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Abstract
1. Agricultural intensification is one of the main drivers of species loss worldwide, 

but there is still a lack of information about its effect on functional diversity of 
arable weed communities.

2. Using a large-scale pan European study including 786 fields within 261 farms from 
eight countries, we analysed differences in the taxonomic and functional diversity 
of arable weeds assemblages across different levels of agricultural intensification. 
We estimated weed species frequency in each field, and collected species' traits 
(vegetative height, SLA and seed mass) from the TRY plant trait database. With 
this information, we estimated taxonomic (species richness), functional composi-
tion (community weighted means) and functional diversity (functional richness, 
evenness, divergence and redundancy). We used indicators of agricultural man-
agement intensity at the individual field scale (e.g. yield, inputs of nitrogen ferti-
lizer and herbicides, frequency of mechanical weed control practices) and at the 
landscape scale surrounding the field (i.e. number of crop types, mean field size 
and proportion of arable land cover within a radius of 500 m from the sampling 
points).

3. The effects of agricultural intensification on species and functional richness at 
the field scale were stronger than those of intensification at the landscape scale, 
and we did not observe evidence of interacting effects between the two scales. 
Overall, assemblages in more intensified areas had fewer species, a higher preva-
lence of species with ruderal strategies (low stature, high leaf area, light seeds), 
and lower functional redundancy.
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1  | INTRODUC TION

Agriculture is the most widespread land use in Europe, occupying 
roughly 40% of total land area of the EU-28 (Eurostat, 2018) and 
harbouring a large part of the continent's biodiversity (Emmerson 
et al., 2016). Intensification of agricultural management over re-
cent decades has substantially increased crop yields, but the as-
sociated environmental costs have been a significant cause for 
concern for some time (Chamberlain, Fuller, Bunce, Duckworth, & 
Shrubb, 2000; Matson, Parton, Power, & Swift, 1997). Consequently, 
land use change and agricultural intensification are the principal 
drivers of species loss worldwide (Green, Cornell, Scharlemann, & 
Balmford, 2005; Tilman et al., 2001). Agricultural intensification 
can also affect which species are present in assemblages depend-
ing on their traits, therefore changing functional diversity (Cadotte, 
Carscadden, & Mirotchnick, 2011; Flynn et al., 2009). The loss of 
diversity can, in turn, affect the structure and functioning of eco-
systems, potentially threatening the provision of ecosystem services 
that sustain our livelihoods (de Bello et al., 2010; Tscharntke, Klein, 
Kruess, Steffan-Dewenter, & Thies, 2005). In this context, arable 
weeds are particularly important for ecosystem services delivered 
by pest control agents or pollinators (Brooks et al., 2012; Ebeling, 
Klein, Weisser, & Tscharntke, 2012; Scherber et al., 2010), providing 
the resource base in trophic and mutualistic networks in arable sys-
tems. As a result, they determine to a high degree the diversity and 
composition of the associated biota, that is, insects, birds and mam-
mals (Butler et al., 2010; Eraud et al., 2015; Evans, Pocock, Brooks, 
& Memmott, 2011).

Increases in yields in agricultural production associated with 
intensification result from changes occurring at two main scales 
(Emmerson et al., 2016): (a) at the level of the individual field (where 
practices such as use of high-yielding crop varieties, mechanization, 
irrigation, and pesticide and fertilizer application directly affect plant 
communities; Donald, Sanderson, Burfield, & van Bommel, 2006; 
Geiger et al., 2010) and (b) at the level of the surrounding landscape 
(processes that lead to smaller species pools and less connectivity, 
reducing colonization probability; Sirami et al., 2019; Tscharntke 
et al., 2012). Different taxonomic groups are likely to respond to 
different scales of intensification because species vary in many 
ways, including mobility, range size, dispersal ability and sensitivity 
to agricultural disturbance activities (Billeter et al., 2007). For ex-
ample, plant diversity can respond more to local management than 

to landscape complexity (Aavik & Liira, 2010; Guerrero, Carmona, 
Morales, Oñate, & Peco, 2014), while the opposite can occur for mo-
bile vertebrates (Gonthier et al., 2014).

Despite their adaptations to the particular selection pressures in 
agricultural fields (Sutherland, 2004), the diversity of arable weeds 
has been strongly affected by intensification. The effects of inten-
sification on arable weeds are most noticeable at the individual 
field scale, where a range of management practices focus on reduc-
ing their presence and potential impacts on crop yield (Emmerson 
et al., 2016; Storkey, Meyer, Still, & Leuschner, 2012). The effective-
ness of some of these actions has been called into question, since 
they are more effective at removing rare plant species than at reduc-
ing the densities of competitively dominant and abundant ones (Petit 
et al., 2016). Here, landscape complexity can play a significant role 
in maintaining species diversity in arable fields, providing an abun-
dant source of seeds from ruderal habitats and field edges (Gabriel, 
Thies, & Tscharntke, 2005). Beyond reducing species richness, man-
agement intensity does not affect all arable weed species in the 
same way. Some species with specific traits or trait combinations 
are better able to cope with high management intensities (Guerrero 
et al., 2014). Previous studies have shown lower diversity of func-
tional traits in arable weed assemblages from more intensively man-
aged fields, suggesting that intensification is associated with biotic 
homogenization (Guerrero et al., 2014; Hevia et al., 2016). This biotic 
homogenization is further compounded by the loss of functional re-
dundancy along the intensity gradient, with more intensified areas 
hosting assemblages that are more vulnerable to species losses 
(Carmona, Guerrero, Morales, Oñate, & Peco, 2017).

Differences in climatic conditions and the size and composition 
of species pools can further complicate the study of intensification 
effects on diversity. Species identity, community composition, tro-
phic complexity and trait diversity might all differ biogeographically 
and therefore the effects of agricultural management intensity 
might differ across biogeographical regions. Despite the urgent need 
for regional- and landscape-scale (large scale) studies that encom-
pass a larger variety of conditions, most of our understanding about 
the effects of agricultural management intensity on plant diversity 
comes from studies performed at field scales (local scales). The few 
studies analysing the effects of land use change at continental or 
global scales come from meta-analyses that do not focus exclusively 
on agricultural management intensity, rather they provide insights 
from a synthesis of studies with a variety of experimental designs 

4. Maintaining the diversity of Europe's arable weed communities requires some sim-
ple management interventions, for example, reducing the high intensity of field-
level agricultural management across Europe, which could be complemented by 
interventions that increase landscape complexity.
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(Laliberté et al., 2010; Martin et al., 2019). In this sense, coordinated 
efforts across different countries with common sampling meth-
ods are much needed, providing important details of the effects of 
agricultural intensification on taxonomic and functional diversity 
(Emmerson et al., 2016).

In this paper, we examine the effects of agricultural intensifica-
tion, at the local field and landscape level (in a radius of 500 m), on the 
diversity of arable weeds assemblages in fields of cereal-dominated 
agroecosystems. We analyse a large-scale dataset originally collected 
using standardized methods (see Emmerson et al., 2016 for a detailed 
description of the project), and including nine study areas from eight 
European countries providing strong gradients in agricultural intensity 
and environment both within regions and between regions. Within 
these regions, we selected fields that differ in the values of agricul-
tural management variables that are commonly used as proxies for 
agricultural intensification. This space-by-time substitution enabled 
a characterization of differences in the impacts of intensification on 
local diversity between biogeographical regions. In the present study, 
we aim to (a) identify the relevant scale (individual field or landscape 
scale) at which agricultural intensification is most strongly associated 
with local arable weeds diversity; (b) evaluate whether taxonomic and 
functional diversity respond in similar ways to intensification; (c) in-
vestigate how intensification promotes certain functional trait values, 
leading to changes in the functional diversity and composition of as-
semblages and (d) characterize the type of arable weeds communities 
favoured by current intensification trends.

2  | MATERIAL S AND METHODS

2.1 | Study areas, farms and fields

Fieldwork was performed in cereal farms in nine study areas (Sweden, 
Estonia, Poland, eastern and western Germany, the Netherlands, 
Ireland, France and Spain). In each study area, 30 farms separated 
by at least 1 km were selected, and considered to be representative 
of a gradient of regional agricultural intensification. Given the diver-
sity of agricultural management practices and the scale of manage-
ment units in the different countries involved in the study, individual 
farms were considered the ecological unit under study, and for the 
purposes of the study each was recognized as a set of one or more 
fields, separated by a distance of not more than 1 km, which were 
cultivated by the same farmer (owned or leased), and occupying an 
area not exceeding 1 km2. These farms were situated in regions be-
tween 30 × 30 and 50 × 50 km2 in area, in order to limit within-region 
variation in the size of species pools and β-diversity, and to avoid 
an excessive heterogeneity of landscapes and soil types within each 
study area. Farms were selected so that the range of cereal produc-
tivity in the sample was as large as possible, based on information 
obtained from the farmers on cereal yields in the 3 years preceding 
the study, and with a representative and even distribution across the 
gradient of productivity in each area. Only cereal crops were sam-
pled on each farm (mainly winter wheat: 80% of the fields; if wheat 

was not available on the farm, winter barely was used). Sampled 
fields were never smaller than 1 ha in size nor irrigated. Sampling 
took place from June to July 2007, and was synchronized using the 
phenological stages of winter wheat in each study area (i.e. always 
during the flowering to milk ripening period within each study area). 
To further avoid phenological effects, the sequence of farm sam-
pling was randomized over the yield gradient within each study area.

For each farm, five sampling points distributed over a maximum 
of five arable fields were selected for plant sampling. When there 
were fewer than five fields available, the points were stratified in 
proportion to size of sampled fields. Sampling points were laid paral-
lel to grassy (never woody) field borders and at 10 m distances from 
the border towards the field centre. Weeds were sampled in three 
2 × 2 m2 quadrats per sampling point, placed parallel to the field 
edge and separated 5 m from each other.

2.2 | Vegetation sampling and agricultural 
management information

We identified the weed species (i.e. all vascular plant species except 
the crops) present in each sampling quadrat. Then, we pooled the 
three quadrats within each sampling point, obtaining the frequency 
of presence of each species in each sampling point. A four-point 
scale of local abundance was used ranking sampling locations from 
0 (absent) to 3 (present in the three quadrats). Following Guerrero 
et al. (2014), all subsequent analyses were performed at the sampling 
point level (since we consider the sampling point as representative 
of the local community of arable weeds, for brevity we will refer to 
them as ‘assemblages’ from now on).

We measured six indicators of agricultural management inten-
sity both at the individual field and at the surrounding landscape 
scales (Table 1). The indicators of agricultural management intensity 
associated with the individual field scale were assessed by means of 
questionnaires, undertaken in person with the farmers responsible 
for managing the sampled fields, and included measures of yield and 
inputs of nitrogen fertilizer and herbicides. We used digital maps cre-
ated from remotely sensed images from each study area to estimate 
the indicators of agricultural management intensity associated with 
the landscape scale. These landscape scale measures included the size 
of the focal field and two measures of landscape structure that were 
quantified within a radius of 500 m around each sampling point, these 
were mean arable field size and the proportion of arable land cover.

Given the multidimensional nature of agricultural intensification, 
which encompasses many correlated variables, dimensionality re-
duction is a common way to estimate it (Carmona et al., 2017; Flohre 
et al., 2011). Accordingly, following Guerrero et al. (2014), we per-
formed a principal component analysis (PCA) on these indicators of 
agricultural management intensity. We retained two orthogonal axes 
that explained 62% of the total variance (Table 1; Figure S1). The 
first axis (PC1) was related to management practices at the individual 
field level (contributed by yield, and the number of herbicide and 
nitrogen fertilizer applications). The second axis (PC2) was related to 



the structure of the surrounding landscape (and was defined by sam-
pled field size, mean arable field size and percentage cover of arable 
crops). We used these axes to produce estimations of agricultural in-
tensity at the local field and landscape level, respectively (Table S1).

2.3 | Functional trait information and diversity  
estimation

We collected functional traits for the species found in the vegetation 
surveys from the TRY database (Kattge et al., 2020; Appendix S1). 
We chose three traits that are related to plant strategy for resource 
capture and allocation: SLA, vegetative plant height and seed mass 
(Westoby, 1998). These traits reflect different strategies in plant 
dispersal, establishment, persistence and response to disturbances 
(Díaz et al., 2016), and are related to ecosystem functions such as 
soil multifunctionality, decomposition rate or herbivory (de Bello 
et al., 2010; Peco, Navarro, Carmona, Medina, & Marques, 2017; 
Valencia et al., 2018). We estimated the average value for each trait 
and species after excluding outliers (observations >3 SD away from 
the species' mean). The averages for each species and trait combi-
nation were calculated first within individuals (if multiple measure-
ments were taken from a single individual), then within datasets (if 
multiple individuals were measured in the same location) and finally 
within species (if multiple individuals were measured in various lo-
cations). In calculations of functional structure, we only considered 
species for which we had complete trait information, and removed 
the assemblages when less than 80% of the species in that assem-
blage had trait information associated with them. This left a total of 
335 species and 1,235 assemblages (i.e. sampling points) distributed 
in 786 fields within 261 farms in the nine study areas.

Preliminary data exploration showed that the raw data for seed 
mass and plant height were not normally distributed, so these vari-
ables were log-transformed to attain normal distributions. In each 

assemblage, we used species richness (estimated as the number of 
species found in each sampling point) as an indicator of taxonomic 
diversity, and the average trait value (community weighted mean; 
CWM) for each trait as an indicator of the most frequent trait val-
ues, that is, the functional composition of assemblages (Carmona, 
Mason, Azcárate, & Peco, 2015). Furthermore, we calculated sev-
eral indicators of functional diversity in each assemblage. We used 
for this the trait probability density (TPD) approach, which estimates 
probabilistic functional niches of species and assemblages, which 
allow afterwards to estimate several aspects of functional diversity 
(Carmona, Bello, Mason, & Lepš, 2019; Carmona, de Bello, Mason, 
& Lepš, 2016). Since information on intraspecific trait variability was 
not available, the centre of each TPDs function was defined by the 
coordinates corresponding to its three trait values, and the variance 
around it was estimated by means of a fixed kernel bandwidth of 0.5 
SD for each trait (following Lamanna et al., 2014). Subsequently, we 
estimated the TPD function of each sampling point (TPDc) by calcu-
lating a weighted average of the TPDs functions of the species in each 
assemblage, using their relative frequency as a weighting factor (see 
Carmona et al., 2016 for further details). The value of a TPDc function 
for each particular combination of trait values reflects the probability 
of observing that combination in the considered assemblage.

We then used the r package tpd (Carmona, 2019; Carmona 
et al., 2019) to estimate several indicators of functional diversity in the 
assemblages, including functional richness (the amount of functional 
space occupied by the assemblage; Figure 1a), functional evenness (the 
evenness in the distribution of the abundance in the functional trait 
space; Figure 1b), functional divergence (the degree to which the pooled 
abundance is distributed towards the extremes of the functional vol-
ume of the assemblage; Figure 1c) and functional redundancy (the de-
gree to which the species in an assemblage occupy the same functional 
space; Figure 1d). All these indices are described in detail in Carmona 
et al. (2019). Both functional richness and functional redundancy are 
related to species richness (since both indices can only increase as new 

Variable Description
PC1 
(field)

PC2 
(landscape)

Field-level

Yield Cereal grain obtained in focal field 
(tonnes/ha)

0.86 0.02

Amount of 
herbicide

Total amount of herbicide active 
ingredients applied on focal field (g/ha)

0.75 0.19

N fertilizer Total amount of nitrogen applied  
on focal field (kg/ha)

0.86 −0.08

Landscape level

Mean field size Mean size of fields with arable crops 
within a 500 m radius circle centred on 
focal field (ha)

−0.01 0.84

Percentage cover 
of arable crops

Percentage area of arable crops within a 
500 m radius circle centred on focal  
field

−0.03 0.61

Focal field size Size of each surveyed plot's focal  
field (ha)

0.16 0.75

TA B L E  1   Description of the different 
agricultural management intensity 
variables at the field and landscape level 
used in the study, and their loadings in 
the selected principal component analysis 
axes



species are added). To quantify the patterns of association between 
these indices and to ensure independence from the taxonomic aspect 
of diversity, we additionally performed two different corrections. In 
the case of functional richness, we compared the observed value in 
each assemblage for this index with the values expected under random 
species assembly processes; for this, we performed a matrix-swap null 
model, randomizing species within each study area while keeping both 
row and column sums fixed (permatswap function from the r package 
vegan; Oksanen et al., 2018). We estimated 500 null values of func-
tional richness for each assemblage using this procedure, and then 
compared them with the observed value using Standardized Effect 
Sizes (SES; Carmona, Rota, Azcárate, & Peco, 2015; Micó et al., 2020). 
In the case of functional redundancy, the upper bound of this measure 
in an assemblage can also be calculated from species richness minus 
one (S−1); in order to break this correlation, we expressed redundancy 
in relative terms by dividing it by S−1 (Carmona et al., 2019).

2.4 | Statistical analyses

We examined the relationship between the assemblage level metrics 
(species richness, functional CWM of the three traits, functional rich-
ness, evenness, divergence and redundancy) and agricultural intensity 
at the field and landscape levels by means of mixed models (with a 
Poisson distribution in the case of species richness), using the lme4 r 
package (Bates, Mächler, Bolker, & Walker, 2015). The models included 
both intensity indicators (scores in the PCA axes) as explanatory vari-
ables, and field nested in farm nested in study area as random factors, 
to account for the hierarchical study design. We explored whether 
the responses to agricultural intensity were similar across study areas 
for each response variable by fitting a model with random slopes for 
both intensity indicators as random slopes within study areas and a 
model without these random slopes. We compared these two mod-
els with different random structures by means of AIC, and kept for 

F I G U R E  1   Illustration of the selected indices of functional structure. In the TPD framework, the functional structure of an assemblage 
is expressed as a probability distribution (TPDc) whose value in each point in the functional space reflects the relative abundance of the 
corresponding trait in the assemblage. For simplicity, all examples are shown in a single dimension (1 trait), although in the analyses we have 
considered a three-dimensional functional space. Functional richness (a) indicates the amount of functional space occupied by assemblages; 
assemblages with higher functional richness (community 2) display a larger variety of trait values. Functional evenness (b) reflects the 
uniformity in the occupation of the functional space by an assemblage; assemblages with higher functional evenness (community 1) are more 
similar to an imaginary assemblage occupying the same functional space in a perfectly even way (which are depicted by discontinuous lines). 
Functional divergence (c) indicates the degree to which the trait abundances in the assemblages are distributed towards the extremes of the 
part of the functional space they occupy; assemblages with lower functional divergence (assemblage 1) have a higher concentration of traits 
close to the centre of gravity of the assemblage in the trait space. Functional redundancy (d) reflects how much different species (indicated 
by different colours in the figure) occupy the same functional space. This is estimated by dividing the functional space in a large number of 
cells (N) and then averaging the number of species (M) that are found within each cell, using the abundance of the total distribution (TPDc) 
as weighting factor. In the example, the functional space of the assemblage is occupied by an average of 3.87 species; after subtracting 1 
from that, functional redundancy expresses the average number of species that could be removed from the assemblage without reducing its 
functional richness. For formal definitions of these indices, see Carmona et al. (2016, 2019)

(a)

(c) (d)

(b)



each variable the model with the lowest AIC score (Zuur, Ieno, Walker, 
Saveliev, & Smith, 2009). For all selected models, we estimated con-
ditional and marginal coefficients of determination using the function 
r.squaredGLMM from the mumIn package (Barton, 2016; Nakagawa, 
Johnson, & Schielzeth, 2017). Conditional R2 reflects the variance ex-
plained by the entire model, including both fixed and random effects, 
whereas marginal R2 reflects the variance explained only by the fixed 
effects, that is, intensity at the field and landscape levels.

3  | RESULTS

All the models including random slopes for intensification had higher 
AIC values than the models without the random slopes (Table S2). 
Accordingly, all reported results correspond to the models without 
random slopes.

3.1 | Species richness

Agricultural intensity had a strong influence on species richness (mar-
ginal R2 = 0.29). In particular, field-level intensity markedly reduced 
species richness, with a three-fold reduction in the number of species 
observed in the assemblages from the least-intensified to the most- 
intensified fields (poisson regression βField ± SE = −0.38 ± 0.03; p < 0.001; 
Figure 2). Intensity at the landscape level had a much smaller but still 
highly significant negative effect (βLandscape = −0.08 ± 0.03; p = 0.002; 
Figure 2) reducing observed species richness. We did not observe a sig-
nificant interaction between the two levels of intensification (p = 0.19).

3.2 | Functional composition

Agricultural intensity significantly affected the average values 
of the three selected traits. However, it explained low amounts 

of variation in all cases (marginal R2 was between 0.01 and 0.02), 
with the random effects explaining a much larger proportion (con-
ditional R2 between 0.67 and 0.73). Similarly, the proportion of 
variation explained by each level of the random factor differed 
markedly between traits, with differences between fields and be-
tween farms accounting for a majority of variability in plant height 
(c. 25% each level), whereas most of the variation in SLA and seed 
mass was between study areas (42% and 39%, respectively). Plant 
height decreased with field-level intensity (βField = −0.18 ± 0.06; 
p = 0.003), whereas average SLA values generally increased 
(βField = 0.14 ± 0.05; p = 0.006; Figure 3). However, landscape-
level intensity did not have any important effect on these two 
traits. In contrast, seed mass decreased with intensification at 
the landscape level, but showed no patterns at the field scale 
(βLandscape = −0.11 ± 0.05; p = 0.016; Figure 3).

3.3 | Functional diversity

As expected, functional richness followed patterns similar to spe-
cies richness (marginal R2 = 0.23), decreasing with intensity at the 
field (βField = −103.14 ± 8.98; p < 0.001) and at the landscape scale 
(βLandscape = −23.60 ± 8.49; p = 0.006; Figure 3). However, after re-
moving the effect of species richness by means of the null model 
(functional richness SES), landscape-level intensity ceased to have 
an effect (Figure S2). In contrast to raw functional richness, func-
tional richness SES increased with intensity at the field level, but 
overall the effects of intensity on this variable were very small 
(marginal R2 = 0.01; Figure S2). Agricultural intensity had a mod-
erate effect on functional evenness (marginal R2 = 0.08; Figure 3) 
so that functional evenness increased with intensity at the field 
scale (βField = 0.008 ± 0.001; p < 0.001), but not at the landscape 
scale. Similarly, functional divergence increased with intensity at 
the field scale (βField = 0.02 ± 0.003; p < 0.001) and was not sig-
nificantly related to intensity at the landscape scale. Functional 

F I G U R E  2   Partial regression plots showing the effects of agricultural intensification at the field (left) and landscape (right) levels on weed 
species richness (mean prediction and 95% confidence intervals), modelled using a generalized mixed model with Poisson distribution. R2

Marg
 

indicates the proportion of variance explained by the fixed effects (field- and landscape-level management intensity and their interaction), 
and R2

Cond
 includes both fixed and random effects. Colours indicate the study area to which each point belongs (EST, Estonia; FR, France; Go, 

Germany (Göttingen); IRL, Ireland; JE, Germany (Jena); NL, the Netherlands; PL, Poland; SP, Spain; SWE, Sweden)
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redundancy decreased substantially with field-scale intensity 
(βField = −0.78 ± 0.06; p < 0.001; Figure 3), but was not affected by in-
tensity at the landscape scale. This negative effect of intensification 
at the field scale remained significant after correcting for the effect 
of species richness on redundancy (relative redundancy; Figure S3).

4  | DISCUSSION

Our results show that agricultural intensification had consistently 
negative effects on the diversity of arable weeds assemblages 
of European cereal-dominated agroecosystems and that this ef-
fect was stronger at local field scales than at the landscape scale. 
Despite the strong decline of taxonomic diversity associated with 
agricultural intensification (Figure 2), we found much weaker ef-
fects on the functional structure of assemblages (evidenced by the 

generally low marginal R2 values; Figures 3 and 4), due to the high 
levels of functional redundancy among species that buffered the 
effects of species loss. Overall, intensification selected for species 
with ruderal strategies (low stature, high SLA, light seeds; Pierce 
et al., 2017) so that these traits were more prevalent in assemblages 
subject to intensification. Ultimately, this selection contributes to 
lower functional redundancy. These results depended strongly 
on the level at which intensification was considered: we found 
evidence supporting the idea that intensification affects weeds di-
versity mostly through selection operating at the local field scale. 
Nonetheless, intensification at the landscape scale also had a 
negative effect on the average seed mass of weeds assemblages, 
suggesting that species with poor dispersal abilities are selected 
against in very intensified landscapes.

The relevance of spatial scale remains vitally important for how 
we manage conservation interventions in agricultural landscapes 

F I G U R E  3   Partial regression plots 
showing the effects of agricultural 
intensification at the field (left) and 
landscape (right) levels on functional 
composition modelled using linear 
mixed models. Functional composition is 
represented by the community weighted 
mean of plant height, SLA and seed mass. 
R
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(Emmerson et al., 2016; Petit et al., 2016; Tscharntke et al., 2005). 
For example, previous work suggests that the most important 
scale for consideration depends on the mobility of the taxonomic 

group under study. Whereas birds (Guerrero et al., 2012), carabids 
(Winqvist et al., 2014) or wild bees (Happe et al., 2018) are primarily 
influenced by landscape factors, weed diversity seems to be more 

F I G U R E  4   Partial regression plots 
showing the effects of agricultural 
intensification at the field (left) and 
landscape (right) levels on different 
indicators of the functional diversity of 
arable weeds assemblages (functional 
richness, evenness, divergence and 
redundancy) modelled using linear mixed 
models. R2

Marg
 indicates the proportion of 

variance explained by the fixed effects 
(field- and landscape-level management 
intensity and their interaction), and R2

Cond
 

includes both fixed and random effects. 
Colours indicate the study area to which 
each point belongs (EST, Estonia; FR, 
France; Go, Germany (Göttingen); IRL, 
Ireland; JE, Germany (Jena); NL, the 
Netherlands; PL, Poland; SP, Spain; SWE, 
Sweden)
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strongly determined by field-scale factors (Carmona et al., 2017; 
Guerrero et al., 2014). However, some recent studies have under-
scored the importance of the larger-scale factors for arable weeds 
diversity, either independently or by modulating the effects of 
local factors (Gabriel et al., 2010; Henckel, Börger, Meiss, Gaba, & 
Bretagnolle, 2015; Petit et al., 2016; Tuck et al., 2014). Our results 
do not support this view, since intensification at the landscape scale 
had little influence on local species richness, and the interaction with 
the field scale was not significant for any of the studied variables. 
The contrasting results obtained from different studies could be 
due to factors such as the position within the field of the considered 
samples, or the different ways in which landscape-level intensifi-
cation was measured between studies. For example, the influence 
of landscape-scale processes is known to decrease as the distance 
from the edge of the field increases (José-María, Armengot, Blanco-
Moreno, Bassa, & Sans, 2010), and the plots considered in this study 
where relatively far from field edges. Although other studies encom-
pass factors related to field management, but acting at landscape 
level, such as the proportion of organic fields (Petit et al., 2016), our 
landscape-level variables measure exclusively landscape structure 
or complexity based on semi-natural elements (Billeter et al., 2007).

Our results show that the two considered aspects of in-
tensification had different effects on vegetative (SLA and plan 
height) and regenerative (seed mass) traits. Field-level intensifi-
cation seemed to select for phenotypes characterized by smaller 
stature and higher SLA. Plants with low height are better able 
to cope with physical disturbance associated with tillage (Rota, 
Manzano, Carmona, Malo, & Peco, 2017; Westoby, 1998), whereas 
high SLA values are associated with higher relative growth rates 
(Shipley, 2006). Together, these traits allow plants to complete 
their life cycles quickly, hence reducing competition with the 
crop vegetation (Guerrero et al., 2014), and being able to com-
plete their full life cycle before harvest. Furthermore, herbaceous 
species with high SLA are better adapted to shade conditions and 
high supplies of nutrients (Westoby, 1998). Although some studies 
have reported no relationship between intensification and these 
traits (Fried, Kazakou, & Gaba, 2012; Guerrero et al., 2014), both 
smaller stature and higher SLA are frequently found in response 
to agricultural intensification (Kazakou et al., 2016; Solé-Senan, 
Juárez-Escario, Robleño, Conesa, & Recasens, 2017), in agreement 
with the expectation that this process selects for ruderal strate-
gies. In this line, it is important to remark that higher N availability 
is associated with higher SLA values due to the effect of intraspe-
cific variability (He, Chen, Zhao, Cornelissen, & Chu, 2018) so that 
local measurements should be preferable to assess the effect of 
intensification on functional diversity. However, the relative im-
portance of considering local trait values, which is critical at local 
scales (Carmona, Rota, et al., 2015), decreases as spatial scale in-
creases (Albert, Grassein, Schurr, Vieilledent, & Violle, 2011), as is 
the case of the present study. The fact that species rankings con-
sidering traits from databases and local measurements are similar 
(Kazakou et al., 2014) suggests that our results should be robust 
to this effect.

5  | CONCLUSIONS

Because of the loss of landscape complexity in intensively managed 
landscapes, arable weeds assemblages become more isolated and 
disconnected from seed sources (e.g. grasslands, fallows and field 
borders) and tend to have lower propagule pressure. Consequently, 
the negative effect of landscape level intensification on species 
richness observed in this study is likely to be due to this isolation 
effect (Damschen et al., 2019). In the present study, average seed 
mass decreased with intensification at the landscape scale, prob-
ably due to the higher dispersal ability of species with small seeds. 
Small seeds tend to disperse further (Cornelissen et al., 2003), 
and tend to persist longer in the soil seed bank (Hernández Plaza, 
Navarrete, & González-Andejar, 2015). Additionally, given equiva-
lent reproductive investment, plants with small seeds produce 
more seeds (Jakobsson & Eriksson, 2000). For these reasons, plants 
with smaller seeds might have a dispersion advantage in intensively 
managed landscapes and might persist longer in the assemblages. 
Similar patterns have been observed in other habitats (reviewed in 
Vellend, 2016), but this is, to the best of our knowledge, the first 
observation in agricultural landscapes.

The reduction in species richness associated with intensification 
was accompanied by a similar reduction in the functional space oc-
cupied by these arable weeds assemblages. The species-rich assem-
blages at the least intensified end of the gradient had lower functional 
evenness and divergence than the assemblages from more intensified 
fields. This means that the distribution of trait values in the more di-
verse assemblages tended to be more clumped (see Figure 1). This 
interpretation was further confirmed by the observed reduction in 
functional redundancy with intensification. Overall, we found clear 
evidence showing that agricultural intensification acts by selecting 
against (or at least reducing the abundance of) functionally redundant 
species. This, in turn, implies that the functional structure of these sys-
tems can resist, relatively well, the loss of species associated with agri-
cultural intensification (Carmona et al., 2017). However, the observed 
reductions in redundancy were higher than expected for similar levels 
of species loss (Figure S3), which suggests that functionally unique 
species are more sensitive to intensification than species with more 
commonly occurring trait values. The extirpation of more unique spe-
cies could have profound impacts if they are also important for eco-
system functioning, as found in other systems (Mouillot et al., 2013). 
Overall, lower functional redundancy due to intensification is likely to 
increase the vulnerability of these systems to other impacts, such as 
climate change (Rader, Bartomeus, Tylianakis, & Laliberté, 2014) or bi-
ological invasions (Galland et al., 2019; Loiola et al., 2018).

European arable weeds communities are threatened by agricul-
tural intensification (Weisser et al., 2017). Their decline weakens 
fundamental ecosystem functions (Knops et al., 1999), thus com-
promising the provision of key ecosystem services, and even the 
profitability of certain productive activities associated with agri-
culture (Emmerson et al., 2016; Gaba, Gabriel, Chadœuf, Bonneu, 
& Bretagnolle, 2016). Our results highlight the need to extensify 
the field-level agricultural management throughout Europe, that is, 



reduction of input amounts and frequency of ploughing and other 
mechanical operations, and longer rotation cycles that incorpo-
rate fallow periods. Arable weeds communities would also benefit 
from the promotion of higher landscape complexity, which could 
be achieved through maintaining or developing extensive use of 
some cereal fields (e.g. by promoting organic agriculture or by using 
fallows), and would support species with poor dispersal abilities. 
Although dynamic interpretations should be made carefully when 
using space-for-time substitution studies (Damgaard, 2019), the use 
of data collected following a standardized protocol across a conti-
nental scale, and the selection of fields with relatively homogeneous 
characteristics (crop type, climate, soils) within study areas, make 
the results of this study particularly valuable. Our study provides 
expectations about the changes in farmland plant community struc-
ture and functional composition in the face of increasing agriculture 
intensification across Europe (see Table 2). This knowledge could 
be used to guide and inform management interventions at the ap-
propriate spatial scales aimed at preventing further species loss and 
mitigating potential impacts on ecosystem services linked to global 
change processes.
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