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Nonlinear feedback control and trajectory tracking of vehicle
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This paper mainly studies nonlinear feedback control applied to the nonlinear vehicle dynamics with varying velocity. The
main objective of this study is the stabilisation of longitudinal, lateral and yaw angular vehicle velocities. To this end, a
nonlinear vehicle model is developed which takes both the lateral and longitudinal vehicle dynamics into account. Based on
this model, a method to build a nonlinear state feedback control is first designed by which the complexity of system structure
can be simplified. The obtained system is then synthesised by the combined Lyapunov–LaSalle method. The simulation
results show that the proposed control can improve stability and comfort of vehicle driving. Moreover, this paper presents a
lemma which ensures the trajectory tracking and path-following problem for vehicle. It can also be exploited simultaneously
to solve both the tracking and path-following control problems of the vehicle ride and driving stability. We also show how
the results of the lemma can be applied to solve the path-following problem, in which the vehicle converges and follows a
designed path. The effectiveness of the proposed lemma for trajectory tracking is clearly demonstrated by simulation results.
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1. Introduction

The vehicle model exhibits strongly nonlinear characteris-
tic and has various devices and complex properties which
make their control difficult and interesting problem. In the
literature, there is a range of nonlinear models of road vehi-
cles used to describe longitudinal, lateral and yaw motions
(Abbassi, Aı̈t-Amirat, & Outbib, 2007a; Andrea & Chou,
2005; Cao, Rakheja, & Su, 2008; Jia, 2000; Sayers, 1990).
The majority of the models are characterised by a nonlinear
aspect which cannot be tackled by using classical linear ap-
proaches (King, Chapman, & Ilic, 1994; Mielczarsky &
Zajaczkowski, 1994; Vandergrift, Lewis, & Zhu, 1994;
Ackermann, Guldner, Sienel, Steinhauser, & Utkin, 1995).
More precisely, deficiencies associated with the linear ap-
proaches appears when one moves away from the set point.
However the applicability of linear controller design tech-
niques for transient stability enhancement is severely re-
stricted. In high performance applications where a wide
range of operating conditions are encountered such as ve-
hicle dynamics, linear control design based on local ap-
proximations may be inadequate, and in the worst case fail
(Sarkis Bedrossian, 1984).

Thus, a number of authors, Bingzhao, Hong, Yunfeng,
and Kazushi (2011), Shraim, Ouladsine, and Fridman
(2007) and De Luca, Oriolo, and Samson (1998), Beji and
Bestaoui (2005) were interested in the problem of the vehi-
cle control by the nonlinear approach to enhance stability
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and directional performance of road vehicles. However, the
problem of vehicle control in a large operating range, hence
by considering nonlinear aspect, is still an open question.

In this work, we are interested in the problem of feed-
back stabilisation of vehicle velocities and trajectory track-
ing. A design methodology, for feedback stabilisation of
vehicle speed velocities, which fully incorporates all the
inherent nonlinearities of the system without any kind of lin-
earisation is presented. Based on this methodology, a lemma
on stabilisation of nonlinear systems by adding an integra-
tor, is proposed to achieve the trajectory tracking of vehicle.

Note that the control of nonlinear systems has been the
subject of several studies in the literature (Abbassi et al.
2011; Guoguang, Zhaoxia, Rahmani, & Yongguang, 2013;
Zhaoxia, Guoguang, Rahmani, & Yongguang, 2013). Thus,
a great number of results have been proposed. These results
are stated as necessary conditions, see Brockett, Millmann,
and Sussmann (1983) and Tsinias (1989), sufficient con-
dition ones (Arstein, 1983) or are established for some
classes of nonlinear systems, for instance, to the dissipa-
tive systems, see Jurjevic and Quinn (1978) and Outbib and
Vivalda (1999). However, it should be noted that these re-
sults cannot be applied directly to the considered models in
this work.

The paper is organised as follows. In Section 2, a non-
linear vehicle model suitable for the present study is de-
veloped. In Section 3, some variable transformations are
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Figure 1. Forces acting on a tyre in x and y directions.

proposed to simplify the structure of the nonlinear model
which provides preliminaries for the following sections.
Then, a feedback nonlinear control for the stabilisation of
the velocities is proposed in Section 4. Simulation results
showing different velocities of the controlled vehicle are
presented in Section 5. In Section 6, we propose a lemma
which solves the trajectory tracking of road vehicle. To eval-
uate the performance of the proposed lemma, simulation
results are further presented in the same section. Finally,
the paper concludes in Section 7.

2. Nonlinear vehicle model

A number of advanced nonlinear models for the lateral and
yaw motions have been developed to enhance directional
performance and stability of road vehicle. In the present
study, we consider the model proposed in Abbassi et al.
(2007a) and (2007b). The vehicle dynamics are developed
in two coordinate directions x, y and one rotation around
the z axis. The vehicle model shown in Figure 1 is consid-
ered as a front wheel driving and steering, i.e., δf = δ and
the rear steering angle δr = 0. Assuming small motions,
the equations of motion are obtained by using Lagrangian
formalism, and summarised as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MV̇x = MVψVy + (Fx1 + Fx2) cos δ + Fx3 + Fx4

− (Fy1 + Fy2) sin δ − Fax

MV̇y = −MVψVx + (Fx1 + Fx2) sin δ

+ (Fy1 + Fy2) cos δ + Fy3 + Fy4 − Fay

IzV̇ψ = a((Fx1 + Fx2) sin δ + (Fy1 + Fy2) cos δ)
− b(Fy3 + Fy4) + l(Fx4 − Fx3)
+ l((Fx2 − Fx1) cos δ + (Fy1 − Fy2) sin δ)

(1)

where Vx and Vy are the longitudinal and lateral velocity,
respectively. ψ is the yaw angle and Vψ = ψ̇ is the yaw
angular velocity. g is the acceleration due to gravity and
M is the mass of the vehicle. h is the centre of gravity

(c.g.) height of the vehicle from the ground. a and b are
longitudinal distances between the vehicle c.g. and the front
and rear axles, respectively. Iz is the yaw mass moment of
inertia of the vehicle. l is half-track width of the front and
rear vehicle ends. The equivalent aerodynamic drag force
in the x and y directions can be expressed as

Fax = kaxV
2
x , Fay = kayV

2
y ;

with kax = 1
2
ρCaSf V 2

x and kay = 1
2
ρCaSlV

2
y are the aero-

dynamic drag. ρ is the mass density of air and Ca is the
aerodynamic drag coefficient. Sf and Sl are, respectively,
the frontal and lateral area of the vehicle.

The nonlinear normal forces Fzi , i = 1, . . . , 4, shown
in Figure 2(b), act from the road on the inner tyre depend
on the load transfer and are defined as follows:

Fzi =
b

2(a + b)

[
Mg +

Mh(V̇x − VyVψ )

b

+ (−1)i+1 Mh(V̇y + VxVψ )

l

]
, i = 1, 2

Fzi =
a

2(a + b)

[
Mg −

Mh(V̇x − VyVψ )

a

+ (−1)i+1 Mh(V̇y + VxVψ )

l

]
, i = 3, 4 (2)

The rolling resistance Rri , (i = 1, . . . , 4) shown in
Figure 2(b) is modelled as being proportional to the normal
load force on each set of tyres. For practical purposes, it is
usually expressed as

Rri = f Fzi (3)

where f is the rolling friction coefficient. The tyre side
slip angle αi , (i = f, r) is defined as the angle between the
longitudinal direction of the tyre xw and the orientation of
the velocity vector Vw at the centre of the wheel, as shown
in Figure 2(a),

αf = δf − βf , αr = δr − βr (4)

The front and rear chassis side slip angles βi ,(i = f, r) are
expressed as

βf =
Vy + aVψ

Vx

, βr =
Vy − bVψ

Vx

(5)

The vehicle is considered as a front wheels driving and
steering, i.e., δf = δ and the rear steering angle δr = 0. By
substituting Equation (5) in Equation (4), we have

αf = δ −
Vy + aVψ

Vx

, αr = −
Vy − bVψ

Vx

(6)
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Figure 2. (a) Tyre side slip angle α and (b) wheel dynamic model.

Experimental results show that the lateral tyre force is
proportional to the tyre side slip angle. For the front and
rear tyres, they can be written as

Fyi = Cf αf , i = 1, 2

Fyi = Crαr , i = 3, 4 (7)

From Equation (4), the expressions of the lateral tyres
forces in Equation (7) become

Fyi = Cf

(
δ −

Vy + aVψ

Vx

)
, i = 1, 2

Fyi = −Cr

(
Vy − bVψ

Vx

)
, i = 3, 4 (8)

The vehicle is supposed to be a front wheels driving
and steering. However, the longitudinal forces Fxi are dis-
tributed on the front and rear wheels with a distribution
coefficient fr ∈ [0, 1] (see Alloum, Charara, & Rombaut,
1995) such that

Fxi =
(Fa − frFb)

2
− Rri, i = 1, 2

Fxi =
(fr − 1) Fb

2
− Rri, i = 3, 4 (9)

where Fa , Fb and Rri are the acceleration, braking and
rolling resistance forces, respectively.

For a small steering angle δ and by substituting Equa-
tions (8) and (9) in the system (1), we have the following

equations of the nonlinear vehicle model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MV̇x = Fa − Fb + MVyVψ − Mfg + Cf δ
Vy

Vx

+ aCf δ
Vψ

Vx

− kaxV
2
x

MV̇y = (Fa − frFb) δ − MVxVψ + Cf δ

− (Cf + Cr )
Vy

Vx

− (aCf − bCr )
Vψ

Vx

− kayV
2
y

IzV̇ψ = a(Fa − frFb)δ − Mf hVxVψ + aCf δ

− (aCf − bCr )
Vy

Vx

−
(
a2Cf + b2Cr

) Vψ

Vx

(10)

In a realistic situation, the driver does not act on the
brake and accelerate at the same time. For this reason,
we can use only one longitudinal force Fl for accelera-
tion/braking. Then, the equations of motion (10) become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇x =
1

M

(
Fl + c1 + MVyVψ + Cf δ

Vy

Vx

+ aCf δ
Vψ

Vx

− kaxV
2
x

)

V̇y =
1

M

(
Flδ − MVxVψ + Cf δ + c2

Vy

Vx

+ c3
Vψ

Vx

− kayV
2
y

)

V̇ψ =
1

Iz

(
aFlδ + c4VxVψ + aCf δ + c5

Vy

Vx

+ c6
Vψ

Vx

)

(11)

where Fl and δ denote the control inputs of the nonlinear
vehicle model and the constants ci are defined as

c1 = −Mfg, c2 = −(Cf + Cr ),

c3 = c5 = −(aCf − bCr ), c4 = −Mf h

c6 = −(a2Cf + b2Cr )

with Fl and δ denote the control inputs of the nonlinear
vehicle model.
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3. Variables transformation

For technical reasons of computation and from Outbib and
Rachid (2000), we can use the following transformation:

Ṽψ = Vψ

Iz

a
− MVy ⇔ Vψ = (Ṽψ + MVy)

a

Iz

(12)

Then the nonlinear model (11) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇x =
1

M

(
c1 +

Ma

Iz

Vy Ṽψ +
aM2

Iz

V 2
y − kaxV

2
x + Fl

+Cf δ

[
Vy

Vx

+
a2

Iz

Ṽψ

Vx

+ M
a2

Iz

Vy

Vx

])

V̇y =
1

M

(
−

Ma

Iz

Vx Ṽψ −
M2a

Iz

VxVy

+ c2
Vy

Vx

+ c3
a

Iz

Ṽψ

Vx

+ c3
Ma

Iz

Vy

Vx

− kayV
2
y + Flδ + Cf δ

)

˙̃Vψ =
a

Iz

(
c4

a
+ M

)
Vx Ṽψ +

aM

Iz

(
c4

a
+ M

)
VxVy

+
(

c5

Vx

− c2

)
Vy

a
+

a

Iz

(
c6

a
− c3

)
Ṽψ

Vx

+
aM

Iz

(
c6

a
− c3

)
Vy

Vx

+ kayV
2
y

(13)

The preliminary feedback is defined by

σ = Fl + Cf δ

(
Vy

Vx

+
a2

Iz

Ṽψ

Vx

+ M
a2

Iz

Vy

Vx

)
and

γ = Flδ + Cf δ (14)

For the sake of simplicity, we use 	 to indicate the following
quantity:

	 =
Vy

Vx

+
a2

Iz

Ṽψ

Vx

+ M
a2

Iz

Vy

Vx

The equations of the system (14) become

{
σ = Fl + Cf δ	

γ = Flδ + Cf δ
(15)

According to the second equation in Equation (15), we
have

γ	 =
(

Fl

Cf

+ 1

)
Cf δ	 (16)

By using the first equation of Equation (15), Equation (16)
becomes

γ	 =
(

Fl

Cf

+ 1

)
(σ − Fl) (17)

or

F 2
l

Cf

+ Fl

(
1 −

σ

Cf

)
+ γ	 − σ = 0 (18)

By a similar computation, we obtain for δ

Cf 	δ2 − δ(Cf + σ ) + γ = 0 (19)

Finally, the control variables Fl and δ can be calculated
according to σ and γ by using Equations (18) and (19).
However, it will be necessary to consider only the operating
ranges where Equations (18) and (19) have real solutions
which respect physical considerations. Precisely, Equation
(18) has a real solution if the following condition holds:


1 =
(

1 −
σ

Cf

)2

−
4

Cf

(γ	 − σ ) > 0 (C1)

In other words, it is necessary for all the following study
to ensure that the condition (C1) is satisfied. Then, we have
to choose among the two possible solutions according to
physical criteria

Fl =
σ − Cf

2
±

Cf

2

√

1 (S1)

Equation (19), considered as a second degree polyno-
mial in δ, has a real solution if its discriminant is positive


2 = (Cf + σ )2 − 4γCf 	 > 0 (C2)

The real solution will be given by

δ =

⎧
⎪⎪⎨
⎪⎪⎩

(
Cf + σ

)
− Sgn

(
Cf + σ

)√

2

2Cf 	
if 	 �= 0

γ

Cf + σ
elsewhere

(S2)

where Sgn indicates the sign function. It is introduced to
keep only the acceptable solution according to the steering
angle δ (when 	 �= 0).

It should be noted that δ is defined as a continuous
function. To prove this, we can use the following approxi-
mation:

√
k − x ≈

√
k −

1

2

x
√

k

for x in a neighbourhood of zero and k one positive constant.
Now we try to solve the initial problem of the stabilisation
by a feedback control on the nonlinear system (13) where
the control variables are given by (σ, γ ) and after that, we
use Equations (S1) and (S2) to deduce the values of the
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origin variables, Fl and δ. However, during the synthesis of
the feedback control (σ, γ ), it is necessary to check both
conditions (C1) and (C2).

By using the expressions of Fl and δ involving σ and
γ , the system (13) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇x =
1

M

(
c1 +

Ma

Iz

Vy Ṽψ +
aM2

Iz

V 2
y − kaxV

2
x + σ

)

V̇y =
1

M

(
−

Ma

Iz

Vx Ṽψ −
aM2

Iz

VxVy + c2
Vy

Vx

+ c3
a

Iz

Ṽψ

Vx

+ c3
Ma

Iz

Vy

Vx

− kayV
2
y + γ

)

˙̃Vψ =
a

Iz

(
c4

a
+ M

)
Vx Ṽψ +

aM

Iz

(
c4

a
+ M

)
VxVy

+
(

c5

Vx

− c2

)
Vy

a
+

a

Iz

(
c6

a
− c3

)
Ṽψ

Vx

+
aM

Iz

(c6

a
− c3

) Vy

Vx

+ kayV
2
y

(20)

Let

σ1 =
1

M

(
c1 +

Ma

Iz

Vy Ṽψ +
aM2

Iz

V 2
y − kaxV

2
x + σ

)

and

γ1 =
1

M

(
−

Ma

Iz

Vx Ṽψ −
M2a

Iz

VxVy + c2
Vy

Vx

+ c3
a

Iz

Ṽψ

Vx

+ c3
Ma

Iz

Vy

Vx

− kayV
2
y + γ

)

the system (20) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇x = σ1

V̇y = γ1

˙̃Vψ =
a

Iz

(c4

a
+ M

)
Vx Ṽψ +

aM

Iz

(c4

a
+ M

)
VxVy

+
(

c5

Vx

− c2

)
Vy

a
+

a

Iz

(c6

a
− c3

) Ṽψ

Vx

+
aM

Iz

(c6

a
− c3

) Vy

Vx

+ kayV
2
y

(21)

The method consists now in stabilising this system un-
der the conditions (C1) and (C2). The procedure is declined
in two steps. The first one consists of checking that for
σ1 = γ1 = 0 or σ = σ0 and γ = γ0 with

σ0 = −c1 −
Ma

Iz

Vy Ṽψ −
aM2

Iz

V 2
y + kaxV

2
x

γ0 =
Ma

Iz

Vx Ṽψ +
M2a

Iz

VxVy − c2
Vy

Vx

− c3
a

Iz

Ṽψ

Vx

− c3
Ma

Iz

Vy

Vx

+ kayV
2
y

and by taking into account the considered operating range,
both conditions (C1) and (C2) are satisfied. In the second
step, a control law is synthesised with |σ1| ≤ ǫ and |γ1| ≤ ǫ,
where ǫ is a real positive number. Therefore, the conditions
(C1) and (C2) remain satisfied for all t > 0.

4. Control of vehicle velocities

We are interested here in the stabilisation of the nonlinear
system (21) which describes the vehicle longitudinal, lateral
and yaw angular velocities around the set point (V 0

x , 0, 0).
V 0

x is the reference value for longitudinal velocity. To this
end, the third equation of the above nonlinear system can
be transformed by introducing a function F defined as

F (Vx) =
a

Iz

(c4

a
+ M

)
Vx +

a

Iz

(c6

a
− c3

) 1

Vx

(22)

It is an increasing function of the longitudinal velocity Vx .
A simple reasoning shows that the above nonlinear system
(21) can be written under the following form:

⎧
⎪⎨
⎪⎩

V̇x = σ1

V̇y = γ1

˙̃Vψ = G
(
Vx, Vy, Ṽψ

)
(23)

with

G
(
Vx, Vy, Ṽψ

)
=

[
F (Vx) − F (V 0

x )
] [

Ṽψ + MVy

]

+F (V 0
x )

[
Ṽψ + MVy

]
+

(c5

a
− c2

) Vy

Vx

+ kayV
2
y

The expression of the derivative ˙̃Vψ for Vx = V 0
x is given

by

˙̃Vψ = G
(
V 0

x , Vy, Ṽψ

)
= λ1

[
V 2

y + λ2Vy + λ3Ṽψ

]

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = kay

λ2 =
1

λ1

[
aM

Iz

(
c4

a
+ M

)
V 0

x +
(

c5

a
− c2

)
1

V 0
x

+
aM

Iz

(
c6

a
− c3

)
1

V 0
x

]

λ3 =
1

λ1

[
a

Iz

(c4

a
+ M

)
V 0

x +
a

Iz

(c6

a
− c3

) 1

V 0
x

]

Let


V 0
x

= λ2
2 − 4λ3Ṽψ
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Then,

G
(
V 0

x , Vy, Ṽψ

)
=

2∏

i=1

λ1

(
Vy +

λ2 + (−1)(i+1) √
V 0
x

2

)

Given the Lyapunov function W defined by

W
(
Vy, Ṽψ

)
=

1

2
V 2

y +
λ2 − Sgn(λ2)

√

V 0

x

2
Vy

+
(
λ2 − Sgn(λ2)

√

V 0

x

)2

where Sgn indicates the sign function. A simple computa-
tion shows that

G
(
V 0

x , Vy, Ṽψ

)
= λ1

(
Vy +

λ2 + Sgn(λ2)
√


V 0
x

2

)
∂W

∂Vy

Next, the system (23) becomes

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

V̇x = σ1

V̇y = γ1

˙̃Vψ = G
(
V 0

x , Vy, Ṽψ

)
+ G

(
Vx, Vy, Ṽψ

)

−G
(
V 0

x , Vy, Ṽψ

)

First, we will prove that

G(Vx, Vy, Ṽψ ) − G
(
V 0

x , Vy, Ṽψ

)

= G1(Vx, Vy, Ṽψ )
(
Vx − V 0

x

)
(24)

where G1 is a regular function. Indeed, a simple reasoning
shows that

G
(
Vx, Vy, Ṽψ

)
− G

(
V 0

x , Vy, Ṽψ

)
=

∫ Vx

V 0
x

∂G

∂Vx

(
τ, Vy, Ṽψ

)
dτ

Let us consider the change of variable defined by

τ = tVx + (1 − t) V 0
x

We have

dτ =
(
Vx − V 0

x

)
dt

therefore,

G
(
Vx, Vy, Ṽψ

)
− G

(
V 0

x , Vy, Ṽψ

)
=

(
Vx − V 0

x

) ∫ 1

0

∂G

∂Vx

×
(
tVx + (1 − t) V 0

x , Vy, Ṽψ

)
dt

Hence, we obtain expression (24). Now, we have to compute
explicitly

G1

(
Vx, Vy, Ṽψ

)
=

∫ 1

0

∂G

∂Vx

(
tVx + (1 − t) V 0

x , Vy, Ṽψ

)
dt

Otherwise, G is given by the following expression:

G
(
Vx, Vy, Ṽψ

)
=

[
a

Iz

(c4

a
+ M

)
Vx +

a

Iz

(c6

a
− c3

) 1

Vx

]
Ṽψ

+
[

aM

Iz

(c4

a
+ M

)
Vx +

(c5

a
− c3

) 1

Vx

+
aM

Iz

(c6

a
− c3

) 1

Vx

]
Vy + kayV

2
y

A simple computation gives

∂G

∂Vx

= η1
Ṽψ

V 2
x

+ η2
Vy

V 2
x

+ η3Ṽψ + η4Vy (25)

where the constants ηi, i = 1, . . . , 4 are given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1 = −
a

Iz

(c6

a
− c3

)

η2 = −
c5

a
+ c3 −

aM

Iz

(c6

a
− c3

)

η3 =
a

Iz

(c4

a
+ M

)

η4 =
aM

Iz

(c4

a
+ M

)

Finally, by using expression (25), we obtain

G1 =
∫ 1

0

∂G

∂Vx

(
tVx + (1 − t) V 0

x , Vy, Ṽψ

)
dt

=
η1Ṽψ + η2Vy

VxV 0
x

+ η3Ṽψ + η4Vy

Then, the system (23) can be rewritten as

⎧
⎨
⎩

V̇x = σ1

V̇y = γ1
˙̃Vψ = G(V 0

x , Vy, Ṽψ ) + G1(Vx, Vy, Ṽψ )
(
Vx − V 0

x

)(26)

To demonstrate the asymptotic stability of the feedback
nonlinear system, we introduce the following Lyapunov
function:

W1(Vx, Vy, Ṽψ ) =
1

2
(Vx − V 0

x )2 + ln(W (Vy, Ṽψ ) + 1)

A simple computation shows that W1 is a positive func-
tion on

(
V 0

x , 0, 0
)
.
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Consider the nonlinear state feedback given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 = −η
Vx − V 0

x

1 +
(
Vx − V 0

x

)2

−G1

(
Vx, Vy, Ṽψ

) ∂W

∂Ṽψ

1

W + 1

γ1 = −λ1

(
Vy +

λ2 − Sgn(λ2)
√

σV 0
x

2

)
∂W

∂Ṽψ

− η
∂W

∂Vy

1

1 +
(

∂W

∂Vy

)2

(27)

where η > 0. The computation of the derivatives leads to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1 = −η
Vx − V 0

x

1 +
(
Vx − V 0

x

)2
+

λ3

(
Vy + 4λ2 + 4

√

V 0

x

)

(W + 1)
√


V 0
x

×G1

(
Vx, Vy, Ṽψ

)

γ1 = λ1λ3

(
Vy +

λ2 − Sgn(λ2)
√


V 0
x

2

)
H

(
Vy

)

− η

(
Vy +

λ2−Sgn(λ2)
√



V 0
x

2

)

1 +
(

Vy +
λ2−Sgn(λ2)

√



V 0
x

2

)2

(28)

where H (Vy) =
( Vy+4λ2+4

√



V 0
x√



V 0
x

)

The derivative of W1 by considering the system (26)
with the state feedback (27) is given by

Ẇ1

(
Vx, Vy, Ṽψ

)
=

∂W1

∂Vx

V̇x +
∂W1

∂Vy

V̇y +
∂W1

∂Ṽψ

˙̃Vψ

= −η

(
Vx − V 0

x

)2

1 +
(
Vx − V 0

x

)2

− η

(
∂W

∂Vy

)2 1

1 +
(

∂W
∂Vy

)2
≤ 0

Then, the system is stable.
To prove that the system is attractive, we use the in-

variance principle of LaSalle and Lefschetz (1961). We
consider a set � defined by

� = {Ẇ1(Vx, Vy, Ṽψ ) = 0}

or

� =

{
Ẇ1(Vx, Vy, Ṽψ ) = 0 : Vx = V 0

x and

Vy +
λ2 − Sgn(λ2)

√

V 0

x

2
= 0

}

On the set �, we have

d

dt

(
Vy +

λ2 − Sgn(λ2)
√

σV 0
x

2

)

= −λ1

(
Vy +

λ2 − Sgn(λ2)
√

σV 0
x

2

)
∂W

∂Ṽψ

The greatest invariant set checks the following equations:

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Vy +
λ2 − Sgn(λ2)

√

V 0

x

2
= 0

∂W

∂Ṽψ

(
Vy +

λ2 + Sgn(λ2)
√


V 0
x

2

)
= 0

or
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Vy +
λ2 − Sgn(λ2)

√

V 0

x

2
= 0

−2ǫλ3

[
Vy + 2(λ2 − Sgn(λ2)

√

V 0

x
)
]

√
λ2

2 − 4λ3Ṽψ

R
(
Vy, λ2

)
= 0

(29)
where

R
(
Vy, λ2

)
=

(
Vy +

λ2 + Sgn(λ2)
√


V 0
x

2

)

Finally, and according to Equation (29), we have
⎧
⎪⎪⎨
⎪⎪⎩

Vy +
λ2 − Sgn(λ2)

√

V 0

x

2
= 0

Vy +
λ2 + Sgn(λ2)

√

V 0

x

2
= 0

or

⎧
⎨
⎩

Vy +
λ2 − Sgn(λ2)

√

V 0

x

2
= 0

Vy + 2(λ2 − Sgn(λ2)
√


V 0
x
) = 0

(30)

The system (30) does not have a solution in a phys-
ical meaning. The above computation is done under the
assumption that 
V 0

x
> 0, but it imposes a condition on

Ṽψ . The system (26) has Vy = Ṽψ = 0 as a single solution.
Thus, the greatest invariant set contained in � is reduced
to {(V 0

x , 0, 0)}. Finally, the system is asymptotically stable.
This finishes the proof of the following theorem.

Theorem 4.1: The system (26) controlled by the state feed-

back (28) is asymptotically stable on
(
V 0

x , 0, 0
)
.

5. Simulation results and discussion

To evaluate the performance of the proposed nonlinear
feedback control, different simulations were performed by
using the vehicle data given in the Appendix. The feed-
back control model simulations were thus performed under
acceleration-in-a-turn manoeuvre. The main goal of the
nonlinear feedback control is the stabilisation of the differ-
ent vehicle velocities.
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Figure 3. Acceleration and steering responses of the vehicle with different parameter η: (a) acceleration force input Fl and (b) steering
angle input δ.

Figure 3(a) and 3(b) illustrates the responses of the
acceleration force Fl and the steering angle δ input with
different values for the parameter η. We can see that the
vehicle acceleration and steering in the simulation increase
slowly when the parameter η increases.

Figure 4(a) and 4(b) shows the longitudinal and
lateral velocities responses to the acceleration-in-a-turn
manoeuvre.

Figure 5 presents the vehicle stabilisation in terms of
longitudinal velocity, acceleration and steering manoeuvre.
The results show that the vehicle was stabilised at two de-
sired longitudinal velocities: Vx

0 = 25 and Vx
0 = 20 m/s

from an initial velocity 30 m/s with η = 0.5. Notice that
peak of acceleration force (traction force) responses at
Vx

0 = 20 m/s are considerably lower than those at Vx
0 = 25

m/s. The higher acceleration or traction force is also evident
from the relatively higher longitudinal velocity. However,
the steering angle responses at Vx

0 = 25 m/s are higher than
those at Vx

0 = 20 m/s, which is partially attributed to the
difference between the two longitudinal velocities. The pa-
rameter η could be selected for a soft acceleration/braking
in which the driver does not accelerate too fast or brake
too hard. The results thus further confirm the improved
nonlinear feedback control which could provide directional
stability and control performances.

Figure 6 illustrates the stabilisation of vehicle at the
desired velocity: Vx = 17 m/s. The results thus show two
cases to achieve the desired velocity: deceleration from 25
to 17 m/s and acceleration from 6 to 17 m/s. The simulation
results further show that the vehicle during acceleration or
deceleration has reached the desired velocity without being
deflected.

6. Trajectory tracking

In this section, we propose a technical lemma on feedback
stabilisation of nonlinear systems by adding an integrator

and we apply this result to the problem of trajectory tracking
of the vehicle. This lemma deals with class of nonlinear
systems that contain an integrator in their structure (Outbib
and Aggoune, 1999; Outbib and Jghima, 1998).

⎧
⎪⎨
⎪⎩

ẋ = f (x, y, t)

ẏ = u

x ∈ R
n, y ∈ R

m

(31)

where f is a function which is at least continuous.

Lemma 6.1: Let us consider the system defined on R
n ×

R
n by

{
ẋ1 = u

ẋ2 = A(t).x1

(32)

where A(t) is such that1

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Det1(A(t)) �= 0

‖A(t)‖ < C0∥∥A(t)−1
∥∥ ≤ C1∥∥Ȧ−1(t)
∥∥ ≤ C2 for all t ≥ 0.

Let also Ŵ(t) be a curve on R
n such that

∥∥Ŵ̇(t)
∥∥ ≤ C3

and
∥∥Ŵ̈(t)

∥∥ ≤ C4, for all t ≥ 0, where Ci(i = 0, . . . , 4) are

positive constants. For all ǫ > 0, there exists uǫ , such that

‖uǫ‖ < ǫ + C where C = C2C3 + C1C4. The closed-loop

system defined from Equation (32) with u = uǫ verifies

‖x2(t) − Ŵ(t)‖ → 0 when t → +∞

8



Figure 4. Longitudinal and lateral velocities corresponding to acceleration-in-a-turn manoeuvre with different parameter η: (a) longitu-
dinal velocity Vx from 7 to 20 m/s and (b) lateral velocity Vy .

Figure 5. Stabilisation of vehicle at two desired velocities: Vx
0 = 25 and Vx

0 = 20 m/s: (a) longitudinal velocity Vx ; (b) steering angle
δ and (c) acceleration force Fl .

9



Figure 6. Stabilisation of vehicle at desired velocity Vx = 17 m/s: (a) from 25 to 17 m/s and (b) from 6 to 17 m/s.

Proof: Set

ξ (t) = A−1(t)

[
αe−β‖x1‖2 Ŵ(t) − x2

1 + ‖Ŵ(t) − x2‖2
+ Ŵ̇(t)

]

(33)

where α, β > 0.
The system (32) can be written as

{
ẋ1 = u

ẋ2 = A(t)ξ (t) + A(t)(x1 − ξ (t))
(34)

For

u = −αAT (t)
x2 − Ŵ(t)

1 + ‖Ŵ(t) − x2‖2

−α
x1 − ξ (t)

1 + ‖x1 − ξ (t)‖2
+ ξ̇ (t) (35)

Then, the system (34) becomes

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1 = −αAT (t)
x2 − Ŵ(t)

1 + ‖Ŵ(t) − x2‖2
− α

x1 − ξ (t)

1 + ‖x1 − ξ (t)‖2
+ ξ̇ (t)

ẋ2 = αe−β‖x1‖2 Ŵ(t) − x2

1 + ‖Ŵ(t) − x2‖2
+ Ŵ̇(t) + A(t)(x1 − ξ (t))

(36)

if we set

{
e1(t) = x1(t) − ξ(t)

e2(t) = x2(t) − Ŵ(t)

A simple reasoning shows that the dynamics of e(t) =
(e1(t), e2(t)) can be directly given by

⎧
⎪⎪⎨
⎪⎪⎩

ė1(t) = −α
AT (t)e2

1 + ‖e2‖2
− α

e1

1 + ‖e1‖2

ė2(t) = −αe−β‖x1|2 e2

1 + ‖e2‖2
+ A(t)e1

Consider the function of Lyapunov W1 defined by

W1(e) =
1

2
‖e1‖2 +

α

2
ln(1 + ‖e2‖2)

The simple computation yields to show that the derivatives
of W1 using the system (36) can be written as

Ẇ1(e) = −α
‖e1‖2

1 + ‖e1‖2
− αe−β ‖x1‖2 ‖e2‖2

(1 + |e2‖2)2
< 0

(37)

for ‖e‖ �= 0, the condition (37) proves ‖e‖2 is bounded.
In addition, if ξ (t) is bounded, then ‖x1‖ is bounded too.
Finally, there is Mα , a positive constant that verifies

Ẇ3(e) < −Mα ‖e‖2

This implies that ‖e(t)‖ → 0 when t → +∞ and thus
‖Ŵ(t) − x2(t)‖ → 0 when t → +∞. It remains only to
prove that for a suitable choice of α we have

‖uǫ‖ < ǫ + C

By choosing

ū = −α

[
AT (t)

x2 − Ŵ

1 + ‖Ŵ − x2‖2
+

x1 − ξ (t)

1 + ‖x1 − ξ‖2

]
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and since
∥∥AT (t)

∥∥ is bounded, then

‖ū‖ ≤ α(β + 1)

where β is the upper bound. For

α ≤
ǫ

3(β + 1)

we can obtain

‖ū‖ ≤
ǫ

3
(38)

Now, let us prove that

∥∥ξ̇ (t)
∥∥ <

2ǫ

3
+ C

The derivatives of Equation (33) can be expressed by

ξ̇ (t) = Ȧ−1(t)[αe−β‖x1‖2

K1 + Ŵ̇]

+A−1(t)[−2βα ≺ ẋ1, x1 ≻ e−β‖x1‖2

K1

+αe−β‖x1‖2

K2 − 2αe−β‖x1‖2

≺ Ŵ̇ − A(t)x1,

Ŵ − x2 ≻ K3 + Ŵ̈] (39)

where

K1 =
Ŵ − x2

1 + ‖Ŵ − x2‖2
, K2 =

Ŵ̇ − A(t)x1

1 + ‖Ŵ − x2‖2
,

K3 =
Ŵ − x2

(1 + ‖Ŵ − x2‖2)
2

if we replace ẋ1 by its expression

ẋ1 = u = ū + ξ̇

we obtain

ξ̇ (t) = Ȧ−1(t)[αe−β‖x1‖2

K1 + Ŵ̇]

+A−1(t)[−2βα ≺ ū, x1 ≻ e−β‖x1‖2

K1

− 2βα ≺ ξ̇ , x1 ≻ e−β‖x1‖2

K1

+αe−β‖x1‖2

K2 − 2αe−β‖x1‖2

≺ Ŵ̇−A(t)x1, Ŵ − x2 ≻ K3 + Ŵ̈]

= Ȧ−1(t)Ŵ̇ + A−1(t)Ŵ̈ + αH − Jα ξ̇ (40)

where

H = Ȧ−1(t)e−β‖x1‖2

K1 + A−1(t)[−2β ≺ ū, x1 ≻ e−β‖x1‖2

K1

+ e−β‖x1‖2

K2 − 2e−β‖x1‖2 ≺ Ŵ̇ − A(t)x1, Ŵ − x2 ≻ K3]

and

Jα = 2αβe−β‖x1‖2

A−1(t)K1x1
T

Finally, we obtain

(I + Jα)ξ̇ = Ȧ−1(t)Ŵ̇ + A−1(t)Ŵ̈ + αH

And we can have

|Jα| ≤ 2αβe−β‖x1‖2

‖x1‖
∥∥A−1(t)

∥∥K1

For β sufficiently small, we obtain

2β
∥∥A−1(t)

∥∥ e−β‖x1‖2

‖x1‖ ≤ 1

Then, ‖Jα‖ ≤ α

For α sufficiently small, I + Jα is thus invertible and

ξ̇ (t) = (I + Jα)−1[Ȧ−1(t)Ŵ̇ + A−1(t)Ŵ̈ + αH ] (41)

or

ξ̇ (t) = (I + J̄α)−1[Ȧ−1(t)Ŵ̇ + A−1(t)Ŵ̈ + αH ]

where J̄α is such that ‖J̄α‖ → 0 when α → 0. Thus

ξ̇ (t) = Ȧ−1(t)Ŵ̇ + A−1(t)Ŵ̈ + αH + J̄α[Ȧ−1(t)Ŵ̇

+A−1(t)Ŵ̈ + αH ]

which implies

‖ξ̇ (t)‖ ≤ C + α‖Ĵα‖ + (C + α ‖H‖)

Considering that

∥∥∥∥
Ŵ − x2

1 + ‖Ŵ − x2‖2

∥∥∥∥ < 1 et e−β‖x1‖2

< 1

Then, we have

‖H‖ ≤ ‖Ȧ−1(t)‖ + ‖Ȧ−1(t)‖
[

2β| ≺ ū, x1 ≻ |e−β|x1‖2

+
3e−β‖x1‖2

(‖A(t)x1‖ + ‖Ŵ̇‖)

1 + ‖Ŵ − x2‖2

]

≤ C2 + C1(2βα(β + 1)‖x1‖e−β|x1‖2

+ 3e−β|x1‖2‖x1‖‖A(t)‖ + 3C3)

Therefore ‖H‖ is bounded. Finally, for a sufficiently small,
we have

‖ξ̇ (t)‖ < C +
ǫ

2

�
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Figure 7. Vehicle trajectory tracking in XY plane: (a) with constant parameters α = 0.014 and β = 0.01 and (b) constant parameters
α = 0.02 and β = 0.015.

6.1. Application

The result established by the lemma is proposed for ap-
plication to the problem of vehicle trajectory tracking. It
consists of a vehicle change maneuver and moves along a
circular path according to the earth-fixed frame (X, Y ) as
shown in Figure 1. In this case, and where ψ may attain a
large values, e.g., when moving along a circular path, it is
preferred to use modified equations by introducing the lon-
gitudinal velocity V x, the lateral velocity Vy and the yaw
angular velocity Vψ (Hans & Pacejka, 2005). The relations
between these variables are

{
Ẋ = Vx cos ψ − Vy sin ψ

Ẏ = Vx sin ψ + Vy cos ψ
(42)

where X and Y are the Cartesian coordinates of the vehicle
according to the earth fixed frame (X, Y ).

Considering a given reference trajectory Ŵ(t) =
(Ŵ1(t), Ŵ2(t)), the development of ξ (t) gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ1(t) = Ŵ̇1 cos ψ + Ŵ̇2 sin ψ +
αe−β‖x1‖2

λ1

× [(Ŵ1 − X) cos ψ + (Ŵ2 − Y ) sin ψ]

ξ2(t) = Ŵ̇1 sin ψ + Ŵ̇2 cos ψ +
αe−β‖x1‖2

λ1

× [(Ŵ1 − X) sin ψ + (Ŵ2 − Y ) cos ψ]

(43)

with

λ1 = 1 + (Ŵ1 − X)2 + (Ŵ2 − Y )2 and ‖x1‖2 = Vx
2 + Vy

2

Therefore, the system (36) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V̇x = −α
[(X − Ŵ1) cos ψ + (Y − Ŵ2) sin ψ]

λ1

−α
(Vx − ξ1)

λ2

V̇y = −α
[−(X − Ŵ1) sin ψ + (Y − Ŵ2) cos ψ]

λ1

−α
(Vy − ξ2)

λ2

Ẋ = αe−β‖x1‖2 (Ŵ1 − X)

λ1
+ (Vx − ξ1) cos ψ

− (Vy − ξ2) sin ψ + Ŵ̇1

Ẏ = αe−β‖x1‖2 (Ŵ1 − X)

λ1
+ (Vx − ξ1) sin ψ

− (Vy − ξ2) cos ψ + Ŵ̇2

(44)

with

λ2 = 1 + (Vx − ξ1)2 + (Vy − ξ2)2

6.1.1. Circular trajectory results

We now describe the simulation results that illustrate the
performance of the proposed lemma for vehicle trajectory
tracking in case of a circular path about the origin of the
earth fixed frame, defined by

Ŵ(t) =
{

Ŵ1(t) = R sin(ωt)
Ŵ2(t) = R cos(ωt)

The simulation was performed for a radius R = 300 m
and an angular velocity ω = 0.04 rad/s. The initial vehicle
velocity was selected as Vx0 = 12 m/s and the initial lat-
eral velocity as Vy0 = 0, while the initial yaw angle was
selected as ψ0 = π

90
rad. This means that with these initial
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conditions, the vehicle was in skew position. The displace-
ment of the vehicle was simulated during t = 75 s.

The corresponding vehicle trajectory is shown in
Figure 7(a) and 7(b). The simulation results show that the
vehicle converges quickly to the reference trajectory when
the constant parameters α and β are fixed at 0.014 and 0.01,
respectively. Thus, the assumptions fixed by the lemma are
respected (α and β must be sufficiently small). When the
parameters α and β are slightly increased, the vehicle con-
verges to the reference system, but a little difference can
be observed, while staying relatively close to the reference
trajectory as shown in Figure 7(b).

7. Conclusions

A nonlinear approach method to build a nonlinear state
feedback control that guarantees the stabilisation of vehicle
velocities was presented. The stabilisation of the different
velocities of the vehicle was chosen as an application. The
method consisted first of a changing of the state variables
according to the structure of the system. Thus, the stabil-
isation was declined in two steps. The first one consisted
of a changing of variables to simplify the complexity of
the system structure. The second step was the synthesis
of the nonlinear feedback control based on the combined
Lyapunov–LaSalle method. The transformations of the con-
sidered variables were introduced by a second-degree poly-
nomial relation between the old and the new variables of
control. The simulation results showed the ability of the
proposed nonlinear controller to stabilise the vehicle in
critical manoeuvre such as acceleration-in-a-turn. The re-
sults further demonstrated that the proposed method could
considerably enhance vehicle speed stability. Furthermore,
we proposed a lemma to solve the trajectory tracking and
path-following problem for vehicles. The simulation results
performed for the vehicle trajectory showed excellent track-
ing and a strong dependence on the reference trajectory.
However, the result of the lemma is valid for any reference
trajectory satisfying the corresponding assumption.

Note

1. Det(.) indicate the determinant and ||.|| represent the euclidean
norm.
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Belfort-Montbéliard University of Technol-
ogy (UTBM), France in 2007. His research
interests include vehicle system dynamics,

nonlinear dynamics and control.

Youcef Ait-Amirat got the Dipl Ing degree
in 1989 from the Ecole Nationale Poly-
technique d’Alger, Algeria. He also got the
PhD degree in 1994 from the University of
Claude Bernard at Lyon, France. Since 1995
he is an assistant professor at the Univer-
sity of Franche-comté in France. He is a
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Appendix. Vehicle data

M = 1480 kg; Iz = 1950; N·m/s2; Cf = 95,000 N/rad; Cr =
50,000 N/rad; h = 0.42 m; l = 0.751 m; a = 1.421 m; b =
1.029 m; kax = 0.41 kg·m/s2; kay = 0.54 kg·m/s2.
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