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How to bid in unified second-price auctions when
requests are duplicated

Benjamin Heymann, Criteo

32 rue Blanche, 75009 Paris, France. b.heymann@criteo.com

Abstract

In display advertising auctions, a unique display opportunity may trigger many
bid requests being sent to the same buyer. Bid request duplication is an issue:
programmatic bidding agents might bid against themselves. In a simplified
setting of unified second-price auctions, the optimal solution for the bidder is
to randomize the bid, which is quite unusual. Our results motivate the recent
switch to a unified first-price auction by showing that a unified second-price
auction could have been detrimental to all participants.
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1. Introduction

A large portion of the internet is financed by ad placements on publishers’
websites. Those ad placements are sold either through guaranteed contracts
or through auction markets called Real-Time Bidding (RTB) [1, 2]. While
guaranteed contracts decide in advance the number of displays and the sale price,
RTB markets take place in real-time - as the name suggests- via programmatic
buying while the page is loading in the user’s browser.

The Waterfall. Until recently [3], publishers mostly relied on the waterfall logic
[4], which we describe hereafter. First, the publisher (e.g., The NY Times)
sets in advance a floor price for each ad exchange. Then, when the user loads
the page, the publisher’s ad server calls the ad exchanges sequentially. The
publisher might rely on an intermediate piece of technology called the Supply
Side Platform (SSP, e.g., DoubleClick for Publishers, Rubicon Project for Sellers
and MoPub) for this purpose. The ad exchanges (e.g., DoubleClick Ad Exchange
and AppNexus) host internal auctions. The Demand Side platforms (DSP, e.g.,
MediaMath and Criteo) receive the bid requests from the ad exchanges they
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are connected to, and bid in the name of their clients: the advertisers. Once
the ad exchanges have received the bids from the DSPs, they send the clearing
prices back to the publisher. The waterfall logic follows a fixed priority order,
and allocates the impression to the first ad exchange that proposes a bid above
its floor.

Header Bidding. The waterfall logic has several drawbacks. In particular, it
increases the latency of the user experience, and the allocation is not efficient
(a low bid in a high ranked exchange might beat a high bid in a low ranked
exchange). To tackle those drawbacks, the waterfall logic has been progressively
replaced by Header Bidding, in which the ad exchanges themselves participate
in a first-price auction. That is, the ad exchange with the highest bid wins the
auction and pays its bid.

When Header Bidding was introduced, the most common setup was a two-
step auction mixing first and second pricing rules [5, 6]: in the first step, several
ad exchanges hosted a second-price auction – the highest bidder wins the auction
and pays the second highest bid – and during the second step, they used their
clearing price as a bid in a final first-price auction. This mechanism is not
efficient [7]: the highest bidder may still not get the item. This motivated a
switch to a more efficient and less obscure mechanism. The natural candidates
would have been a second-price auction both in the ad exchanges and in the
SSP, or a first-price auction both in the ad exchanges and in the SSP. In this
paper, we provide an argument against the use of a unified second-price auction,
which is describe more precisely in §3. This is an important argument, but we
do not claim that this is the only reason why the unified first-price auction -
in which only first-price auctions are hosted, and intermediate winning bids are
send to the next stage- was eventually chosen. Despotakis et al. [8] provide
another interesting perspective centered on the publisher and the ad-exchanges.

Requests Duplication. If several ad exchanges are connected to the publisher,
the DSPs receive duplicated bid requests, and hence bid several times for the
same impression. Besides, some DSPs are directly connected to the publisher’s
header bidding wrapper, which might increase even more the multiplicity of the
requests.

In a nutshell, when an internet user reaches a publisher page containing some
display inventory, it triggers a chain of calls that ends up in the servers of the
buying side: the advertiser’s Demand Side Platform (DSP). The request is then
handled by a programmatic bidding agent that implements the buyer’s bidding
strategy. The request travels through intermediaries before getting to the end
buyer’s server. Due to the complexity of the chain of calls and the multiplicity
of intermediates (in particular, more than one intermediate can be plugged to
the publisher page), it may happen that a buyer is called several times for the
same display opportunity (see Figure 1): the bid requests are then said to be
duplicated.

Bid request duplication is a challenging issue for display advertising buyers
[9, 10]. We can picture the duplication problem this way: it is possible that
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Figure 1: A user reaching a page triggers a chain of calls that end up in the buyer’s servers. At
bidding time, the bidding agent might not know that other bidding agents of the same buyer
are bidding for the same opportunity. Hence, his bid will be facing not only the aggregated
competition, but also the bids of his fellow bidding agents. Moreover, if the agent cannot tell
apart Channel1 from Channel2, then its bidding strategy is bound to be the same on those
two channels.

several programmatic bidding agents of the same buyer receive a bid request
without knowing whether the other agents have received a (duplicated) request
and whether they are going to bid. Indeed, the time scale involved to answer
the request is so short (less than 100 ms) that it can be technically impossible
(or at least very challenging) for the buyer to synchronize the servers’ behaviors.

It is hard to assess the prevalence of duplication overall, since it is specific
to the advertiser/publisher integration. But it is safe to assume that, at time
of writing, it is more the rule than the exception.

Effect of Duplication on the Buyer’s Cost. This is a cause of sub-optimal bidding
for two reasons: (a) the bidder mistakenly interprets a lost participation as a
higher price to beat, while he may be in fact the winner of the auction on
another request, which results in a bad estimation of the competitions, (b) by
competing against themselves, bidders may increase their costs.

In a second-price auction, it is clear that if we bid more than once for the
same opportunity, we end up paying our bid, as in first-price. This paper focuses
on this first-price effect, which is specific to second-price auctions. Our goal is to
characterize the optimal solution in a simplified setting: a unique second-price
auction is resolved for the allocation of the display and the channels are not
taking any margins.

Why not a Switch to Unified Second-Price?. We explain here why a unified
second-price auction may make the life of the buyer much more complicated
than expected. In the presence of duplications, the unified second-price auction
is too complex for the bidder to be a good design choice.

In practice, there are many ad hoc business rules along the resolution of the
consolidated auction that may slightly contradict with our setting. But we argue
that, since the rules are evolving quickly and are not always fully transparent,
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it is better to focus on one aspect of real auctions and discuss the challenges
this aspect brings.

To the best of our knowledge, this is the first attempt to discuss the issue
of duplicated requests in the literature, despite the fact that it has been a
recurring topic in the industry, which has for now mostly relied on Supply Path
optimisation (SPO) heuristics. Actions that could be taken by a bidder at the
channel level mostly consists of (1) blacklisting the channel, (2) shade the bid
on this channel or (3) answer to only a fraction of the bid requests (sampling)
on this channel.

The optimal solution for the context we envision depends on whether the
bid requests for a given opportunity can be identified by a unique feature such
as the providing channel. As explained in [9, 10], this is not always the case in
practice.

Contributions. The main contributions of this paper are: (1) the modeling of the
bid request duplication issue in unified second-price auctions, (2) the resolution
of the decentralized optimisation problem when the requests are all identical.

Agenda. After a brief introduction of the literature in the next section, we
expose the bidding with duplicates problem in §4 and derive Lemma 1, a tool
from which we will derive the optimal bid formula. We then characterize in §5
the solutions when the requests are all strictly identical. We follow up with a
discussion.

2. Bidding in display advertising auction markets

We refer the reader to [3, 11] for general reviews on Real Time Bidding.
Our work contributes to the literature of marketplace design, but we mostly

take the bidders perspective: the gap we attempt to fill relates to the last step of
bidders’ architecture. Hence, let us briefly indicate some pointers to the design
of bidders. Chapelle et al. [12] provide a very precise description of an industrial
architecture. Yet, the bidder they describe (1) uses a last touch attribution, (2)
is operating in an incentive compatible world.

The question of attribution is a very active track of research. For instance,
some researchers propose the use of multi-touch attribution [13, 14, 15] which
aims at allocating conversion credits to each display. In [16], Diemert et al. de-
rive from an attribution model a bid modifier that outperforms the benchmarks.

Besides, [12] does not take into account the business constraints of the adver-
tiser (which have an impact on the value of the display opportunity). Another
track of research relates to the study of the impact of the advertiser’s business
constraints on the optimal bid and the market. Zang et al. derive an optimal
solution for the budget constrained bidding problem [17]. In [18], Balseiro et
al. study the impact of budget constraints on advertiser behavior by combining
queuing theory and mean field approaches. The notion of pacing algorithms
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[19, 20] emerged from the need to dynamically implement such business con-
straints. Heymann [21] provides an analysis of the impact of CPA constraints
in the buyer optimisation problem on the market outcomes.

In this work, we take for granted the fact that the bidder is able to esti-
mate the economical value of the display opportunity. Hence, the questions of
attribution and business constraints are orthogonal to ours.

Another category of research questions is the derivation of tools for trans-
forming an economical value estimation into a bid. Ren et al. [22] propose
to frame the problems of utility and competition estimation as well as the bid
optimisation into a unique problem. Cai et al. [23] introduce a reinforcement
learning based approach to take into account the competition landscape evolu-
tion. Nedelec et al. introduce a technique for the buyer to mitigate the loss of
profit due to the seller’s reserve price optimisation strategy [24, 25]. Their pre-
sentation use functional analysis tool, while Tang et al.’s is based on quantiles
[26]. Our work belongs to this category. We do not envision the use of reserve
prices for the sake of simplicity. We also assume that we are able to estimate
the competition.

Since our work studies a rule change on a marketplace, we should mention
those studies on soft floor auctions [27], waterfall auctions [4], as well as this
seminal work [28] on Generalized second-price auctions for Search. While those
are relevant mostly from a general context perspective, [8] study the switch to
first-price auction of display advertising markets, but with the perspectives of
the ad exchanges and the publisher.

As already mentioned, we are not aware of any modeling attempts of the
duplicated request problem. Because this problem can be seen as a decentral-
ized control problem, this work owes some inspirational credits to [29], who
introduced a powerful framework to model information in decentralized control.

3. The unified second-price auction

We assume the auction follows the following steps when an item is auctioned:

1. The seller (the publisher) sends a bid request to the ad exchanges

2. Each ad exchanges sends a bid request to its potential buyers

3. The potential buyers answer the ad exchanges bid requests

4. Each ad exchanges i discover its highest bid xi and its second highest yi
5. The xi are sent to the seller as bid

6. The seller host a second-price auction. The highest xi makes ad exchanges
i win the item. The channel is billed the second highest x(2).

7. The highest bidder in ad exchanges i get the item, and is billed by the ad
exchanges max(x(2), yi)

With such a payment rule, this setting is equivalent to the one drawn in Figure
1 from the bidder perspective.
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4. The Duplicated Requests Bidding Problem

In this section, we construct a static analysis of the situation faced by the
bidding agents in the presence of duplicated requests. We derive in Lemma 1
a formula of the buyer’s expected utility that will be used in the subsequent
sections.

We take the viewpoint of a buyer who values the opportunity v > 0 (hence,
the distribution of v will not appear in the discussion). In the following, we
assume everything is conditioned on the features of the opportunity: the com-
petition, the buyer’s bidding strategy, the distribution of requests we might
receive for this opportunity at this point in time... In practice, the stochastic
patterns of the environment are learned by machine learning algorithms that
use the display opportunity features as input.

We focus on the case where the requests received at the same time for the
same display opportunity are all identical. This can be caused by integration
redundancy: an intermediary is plugged twice to the same inventory. In practice,
two requests for the same opportunity may differ on channel related information
(source), but we trade-off simplicity against generality, and focus on the closed
form expression we derive.

The bidding strategy of the buyer is technically bound to be the same on
requests that are identical. As we will see thereafter, the buyer needs to ran-
domize its bid to reach optimality. We need to look for a solution in the class
of distributions on [0, v], which is a super-set of both the shading strategies and
the sampling strategies. We denote by K : t ∈ [0, v] → [0, 1] the cumulative
distribution of the buyer’s bid b.

Let b− be the highest bid of the competition in the consolidated auction
(the price to beat), G its cumulative distribution and g its density distribution.
We denote by bi the ith highest bid of the buyer. The buyer wins the auction
whenever b1 > b−. In this case, by definition of the second-price auction, he
will be billed max

(
b−, b2

)
. The payoff of the buyer is its net utility

[b1 > b−]
(
v −max

(
b−, b2

))
,

where for any Boolean variable X, [X] ∈ {0, 1} and [X] = 1 when X (it is
sometimes called the characteric function of X and written 1X).

The buyer’s expected payoff maximization problem is

max
K

E[b1 > b−]
(
v −max

(
b−, b2

))
,

with b− being distributed according to the cumulative distribution G, indepen-
dently of the other bid.

We have now all we need to introduce an intermediate result that will be
used in the subsequent sections.

Lemma 1 (Payoff). The expected payoff of a buyer receiving n identical requests
is ∫ v

0

K(t)n−1G(t)n−K(t)n (G(t)(n− 1) + g(t)(v − t)) dt.
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Proof. We compute separately the terms E[b1 > b−] and E[b1 > b−] max
(
b−, b2

)
.

We remind the reader that the cumulative distribution of the maximum of n
independent random variables is the product of their cumulative. For the first
term we get ∫ v

0

G(t)
∂Kn

∂t
(t)dt = G(v)−

∫ v

0

g(t)K(t)ndt,

while the second term rewrites

n

∫ v

0

k(t)

∫ t

0

u(∂uGK
n−1)(u)dudt =

n

∫ v

0

k(t)(tG(t)Kn−1(t)−
∫ t

0

G(u)K(u)n−1du)dt.

Then, by applying an integration by part on the two terms of the previous
expression, we get

n

∫ v

0

k(t)tG(t)Kn−1(t)dt =

∫ v

0

tG(t)∂tK(t)ndt

= vG(v)−
∫ v

0

(tg(t) +G(t))K(t)ndt

and

n

∫ v

0

k(t)

∫ t

0

G(u)K(u)n−1dudt =

∫ v

0

G(t)n(K(t)n−1 −K(t)n)dt

We get the result by summing everything.
We combine regularization of K by convolution with smooth functions and

the continuity of (1) with respect to K for the L∞ norm to extend to the case
where K has a discontinuity.

5. Optimal Bid

In this section, we assume a channel is calling the buyer several times (say
n times) with exactly the same request, for the same opportunity. From a
technical perspective, it may not be possible for the buyer to select one request
to answer to, as the involved time scales are too short to allow for a grouping
of all the requests for the same opportunity at bidding time. Thus, the buyer is
restricted to apply the same strategy to all requests. The main results in this
section tell us that the standard strategies (such as shading or sampling) may
fail to find the optimal bid when requests are duplicated.

The following result can be deduced from the previous one.

Lemma 2. We can restrict the bid (without loss of optimality) to be valued in
the support of g.
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And now comes one of the main result.

Theorem 1 (Optimal Strategy for Identical Requests). For a bidder receiving
n identical requests, let

H(t) =
(n− 1)G(t)

g(t)(v − t) + (n− 1)G(t)
,

for t in the support of g. If H is non-decreasing, then it maximizes the buyer’s
expected payoff.

Proof. Let K be a maximizer of the buyer’s payoff. For any ε ∈ [0, 1], t ∈ [0, v],
we define

Kt,ε := (1− ε)K(t) + εH(t).

Observe that for i ∈ N

Ki
t,ε −Ki

t = iεK(t)i−1(H(t)−K(t)) + o(ε).

Therefore the increment of payoff when replacing K by K.,ε is:∫ v

0

εK(t)n−2(H(t)−K(t))(n(G(t)(n− 1)

+g(t)(v − t))K(t)− (n− 1)G(t)ndt

+o(ε) =

εn

∫ v

0

K(t)n−2(G(t)(n− 1)

+g(t)(v − t))(H(t)−K(t))2dt+ o(ε).

So for ε small enough, this quantity is strictly positive if K 6= H (on a non zero
measure set), and K.,ε is admissible which is in contradiction with the optimality
of K. QED

This result is counter intuitive: we insist that the optimal solutions identified
here are not in the same class of functions as the one traditionally used to solve
bidding problems. This result puts into perspective the intuition that shading or
sampling is the right thing to do in the presence of duplicated identical requests.
Moreover, it shows that despite the supposedly simplifying second-price rule, the
computation of the optimal bidding strategy is quite complex.

What happens when H is not increasing? We build an example using the
following probability density function: g(t) = 0.01 for t < 0.25 and t > 0.75,
g(t) = 1.99 else. We plot the resulting functions g, G and H in Figure 2. Here
is an intuition from optimal control theory: assuming the existence of the bid
density distribution k(t), the buyer’s payoff is

n

∫ v

0

K(t)n−1G(t)(1 + k(t)(v − t)−K(t)).
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Figure 2: It is easy to build a distribution g (in red) so that the condition on H for Theorem
1 is not met. Indeed, in this example H cannot be a cumulative distribution (not monotone).
However, the solution identified in Theorem 1 can be adapted (see discussion in the text).

Then, observe that optimizing the payoff is not that different from solving an
optimal control problem with k(t) ∈ [0, kmax] as a control and K(t) as a state
(one need to add a final constraint on K(v), but it does not matter for our
conclusion). Because the Hamiltonian of the system is affine in the control k
the Pontryagin’s Maximum Principle (PMP) indicates that either k is bang-
bang (so we either have a Dirac of bid or no bid) or the term in factor of k
in the Hamiltonian cancels. If we denote by p the costate, this implies that
nKn−1Gk(v − t) = −p. By the PMP, the time derivative of this quantity is
equal to n(n − 1)Kn−2G(t)(1 − k(t)(v − t)) − n2Kn−1(t), which implies that
K(y) = H(t). Hence on an interval over which the control is not bang-bang, we
shall have K(t) = H(t).

To illustrate Theorem 1, take v = 1, G(t) = t, and n = 2. Then K(t) = t.
One can check that the buyer’s expected payoff is 1/3 when using the randomized
strategy, while he would only get 1/4 by applying the optimal shading strategy.

We now pinpoint an easy extension:

Theorem 2 (Extension to stochastic number of requests). If we receive n re-
quests with probability pn, then we can adapt Theorem 1 by setting

H(t) =

∑
n pnG(t)(n− 1)∑

n png(t)(1− t) +G(t)(n− 1)

Proof. The adaptation of the proof of Theorem 1 is straightforward.

6. Discussion

When the features of the bid requests allow the bidder to identify them
individually, the bidder can then design one bidding strategy per type of request.
We were not able to derive a closed-form solution in this situation.
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probability \channel c1 c2 c3

1/3 1 1 1
1/3 1 0 1
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Figure 3: Here we suppose that we can define channel-specific strategies, and we illustrate on
an example why greedy blacklisting approaches may fail to find the best blacklisting strategy.
Suppose v = 2, the price to beat is 1 (constant), and there are 3 channels, c1, c2 and c3. We
receive a request from the three channels with probability 1/3. Channel c1 is missing with
probability 1/3 and c2 is missing with probability 1/3. Observe that if we bid on only one
channel, we might lose the opportunities that were not sent through this channel. On the
other hand, if we bid everywhere, we might end-up second pricing ourselves. We suppose that
we start with all channels turned on, and apply iteratively blacklisting/whitelisting decisions
to improve our payoff. If we start with the three channels ci turned on, then blacklisting
channel c1 or c2 brings 1, while blacklisting c3 brings 2. However, the best solution is to keep
only c3. Hence a greedy search might miss the optimal blacklisting solution.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.00

0.06

0.12

0.18

0.24

0.30

0.36

0.42

Figure 4: Here we suppose that we can define channel specific strategies. The expected payoff
as a function of the bids on channel 1 and channel 2. We set the probability of being called
by only one channel equal to 0.3 each, and the probability to be called by both at the same
time equal to 0.4 and the competition is uniform on [0.1] and v = 1. We note that even in
this simple situation, the expected payoff is not convex. This illustrate the fact that finding
an optimal shadding strategy might be complicated in practice.
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One important special case is the following. If requests across channels have
different features, and hence there is one bidding strategy per request, then there
is no need for the bidder to randomize. A shading strategy is enough. In this
case the optimisation problem is not convex (cf. Figure 4). Even if the bidder
restricts himself to blacklisting strategies, he may still miss the optimal. This
is illustrated by the example in Figure 3. Hence while A/B tests appear quite
attractive to decide which channels to turn on or off, they may fail to provide
satisfying answers, as illustrated with the example. (More generally solutions
with greedy approaches or local approaches are unlikely to succeed in finding
the optimal channel selection)

We observe that if the bidder bids optimally, the randomization implies a
loss of social welfare. The buyer with the highest valuation may not get the
item.

Moreover, if the bidder uses a shading strategy, it may also be detrimental
for the seller. If we take for instance a bidder facing a uniform distribution
on [0,1] for an opportunity valued at 1 and receiving two requests, then: (1) if
the bidder does not react to the duplication, he will be paying 1 to the seller,
(2) if the bidder randomizes according to K(t) = t, he would be paying 1/3
on average. By comparison, (3) if the bidder were offered a real second-price
rule, the bidder would be paying 0.5 on average, hence, in the presence of an
informed buyer, it is not in the interest of the seller to send duplicated requests.

To our knowledge, this is the first academic work on bid request duplications.
We show that standard strategies (shading, sampling, incremental tests) may
fail to find the optimal bid in a unified second-price auction because of requests
duplication. In particular, the truth-fullness property of the standard second-
price auction is lost (even in a non-repeated setting). This undesired complexity
is an argument in favor of the recent market move to unified first-price auctions.
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