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This paper develops an efficient solution towards the prognostics of industrial PEMFC. It involves an efficient multienergetic model suited for diagnostics and prognostics, developed in Bond Graph framework. The benefits of Particle Filters (PF) is integrated with the BG model derived Analytical Redundancy Relations (ARRs), for prognostics of the electricalelectrochemical (EE) part. The prognostic problem is treated as the joint state-parameter estimation problem in Particle Filter framework, a hybrid prognostic approach wherein, a fault model is constructed in state-space. The state equation is inspired from the statistical degradation model of the global resistance and limiting current. Observation equation is obtained from the Analytical Redundancy Relations (ARRs) derived from BG model. Using PF algorithms, estimation of SOH is obtained along with the estimation of the associated hidden time-varying parameters that influence the progression of degradation. The latter is tracked to obtain the SOH in probabilistic terms. This in turn is used for prediction of Remaining Useful Life of the EE part of PEMFC. The methodology is applied on real degradation data sets under constant load current profile.

I. INTRODUCTION

The presence of irreversible degradation severely affects the useful life of PEMFC and leads to inefficiency, reduced lifespan, lesser power density and high maintenance cost [START_REF] Luo | Overview of current development in electrical energy storage technologies and the application potential in power system operation[END_REF]. This issue is best addressed when approached from the perspective of Prognostic and Health Management (PHM) [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF].

There are very few existing model-based works that propose efficient prognostic solutions for PEMFC. [START_REF] Wang | A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research[END_REF] proposes physics based Degradation Model (DM) of the Electro-Chemical Active Surface Area (ECSA), used for damage tracking and prediction using Unscented Kalman Filter. [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF] proposed the method employing statistical log-linear Degradation Model (DM) and Particle Filters (PF) for estimation of State of Health (SOH) estimation and Remaining Useful Life (RUL) prediction. The DM used therein lacks the insight into the physics of the phenomenon.

Bond Graph modelling technique has been extensively used owing to the behavioural, structural and causal properties [START_REF] Mukherjee | Bond graph in modeling, simulation and fault identification[END_REF], that provide a systematic approach towards development of supervision and fault detection and Isolation (FDI) of highly non-linear and complex thermo-chemical systems [START_REF] Medjaher | Supervision of an industrial steam generator. Part II: Online implementation[END_REF][START_REF] Kumar | Modeling of a pressure modulated desalination system using bond graph methodology[END_REF][START_REF] Tan | Bond-graph-based fault-diagnosis for a marine condensate-booster-feedwater system[END_REF]. In BG framework, the model based FDI is mainly based upon ARRs [START_REF] Bouamama | Derivation of constraint relations from bond graph models for fault detection and isolation[END_REF][START_REF] Samantaray | Model-based process supervision: a bond graph approach[END_REF][START_REF] Jha | Robust FDI based on LFT BG and relative activity at junction[END_REF]. For deterministic systems, the properties and ARR generation algorithm are well detailed in [START_REF] Bouamama | Derivation of constraint relations from bond graph models for fault detection and isolation[END_REF].

Hybrid prognostic approaches [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF][START_REF] Vachtsevanos | Intelligent Fault Diagnosis and Prognosis for Engineering Systems[END_REF] combine the advantages of the model based approaches [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF] and data-driven prognostics [START_REF] Schwabacher | A survey of data-driven prognostics[END_REF]. Here, physics or statistical based DMs are employed and measured information is used to adapt the estimation of damage progression. Specifically, PF algorithms has been exploited very widely for prognostics of incipient parametric degradation in the system. Here, the prediction of the RUL is obtained as probability distribution which accounts for the various involved uncertainties [START_REF] Daigle | A Model-Based Prognostics Approach Applied to Pneumatic Valves[END_REF][START_REF] Daigle | Model-based prognostics with concurrent damage progression processes[END_REF]. Significant works include assessment of the end of discharge and RUL in lithium-ion batteries [START_REF] Saha | Modeling Li-ion battery capacity depletion in a particle filtering framework[END_REF], battery health monitoring [START_REF] Saha | Prognostics methods for battery health monitoring using a Bayesian framework[END_REF], estimation and prediction of crack growth [START_REF] Zio | Particle filtering prognostic estimation of the remaining useful life of nonlinear components[END_REF], application to pneumatic valve [START_REF] Daigle | A Model-Based Prognostics Approach Applied to Pneumatic Valves[END_REF], estimation-prediction of wear as in centrifugal pumps [START_REF] Daigle | Model-based prognostics with concurrent damage progression processes[END_REF], assessing uncertainty management options for prognostics [START_REF] Baraldi | Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data[END_REF], etc. Comprehensive studies of various optimal or sub-optimal filters for prognostic purposes are found in [START_REF] An | Practical options for selecting data-driven or physics-based prognostics algorithms with reviews[END_REF][START_REF] Daigle | A comparison of filter-based approaches for model-based prognostics[END_REF][START_REF] Saha | Comparison of prognostic algorithms for estimating remaining useful life of batteries[END_REF].

This paper develops a novel and efficient solution towards the prognostics of PEMFC. The issue of modeling of the complex and energetically mutually-dependent dynamics of PEMFC, is tackled in Bond Graph (BG) framework. The second issue of prognostics is addressed for the electricalelectrochemical (EE) part. The prognostic problem is cast as the joint state-parameter estimation problem in Particle Filter (PF) framework, a hybrid prognostic approach wherein, a fault model is constructed in state-space. The state equation is inspired from the statistical degradation model of the global 

II. BG MODEL OF PEMFC

The extensively developed basic chemistry of PEMFC is omitted in this paper and can be found in [START_REF] Larminie | Fuel cell systems explained[END_REF]. Instead, on the physical level, the developed BG model of the global system is presented in Fig. 1. The global system is decomposed into various subsystems where the input and output for each, are the exchanged powers represented by two conjugated power variables: effort and flow (graphically shown by a half-arrow). Derivative causality (suited for diagnostic and prognostic) is preferred, compared to the integral causality (close to the reality of physics, suited for simulation purposes). This helps in avoiding unknown initial condition problem for ARR generation. All detectors (De for the effort detector and Df for the flow detector) are dualized into sources of signal SSe and SSf respectively used as inlet nodes in the unknown variable elimination oriented graph [START_REF] Samantaray | Model-based process supervision: a bond graph approach[END_REF].

In this paper, focus remains on EE subsystem only and thus, details of modeling, ARR generation etc. is provided for the same, exclusively. Modeling details of the global model is not presented descriptively.   for hydrogen and 2 2   for oxygen) and the product water with 3 1   . The EE subsystem accounts for electrical part and activation-diffusion losses. The kinetics of reductionoxidation reaction (in chemical part, not detailed here) generates an over-voltage which is termed as activation loss. Furthermore, the resistivity of the membrane electrode assembly decreases the operational potential due to the Ohmic effect. The resistance value depends on the degree of humidification of the membrane and on the temperature. Finally, species are consumed and imply a loss of partial pressure on the reaction surfaces, thereby reducing the Nernst potential significantly especially at high currents. This phenomenon is called diffusion / concentration losses. Moreover, during transients, electron accumulation along the membrane electrode interface is observable. It is the double layer capacitance effect.

Source of hydrogen is represented by

In the BG model, the EE subsystem and the chemical part are connected using the transformer. This results in obtaining the thermodynamic potential as,

3 0 22 12 2 1 2 ee H O O e H A A A G E n F n F n F            ( 1 
)
where R is the perfect gas constant,

x  is the chemical potential of species x and the water is in liquid phase, where e n is the number of electrons involved in the reaction and F is the number of Faraday. Moreover, 
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Here, the ARR is generated from the 1 c junction which deals with the energetic assessment of EE subsystem. It is termed as ARR 2 .
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where s n is number of cells in a stack. From ( 1)-( 4), the unknown variables can be eliminated using causal paths and known electro-chemical relations such that, 
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Note that due to fast electrical dynamics (5) has been approximated as:

.
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2 ARR is sensitive to drying, flooding and aging of the fuel cell and forms the main attraction of the paper.

IV. DEGRADATION MODEL Periodically, throughout the life of the fuel cell, the static response is measured with a polarization curve (voltage as a function of the current). The BG derived ARR of [START_REF] Tan | Bond-graph-based fault-diagnosis for a marine condensate-booster-feedwater system[END_REF] represents the polarisation curve. The degradation test was performed for about 800 hours, on a commercially available stack of 5 cells, surface of 100 cm² and a nominal constant current load nom fc II  of 70A. For each of the characterization times, a Levenberg-Marquardt method is used to extract the parameters of ( 9). The algorithm is initiated with a set of parameters whose values are chosen from the literature [START_REF] Larminie | Fuel cell systems explained[END_REF][START_REF] Laffly | Polymer electrolyte membrane fuel cell modelling and parameters estimation for ageing consideration[END_REF]. The algorithm extracts: the Open Circuit Voltage (OCV) 0 E at nominal pressure and temperature, the global resistance ohm R (membranes, connectors, end plates, etc.), the exchange current 0 I and the limiting current L I . Tthe recorded stack voltage fc U (at sampling period of one hour) is shown in Fig. 2. The resulting model fitting of the measured polarization curves (during aging) is shown in Fig. 3. Fig. 4 shows the evolution of the parameter value with respect to the initial one (in percentage). From the four chosen parameters, only two show significant deviations: the overall resistance ohm R increases by more than 12% while the limit current L I decreases by 13%. For a given operating condition, since only the stack voltage is measured, it is impossible to separate the mutual coupling of global resistance and limiting current i.e. the loss due to both are not observable simultaneously. Therefore, the variations in the latter are parameterized with a single parameter  , a State of Health (SOH) indicator. The variation is expressed in form of linear equation (since the parameters value seems to follow a linear variation) as,
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where  explains the approximately constant rate-change of  and sub-script n denotes the nominal value. Very recently in [START_REF] Bressel | Extended Kalman Filter for Prognostic of Proton Exchange Membrane Fuel Cell[END_REF], this approach is proposed for construction of state equation.  is the degradation progression parameter (DPP). Observation equation is obtained from the nominal ARR. Then, PF is used for joint estimation of state (SOH) and hidden parameter DPP. Sampling Importance Resampling (SIR) PF is employed for estimation and it is not described here. It can be found detailed in [START_REF] Arulampalam | A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[END_REF].

V. THE HYBRID PROGNOSTIC METHODOLOGY

A. Fault Model Construction

In discrete time step k  , the fault model can be described in stochastic framework as,
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where, given the state process. The likelihood function becomes as,
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The measurement of the state health can be obtained implicitly from the nominal part of 2 ARR : 2, () n rt , which is exploited to obtain the observation equation as: 
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Thus, measurement of   t is acquired from 2, () 

n rt .In discrete time k, observation equation is,   , , , , 2 1 ( ) ( ) 1 1 
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B. SOH Estimation and RUL Prediction

PF algorithm used to estimate the SOH and DPP is tabulated in Table I. wherein,  
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The RUL prediction is done by projecting each of the particles that constitute the estimation, into future (l steps ahead) till the estimated state reaches its pre-fixed failure state fail  [START_REF] Jouin | Prognostics of PEM fuel cell in a particle filtering framework[END_REF][START_REF] Daigle | A Model-Based Prognostics Approach Applied to Pneumatic Valves[END_REF][START_REF] Daigle | Model-based prognostics with concurrent damage progression processes[END_REF][START_REF] Daigle | Model-based prognostics under limited sensing[END_REF]. The estimation of the state and RUL prediction step form one single iteration step. The RUL prediction algorithm is given in Table II.

Table II RUL Prediction

Algorithm 2: RUL Prediction using PF

Inputs:   ,, 1 ( , ), w 
N i i i k k k i   Variable: l Outputs:   1 ,w i N i kk i RUL   for i=1 to N do l=0 while ,i k l fail    do 11 ~( | ) i i i k k k p     1 1 1 ~( | , ) i i i i k k k k p        1 ll  end while i k RUL l   end for

C. Evaluation Metrics

Metrics employed for assessment of the prognostic performance is briefed here. They are found detailed in and case study implementing the same is found in [START_REF] Daigle | Model-based prognostics with concurrent damage progression processes[END_REF][START_REF] Daigle | Model-based prognostics under limited sensing[END_REF].

Root mean square error (RMSE): This metric expresses the relative estimation accuracy as: . Fig. 6 shows the box plot of RUL predictions obtained at time interval of 25 hours (for the sake of clarity). For all time points, prediction performance is assessed by α- metric with α=0.4 and β=0.4 . The latter translates to the requirement: containment of 40% of RUL probability mass within 40% of true RUL value. Percentage of probability mass falling within the accuracy cone is indicated against each box plot. Starting from t=200 hours, almost all the predictions are true (acceptable), except the ones at the last four prediction-points. This arises mainly because of characterizations performed at t=800 hours such that insufficient recovery effect happens on the stack voltage while the latter is recorded. Over all, starting from t= 350 hours, the prediction performance is very accurate with RA 96.07%  . Through real degradation data sets, the proposed methodology is able to successfully assess the SOH and predict the RUL with a very high accuracy and precise confidence bounds. The proposed methodology thus, exploits the benefits of BG and PF for an efficient functional decomposition of PEMFC and accurate SOH estimation and RUL prediction. Using the same approach, the developed model can be used for prognostics of other sub-systems (hydraulic, thermal etc.) with the availability of degradation data. The latter forms a potential future work. Moreover, the methodology applied here on PEMFC, has the potential to be applied over any multienergetic system. Also, authors have explored the same approach over the degradation tests where the current load is variable. The obtained results can be discussed in an extended version of the paper. The accuracy of results obtained here demonstrates the viability of the method for prognostics.
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 1 Fig. 1 Bond graph model of the PEMFC in preferred derivative causality resistance and limiting current. Observation equation is obtained from the Analytical Redundancy Relations (ARRs) derived at the EE subsystem of the BG model. Using PF algorithms, estimation of State of Health (SOH) is obtained along with the estimation of the associated hidden timevarying parameters that influence the progression of degradation. The estimations are achieved in probabilistic terms. This in turn is used for prediction of RUL of the EE part of PEMFC. The methodology is applied on real degradation data sets under constant current load profile.
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 2 , is a known quantity. The valve represented by a resistive BG element R: n Rh (where subscript n denotes the nominal value) regulates the flow of hydrogen (measured by 2 : H SSf F ). The pressure on the anode compartment is measured by the pressure sensor : an SSe P . The hydraulic dynamics (storage of gases) is represented with the capacitive elements 2 C: H C for anode. To transform the mass flow (kg/s) into a molar flow (mole/s), a transformer element :1/ M TF is used where M is the modulus representing the molar mass (kg/mole). Flow sensor
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 2 Fig. 2 Recorded voltage for FC1

  The methodology involves construction of the fault model of the degradation candidates: ohm R and L I . The state equation is inspired from the statistical degradation model of[START_REF] Samantaray | Model-based process supervision: a bond graph approach[END_REF].Since their state can be indicated by the state of   t
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 22 random walk noise , t  is the sample time, d k y is the observation equation, (.) h is any non-linear function of state variables and are assumed conditionally independent,
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 45 Fig. 4 Deviation of the parameters values (in percentage of their initial value) during aging: (a) Change in 0 E , (b) Change in 0 I , (c) Change in ohm R (d) Change in

  is expressed at the junction 0 C , as the solution of the equation:
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	2 HO 20 HO  		
	RS is an active two port dissipative (resistive) element that
	generates thermal energy. The two port thermal dissipative
	element RS ohm models the Ohmic losses (membrane,
	electrodes and connectors). Similarly, the activation and the
	diffusion phenomenon are modelled by RS ac and RS df
	respectively. The associated power variables are related as,
	U	ac		AT	ln	0 fc  I I  	(3)
	U	df	1  L fc I I    BT ln	(4)
		where, A is the activation constant	A		R	/		nF	; and B is
	the diffusion constant;	B		RT	/		nF	with  as the transfer
	coefficient, 0 I is the exchanged current, current and L I is the limiting current i.e. maximal current the I is the load fc fuel cell is able to provide. The double layer capacitance
	phenomenon is modeled by a capacitor element C:	C and
									dl
	imposes the dynamics of the activation phenomena.
	el U IC dl fc 	el dU	(5)
				ohm R				dt
	where ohm R		is the global resistance (membrane and
	connectors).			
					III. DERIVATION OF DETERMINIST ARR
		In BG context, ARR is a constraint expression being a
	function of system parameters and known variables as,

el U

Table I

 I Joint SOH and DPP Estimation

Algorithm 1: Estimation using SIR filter
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