Didace Habineza 
email: didace.habineza@femto-st.fr
  
Micky Rakotondrabe 
  
Yann Le Gorrec 
  
  
  
Simultaneous Suppression of Badly-Damped Vibrations and Cross-couplings in a 2-DoF Piezoelectric Actuator, by using Feedforward Standard H ∞ approach

Keywords: Multi-axis piezoelectric actuators, Vibrations, Cross-couplings, Multivariable feedforward control, Standard H ∞ approach

This paper deals with the feedforward control of vibrations in a 2-axis piezoelectric actuator devoted to precise positioning. The actuator is very prized for high precision spatial positioning applications, but its positioning capability as well as the stability of the final tasks are compromised by badly-damped vibrations, especially during high-speed positioning operation. In addition to these vibrations, the presence of strong cross-couplings between different actuator axis poses challenge in the feedforward control scheme. This paper proposes a bivariable feedforward standard H ∞ approach to suppress the vibrations in the direct transfers and to reduce the amplitudes of the cross-couplings. The proposed approach is simple to handle and easy to implement, comparatively to the commonly used techniques for oscillations suppression. Experimental tests demonstrate the efficiency of the proposed approach.

INTRODUCTION

Multi-axis piezoelectric actuators are very known in spatial positioning tasks, especially in micro/nano scale applications [START_REF] Devasia | A survey of Control Issues in Nanopositioning[END_REF][START_REF] Rakotondrabe | Design, development and experiments of a high stroke-precision 2DoF (linear-angular) microsystem[END_REF] . However, the positioning precision of these actuators and the stability of the final tasks are compromised by badly-damped vibrations and by the cross-couplings between the actuators axes [START_REF] Rakotondrabe | Feedforward and IMC-Feedback control of a nonlinear 2-DOF piezoactuator dedicated to automated micropositioning tasks[END_REF] . Feedback control appears to be the best way to handle these problems but the use of closed loop control techniques in micro/nano scale is limited by the difficulty to integrate feedback displacement sensors. On the one hand, embeddable sensors (capacitive, inductive, etc) do not have the required performances (low noise, high resolution and accuracy, low environmental sensitivity, bandwidth, etc). On the other hand, sensors with the necessary performances such as optical sensors are very spacious, which makes their installation difficult, especially for multi-axis actuators where a high number of sensors is required [START_REF] Rakotondrabe | Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever[END_REF][START_REF] Rakotondrabe | Hysteresis and vibration compensation in a nonlinear unimorph piezocantilever[END_REF] . Feedforward control techniques have been seen as a good solution to that problem 1, 4-6 .

In the literature, inverse-dynamics [START_REF] Clayton | A review of feedforward control approaches in nanopositioning for high-speed SPM[END_REF][START_REF] Croft | Creep, hysteresis and vibration compensation for piezoactuators : atomic force microscopy application[END_REF] and input-shaping techniques [START_REF] Rakotondrabe | Complete open loop control of hysteretic, creeped and oscillating piezoelectric cantilever[END_REF][START_REF] Rakotondrabe | Hysteresis and vibration compensation in a nonlinear unimorph piezocantilever[END_REF][START_REF] Pao | Multiple Input-Shaping Design for Vibration Reduction[END_REF][START_REF] Singh | Tutorial on input shaping, time delay control of maneuvering flexible structures[END_REF] rank among the most used techniques for feedforward control of vibrations. However, the identification of multi-axis piezoelectric actuators may lead to nonminimum-phase and non-bicausal models, for which the inverse-dynamics control are less adapted [START_REF] Clayton | A review of feedforward control approaches in nanopositioning for high-speed SPM[END_REF] . In this paper, we propose a feedforward H ∞ approach to control a 2-axis piezoelectric actuator.

The feedforward control of piezoelectric actuators based on H ∞ approach has been used in (G. Schitter et al., 2003) [START_REF] Schitter | Robust 2 DOF-control of a piezoelectric tube scanner for high speed atomic force microscopy[END_REF] for a 1-DoF application. In this paper, we extend this technique to a 2-axis (2 DoF) actuator, by considering simultaneously the direct transfers and the cross-couplings. This leads to a 2-DoF compensator, able to suppress the vibrations in the direct transfers and able to reduce the amplitudes of the cross-couplings. The proposed approach allows to calculate a feedforward vibrations compensator without any need to invert the model, which is an easier and less time-consuming way than with inverse-dynamics based techniques. The experimentations carried out demonstrate the efficiency of the proposed approach.

The remainder of the paper is organized as follows. Section 2 describes the experimental setup and the actuator used. Section 3 concerns the multivariable characterization and modeling of the vibrations for the 2-DoF actuator. In section 4 we use the model obtained in section 3 to calculate the 2-DoF vibrations compensator. The implementation of the obtained compensator along with the simulation and experimental compensation results are presented in section 5. Finally, section 6 concludes the paper and gives some perspectives.

EXPERIMENTAL SETUP

The experimental setup is represented in Fig. 1. It is composed of a piezoelectric tube, a computer with Matlab/Simulink software, two displacement sensors and two voltage amplifiers. Both displacement sensors and voltage amplifiers are connected to the computer through a dSPACE-1103 board. The piezoelectric tube scanner used is the PT230.94, fabricated by Physik Instrumente company. This tube has 30 mm of length, 3.2 mm of outer diameter and 2.2 mm of inner diameter (1 mm of thickness). PT230.94 is made of PZT material coated by one inner electrode (in silver) and four external electrodes (in copper-nickel alloy), commonly named +x, -x, +y and -y (Fig. 1b). Voltages U x and -U x (U y and -U y ) can be applied on +x and -x (+y and -y) electrodes in order to bend the tube along X-axis (along Y-axis). To allow a linear displacement measurement (which is not possible with the tubular shape of the piezotube), a small cube with perpendicular and flat sides is placed on the top of the tube. The operating voltage range of the PT230.94 is ±250V for a deflection of 35µm. Hence, two voltage amplifiers are used to amplify the dSPACE board output voltages, for which the maximum range is about ±10V . The tube deflections are measured by using LC-2420 displacement sensors (fabricated by Keyence company), which have 10nm resolution and a bandwidth of 50kHz. Note that these displacement sensors are used only for vibrations characterization : the proposed control approach is exclusively feedforward and these sensors are not needed for tracking. 
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CHARACTERIZATION AND MODELING OF THE VIBRATIONS FOR THE 2-DOF SYSTEM

The system to be characterized (refer to Fig. 2) is a 2-DoF piezoelectric tube with inputs U x and U y voltages, and outputs x and y deflections. To characterize its vibrations , we apply first a step voltage U x of amplitude 200V and we let U y be zero. The corresponding displacements x and y are pictured in Fig. 3a,c (blue solid line). Fig. 3a shows the vibrations for the direct transfer U x → x, while Fig. 3c shows the vibrations for the coupling U x → y. Afterwards, we repeat the same operation by using a step U y of amplitude 200V with U x set to zero. The captured deflections x and y are represented in Fig. 3b,d (blue solid line). Fig. 3b represents the vibrations for the coupling U y → x, while Fig. 3d shows the vibrations for the direct transfer U y → y. From Fig. 3, we notice the presence of badly-damped vibrations in both direct and coupling transfers. The transfer function G(s) to be Afterwards, the model G(s) is simulated by using Matlab/Simulink and compared to the experimental results. The comparison is established in Fig. 3, where we notice a good agreement between them. 

G(s) = G xx (s) G xy (s) G yx (s) G yy (s) with                            G xx (s) = 4.4718×10 15 (s+319.7)(s 2 +570.5s+4.968×10 7 ) (s+3.625×10 4 )(s+1.207×10 4 )(s+313.9)(s 2 +536.5s+3.558×10 7 ) × (s 2 +873.8s+1.102×10 8 ) (s 2 +1352s+1.025×10 8 )(s 2 +469.2s+1.081×10 8 ) ; G yx (s) = -10.534(s-1.513×10 4 )(s 2 +610.3s+3.342×10 5 ) (s 2 +567s+2.882×10 5 )(s 2 +1.208×10 4 s+3.673×10 7 ) × (s 2 +807.4s+2.329×10 7 )(s 2 +57.97s+5.737×10 7 ) (s 2 +1132s+1.82×10 7 )(s 2 +516.2s+3.491×10 7 ) ; G xy (s) = -3.8154(s+487.2)(s 2 +20.85s+2.836×10 7 ) (s+6337)(s+351.2)(s 2 +394.1s+3.605×10 7 ) × (s 2 +2207s+7.762×10 7 )(s 2 -2.826×10 4 s+2.733×10 9 ) (s 2 +517.2s+6.043×10 7 )(s 2 +628.3s+2.384×10 8 ) ; G yy (s) = -9.0985×10 5 (s-1.871×10 4 )(s 2 -98.19s+9.619×10 7 ) (s+3984)(s 2 +6789s+5.067×10 7 )(s 2 +321.5s+6.015×10 7 ) .

CALCULATION OF THE H ∞ COMPENSATOR

The compensator is calculated according to the scheme of Fig. 4a, where G is the initial system with input U = (U x U y ) T and output d = (x y) T , K is the 2-DoF vibrations compensator to be calculated, and d r = (x r y r ) T the desired (reference) deflection vector. Fig. 4b, represents the augmented system from which the standard H ∞ problem is defined. Weighting functions W r , W 1 are chosen based on the performances (static error, bandwidth, etc) desired for the compensated system. The weighting W 2 is used to limit the control voltage, in order to avoid the saturation of the actuator. The chosen weighting functions are represented in Eq. 2 :

+ - U G W 2 W r W 1 z 1 z 2 d d r K U G d K ( 
W r (s) = 1 1+ 0.01 3 s 0 0 1 1+ 0.01 3 s ; W 1 (s) = s+120 s+1.2 0 0 s+120 s+1.2 ; W 2 (s) = 0.125 0 0 0.125 . (2) 
From the augmented system in Fig. 4b, the transfer between the exogenous input d r and exogenous outputs z 1 and z 2 is expressed as :

z 1 z 2 = W 2 K W 1 W r -W 1 T d r , (3) 
with T = GK the transfer function of the compensated system.

The standard H ∞ problem consists therefore in finding the controller K such that :

W 2 K W 1 W r -W 1 T ∞ < γ or K ∞ < W -1 2 ∞ γ W r -T ∞ < W -1 1 ∞ γ , (4) 
where γ represents the performances evaluation parameter. We have solved this problem by using DGKF algorithm [START_REF] Doyle | State-space solutions to standard H2 and Hinf control problems[END_REF] and a 2-DoF feedforward compensator K, with order 34 and γ = 0.929688, has been obtained. This compensator was not implementable in real time with the dSPACE-1103 board. We have therefore reduced its order by using the balanced-reduction technique, and a new compensator with order 20, able to run in real time on the aforementioned card, has been obtained.

IMPLEMENTATION OF THE COMPENSATOR AND COMPENSATION RESULTS

The aim of this section is to verify the ability of the calculated compensator to suppress the vibrations of direct transfers and to reduce the cross-couplings amplitudes. Before the implementation of the compensator, the simulations of frequency responses for the initial system G (piezoelectric tube), the controller K (with reduced order) and the compensated system T , have been evaluated. These responses are represented in Fig. 5, where we notice a bandwidth of more than 80Hz for direct transfers and the rejection of couplings up to -70dB at low frequencies.

Afterwards, the 2-DoF reduced compensator K has been implemented according to the scheme of Fig. 4a, in Simulink/Matlab software. In order to test the suppression of the vibrations and the reduction of the crosscouplings amplitudes, step inputs x r and y r of 20µm have been applied successively. The obtained transient responses are reported in Fig. 6. The comparison of results in this latter figure, and results in Fig. 3 (before compensation) shows that, thanks to the calculated compensator, the vibrations in direct transfers are suppressed and the cross-couplings amplitudes are reduced by more than 50%.

CONCLUSION AND PERSPECTIVES

Multivariable feedforward control of vibrations based on standard H ∞ approach has been presented in this paper. The technique was applied to a 2-DoF piezoelectric tube scanner. Simulation and experimental results have proven the efficacy of the proposed approach in terms of vibrations suppression, cross-couplings amplitudes reduction and the ease of implementation of the calculated compensator. In future works, additional control techniques will be integrated to the proposed approach, in order to increase the overall bandwidth of the compensated system. 

  (b) Description of the piezoelectric tube. (1) : perspective view, (2) : top view.
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 1 Figure 1: Presentation of the experimental setup and description of the used actuator.
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 2 Figure 2: System modeling scheme. (a) : the 2-DoF system with two inputs U x and U y and two outputs x and y ; (b) : simplified representation, with U = (U x U y ) T the input voltages vector and d = (x y) T the tube deflections vector.
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 3 Figure 3: Representation and comparison of the characterized vibrations (blue solid line) and the identified model (red dashed line). (a) and (d) : direct transfers ; (b) and (c) : cross-couplings.
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 4 Figure 4: Compensation scheme and the structure of the augmented system, from which the H ∞ problem is defined. (a) : initial system G with the compensator K ; (b) : the compensated system augmented with weighting functions W r , W 1 and W 2 .

Figure 5 :

 5 Figure 5: Frequency responses of the initial system G, the compensator K and the compensated system T . (a) et (d) : direct transfers ; (b) and (c) : cross-couplings.

Figure 6 :

 6 Figure 6: Verification of the vibrations and cross-couplings amplitudes for the compensated system. (a) and (d) : direct transfers ; (b) and (c) : cross-couplings.
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