ at the physical point
w = w1. Imposing w(z = 0) = 0 ensures that 
̃N is a linear
combination of 
1, . . . , 
N+1.

There are many different choices for the conformal map-
ping. We use

z(w) = Aw

(1 − w)α
(21)

with α > 0. This mapping is constructed such that the positive
real axis in the z plane is mapped onto the unit segment in
the w plane, with w(z = +∞) = 1. This guarantees that 0 <

w1 < 1, and choosing A = 2αR ensures that the singularity at
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FIG. 13. Coefficients of the transformed series after conformal
mapping. We show −
̃N (p = 0, ω = 0)wN

1 as function of order N .
The line is an exponential fit.

z = −R is mapped to w = −1, which is further away from
the origin than w1. The value of α can be chosen in the range
[0,2], fixing how much of the complex z plane is mapped into
the unit disk. In what follows we take α = 1. We checked that
the final result for the energy does not depend on α within the
error bars.

After the conformal mapping, we observe that the series
converges exponentially, see Fig. 13. This shows that all
singularities were indeed mapped further away from the origin
than w1. The fact that the series in w is not sign alternating
indicates that the singularity w2 nearest to the origin is on
the real positive axis. Fitting the tail gives 
̃N ∝ 1/wN

2 with
w2 = 0.479(4), which is indeed larger than w1 = 0.3628.
The corresponding singularity of 
(z) is at z(w2) = 1.61(3),
which we checked to be stable w.r.t. changing α.

The polaron energy Ep is determined from the pole of the
propagator G, which gives the implicit equation in terms of
the self-energy [32]

Ep = 
(p = 0, ω = 0, μ = Ep). (22)

After applying the conformal mapping to the self-energy
diagrammatic series, our results converge in the limit where
the maximal diagram order Nmax → ∞, see Fig. 14, where we
also show for comparison the results without the conformal
mapping, obtained with the new PDet algorithm, as well as
with the older DiagMC method [34]. We obtain a polaron
energy Ep/εF = −0.61565(4). This result is compared with
earlier theoretical and experimental values in Table II. Our

TABLE II. Polaron energy Ep/εF at the unitary limit.

−0.61565(4) this work
−0.607 one particle-hole variational ansatz [15,16]
−0.615(3) diagrammatic Monte Carlo [32,33]
−0.6156 two particle-hole variational ansatz [84]
−0.615(1) diagrammatic Monte Carlo [34]
−0.622(9) lattice quantum Monte Carlo [92]
−0.60(5) experiment [9]
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FIG. 14. The polaron energy Ep, as a function of the maximal
order Nmax of the diagrammatic expansion of the self-energy. While
our results converge after conformal mapping (black crosses), they
diverge if this mapping is not applied (blue circles). This divergence
was not resolved in the earlier DiagMC results from Ref. [34] (red
squares).

error bar is dominated by the systematic error from the
Monte Carlo grid in imaginary time. The precision is strongly
improved over the previous DiagMC results of Refs. [32–34]
and the hybrid path-integral/auxiliary-field quantum Monte
Carlo result of Ref. [92]. The ∼1% difference with the one
particle-hole variational ansatz [15,16] is much larger than our
error bar, and the agreement with the two particle-hole vari-
ational ansatz [84] is remarkable. On the experimental side,
we agree with the latest value obtained via radio frequency
spectroscopy measurements of a strongly spin-balanced Fermi
gas in a spatially uniform box potential [9], as well as with the
earlier determinations of Refs. [2,93].

V. EFFICIENCY OF THE ALGORITHM

We end with a quantitative discussion of the new algo-
rithm’s efficiency. Consider the computation of a quantity Q
of diagrammatic expansion

∞∑
N=1

aN .

The most relevant case for PDet is the self-energy Q = 
, for
fixed external variables, say (p = 0, ω = 0) for simplicity, so
that aN = 
N (p = 0, ω = 0).

Denoting the set of space-time variables by VN , we have

aN =
∫

dVN W (VN ); (23)

in the considered case of the self-energy with PDet, we have
VN ≡ {X ′

1, X2, X ′
2, . . . , XN , X } and W (VN ) = B̃(VN )S̃(VN ), see

Eqs. (10)–(12). Equation (23) can be rewritten as

aN = 〈sign〉N zN (24)

where 〈sign〉N is the average sign corresponding to the Monte
Carlo process at order N , 〈sign〉N = 〈sign W (VN )〉 where the
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FIG. 15. Average sign as function of order N for G(p = 0, ω =
0) and 
(p = 0, ω = 0). Remarkably, the average sign has a finite
large-N limit.

average is taken w.r.t. the Monte Carlo weight |W (VN )|, and

zN =
∫

dVN |W (VN )| (25)

is the total weight of the order-N configuration space.

A. Average sign

A major aspect determining the efficiency of any Monte
Carlo algorithm for fermions is the behavior of the average
sign. A small average sign means that positive and negative
contributions nearly cancel out on average, which amplifies
the relative statistical error. In previous diagrammatic Monte
Carlo algorithms for fermionic many-body or polaron prob-
lems, the average sign tends to zero in the large-order limit.
This “sign problem” poses a fundamental limitation on the
order that can be reached within a given computational time.
In contrast, for PDet the average sign tends to a finite limit at
large order, as we see in Fig. 15: Remarkably, the fermionic
sign does not cause any fundamental difficulty here.

While this observation is surprising at first, we can un-
derstand it from the power-counting argument of Sec. III B.
That argument suggested that |aN | ∼ (1/R)N at large N , with
R determined by any of the two three-body diagrams. The
same argument gives zN ∼ (1/R)N with the same R: Indeed,
it does not matter that we consider the integral of |W | instead
of the integral of W , because the short-time expressions of the
propagators Eqs. (3) and (4) are sign definite. This explains
that 〈sign〉N = aN/zN has a finite limit for N → ∞.

B. Computational complexity

A natural way of summarizing all aspects of computational
complexity for a numerical algorithm is to determine how the
computational time t scales with the error ε. Here ε is the
difference between the computed value and the exact result,
coming from both statistical and systematic errors. As we will
see, the scaling is only polynomial in 1/ε for PDet,

t = O(1/εν ). (26)
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Such a scaling was derived in Ref. [94] for the CDet
algorithm, and we can reuse most of the analysis presented
there, modulo the following three differences, which will
change the expression of the exponent ν:

(i) the number of operations per Monte Carlo step increases
only polynomially with N for PDet, instead of the 3N scaling
of CDet (because for the polaron problem, disconnected di-
agrams do not exist, so that the CDet recursive procedure to
eliminate disconnected diagrams is not required for PDet);

(ii) while the average sign decreases exponentially with N
for a full many-body problem with CDet, it has a finite large-N
limit for the Fermi-polaron problem with PDet;

(iii) while Ref. [94] restricted for simplicity to the case
of a convergent series (i.e., to small enough interaction for
the Hubbard model), here we have to consider the case of a
divergent series, resummed by conformal mapping.

It was already stated in Refs. [70,77] that point (iii) does
not invalidate the scaling (26); here we will justify this in some
detail and show how this modifies the exponent ν (both for
PDet and CDet).

Whereas the original series
∑

aN diverges exponentially,
|aN | ∼ 1/RN with R < 1, after conformal mapping one ob-
tains a convergent series

Q =
∞∑

N=1

ãN (27)

[in our case ãN = 
̃N−1(p = 0, ω = 0) w N−1
1 ] and Q is com-

puted by evaluating the truncated series

Q(Nmax ) =
Nmax∑
N=1

ãN (28)

for some maximal order Nmax. The transformed series con-
verges exponentially,

ãN = O(1/R̃N ) (29)

with R̃ > 1. Hence the truncation error is ∼1/R̃Nmax .
To evaluate the statistical error, we have to return to the

original coefficients aN , which are the ones evaluated by
Monte Carlo. Since the ãN are linear combinations of the aN ,
we have

Q(Nmax ) =
Nmax∑
N=1

aN F (Nmax )
N . (30)

Here the coefficients F (Nmax )
N depend on the conformal map;

they necessarily tend to 1 for Nmax → ∞ at fixed N , and
they typically smoothly decrease from nearly 1 to nearly 0
as a function of N at fixed large Nmax. Neglecting correlations
between the aN , the statistical error on Q(Nmax ) is given by

ε2
stat �

Nmax∑
N=1

εstat (N )2
(
F (Nmax )

N

)2
(31)

with εstat (N ) the statistical error on aN . Since the F (Nmax )
N are

bounded (they are typically between 0 and 1), we can simply
use the bound

ε2
stat � ε̄ 2

stat :=
Nmax∑
N=1

εstat (N )2. (32)

FIG. 16. Two self-energy diagrams contributing to the asymp-
totic large-order behavior given in Eq. (13). One topology is drawn
explicitly. The second topology is obtained by interchanging the ends
of the G0

↑ propagators marked with the symbol ⊗. The same two
self-energy contributions are shown explicitly in Fig. 5 (with two
additional external G0

↓ lines).

The rest of the discussion is similar to Ref. [94]. Given
that 〈sign〉N has a finite large-N limit, one finds that ε̄stat ∼
(1/R)Nmax/

√
t . This scaling is related to the fact that when re-

summing the divergent series
∑

aN , there is necessarily a near
compensation between the contributions of different aN to the
resummed result, so that the required relative accuracy on aN

increases with N . Choosing Nmax such that the truncation error
is of the same order than ε̄stat then leads to the result Eq. (26)
with the exponent

ν = 2 + 2
log(1/R)

log R̃
. (33)

At the unitary limit, we have R̃ = w2/w1 � 1.32 and R �
0.88, which gives ν � 2.9, a remarkably small value (the
best possible scaling for any Monte Carlo computation being
ν = 2).

For CDet, the result obtained in Ref. [94] for the
convergent-series case (R > 1) is ν = 2 + 2 log(3/R 2

C )/
log R, where RC is such that zN ∼ 1/RN

C at large N (discarding
here the exotic case RC >

√
3); in the divergent-series case

(R < 1) the above discussion shows that we only need to
replace R with R̃ in the expression of the truncation error,
which gives

νCDet = 2 + log
(
3/R 2

C

)
log R̃

. (34)

From this expression, the PDet result Eq. (33) can be retrieved
by removing the factor 3 and setting RC = R; this follows from
the above points (i) and (ii), respectively.

VI. CONCLUSION

We introduced an algorithm to solve numerically the
Fermi polaron problem with high precision. With respect to
the existing diagrammatic Monte Carlo algorithm [32], the
progress is substantial, both in terms of efficiency and of
algorithmic simplicity. The obtained high-order data have
clarified a conceptual aspect of fundamental importance, the
large-order behavior of the diagrammatic series, which is
found to diverge exponentially at a rate determined by a
single diagram. This peculiar situation is made possible by
a compensation between the effects of time ordering and
of ultraviolet divergencies for the zero-range interaction in
three dimensions. This compensation also implies that the
average sign remains finite in the large-order limit, which
means that the fermionic sign does not cause any essential
problem preventing to reach high orders. The knowledge of
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FIG. 17. A class of self-energy diagrams contributing to the
asymptotic large-order behavior given in Eq. (13). Each diagram rep-
resents two topologies, following the rules explained in the caption
of Fig. 16.

the large-order behavior allows us to resum the series in an
efficient and controlled way by means of a conformal map, as
demonstrated by first illustrative results.
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APPENDIX: SOME DIAGRAMS CONTRIBUTING TO THE
LARGE-ORDER BEHAVIOR

We have numerically found that the N th order contribution
GN (p = 0, τ ) to the propagator, or 
N (p = 0, τ ) to the self-
energy, follows the asymptotic behavior given in Eq. (13) at
large enough order. We investigated whether there exists a

FIG. 18. Some more self-energy diagrams contributing to the
asymptotic large-order behavior given in Eq. (13). These diagrams
are similar to those of Fig. 16. The difference is a self-energy
insertion in the middle of the backbone, which effectively dresses
one of the single-particle lines of the backbone (upper diagram) or
one of the two-particle lines of the backbone (lower diagram).

FIG. 19. Basic structure of a class of self-energy diagrams that
contributes to the asymptotic large-order behavior given in Eq. (13).
The diagrams are formed by closing the open ends with G0

↑ propaga-
tors. Besides, we also consider diagrams obtained by interchanging
the two G0

↑ propagators marked with the symbol ⊗.

particular (simple) class of diagrams that is responsible for
such a remarkable asymptotic behavior. As explained in the
main text, the two diagrams shown in Fig. 16 already have the
same asymptotic behavior with the same value of R but with
a different function F2 diag(τ ) �= Fall(τ ) ≡ F (τ ). We therefore
considered additional classes of diagrams in the hope that their
sum does not only give the same value of R but also the same
function Fclass(τ ) = Fall(τ ). The conclusion of this search is
that we could construct many different topologies which lead
to the same value of R, but we failed to identify a simple class
which reproduces the function Fall(τ ). In this Appendix, we
give a number of examples of such topologies.

A first class of diagrams we consider is shown in Figs. 17
and 18. The diagrams shown in Fig. 17 are identical to the
ones shown in Fig. 16, with the addition that some backbone
lines are dressed. More specifically, the first and/or last G0

↓
of the backbone is dressed with a first order self-energy
contribution 
(1) [i.e., 
(1)(r, τ ) = �0(r, τ )G0

↑(r,−τ )]. For
the diagrams of Fig. 18, one such 
(1) contribution appears
in the middle of the backbone, such that one single-particle
propagator (top diagram in Fig. 18) or one two-particle propa-
gator (lower diagram in 18) appears to be partially dressed.
All diagrams of Figs. 17 and 18 contribute to Fall(τ ). The
contribution of the diagrams of Fig. 18, however, is three
orders of magnitude smaller than the contribution of those of
Fig. 17.

Next we consider the diagrams based on the structure
shown in Fig. 19. There are two backward spin-up propagators
which are shown and, like before, whose ends can be inter-
changed. First we consider the class where all the open ends
are connected by either (i) forward spin-up propagators or
(ii) backward spin-up propagators closing a single �0 line. A
second class is obtained by allowing all possible connections
of the open spin-up ends. Note that such restrictions on the
topology are easy to implement in the current algorithm, since
they can be achieved by setting the right matrix elements to

T3

FIG. 20. Basic structure of a class of self-energy diagrams that
contributes to the asymptotic large-order behavior given in Eq. (13).
One obtains six self-energy diagrams by closing the open ends with
G0

↑ propagators.
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zero before calculating the determinant. Both cases revealed
yet two other functions Fclass(τ ) �= Fall(τ ), while still having
the same value of R.

Finally, we consider the six diagrams based on the structure
shown in Fig. 20. The structure of the three-body propagator
T3 is shown in Fig. 6. The six diagrams are obtained by

closing the open ends with G0
↑ propagators in all possible

ways. Each of these six diagrams gives a different Fdiag(τ )
which contributes to Fall(τ ), while their sum is much smaller
than the leading behavior of Fall(τ ). It is easy to come up
with more topologies, similar to the ones considered in this
Appendix, that contribute to Fall(τ ) in a significant way.
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