
HAL Id: hal-02868060
https://hal.science/hal-02868060v1

Submitted on 15 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-based Analysis of Java EE Web Security
Configurations

Salvador Martínez, Valerio Cosentino, Jordi Cabot

To cite this version:
Salvador Martínez, Valerio Cosentino, Jordi Cabot. Model-based Analysis of Java EE Web Security
Configurations. 2016 IEEE/ACM 8th International Workshop on Modeling in Software Engineering
(MiSE), May 2016, Austin, Texas, United States. �10.1145/2896982.2896986�. �hal-02868060�

https://hal.science/hal-02868060v1
https://hal.archives-ouvertes.fr

Model-based Analysis of Java EE Web Security
Configurations

Salvador Martínez
AtlanMod Team

(Inria, Mines Nantes, LINA)
Nantes, France

salvador.martinez@mines-
nantes.fr

Valerio Cosentino
AtlanMod Team

(Inria, Mines Nantes, LINA)
Nantes, France

valerio.cosentino@mines-
nantes.fr

Jordi Cabot
ICREA - UOC

Barcelona, Spain
jordi.cabot@icrea.cat

ABSTRACT
The widespread use of Java EE web applications as a means to
provide distributed services to remote clients imposes strong secu-
rity requirements, so that the resources managed by these applica-
tions remain protected from unauthorized disclosures and manip-
ulations. For this purpose, the Java EE framework provides de-
velopers with mechanisms to define access-control policies. Un-
fortunately, the variety and complexity of the provided security
configuration mechanisms cause the definition and manipulation
of a security policy to be complex and error prone. As security re-
quirements are not static, and thus, implemented policies must be
changed and reviewed often, discovering and representing the pol-
icy at an appropriate abstraction level to enable their understanding
and reenginering appears as a critical requirement. To tackle this
problem, this paper presents a (model-based) approach aimed to
help security experts to visualize, (automatically) analyse and ma-
nipulate web security policies.

Keywords
Security, Access-control, Reverse-engineering

1. INTRODUCTION
Java EE is a popular technology of choice for the development

of dynamic web applications, serving also as foundational layer
for other less general purpose frameworks. Java EE facilitates the
exposure of distributed information and services to remote users. In
this scenario, security is a main concern [16], as the web resources
that constitute the web application can be potentially accessed by
many users over untrusted networks. As a consequence, the Java
EE framework provide developers with the tools to specify access-
control policies in order to assure the confidentiality and integrity
properties of the resources exposed by web applications.

Unfortunately, and despite the availability of these security mech-
anisms, implementing security configurations remains a complex
and error prone activity where high expertise is needed to avoid in-
consistency and misconfiguration issues, that could inflict critical
business damages. As the resources managed by the web applica-

To appear

tion can be accessed by many users and traverse unprotected net-
works. unintended data disclosures may lead to important losses
both in terms of money and reputation.

For the concrete case of access-control in Java EE applications,
declarative role-based access-control (RBAC) [20] policies for web
applications are specified by writing constraints using a low-level
rule-based access-control language with two different textual con-
crete syntax’s and with relatively complex execution semantics.
Concretely, the user can either:

1. write constraints in the XML web descriptor file by using a
set of predefined tag elements.

2. write annotations (with a syntax and organization different
w.r.t. the XML tag elements) on the Java Servlet compo-
nents.

Both mechanism can be used in the same Java EE application, so
that combination rules are needed to obtain the final security policy.

In this context, discovering and understanding which security
policies are actually being enforced by a given web application
comes out as a critical requirement. The main challenge for this
discovery process is bridging the gap between the low-level, scat-
tered policy representation, and a higher-level, easier to understand
and manipulate, comprehensive representation. In order to tackle
this problem, we provide, for the case of Java EE web applications:

1. a linguistic unification of the two declarative constraint spec-
ification mechanisms provided by the Java EE framework, so
that the contributions of both mechanisms can be analysed by
the same procedures and tools.

2. a reverse engineering process that extracts the security con-
figurations implemented by using the diverse Java EE mech-
anisms and integrates them to a security model conforming
to a proposed web security metamodel.

3. a demonstration of applications and benefits of using an in-
tegrated model-based representation given this enables the
reuse in the security domain of the large number of model-
driven techniques and tools that can be applied to visualize,
analyze, evolve, etc the model.

Our approach complements existing Java reverse engineering works
that skip security aspects [3, 5].

We demonstrate the feasibility of our approach through a pro-
totype tool implementation and its application to a sample of real
Java EE applications available GitHub.

The rest of the paper is organized as follows. Section 2 intro-
duces the diverse access-control mechanism provided by the Java

EE framework while Section 3 introduces our approach to extract
an integrated model representation from them. Section 4 describes
a number of relevant application scenarios. Evaluation of the ap-
proach is provided in Section 5, followed in Section 6 by a brief
description of the tool support we provide to achieve automation.
We conclude the paper by discussing related work in Section 7 and
providing future research lines and conclusions in Section 8.

2. JAVA EE WEB SECURITY
Roughly speaking, in the Java EE framework, when a web client

makes a HTTP request, the web server translates the request into
HTTP Servlet calls to web components (Servlets and Java Server
Pages) that may directly answer or may, in turn, call Enterprise Java
Beans (EJBs) in order to perform more complex business-logic op-
erations. In this schema, a very important requirement is to as-
sure the confidentiality and integrity of the resources managed by
the web application. In that sense, the Java EE framework pro-
vides ready-to-use access-control facilities. In the following we
will briefly describe the mechanism offered by Java EE for the im-
plementation of access-control policies for web applications.

2.1 Access-control
Java EE applications are typically constituted by JSPs and Servlets.

The access-control mechanism in place are in charge of controlling
the access to these elements along with any other web stored and
accessible artifact (pure HTML pages, multimedia documents, etc.)
1 Two flavors are available to specify security policies at this level:
declarative and programmatic security, being the latter provided for
the cases where fine access-control, requiring user context evalua-
tions, is needed.

Regarding declarative access-control policies, two alternatives
are available: 1) writing security constraints in a Portable Deploy-
ment Descriptor (web.xml) and 2) writing security annotations as
part of the Servlets Java code (note however that not all security
configurations can be specified by means of annotations).

Listing 1: Security constraint in web.xml
< s e c u r i t y −c o n s t r a i n t >

< d i s p l a y −name>
GET To Employees

< / d i s p l a y −name>
<web−r e s o u r c e−c o l l e c t i o n >

<web−r e s o u r c e−name>
R e s t r i c t e d

< / web−r e s o u r c e−name>
< u r l−p a t t e r n >

/ r e s t r i c t e d / employee /∗
< / u r l−p a t t e r n >
< h t t p−method>GET< / h t t p−method>

< / web−r e s o u r c e−c o l l e c t i o n >
<auth−c o n s t r a i n t >

< r o l e−name>Employee< / r o l e−name>
< / au th−c o n s t r a i n t >
< use r−da ta−c o n s t r a i n t >

< t r a n s p o r t −g u a r a n t e e >
NONE

< / t r a n s p o r t −g u a r a n t e e >
< / use r−da ta−c o n s t r a i n t >

< / s e c u r i t y −c o n s t r a i n t >

Let’s consider a corporate web application with a restricted area
for employees and where a role Employee is defined. Listing 1
shows a security constraint defined in a web.xml descriptor that re-

1http://download.oracle.com/otndocs/jcp/servlet-3.0-fr-oth-JSpec/

stricts the access (when using the HTTP method GET) to the em-
ployee area to users holding the Employee role.

It contains three main elements: a web-resource-collection spec-
ifying the path of the resources affected by the security constraint
and the HTTP method used for that access (in this case the /re-
stricted/employee/* path and the GET method); an auth-constraint
declaring which roles, if any, are allowed to access the resources
(only the role Employee in the example) and a user-data-constraint
that determines how the user data must travel from and to the web
application, set to None (i.e., any kind of transport is accepted) in
the example.

The equivalent security constraint, defined by means of annota-
tions is shown in Listing 2. The @WebServlet annotation identi-
fies the Servlet and the resource path in the web container. Then,
the main security annotation is @ServletSecurity that has two at-
tributes: value, that corresponds to a nested annotation @Http-
Constraint and httpMethodConstraint that contains a list of nested
@HttpMethodConstraint annotations. The @HttpConstraint is used
to represent a security constraint to be applied to all HTTP methods
while the second is used to define per-HTTP method constraints.
Both, @HttpConstraint and @HttpMethodConstraint contain as at-
tributes a list of allowed roles (allowedRoles), the data protection
requirements (equivalent to the user-data-constraint element in the
web.xml) and the behavior when the list of allowed roles is empty.

Listing 2: Annotated Servlet
1 @WebServlet (
2 name = " R e s t r i c t e d S e r v l e t " ,
3 urlPatterns ={ " / r e s t r i c t e d / employee /∗ " })
4 @ S e r v l e t S e c u r i t y ((h t t p M e t h o d C o n s t r a i n t s = {
5 @HttpMethodCons t ra in t (
6 value = "GET" ,
7 rolesAllowed = " Employee ")
8 t r a n s p o r t G u a r a n t e e = T r a n s p o r t G u a r a n t e e . None) })
9 p u b l i c c l a s s RestrictedServlet e x t e n d s HttpServlet { . . . }

2.2 Policy and rule combinations
Both aforementioned declarative alternatives can be used at the

same time and the final security policy is the result of combining
the security constraints specified with both mechanisms. However,
in case of conflicts, the constraints specified in the web.xml file take
precedence and moreover, constraints defined by using annotations
may be completely ignored if so is established in the web.xml de-
scriptor (the metadata-complete parameter set as true) which may
clearly create confusing situations to non-experts.

Besides, access-control policies defined with the mechanisms
described above may contain inconsistencies (rules stating differ-
ent access actions for the same resource). These inconsistencies are
resolved by using rule precedence, execution semantics and com-
bination algorithms as defined in the Java EE Servlet specification.
Unfortunately, while this process eliminates inconsistencies in the
policy, it may introduce typical access-control anomalies such as
shadowing and redundancy [8], along with other misconfigurations
particular to the Java EE access-control.

Note that, as mentioned above, fine-grained access-control con-
straints requiring context information may also be defined in the
Java EE framework.These constraints cannot be declaratively de-
fined and require the use of programmatic security. Examples would
be constraints checking that a user holds two roles or that a con-
nection may only be accepted in specific time slots. We leave the
analysis of these fine-grained programmatic constraints as a future
work. Notice also that the Java EE specification recommends a
preferential use of declarative security whenever possible.

Java EE
application

Java
source code

public int {

int a = ...
return ...

}

XML web
descriptor

<xml>

</xml>

<.../>

<.../>

Java source code
model

XML web descriptor
model

Model
Discovery

Model
Discovery

Transformation A Integration

web security
model

Analysis

Application level Model Level

Figure 1: Java EE web application analysis approach

3. APPROACH
Our approach, depicted in Figure 1, collects the security infor-

mation contained in a Java EE application by extracting it towards
model representations. Then, it unifies and integrate them in a
domain-specific model (by the means of model transformations),
so that model manipulations, query operations, etc., can be later
applied over it in order to analyse and manage the security configu-
ration. The domain-specific metamodel and the extraction process
are described in the remainder of this section.

3.1 Metamodel
Previous to the extraction process, the definition of metamodels

able to accurately represent the information contained in the con-
figuration source files is required. The Servlet Access-Control Se-
curity metamodel (hereinafter referred to as Servlet Security meta-
model) depicted in Figure 2 will be used for that purpose. Both
annotations and XML security definitions share similar semantics
and therefore can be mapped to this metamodel abstract syntax al-
lowing us to go directly from their low level model representations
(Java model and XML model, already available in the MoDisco
framework [3]) to our security metamodel without the need for
defining intermediate specific security metamodels for their rep-
resentation.

The Servlet Security metamodel allows to handle security roles
(SecurityRole class) and security constraints (SecurityConstraint
class) in a given web application. The former specifies the se-
curity roles defined by the security policy. The latter is used to
represent access control constraints, coming from XML web de-
scriptors or Java annotations (source attribute), on a collection of
web resources (WebResourceCollection class). Each web resource
collection identifies the resources (urlPattern attribute) and HTTP
methods (HttpMethod class) to which a security constraint applies.
It is important to note that if a HTTP method is defined as omitted
(omission attribute), the security constraint applies to all methods
except the omitted method.

The set of roles participating in the security constraint for a col-
lection of web resources are grouped under an authorization con-
straint (AuthConstraint class). The absence of an AuthConstraint
element in a given constraint represents public access whereas to-
tal preclusion is represented by its presence with no role associa-
tion. A security constraint can be also associated with a given data
protection requirement (UserDataConstraint class). This data pro-
tection requirement can be defined as: NONE indicating that the
container must accept requests when received on any connection,
INTEGRAL establishing a requirement for content integrity and
CONFIDENTIAL, establishing a requirement for communication
confidentiality.

3.2 Extraction Process
Once a metamodel able to describe Java EE access control def-

initions is available, we can extract the access-control information
defined for the web application. The extraction process, shown in
Fig.1 consists of three steps, namely model discovery, transforma-
tion & integration, and analysis.

The model discovery step relies on Modisco that parses the Java
source code and XML web descriptor to obtain the corresponding
model representations, namely, a Java model and an XML model.
By doing so we move from the technical space of source code an-
notations and XML files to that of the modelware realm. The ob-
tained models are then manipulated and the security information
contained are mixed in the transformation & integration step to
obtain a model conforming to the proposed Servlet security meta-
model (web security model in the figure). This transformation &
integration step rely on ATL[9], a model transformation language.
The ATL code for the transformation & integration includes 19
rules and 31 helpers. 10 rules and 6 helpers deal with the infor-
mation contained in the XML descriptor, while the remaining 9
rules and 25 helpers take care of the security information within
the source code model.

The aforementioned process allows us to ease the manipulation
operations required to analyze the policies w.r.t. a direct manipu-
lation of the constraints separately defined in the XML and source
code annotations with more basic techniques (like text manipula-
tion or xslt transformation). Concretely, it will allow us to 1) use
well-known model-drive tools and frameworks and 2) treat secu-
rity information in an uniform way, disregarding whether it was
specified by using XML or annotations. Notice however that these
models lay in the same abstraction level of the original configu-
rations and thus, no information-loss is produced in the extraction
process.

Listing 3 shows an ATL rule, part of the transformation to ex-
tract access-control policies, that maps annotated Servlets to Secu-
rityConstraint entities.

Notice that in order to make transparent to the users the low-level
technical details needed to use MoDisco and ATL, we have devel-
oped a tool under Eclipse, that allows the user to select a given Java
EE project and its web descriptor via a simple GUI to derive the
corresponding Servlet security model. Such tool can be employed
as support for different kind of applications.

Listing 3: ATL rule to map security annotated servlets to
security-constraints

1 l a z y r u l e createSecurityConstraint {
2 from
3 s : JAVA !Annotation
4 us ing {
5 servletAnnotation : JAVA !Annotation =
6 s .getContainerAnnotation (’ServletSecurity’) ; }
7 to
8 t : SEC !SecurityConstraint (
9 webResourceCollection <−

10 thisModule .createWebResourceCollection (
11 servletAnnotation .getWebServlet , s) ,
12 authConstraint <−
13 i f s .getEmptyRoleSemantic = ’PERMIT’ then
14 thisModule .createAuthConstraint (s , true)
15 e l s e
16 thisModule .createAuthConstraint (s , false)
17 endi f ,
18 source <− #CODE)
19 }

The last step of our approach, namely, the analysis and manipu-
lation of the extracted security configurations will be demonstrated
in the next Section by the description of a series of application sce-
narios.

AuthConstraint
Security Constraint

displayName : String
source : SourceType

Policy SourceType

<<enumeration>>

XML
CODE

RestrictionType

<<enumeration>>

NONE
INTEGRAL
CONFIDENTIAL

WebResourceColection

webResourceName : String
urlPattern : String

HttpMethod

name : String
omission : Boolean

webResourceCollection
0..*

httpMethod

0..*

SecurityRole

name : String

roles

0..*

authConstraint

0..1

UserDataConstraint

transportGuarantee : RestrictionType
userDataConstraint

0..*

securityConstraint
0..*roles 0..*

Figure 2: Servlet Security metamodel

4. APPLICATIONS
Having all the access-control information of a Java EE web ap-

plication gathered and represented in the form of an integrated model
corresponding to our Servlet Security metamodel enables the reusabil-
ity of a wide range of proved off-the-shelf model-driven tools and
techniques to derive interesting analysis applications. In the fol-
lowing, we will discuss a few of them, focusing in the calculation
of queries and metrics and briefly discussing the rest.

4.1 Metrics
One of the most immediate applications of our metamodel is to

use query languages such as OCL or IncQuery [2] to perform query
and metric operations about the information in our model. From
simple queries such as listing all the resources reachable by a given
subject to more complex operations as detecting equivalent roles (a
bad smell for a possible break in the least privilege strategy), our
model representation, model extraction and integration approach
ease the analysis of the security of a JEE application by reducing
the complexity of performing such operations w.r.t. working with
the original configuration mechanisms and making the needed in-
tegration by hand.

As a example, we will show here the definition of a metric that
counts the freely accessible resources.

Counting open-access resources query:
Resources in Java EE applications can be either visible to a re-

duced set of users having certain roles or being freely accessible
to everybody, no matter their roles. A manual inspection of the
application to discover the open-access resources can be a tedious
task, however leveraging on the proposed Servlet Security meta-
model, we can easily define a metric to detect and count this kind
of resources.

Listing 4: metric query to count the open-access resources
1 query unreachableResources =
2 SEC !SecurityConstraint .allInstances ()
3 −>select (sc | sc .authConstraint .oclIsUndefined ())
4 −>collect (sc | sc .webResourceCollection)−>flatten ()
5 −>collect (wrc | wrc .urlPattern)−>flatten ()
6 −>collect (up | up .value)−>flatten ()
7 −>asSet ()−>asSequence ()−>size () ;

Listing 4 shows a possible OCL query able to detect open-access
resources. All the security constraints that do not define an autho-
rization constraint (authConstraint) are selected, since they do not
enforce any access restriction on the resources declared within the

constraint (see lines 2-3). Then, the URLs within each resource
contained in the selected constraints are collected (see lines 4-6)
and finally counted (see line 7).

4.2 Correctness
Correctness properties of the security definition can be checked

by performing queries over our extracted security model. The de-
tection of misconfigurations (e.g., broken resource accessibility,
leaving resources unreachable by any role) is thus enabled helping
the developers to easily verify their security configurations and find
possible errors. As an example, in the following we will give de-
tails about checking one very important security property for Java
EE security configurations, e.g., the completeness property.

Completeness property & query: When defining an access-control
constraint over a given resource, developers must assure they spec-
ify the policy for every way of accessing the resource as failing to
do so may left important information unexpectedly available (or un-
expectedly precluded). This is specially true for the Java EE frame-
work due to the specific semantics of its security security policies.

If a HTTP method is named in a security constraint, all other
standard HTTP methods must be specified in the same or other
security constraint matching the same set of requests. Otherwise
non-named HTTP methods will be considered as uncovered giving
unconstrained access to them.
An example of a security constraint violating this property is shown
in Listing 1. In the example, a constraint is defined for the GET
method, stating that only users holding the Employee role are al-
lowed. However, nothing is said about any other HTTP methods.
In the absence of other constraints with identical URL pattern, this
constraint will be matched, and thus, unconstrained access will be
granted to any HTTP method different from GET.
In Listing 5 we show the query that calculates the completeness
property.

The OCL code defines two main variables, HTTP_METHODS
that lists all the standard HTTP methods, ALL_HTTP_METHODS
that collects all the elements in the input model which class is Http-
Method. This collections of elements are used then to check if
each SecurityConstraint element, containing a given instance of a
HttpMethod element, includes all the other standard HTTP meth-
ods or if they are listed in another SecurityConstraint element with
same URLpattern element value (directly or by the use of the tag
method_omission).

The evaluation of properties over an extracted model is fully au-

Figure 3: Sirius Policy Visualization Viewpoint

tomated. We have specified our properties as OCL queries. The
execution of the OCL Query over the model returns the model ele-
ments that are violating a property, if any.

Listing 5: OCL query to calculate the completeness property
1 c o n t e x t HttpMethod inv :
2 l e t HTTP_METHODS : Sequence (OclAny) =
3 Sequence {’OPTIONS’ ,’GET’ ,’HEAD’ ,’POST’ ,
4 ’PUT’ ,’DELETE’ ,’TRACE’ ,’CONNECT’} in
5 l e t ALL_HTTP_METHODS : Sequence (PSM !HttpMethod) =
6 PSM !HttpMethod .allInstances () in
7 l e t httpMethodsToCheck : Sequence (S t r i n g) =
8 i f self .omission then
9 HTTP_METHODS−>select (m | m = self .name)

10 e l s e
11 HTTP_METHODS−>reject (m | m = self .name)
12 e n d i f in
13 l e t selfUrlPatterns : Sequence (PSM !UrlPattern) =
14 self .refImmediateComposite () .urlPattern in
15 selfUrlPatterns−>iterate (sup ; output : Boolean = true

↪→ |
16 l e t declaredHttpMethods : Sequence (PSM !HttpMethod) =
17 ALL_HTTP_METHODS−>reject (hm | hm = self)
18 −>select (hm |

↪→hm .refImmediateComposite () .urlPattern
19 −>exists (up | sup .value = up .value)) in
20 i f declaredHttpMethods−>isEmpty () then
21 false
22 e l s e
23 output and httpMethodsToCheck
24 −>forAll (m | declaredHttpMethods
25 −>exists (dhm | dhm .name = m))
26 e n d i f

4.3 Visualization
Graphical information is often easier to grasp at a glance than

textual one. In this sense Model-driven workbench generation tools
as Sirius2 allow the definition of different viewpoints for a given
domain-specific language so that different graphical representations
can be obtained without the need of manipulating the source model
to create the view. This way, we can obtain general representa-
tions, summarizing the access-control policy of a given application,
or more detailed representation showing, for example, the detailed
security information related with a given resource or role. Figure
3 shows the visualization obtained for a simple web application
where web resources, roles and the defined constraints are visible
(note that, for readability, some relations are omitted).

4.4 Pivot representation
Our metamodel and extraction process can be also used as a

pivot representation in order to build bridges towards other (model)
representations. Translations from our metamodel to more generic
access-control languages like SecureUML or XACML [17] would
enable the reuse of the vast amount of research performed in the
2http://eclipse.org/sirius/

general field of access-control analysis. Notably, formal validation
and verification techniques[14], along with change impact analy-
sis[6] for access-control policies would become available.

Moreover, by integrating our extraction process and model in
Java EE reengineering frameworks we can use the approach pre-
sented here to 1) extract the access-control configurations of a web
application 2) apply model analysis and manipulation techniques
to find a correct possible existing misconfigurations or implement
security refactorings and 3) regenerate the web application with a
correct security configuration.

5. EVALUATION
In order to demonstrate the feasibility and efficacy of our ap-

proach we have constructed a prototype tool and conducted an eval-
uation on a sample of real Java EE projects extracted from GitHub.3

From the collected projects, we performed two filtering steps
aimed at removing toy projects. First, we manually filtered out
those projects that included one of the following words in their
name or path: test, sample, demo, example, tutorial, training, exer-
cise, lesson. Second, from the projects left, we derived the model
representation of their security configurations, and we filtered those
that declared less than 5 security constraints, obtaining in this way
a sample composed of 16 projects.

We have conducted three analysis on the previous sample: first,
we have applied our tool to obtain model representations of their
security configurations and measured the time to perform the task,
secondly, we have automatically evaluated the correctness query
presented in Section 4. Finally, and in order to check the existence
of false positives, we have manually checked this property on the
list of projects.

Table 1, showing for each Java EE project the number of con-
straints composing its security configuration, and for the security
correctness query, if an anomaly is detected manually and/or auto-
matically,summarizes the obtained results.

Table 1 also shows the time taken by our tool to extract mod-
els out of the corresponding Java EE web projects (gen.) and to
evaluate (eval.) our security correctness property over them. The
time for model-extraction depends directly on the number of Java
files whereas the time for calculating the properties depends on the
number of security rules in the policy and on the complexity of the
interactions between rules. Both times are reasonably low for an
offline analysis and concretely, the time of analyzing the properties
is always below one second.

This evaluation shows that our approach: 1) have a good per-
formance and thus is suitable to be used in real scenarios 2) the
relevant security information is not lost in the process and thus,
can be analysed as if it was manually done over the original con-
figuration artifacts. This is demonstrated by the absence of false
positives or false negatives in the evaluation of the completeness
property. The same results are obtained by both, our tool and by
manual inspection.

6. TOOL SUPPORT
We provide tool support that covers two different aspects of our

work. On the one hand, we have created a tool that relies on Sele-
nium[21] to randomly sample GitHub projects (to be then analyzed
3The sample is obtained using the GitHub Search API. From an
initial set of 1000 projects we randomly selected two groups of 50
projects containing security constraints. One group consisted of
projects including a: 1) XML file descriptor with at least a security
constraint 2) a size greater than 5000 KB, 3) contained in a WEB-
INF folder. The second consisted of projects containing security
annotations in Java source code.

Project Name Files Cons-
traints

Comple-
teness

Time (sec.)
gen. eval.

ConnectrStage 126 8 7.26 0.22
Dar 143 11 �� 10.5 0.26
HrsWeb 4 5 �� 0.41 0.13
Itrust 457 10 9.39 0.07
Jersey 27 6 0.74 0.09
PlanetsSuite 1260 6 28.8 0.08
slim3-twitter 48 5 1.09 0.10
Adware 174 8 3.86 0.09
Avicena 163 8 3.29 0.07
BridgeMonitoring 90 8 �� 1.90 0.09
Docked_Gae 96 7 2.39 0.06
eTrade_Web 22 14 0.31 0.06
IrssiNotifierWP7S 21 11 0.52 0.10
Smsr 435 10 19.1 0.08
TribalEducationN 38 6 �� 1.07 0.07
uratalk 8 5 0.23 0.08
� automatic detection
� manual detection

Table 1: Evaluation Results

for security issues). On the other hand, a tool has been developed
as plugin under the Eclipse[22] platform with the purpose of au-
tomatically extract security models out of existing configurations.
Both tools are available on GitHub4.

7. RELATED WORK
Several other works tackle the problem of extracting access con-

trol policies from dynamic web applications. However, they are
either focused in specific kinds of applications such as CMSs, or
focused in recovering only the low level, inter procedural access-
control enforcement. Our work focuses instead in recovering the
security configurations of any Java EE web application covering
the mechanisms provided by web application frameworks.

Concretely, in [1] the authors use dynamic analysis techniques to
extract SecureUML models from PHP web applications. Also for
PHP applications, in [15] inter-procedural privilege violations are
detected by analyzing automata’s extracted from the source code.
In [7] a similar approach is studied for the Moodle Web Learning
Platform. Finally, not focused in web applications but on Java code,
the authors present an approach to perform interprocedural privi-
lege analysis for Java applications [13]. All these works focus on
extracting some security information by analysing the run-time be-
haviour of the application instead of doing a static analysis of the
defined access-control policies responsible for that behaviour, as
we do. More similar to the present work, in [19] the authors present
a security metamodel and reverse engineering approach specially
tailored to extract the security configurations of web Content Man-
agement Systems (CMS) (a similar language is presented in [23]).
Instead, we do not restrict ourselves to a specific class of applica-
tions.

Regarding (web) security DSLs in [18] an RBAC profile for
UML models is presented. UmlSEC, another extension of the UML
language to high-level security requirements is introduced in [10]
and used in [11] to model high-level security properties (require-
ments) for forward engineering purposes. More focused in web
applications, web modeling approaches like [12] and [4] include

4https://github.com/atlanmod/web-application-security

specific security constructs, at least to specify users and roles and
their access permissions on parts of the web navigation model.

We consider however that a better starting point for a security
analysis requires a more specific security metamodel. Moreover,
none of those frameworks and languages provide a reverse engi-
neering approach to automatically obtain corresponding models out
of existing Java EE security configurations. In this sense our ap-
proach could be a good complement to them by acting as a pivot
model, as translations from our language to those other represen-
tations would be possible, for instance, as part of a reengineering
horse-shoe model.

8. CONCLUSION
We have presented a model-driven reverse engineering approach

to extract access-control policies from the diverse security configu-
ration mechanisms of Java EE web applications. As a result of the
process, a platform-independent access control model integrating
in a single place the various partial security constraints is created,
facilitating the comprehension and analysis of the policies. We
have demonstrated the feasibility and pertinence of our approach
by developing a proof of concept tool that we have applied on a set
of real projects retrieved from GitHub.

As future work, we envisage several possible extensions. First of
all, we believe that a forward engineering approach aiming at the
automatic deployment of corrected-refactored policies would be a
natural evolution of our approach. Then, we believe that extend-
ing it to include other security configurations is equally interest-
ing. In that sense, we intend to extend our approach to include:
1) programmatic security constraints, 2) other sources of security
configurations (e.g. from the underlying database system) to obtain
a more complete version of the system security as a whole and 3)
more complex frameworks built on top of Java EE (who typically
provide their own security mechanism) as the Spring framework.

Finally, and following the path opened in Section 4 with the en-
coding and evaluation of a security property as an OCL query, we
intend to extend our approach and tool to define and automatically
analyse a set of important security properties beyond the correcte-
ness property described here.

9. REFERENCES
[1] M. H. Alalfi, J. R. Cordy, and T. R. Dean. Recovering

role-based access control security models from dynamic web
applications. In ICWE’12, pages 121–136. Springer, 2012.

[2] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró. A graph
query language for emf models. In ICMT’11, pages 167–182.
Springer, 2011.

[3] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot. Modisco: A
model driven reverse engineering framework. IST,
56(8):1012–1032, 2014.

[4] S. Ceri, P. Fraternali, and A. Bongio. Web modeling
language (webml): a modeling language for designing web
sites. Computer Networks, 33(1):137–157, 2000.

[5] V. Cosentino, J. Cabot, P. Albert, P. Bauquel, and
J. Perronnet. A model driven reverse engineering framework
for extracting business rules out of a java application. In
RuleML’12, pages 17–31. Springer, 2012.

[6] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of
access-control policies. In ICSE’27, pages 196–205. ACM,
2005.

[7] F. Gauthier, D. Letarte, T. Lavoie, and E. Merlo. Extraction
and comprehension of moodle’s access control model: A

case study. In PST’11, pages 44–51. IEEE, 2011.
[8] H. Hu, G.-J. Ahn, and K. Kulkarni. Anomaly discovery and

resolution in web access control policies. In SACMAT’11,
pages 165–174. ACM, 2011.

[9] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: a
model transformation tool. Science of Computer
Programming, 72:31–39, 2008.

[10] J. Jürjens. UMLsec: Extending UML for secure systems
development. In UML’02, pages 412–425. Springer, 2002.

[11] J. Jürjens, J. Schreck, and P. Bartmann. Model-based security
analysis for mobile communications. In ICSE’08, pages
683–692. ACM, 2008.

[12] N. Koch and A. Kraus. The expressive power of uml-based
web engineering. In IWWOST’02, volume 16. CYTED, 2002.

[13] L. Koved, M. Pistoia, and A. Kershenbaum. Access rights
analysis for java. In ACM SIGPLAN Notices, volume 37,
pages 359–372. ACM, 2002.

[14] Y. Ledru, N. Qamar, A. Idani, J.-L. Richier, and M.-A.
Labiadh. Validation of security policies by the animation of z
specifications. In SACMAT’11, pages 155–164. ACM, 2011.

[15] D. Letarte and E. Merlo. Extraction of inter-procedural
simple role privilege models from php code. In WCRE’09.,
pages 187–191. IEEE, 2009.

[16] X. Li and Y. Xue. A survey on server-side approaches to
securing web applications. ACM Computing Surveys
(CSUR), 46(4):54, 2014.

[17] H. Lockhart, B. Parducci, and A. Anderson. OASIS XACML
TC, 2013.

[18] T. Lodderstedt, D. Basin, and J. Doser. Secureuml: A
uml-based modeling language for model-driven security. In
UML’02, pages 426–441. Springer, 2002.

[19] S. Martínez, J. Garcia-Alfaro, F. Cuppens,
N. Cuppens-Boulahia, and J. Cabot. Towards an
access-control metamodel for web content management
systems. In ICWE MDWE’13 Workshop, pages 148–155.
Springer, 2013.

[20] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for
role-based access control: towards a unified standard. In
RBAC’00, pages 47–63. ACM, 2000.

[21] Selenium, a portable software testing framework for web
applications. http://www.seleniumhq.org/.

[22] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF: Eclipse Modeling Framework 2.0. Addison-Wesley
Professional, 2nd edition, 2009.

[23] V. Svansson and R. E. Lopez-Herrejon. A web specific
language for content management systems. In OOPSLA
DSM Workshop, Montréal, Canada, 2007.

