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I. INTRODUCTION

Nowadays, in the actual preoccupation about the ecology, the Proton Exchange Membrane Fuel Cell (PEMFC) is a technology full of promises. Indeed, with a low greenhouse gases emission and a high efficiency, the fuel cells appear to be a solution to face our need of creating energy alternative. An electrical generator based on a PEMFC is a complex system because of the numerous multiphysical phenomena happening inside. It isobviously an electrochemical system, because the production of energy is coming from two oxydo-reduction reactions. The oxidized dihydrogen and the reduced dioxygen trigger a= transfer of electrical charges. Unlike a battery, the fuel cell has permanent supplies of fuel and oxidant the gases. The fuel cell can then be characterized as electrochemical but also electrical, fluidic and thermic, leading to a complex multiphysical system. This technology has not been yet fully developed. Indeed even though the fuel cell has been discovered for more than a century, the development of PEMFC is not mature enough for allowing a real breakthrough in industry. Some bolts have still to be unlocked for making it technically and economically viable. The life duration which is, at this time, too short and not enough managed is one of these bolts. This issue brings unexpected failure at inconvenient timing. In order to meet the target of the life duration, there can be two possible complementary approaches: on one side the development of a more reliable and performing fuel cell stack, and on another side the development of control algorithms that would allow limiting the influence or mitigating degradations.

A method to face this kind of issues is the Prognostics and Health Management [START_REF] Gouriveau | Chapter 2 : Industrial prognostican overview[END_REF] which process permits to detect, diagnose, performs prognostics (estimating the Remaining Useful Life (RUL)) in order to take the decisions at the good moment for avoiding degradation and optimizing the use.

According to the litterature [START_REF] Jouin | Prognostics and health management of pemfc -state of the art and remaining challenges[END_REF], for the PEMFC, the first layers of the PHM development has already been investigated in the literature [START_REF] Yousfi-Steiner | A review on pem voltage degradation associated with water management: Impacts, influent factors and characterization[END_REF], [START_REF] Yousfi-Steiner | A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation[END_REF]. However, the first step with very few works on it is the prognostics. So, it has to be developed in order to be able to apply the complete PHM process to the PEMFC which final goal would allow managing the life time and expanding it. This is why this paper focuses on the prognostics part of PHM for PEMFC.

Three different kind of approaches can be distinguished for prognostics [START_REF] Jardine | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF], [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. Indeed, in order to predict the end of life of a system, its performances has to be reproduced. To achieve this aim, data-based approaches can be considered. In this case, a model is trained thanks to a learning phase, then the model is able to predict the behaviour of the considered system. This approach is also named a black-box approach as there is no physical knowledge required. It implies nevertheless that there is no physical causality with the phenomenon really taking place in the system. A second approach is the model-based ones, in which a precise knowledge of the system is needed but where only a limited number of experiments are required to tune the model. This approach allows also being easily modified regarding new evolving parameters or inputs. A link between the real ageing and the parameters can be drawn. A third approach is the hybrid one; it associates the two firsts that merges their advantages as well as their disadvantages. The frontier between these three approaches can be fuzzy. Indeed with the definition given here and for the PEMFC, a purely model-based approach can't really exist as some data are always needed to tune the parameters.

A model-based approach is here proposed as this would allow obtaining a good precision and even modeling some important internal variables of the fuel cell stack.

The aim of this paper is to present the parametric sensitivity analysis of a physics based model in order to reduce the number that has to be regressed and so minimize the chance of hitting a local minimum during the regressions. For that, the Proton Exchange Membrane Fuel Cell technology is presented in a first part in order to present, in a second part, the behavioral model. In the third part, the model with the ageing included is presented in order to allow the last part which is the parametric sensitivity analysis.

II. PROTON EXCHANGE MEMBRANE FUEL CELL

The model proposed being a physics-based development, it is necessary to describe, even succinctly the composition and functioning of a basic cell. As seen on figure 1, a single cell is composed by an anode / electrolyte / cathode assembly (called MEA for membrane electrode assembly) [START_REF] Laffly | Modélisationlisation d'une pile à combustible de type pemfc intégrant les phénomènes de vieillissement[END_REF]. The electrolyte is a polymer membrane situated between two electrodes. Enough hydrated, it enables the conduction of H+ protons while preventing the conduction of electrons. The MEA is included between two Gaz Diffusion Layer (GDL) which allow the arrival of gaz to the AME and the evacuation of the water produced by the electrochemical reaction. Finally, two metal (or graphite) plates hold mechanically the layers. They are called bi-polarized plates and ensure different functions. First, the channels enhance the gaz routing on the whole surface of AME. Then its thermal properties are used for the heat evacuation, and so used in order to ensure the temperature control thanks to a cooling system. This assembly is a single cell, a PEMFC is generally a stack of cells. As it can be seen on figure 2, on the anode side, dihydrogen is supplied, on the cathode side, it is dioxygen or air. The conversion of chemical to electrical energy is possible thanks to the reactions happening at the electrodes. At the anode, the dihydrogen is decomposed into H+ and electrons. The protons obtained cross the electrolyte while the electrons go through the external load to reach the cathode. There, the dioxygen react with the ions H+ giving water. Finally, a PEMFC product electricity, water, but heat too. 

III. INSTANTANEOUS BEHAVIOR MODEL

A. Behavioral model description 1) Global model: The model is here a combination of two distinct models as it can be seen on figure 3. The first input is the current and it is normalized as current density to be then decomposed on direct and alternative component. The static and dynamics model are then giving direct and alternative voltage that is finally recomposed as voltage per cell in order to provide the output of the model that is the voltage (for more details about the model refer to [START_REF] Lechartier | Towards an ageing model of a pemfc for prognostics purpose[END_REF], [START_REF] Lechartier | Static and dynamic modeling of a pemfc for prognostics purpose[END_REF]). 

U DC = E n -R m • J DC -η a -η c (1) 
The expression developped is as follows : (eq. ( 2))

U DC =E n -R m • J DC - 1 b a • asinh J DC 2 • j 0a - 1 b c • asinh   J DC 2 • j 0c • 1 -J DC j Lc   (2) 
The parameters at the anode and at the cathode stand for :

• b a , b c the Tafel parameters;

• j 0a , j 0c the exchange current density, related to the activation phenomenon. • j Lc the limit current density, related to the diffusion of the oxygen through the gas diffusion layer (GDL). 3) Dynamic part of the model: On the other side, the dynamic part of the model is based on an electrical equivalency (figure 4). 3)).

W Oc (p) = R Oc • tanh √ τ Oc • p √ τ Oc • p (3) 
The dipoles stand for, respectively at the anode and cathode : C dca and C dcc are the double layer capacities, R ta and R tc two transfer resistances, R m the ionic conductance of the membrane and L the inductive behavior due to the connectors.

B. Validation of the behavioral model

For validating the model, some real experiment are realized. A 5 cells stack of 100 square centimeters of active area is experimented with a ripple current of 70 A more or less 10% at a 5kHz frequency. The experiment is a long term test that lasted around one thousand hours. Some measures as current and voltage are monitored during the whole experiment. Each week, an experimental characterization is realized, which is composed of polarization curves (current -voltage curves) and Electrochemical Impedance Spectroscopies (EIS) at three DC current values.

The static model is validated at each characterizations with a fitting process on a polarization curve. For the dynamic model the same step is realized with a fitting on the Nyquist plots obtained thanks to the EIS. This step shows a good efficiency as the Root Mean Square Errors are very low [START_REF] Lechartier | Static and dynamic modeling of a pemfc for prognostics purpose[END_REF].

The global model need to be simulated entirely in order to evaluate the accuracy. At each characterizations, the model is updated as the fitting on the two parts are realized and then furnish the new set of parameters tuned to the actual state of health of the stack. However, the model then obtained is only accurate around the characterization as it can be seen on figure 5, the curve of the simulated voltage doesn't follow the trend during the 1000 hours, this demonstrates the real need for including the ageing. Nevertheless, the global model is efficient and accurate during a short period of time and after a tuning. Indeed, as it can be seen on figure 6, which represents the model and the real behaviour of the PEMFC tested under the same load; the model is well following the trend during the sixty seconds presented under the dynamic and the static part of the solicitation. The figure 6 is focused on one of the peaks that are going out of the view on figure 5. These peaks are due to the solicitation going at zero for a bit, but showing them in the figure 5 would have no interest as it would prevent us to see the real response of the model during a long amount of time as this is included between 3 V and 3.3 V. IV. MODELING THE AGEING This model is a behavioural one, that reproduces efficiently the fuel cell's voltage under the same solicitation. However, the purpose is here prognostics. For that, the ageing time is added : an other input of the global model is the time-lapse during the fuel cell was operated (Tageing) (figure 7). After each experimental characterization, the values of the models' parameters are regressed based on the experimental results. The evolution of theses parameters is then approximated by a non-linear curve in order to obtain the parameters of the exponential functions, an exemple can be seen on figure 8. The model is promising as well on a short amount of time than on the totality of the experiment on which the simulations are based as the mean error during the total experiment is around 5% (figure 9). The necessity of having less parameters or constraining them into an interval is important also in order to have a good ageing model. Indeed, the results presented on this ageing part are satisfying but they are not reliable as all the results of the 8 characterization realized are included: the future is already known. A good ageing model rely on a certain quantity of data, even for a physics-based as the one presented here, but the necessity to shorten this amount of data as much as possible is clear. For that a clear tendency in the evolution of the parameters need to be obtain as soon as possible in the experiment.

V. PARAMETRIC SENSITIVITY ANALYSIS

The global model and its static and dynamic parts present a large number of parameters. Too high maybe for the regressions realized : a local minimal might be found during the updating procedure. A parametric sensitivity analysis is then realized in order to find which parameters are dominant or not, in order to fix or limit the values. It was chosen to realize the evaluation of the influence of each parameters thank to the ANOVA (analysis of variance) method [START_REF] Morando | Anova method applied to pemfc ageing forecasting using an echo state network[END_REF].

A. Static model's parameters sensitivity analysis

First the analyze is realized on the static part. This model (eq. 2) has the following parameters involved :

• R m the resistance;

• E n the Nernst potential; • b a , b c the Tafel parameters;

• j 0a , j 0c the exchange current density;

• j Lc the limit current density at the cathode only. The parameters values are set based on previous regressions results and take three values, two extreme realistic values and the middle one (table V-A). The experimental plan is then realized by simulating the static model with all the combination of parameters possible and evaluating the error of the results with measurements. For this purpose the polarization curve have been taken as a reference and the model was simulated in order to furnish a polarization curve. The error taken for the study is here the Mean Absolute percent error (MAPE) calculated on each point for then calculated the mean. This is realized on the eight polarization curves available that is realized every week.

The influence of each parameter is then calculated for each characterization and is represented on figure 10. The different colors represent the influence for each parameters on the characterizations, from the left for the first to the right for the eighth. Finally, the eight sensitivity analysis show coherent results. Indeed the range of influence of each parameter stay in the same interval. However, the total influence of the parameters on one characterization is around 18%, a very low value for a sensitivity analysis. That can certainly be explained by the short range of value followed and there might be an inter parametric influence, a point non relevant for our study.

The most predominant parameter is E n , a crucial point as the regressions realized have never given a satisfying value, and for the results presented earlier, this parameter is set fixed. Indeed, a wrong value of this parameter implies directly an important error when the current solicitation is null. It is otherwise a parameter that can be calculated so fixing its value before realizing the regression is consistent. The parameters b a and b c are the next most influent parameters and closely R m . The evolution of b c doesn't let appear any trend with the ageing time, and seem random: a local minimum might be hit. The low influence of j 0c and j Lc , could allow fixing their value and then having the logical evolution of j Lc with the time then be on b c .

B. Dynamic model's parameters sensitivity analysis

The dynamic model (figure 4) is then studied. The parameters in this model are :

• The Warburg impedance W Oc which is decomposed in two impedances, R Oc and τ Oc . • The double layer capacities C dca and C dcc .

• Two transfer resistances R ta and R tc .

• The ionic conductance of the membrane is modeled by an equivalent resistance R m . • The inductive behavior due to the connectors L. Thanks to previous regression results, the range of variation for each parameter is set (table V-B) and all the simulations are realized with three level for the parameters. The data allowing to evaluate the error of the simulations is the EIS at the nominal current of the experiment (70A). The eighth characterization are here also all taken into account in order to confirm the accuracy of the conclusions. For the EIS, the input is the frequency and the Nyquist plot drown as the output represent the real and imaginary part of the impedance. That is why there are two errors calculated for evaluating the dispersion: the error on the real part and the error on the imaginary part. On figure 11 are represented the mean influence on the eight EIS on the real and imaginary part. Figure 12 represents the influence of each parameter on the model on the real and on the imaginary part as they are added. Indeed, this figure is really interesting with the added figures as it was noticed that some parameters have low influence on the real part but this is compensated by the influence on the imaginary part which is bigger. 

C. Global model's parameters sensitivity analysis

The global model present some dependency between the two parts of the model. Indeed, some parameters in the dynamic model are expressed thanks to static parameters. This is why evaluating the sensitivity of the global model to the parameters seems to be an unavoidable step. The parameters that are directly defined in the global model are :

• R m the resistance;

• E n the Nernst potential;

• b a , b c the Tafel parameters; • j 0a , j 0c the exchange current density;

• j Lc the limit current density at the cathode only.

• The double layer capacities C dca and C dcc .

• The inductive behavior due to the connectors L.

• j 0Oc and b Oc that are sub-parameters of R Oc .

• k Oc , sub-parameter of τ Oc .

The dynamic parameters missing here are : R ta , R tc , R Oc and τ Oc . The two last are decomposed in a current dependent function. It was not possible to decompose them for the parameter sensitivity analysis of the dynamic model, as the current is not represented on this last study. The parameters R ta and R tc are finally functions the static parameters b a , b c , j 0a , j 0c and j Lc in order to have an evolving value with the current.

The experiment plan for the simulations follows the same values than the ones developed on the two last studies for the same parameters (table V-C), three levels are taken for the parameters. The evaluation of the error was done, one more time, thanks to real data. As the aim of the global model is to reproduce the behavior of the fuel cell, this has to be the basis of the sensitivity analysis. For that experimental data (current and voltage) of around sixty second were taken around a variable solicitation as for example on figure 6. The model under the experimental solicitation was then simulated for calculating the mean error between the simulation and the experimental data. The static parameters has more influence this could be explained by the solicitation which is current which is slightly dynamic. The dynamic and static parts has cathode and anode parameters in common in the global model : b a , b c , j 0a , j 0c and j Lc . The fourth first has an important influence, and so evolving them with the time influence both parts, so the global model evolving with the ageing. The last one, j Lc , has clearly not a big influence neither on the static part neither on the global model. However, this parameter has a clear evolution with the time, an exponential fitting is coherent (figure 14) unlike the tafel parameter at the cathode b c . A hypothesis would be that fixing the value of the limit current density at the cathode j Lc would allow the two other cathode static parameters b c and j 0c to evolve less randomly. The importance of the influence of E n and R m is clear. As the value of E n is fixed, it is not an important point for the ageing modeling. However, for the accuracy of the instantaneous model the calculation of the value must be rigorous. The evolution of R m with the time is currently coherent with an exponential fitting (less than 8e -4 Error (RMSE)), and it is important and satisfying as there is no big improvement to achieve.

The very low influence of the parameters strictly coming from the dynamic model bring a discussion. The evolution of theses parameters with the time might be unnecessary. Some study must realized in order to analyze if the evolution of the dynamic behavior with the time can only be contained in the static parameters that intervene.

VI. CONCLUSION

This paper addresses a model-based approach for prognostics of a PEMFC. With a validation of the behavioral model and the ageing model. In order to have a time dependency, critical point for prognostics, it was chosen to have time evolving parameters. Even though the ageing model is satisfying, the evolution of some parameters have no clear trend with the time. For that purpose, a parameter sensitivity analysis is realized. Indeed a parameter with small influence can be fixed and reduce the number of local minimum during the regressions. In a future work, the comparison between the results and the literature will allow to decide which parameters to fix. It would also allow to verify if the influence of an important parameter is not absorbed by an other. The model will, hopefully present some parameters with a clear evolution, and so a clear justification. With this steps realized, the model will be stable enough to analyze the number of characterization needed before having an accurate reproduction of the behavior with no knowledge of the future.
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