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Introduction

During the last decades, the problem of designing robust control laws for interval systems has gained much attention [START_REF] Khadraoui | Interval modeling and robust control of piezoelectric tors[END_REF][2][3][4][5][6][7][8][9][START_REF] Khadraoui | Robust control for a class of interval model: application to the force control of piezoelectric cantilevers[END_REF]. The main advantage of intervals is that they permit to model parametric uncertainties easily by bounding them.

The robust control design for interval systems using interval transfer function representations has been widely studied in the literature after the well-known Kharitonov theorem [START_REF] Khadraoui | Interval modeling and robust control of piezoelectric tors[END_REF][2][3][8][9][START_REF] Khadraoui | Robust control for a class of interval model: application to the force control of piezoelectric cantilevers[END_REF][START_REF] Kharitonov | Asymptotic stability of an equilibrium position of a family of systems of linear differential equations[END_REF]. However, these techniques were not well adapted to multivariable systems. State-space based interval modeling and control design have therefore been studied.

The robust state-feedback controllers synthesis for interval state-space models has been considered in several works [4,5,7,[START_REF] Prado | Robust pole assignment by state feedback control using interval analysis[END_REF]. The above works are focused on placing all the coefficients of the system's closed-loop characteristic polynomial within a desired closed-loop interval characteristic polynomial. However, only the degree of stability of the closed-loop system with state-feedback was addressed and no performances measure was discussed. In fact, the more practically important region for the closed-loop poles is the sector shown in fig. 1 since it directly impacts many dynamic characteristics of the system, such as the degree of stability and damping ratio. Actually, the controllers provided by the robust feedback synthesis are usually not the optimal one and the combination between the robustness and the optimality is always a difficult task and always it necessitates to use some advanced mathematical techniques such as Linear Matrix Inequality (LMI) [START_REF] Ordaz | Kl-gain adaptation for attractive ellipsoid method[END_REF][START_REF] Ordaz | Nonlinear robust output stabilization for mechanical systems based on luenberger-like controller/observer[END_REF]. Indeed, the process of modeling the errors by intervals gives the opportunity to use the traditional optimal synthesis such that the Linear Quadratic (LQ) approaches. However, the optimal synthesis yields interval Lyapunov and Riccati equations containing interval matrices which are by themselves an actual problem for the mathematics research communities and there are several works under this topics [START_REF] Haqiri | Methods for verified solutions to continuous-time algebraic riccati equations[END_REF][START_REF] Miyajima | Fast verified computation for solutions of continuous-time algebraic riccati equations[END_REF][START_REF] Hashemi | The interval lyapunov matrix equation: analytical results and an efficient numerical technique for outer estimation of the united solution set[END_REF][START_REF] Frommer | Verified error bounds for solutions of sylvester matrix equations[END_REF]. Notwithstanding, in the last decade there are some approaches reformulating the interval Lyapunov and Riccati equations as a convex optimization problem with LMI constrains under some assumptions. Nevertheless these methods contain a lot of parameters to set which make them not practical.

The paper provides a simple algorithm to find the range of the robust and optimal feedback gains to control any interval system described by interval state-space model. As it is not systematic that all states of the system can be obtained, we restrict the analysis to robust output-feedback design which is not addressed in the previous works that deal with interval systems. However, the algorithm can also be used for robust state-feedback. The proposed algorithm is based on using the regional pole constraints to impact directly the dynamics of the interval system. Moreover, to reduce the computational complexity of the controller design, the problem of regional pole assignment is converted to eigenvalues inclusion problem and it is solved by a setinversion algorithm called Set Inversion Via Interval Analysis (SIVIA) which is based on interval analysis [START_REF] Jaulin | Set inversion via interval analysis for nonlinear bounded-error estimation[END_REF]. Finally, the robust output-feedback design is combined with the Linear Quadratic (LQ) tracker design and a Particle Swarm Optimization (PSO) technique to obtain the feedback gains which robustly ensure the desired performances and, in addition to that, which minimize the linear quadratic cost function.

The paper is organized as follows. Section 2 is dedicated to brief preliminaries on intervals analysis and interval matrices theory including eigenvalues computation. Section 3 presents an overview of the structure of the output-feedback scheme for interval systems as well as the eigenvalues region of interest. Section 4 summaries briefly the general framework to find the robust and the optimal feedback gains. Section 5 gives a description of the proposed approach to synthesize the robust output-feedback controller itself. Section 6 describes the LQ tracker for output-feedback design to find the optimal gain. An application of the proposed method to control a piezoelectric tube actuator is discussed in Section 6. The experimental results and verification are presented in the same section. Finally, conclusions are given in Section 7.

Interval analysis and matrix theory preliminaries

During the remaining parts of the paper the standardized notations in interval analysis will be use [START_REF] Jaulin | Applied interval analysis: with examples in parameter and state estimation, robust control and robotics[END_REF][START_REF] Moore | Introduction to interval analysis[END_REF]. The bold font will symbolize interval values whereas usual font will symbolize point values. The interval values may also be denoted by Lie brackets. The lower and upper bounds of an interval will be denoted by underline and overline letters respectively. An interval value [x, x] can be defined by the set of x ⊂ R such that x ∈ x and x ≤ x ≤ x. The set of real interval x is denoted by IR .

Given two intervals [x] = [x, x] and [y] = [y, y]. The result of an operation ♦ ∈ {+, -, •, /} between the two intervals is an interval that contains all possible solutions:

[x]♦[y] = {x♦y | x ∈ [x], y ∈ [y]} (1) 

Definition of interval matrix

A real interval matrix (interval matrix) is a matrix in which all the elements are interval numbers [START_REF] Moore | Introduction to interval analysis[END_REF]. Further-more, an interval matrix is also defined as a family of matrices:

A := [A, A] = A ∈ R n×n ; A ≤ A ≤ A (2)
where A, A ∈ R n×n , A ≤ A being given matrices and the inequality being considered element-wise. The midpoint A c and the radius A of A are denoted respectively by:

A c := 1 2 A + A , A := 1 2 A -A (3)

Eigenvalue computation

The eigenvalue set Λ(A) corresponding to A is defined as the set of all eigenvalues overall A ∈ A, that is [START_REF] Moore | Introduction to interval analysis[END_REF],

Λ(A) = {λ + iµ | ∃A ∈ A, ∃x = 0 : Ax = (λ + iµ)x)} (4) 
Some interval matrices have symmetric interval matrices as subclass. In such a case, the symmetric interval matrix A S corresponding to interval matrix A is defined as the family of all symmetric matrices denoted A s in A, that is,

A S = A S ∈ A (5)
It is worthy to note that a real symmetric interval matrix A S ∈ IR n×n has n interval eigenvalues which are real. The i th interval eigenvalue of a symmetric interval matrix A S is:

λ i (A S ) = [λ i (A S ), λ i (A S )] := λ i (A) | A ∈ A S ) i = 1, .., n (6) 
In the sequel, for simplicity reason, sometimes the terms eigenvalues, matrices and vectors will be used instead of interval eigenvalues, interval matrices and interval vectors. Furthermore, the Re() and Im() notations are used to denote the real and imaginary part of a complex number, respectively. Also the ρ() symbol is used to denote the spectral radius of a matrix.

The recent advances on interval analysis computation have provided a new opportunity to estimate the outer bound of the eigenvalues of interval matrices. The estimation of the outer bounds of an interval eigenvalue means finding a unique interval in which all eigenvalues of the interval matrix are bounded. For example, Deif [START_REF] Deif | The interval eigenvalue problem[END_REF] and Kolev [START_REF] Kolev | Assessing the stability of linear time-invariant continuous interval dynamic systems[END_REF] proposed some methods to estimate the exact bounds under some hard assumptions which are however not easy to verify as mentioned in [START_REF] Hladík | Bounds on eigenvalues of real and complex interval matrices[END_REF]. Mayer [START_REF] Mayer | A unified approach to enclosure methods for eigenpairs[END_REF] proposed an enclosure method of the interval eigenvalue for a real and a complex interval matrices based on Taylor expansion whereas Ahn [START_REF] Ahn | Monotonic convergent iterative learning controller design based on interval model conversion[END_REF] proposed their estimation based on perturbation theory. Recently, Matcovschi [START_REF] Leng | Eigenvalue bounds for symmetric matrices with entries in one interval[END_REF] employs an optimization technique with Bilinear Matrix Inequalitie (BML) to find the outer bounds of an interval eigenvalue. A cheap formula to estimate the outer bound is proposed by Rohn [START_REF] Rohn | A handbook of results on interval linear problems[END_REF] for symmetric interval matrices classes. This formula is presented in Theorem.1. The Rohn's result was extended to generalized interval matrices by Hladik [START_REF] Hladík | Bounds on eigenvalues of real and complex interval matrices[END_REF] as reminded in Theorem.2. Theorem 1 (Rohn, 2005 [28]). Let A S ∈ IR n×n . For each i = {1, ......., n} it holds that

λ i (A S ) ⊆ [λ i (A c ) -ρ(A ∆ ), λ i (A c ) + ρ(A ∆ )] (7) 
Theorem 2 (Hladik, 2013 [START_REF] Hladík | Bounds on eigenvalues of real and complex interval matrices[END_REF]). Let A ∈ IR n×n . Then for each eigenvalue ν + µ j ∈ Λ(A) we have

λ n 1 2 (A T + A) 0 0 1 2 (A T + A) S ≤ ν ≤ λ 1 1 2 (A T + A) 0 0 1 2 (A T + A) S (8) λ n 0 1 2 (A T -A) 1 2 (A T -A) 0 S ≤ µ ≤ λ 1 0 1 2 (A T -A) 1 2 (A T -A) 0 S ( 9 
)
where λ 1 and λ n are the low and the high extreme eigenvalues limits respectively.

Unfortunately, the proposed Hladik's and Rohn formulas are not always conservatives for large uncertainties and are feasible only when the interval components are thin due to the warping effect. In order to handle this problem, another interesting method for interval eigenvalues computation can be used in the case of large uncertainties is the vertex approach [START_REF] Bhattacharyya | Robust control: the parametric approach[END_REF][START_REF] Hussein | Assessing 3-d uncertain system stability by using matlab convex hull functions[END_REF]. The later is based on the calculation of all exposed edges of interval matrix and the convex hull of all roots of possible characteristic equations. The main disadvantages of this approach is that it takes much time compared to others, but it is a more worthy method.

Overview of interval output-feedback design

The output-feedback control problem is among the most important open questions in control engineering [START_REF] Syrmos | Static output feedback a survey[END_REF]. The objective of output-feedback is to find the feedback matrix gain K such that the closed-loop system satisfies some desired transient part performances. In other words, the eigenvalues of the closed-loop system are placed in desired locations. The designed controllers are robust in the sense that all the eigenvalues of the closed-loop which contains the interval system are clustered inside a desired region [START_REF] Lee | Root clustering in subregions of the complex plane[END_REF].

Consider a linear Multi Input Multi Output (MIMO) interval uncertain system described by the state-space equation:

ẋ(t) = Ax(t) + Bu(t) ; y(t) = Cx(t) + Du(t) (10) 
where Remark 1. Notice that even if the input command u is known as non-interval signal, the model above normally yields interval state and output signals x and y respectively due to the interval parameters. However, the real process is non-interval but assumed to have a behavior inside the above model. therefore the signals x and y (and u) are maintained as non-intervals.

x ∈ R n , u ∈ R m , y ∈ R p , A ∈ IR n×n , B ∈ IR n×m , C ∈ IR p×n

Theorem 3 (Smagina Y,2002 [4]). The pair (A, B) is controllable for any

A ∈ A and B ∈ B if a square interval matrix Y = [B, AB, .......A n-1 B] (11) 
satisfies the condition

0 / ∈ Det[Y] (12) 
Since the theorem of Smagina is simply based on the verification of the rank of the interval controllability matrix using the determinant approach by checking that the zero value does not belong to the interval determinant. This theorem can be extended to verify the controllability and the observability of any interval state-space system with square or non-square controllability and observability interval matrices. However for the case of non-square controllability and observability interval matrices, we need to generate several square matrices from the non-square one and check the rank of each one separately: if the inclusion condition ( 12) is satisfied for one square matrix then we conclude for the controllability or the observability of the interval system. Furthermore, the theorem of Smagina can also be extended to verify the output controllability of the interval system using the following output controllability matrix [START_REF] Chen | Introduction to linear system theory[END_REF].

Y = [CB, CAB, .......CA n-1 B, D] (13) 
Let us assume that the interval system (A, B, C, D) is output controllable. In classical output-feedback design, the linear output-feedback control law is presented by:

u(t) = Ky(t) + Nr(t) (14) 
where K ∈ R m×p is the output-feedback gains, N ∈ R m×p is the feedforward control gains, and r(t) ∈ R p is the reference input.

For simplicity reason, the modified output-feedback will be used where the output-feedback control law is described by [START_REF] Dorf | Modern control systems[END_REF]:

u(t) = K(y(t) -Du(t -1)) + Nr(t) (15) 
3.1 Modified output-feedback with integral compensator In order to eliminate any steady-state offset that may occur, a compensator must be added to the closed-loop system [START_REF] Tymerski | Control system design[END_REF]. The static feedforward gain (DC-gains) N is not the ideal solution in the case of interval system because it always creates a non-null steady-state error [5]. For this purpose the integral compensator is used. The proposed control law is therefore pictured in fig. 2 and given by:

u(t) = k y (y -Du(t -1)) + K i ξ(t) (16) 
where ξ(t) is the integral of tracking error (i.e. ξ = r(t)y(t)).

It is well known that adding an integral action in the closed-loop system allows being robust with respect to slow system parameters variations. However, model parameters could be exhibit both fast and slow variations -for example in piezoelectric actuators cases, hysteresis could cause slow and fast variations of parameters while creep nonlinearity and ambient temperature variation could cause very slow variation. In this case, the search for robust gains for the output feedback controller must be considered to ensure the stability and the desired performance of the closed-loop system.

The output-feedback control law can be presented by (n + p) dimensional augmented state vector formed by the state vector x(t) and the integrator variable ξ(t). The state equations for both ẋ(t) and ξ are consequently:

     ẋ(t) = (A + BK y C)x(t) + BK i ξ(t) y(t) = (C + DK y C)x(t) + DK i ξ(t) ξ(t) = r(t) -y(t) = r(t) -(C + DK y C)x(t) -DK i ξ(t) (17) 
From ( 16), the augmented state space model is yielded:

ẋ(t) ξ(t) = (A + BK y C) BK i -(C + DK y C) -DK i x(t) ξ(t) + 0 I r(t) [A aug -cl ] [B aug -cl ] y(t) = (C + DK y C) DK i x(t) ξ(t) [C aug -cl ] (18)
Fig. 2: Output-feedback with integral compensator.

Performances specifications and region of interest

The output-feedback controller composed of K y and K i will be computed by eigenvalues assignment technique. For that let us define the region of interest Ω which represents a convex polygon in the complex plan as shown in fig. 1. The specifications of the desired region are related to the desired percent-overshoot P.O and the specified settling time T s for which the response remains within n% of the final value given by [START_REF] Dorf | Modern control systems[END_REF]:

P.O = 100.e -π. η √ 1-η 2 ; and T S = 1 ηω n .ln( 100 n ) (19) 
where η and ω n are the damping ratio and natural pulsation respectively.

Eigenvalue clustering in subregions for interval systems

This subsection is based on the works of Horng [START_REF] Horng | Eigenvalue clustering in subregions of the complex plane for interval dynamic systems[END_REF] and Gutman [START_REF] Gutman | A general theory for matrix root-clustering in subregions of the complex plane[END_REF]. They proposed various conditions which guar-antee that all eigenvalues of non-interval and interval matrices lie inside algebraic regions of the complex plane. Gutman [START_REF] Gutman | A general theory for matrix root-clustering in subregions of the complex plane[END_REF] gave necessary and sufficient conditions to verify that the eigenvalues of a non-interval matrix lie or not in a specified region. These conditions are known as the general theory for matrix root-clustering. As shown in Theorem.4, these conditions are very similar to Lyaponuv equations. The proof of the following theorem are detailed in [START_REF] Gutman | A general theory for matrix root-clustering in subregions of the complex plane[END_REF].

Theorem 4 (Gutman and Jury 1981 [START_REF] Gutman | A general theory for matrix root-clustering in subregions of the complex plane[END_REF]). For the eigenvalue clustering of A c ∈ IR n×n in a region Ω, described by:

Ω = {(x, y) | γ 00 + γ 10 x + γ 01 y < 0} = λ ∈ C | c 00 + c 10 λ + c 01 λ < 0 (20)
it is necessary and sufficient that, given any Q ∈ H n + (The set of positive definite hermitian n × n matrices), there exists a unique P ∈ H n + , satisfying the following equation:

c 00 P + c 10 A T c P + c 01 PA T c = -Q (21)
where

     c 00 = γ 00 c 10 = 1 2 (γ 10 + iγ 01 ) c 01 = 1 2 (γ 10 -iγ 01 ) (22) 
On the other hand, Horng [START_REF] Horng | Eigenvalue clustering in subregions of the complex plane for interval dynamic systems[END_REF] extended the problem of eigenvalue clustering of non-interval matrices to interval matrices. He gave sufficient conditions permitting to ensure that the eigenvalues of interval matrices lie in various specified subregions of the complex plane such as: half plane, circular disk, parabola,.... These conditions could be very interesting to analyze the performances or to design controllers with robust performances for interval systems. One of these conditions deals with a half-plane subregion (positive, negative, vertical, horizontal, or inclined) of the complex plane and is given by Theorem.5.

Theorem 5 ( Horng 1993 [36]). If all the eigenvalues of A c lie in the half plane H pl (γ 00 , γ 10 , γ 01 ), then all the eigenvalues of A ∈ [A] are inside the same half plane if

ρ H pl ≡ λ Max |(γ 10 -iγ 01 ) P| A s < λ min (Q) ( 23 
)
where Q ∈ H n + and P ∈ H n + satisfies [START_REF] Moore | Introduction to interval analysis[END_REF].

Particularly, in this paper a combination of three half planes have been used (Ω 1 , Ω 2 and Ω 3 ) to describe the desired region as shown in fig. 1. The combination of several subregions is easily done by a propagation method. For more details on the combination of several subregions, refer to [START_REF] Horng | Eigenvalue clustering in subregions of the complex plane for interval dynamic systems[END_REF].

MIMO cyclic output feedback design

Cyclic design is the process of reducing the problem of Multi Input Multi Output (MIMO) design into a problem of Single Input Multi Output (SIMO) design based on the idea that if a state equation of the MIMO system can be controlled by many inputs, therefore it can be controlled by only one input which is a linear combination of the different initial inputs under the condition that the matrix A is cyclic, i.e. the characteristic polynomial of A equals its minimal polynomial [START_REF] Prado | Robust pole assignment by state feedback control using interval analysis[END_REF]. For this purpose we remind the following three theorems introduced by [START_REF] Kailath | Linear systems. Prentice Hall information and system sciences series[END_REF].

Theorem 6 ( [38]

). A realization {A, B, C} in ( 10) is minimal if and only if it is controllable and observable.

Theorem 7 ( [38]

). If {A, B, C} is a minimal realization, then almost any (constant) output feedback K will make A+BKC cyclic.

Theorem 8 ( [38]

). 1f {A, B} is controllable and A is cyclic, there exists at least one vector q such that {A, Bq} is controllable.

If the cyclic condition is violated for some A ∈ A and B ∈ B then according to [4] and [START_REF] Kailath | Linear systems. Prentice Hall information and system sciences series[END_REF] for the controllable pair (A, B), a feedback matrix K can be found to make the pair (A + BKC, B) cyclic. Adopting the interval extension of this design principle, the robust output feedback gain for interval MIMO systems assumes the form K = qk for almost all q ∈ R m , where m is the number of system inputs and k can be obtained by letting [b] = [B]q and then by applying the design procedure discussed in the next sections of this paper.

Framework for Robust and Optimal Controller Design

In this section the general framework used in this paper is provided to find the robust and the optimal feedback gains in an offline manner. Foremost, to find the range of interval robust gains the proposed SIVIA-based algorithm is used which is a combination of interval eigenvalue computation, eigenvalues clustering, and interval analysis techniques. Moreover, in order to find the optimal gains, the LQ tracker design is used which is based on the resolution of interval Lyapunov equation and the use of Particle Swarm Optimization (PSO) algorithm to minimize a linear quadratic cost function. The flowchart in fig. 3 summaries the general framework, whereas, each framework component will be detailed in the next sections(4 and 5).

Problem formulation using Set-Inversion

The problem of robust output-feedback control can be summarized by searching for the matrix gain

[K] (with [K] = [[K y ] [K i ]]
) that assigns the interval system eigenvalues to a desired region in the complex plan, taking into account the uncertainty of the interval system. Thus, the problem consists in finding the range of the robust gains [K] of the closedloop system such that the inclusion (24) is satisfied. where A aug -cl is the augmented closed-loop matrix of the system [START_REF] Frommer | Verified error bounds for solutions of sylvester matrix equations[END_REF] and Ω Desired region is the desired subregion of eigenvalues. This problem of interval eigenvalues assignment can be transformed into a set-inversion problem that can be solved using inversion algorithms. The set inversion operation consists in searching the reciprocal image X of a compact set Y by a function f , i.e. [START_REF] Jaulin | Set inversion via interval analysis for nonlinear bounded-error estimation[END_REF]. The Set Inversion Via Interval analysis (SIVIA) algorithm, introduced by Jaulin in 1993 [START_REF] Jaulin | Set inversion via interval analysis for nonlinear bounded-error estimation[END_REF], is one of the most powerful approach existing in the literature. This algorithm is based on the subpaving technique which uses a set of non-overlapping boxes to approximate the solution set of the inversion problems. In this work, the SIVIA algorithm is adapted with the aim to approximate with subpaving the solution set [K] that satisfies the inclusion [START_REF] Hladík | Bounds on eigenvalues of real and complex interval matrices[END_REF]. In the sequel, this modified SIVIA algorithm is called by the recursive SIVIA-based algorithm.

X = f -1 (Y ) = {X ∈ R n | f (x) ∈ Y ) [1,
The recursive SIVIA-based algorithm to compute the output-feedback parameters is outlined in Table .1. It requires initial box [K 0 ] that may contain the solution, the interval state-space matrices, the desired region of eigenvalues, and the required accuracy for the paving ε. Since the closed-loop matrix is non-symmetric, the eigenvalues inter-val approximation are calculated by mean of Hladik formula (Theorem.2) whereas in the case of symmetric matrix the Rohn's formula (Theorem.1) can be used. Furthermore the sufficient conditions of eigenvalues clustering (Theorem.5) are used as second check to the solution boxes [K in ] that satisfy the eigenvalues inclusion [START_REF] Hladík | Bounds on eigenvalues of real and complex interval matrices[END_REF] to be sure that the closedloop eigenvalues are certainly inside the desired regions. The proposed algorithm provides complete information about the ranges of feedback gains including: inner (solution), checked (verified solution), outer (undefined), and infeasible (no solution) subpavings where all the sets subpavings are initially empty.

Remark 2. In this paper, the Horng clustering conditions is used (Theorem.5) as a second check in our algorithm to be sure that the eigenvalues of the closed-loop system are strictly inside the desired region as explained previously. However, both of the interval eigenvalue computation approach and the eigenvalue clustering technique are guaranteed and it is enough to use only one of them with the SIVIA algorithm to sought for the robust gains.

Remark 3. The proposed recursive SIVIA-based algorithm provides a complete information about the ranges of feedback gains that ensure the stability and the desired performance. Contrariwise, it is time demanding especially in the case of system with large number of unknown parameters. This problem is well known to the interval arithmetic community and several works were undertaken to reduce the time of computation. In our case, the synthesis of the robust gains are done offline thus the time consumption is not critical. However, it can always be handled by:-Reducing the complexity of the system by splitting the system to several subsystems using cyclic design or decentralized feedback control (as explained in the sequel of this paper). -Using the contractor-separator approach proposed recently by Jaulin in [START_REF] Jaulin | Introduction to the algebra of separators with application to path planning[END_REF]. -Furthermore, the parallel structure of the recursive SIVIA-based algorithm allows the use of parallelism and distributed computation and other intelligent methods.

Remark 4. For the output-feedback, when mp ≥ n (m,n and p are defined in [START_REF] Khadraoui | Robust control for a class of interval model: application to the force control of piezoelectric cantilevers[END_REF]) the recursive SIVIA-based algorithm can find the solution easily whereas in the case of SISO (Single Input Single Output) or when mp < n it is not guaranteed that the algorithm finds a solution. In fact there are several necessary and sufficient conditions to verify the existence of output-feedback gains as outlined in [START_REF] Syrmos | Static output feedback a survey[END_REF]. However in our algorithm if the solution doesn't exist the algorithm will stop at the first iteration in step 3 as long as eig([A aug -cl ])∩Y = is maintained. The proposed recursive SIVIA-based algorithm can be used for robust output-feedback as well as for robust statefeedback. In addition it can also be used for non-interval as well as for interval systems. In all these cases it only suffices to replace the closed-loop matrix A closedloop by the corresponding one. 

SIVIA (in: [

A], [B], [C], [D], [K] = [intialbox], [k in ] = , [K out ] = , [K Un f easibl ] = , [K checked ] = , ε,Y = Ω Desiredragiono f Eigenvalue ) Step 1 Iteration i -Claculate A aug -cl ([A], [B], [C], [D], [K]) -Calculate eig([A aug -cl ]) using Theorem.1 or 2 Step 2 -If eig([A aug -cl ]) ⊆ Y Then [k in ] = [k in ] ∪ [K]
-If the eigenvalues clustering in subregions algorithm is checked (Theorem.5) Then

[k cheked ] = [k cheked ] ∪ [K in ]
Go to step 6

Step 3

-If eig([A aug -cl ]) ∩Y = Then [k Un f ] = [k Un f ] ∪ [K]
Go to step 6

Step 4

-If width[K] < ε Then [k out ] = [k out ] ∪ [K]
Go to step 6

Step 5 -Else bisect [K] and stack the two resulting boxes.

Step 6 -If the stack is not empty, then unstack into [K](i + 1), increment i and go to Step 1.

-Else End.

LQ tracker design to choose the optimal gains

In fact, the obtained solution by the proposed recursive SIVIA-Based algorithm will guarantee that any choice inside the solution boxes [K] will ensure the specified performances. However, there is no method to choose among these solutions the optimal gains that minimize the inputs/outputs energy and ensure the best behaviors of the closed-loop system. For this reason the LQ design is adopted to handle this problem. Indeed, in control design we are often interested not in regulating the state near zero but in following a nonzero reference command signal. This reference-input tracking or servodesign problem is called LQ tracker problem. In this section the LQ tracker design of an interval statespace model is covered.

First of all, to streamline the notation let us start by redefining the input and the output matrices as described by equations [START_REF] Mayer | A unified approach to enclosure methods for eigenpairs[END_REF].

ẋ(t) ξ(t) = (A * + B * K * C * ) x(t) ξ(t) + 0 n×m I m×m r(t) Ẋ(t) = A c X(t) + B c r(t) y(t) = (C * + D * K * C * ) x(t) ξ(t) (25) 
C c such that

A * = A 0 n×p -C 0 p×p ; B * = B -D ; C * = C 0 p×m 0 m×n I m×m ; K * = k y k i ; D * = D 0 p×m
The LQ tacker design is based on finding the feedback coefficient matrix K that minimizes the following quadratic cost function [START_REF] Lewis | Optimal Control[END_REF],

J = ∞ 0 ( XT Q X + u T Ru) + 1 2 e T Ve (26) 
with R > 0, Q > 0, and V ≥ 0 are the weighting parameters. The e and X(t) are the tracking and the state errors respectively and they are given by:

e = r(t) -y(t) (27) 
X(t) = X(t) -X ss [START_REF] Rohn | A handbook of results on interval linear problems[END_REF] where X ss is the steady state response. Since the closedloop system will be asymptotically stable for acceptable design and for any A c ∈ A c and B c ∈ B c , thus the steady state response can be given by [START_REF] Bhattacharyya | Robust control: the parametric approach[END_REF].

Ẋ = 0 = A c X ss + B c r 0 ⇒ X ss = -A -1 c B c r 0 ( 29 
)
where the matrices A c and B c are non-intervals and belong to the interval matrices A c and B c respectively.

Due to the integral compensator, the steady-state error e is automatically equal to zero. The quadratic cost function is

J = ∞ 0 ( XT Q X + u T Ru) (30) 
The weighting matrices (Q and R) regulate the penalties on the transient part of the state variables X(t) and the control signal u(t).

The optimal cost is found to satisfy the equation ( 31), for more detail refer to [START_REF] Lewis | Optimal Control[END_REF].

J = 1 2 XT (0)P X(0) ( 31 
)
Where P is a positive definite interval matrix and is a solution of the following interval Lyapunov equation

0 = g = A T c P + PA c + Q + C T K T RKC (32) 
From ( 28) and from the initial condition (i.e. the system starts at rest X(0) = 0), we define X(0) = -X ss so that the optimal cost (31) becomes,

J = 1 2 xT (0)P x(0) = 1 2 tr(PS) (33) 
with S = X ss X T

ss = A -1 c B c r 0 r T 0 B T c A -T c .
It is now necessary to solve for the optimal feedback gain K that minimizes the quadratic cost function. In order to find the optimal gains there are gradient-based and non-gradient-based approaches [START_REF] Lewis | Optimal Control[END_REF]. Generally the gradientbased are faster than the non-gradient techniques. However in the case of interval state-space model the gradient approaches are not applicable because the Lyapunov equation ( 32) is an interval equation as shown by [START_REF] Dorf | Modern control systems[END_REF], where the solution P is non-convex. Therefore another method based on Particle Swarm Optimization (PSO) is proposed as explained in the following subsections.

Resolution of interval Lyapunov equation

Let the interval Lyapunov equation be defined by [START_REF] Dorf | Modern control systems[END_REF]:

0 = [A T c ][P] + [P][A c ] + [C] T K T RK[C] + Q (34) 
To solve an interval Lyapunov equation of the form (34), there are many iterative and direct methods existing in the literature [START_REF] Seif | The interval sylvester equation[END_REF][START_REF] Rohn | Systems of linear interval equations[END_REF]. In fact in the literature, only the case of interval Sylvester equation is studied. However, since the interval Lyapunov equation is a special form of the interval Sylvester equation, all the previous studies can be used for the resolution of [START_REF] Dorf | Modern control systems[END_REF]. These methods are based on different techniques such as simulation approach, linear programming, iterative techniques as well as vertex approach [START_REF] Seif | The interval sylvester equation[END_REF][START_REF] Rohn | Systems of linear interval equations[END_REF][START_REF] Oettli | On the solution set of a linear system with inaccurate coefficients[END_REF]. However the simulation approach is very time consuming because it is simulated by mean of Monte Carlo method and in each step a Sylvester equation is solved via a Hessenberg-Schur which leads to huge computational time. In addition the linear programming approach [START_REF] Oettli | On the solution set of a linear system with inaccurate coefficients[END_REF] is based on solving 2 m×n linear programming problems that makes this approach very troublesome even with small values of m and n (defined previously ( 10)) [START_REF] Seif | The interval sylvester equation[END_REF]. Furthermore the iterative techniques are proved to be less efficient and work only for narrow interval matrices as explained in [START_REF] Seif | The interval sylvester equation[END_REF], whereas the vertex approach proposed by Rohn [START_REF] Rohn | Systems of linear interval equations[END_REF] is shown to be a good method for solving the interval Lyapunov equation nevertheless its computational time increases with the number of interval matrices elements.

The vertex approach consists in computing a set solution of 2 n extreme or vertex matrices of the interval linear system (35) obtained from the interval Lyapunov equation ( 34) by means of the Kronecker product [START_REF] Horng | Eigenvalue clustering in subregions of the complex plane for interval dynamic systems[END_REF].

[G]p = [F] (35) 
where, 

[G] = ([A T c ] ⊗ I n ) + (I n ⊗ [A c ]) (36 
) T ] [F] = vec(-[C] T K T RK[C] -Q) = ([ f 11 ], .., [ f 1n ], ..., [ f m1 ], .., [ f mn ]) T
Here, the Kronecker product W ⊗ Z of two matrices W and Z is the block matrix whose (i, j) block is w i j Z.

Eventually the interval solution [P] is obtained using convex-hull function on the 2 n solution set of P.

6.2 Using Particle Swarm Optimization (PSO) to find the optimal gains In fact, by using the convex-hull function an overestimated interval solution of [P] is obtained. In order to avoid the convex-hull function and since we are only interested in the minimization of the quadratic cost function [START_REF] Chen | Introduction to linear system theory[END_REF], we propose to calculate the sum of the 2 n quadratic cost function as shown in (37) corresponding to 2 n solutions of Lyapunov equation.

J(k 1 , .....k n ) = 1 2 2 n vertex ∑ i=1 P i (k 1 , .....k n )S (37) 
In other hand, we can notice that the quadratic cost function (37) can be obtained if and only if all the 2 n Lyapunov equations have solutions. This condition can be verified by mean of interval eigenvalues as shown in Theorem.9.

Theorem 9 (Seif, 1994 [START_REF] Seif | The interval sylvester equation[END_REF]). A necessary and sufficient condition for the interval Lyapunov equation is that 0 / ∈ λ I i , ∀ i where

λ I i = {λ i (A c ) : A c ∈ A c } is the interval eigenvalue.
Actually, there is a complementary coordination between the previous section of regional poles assignment and LQ tracker design. Indeed, the LQ tracker design provides an optimal gains if and only if all the interval eigenvalues of the closed-loop system doesn't equal zero (Theorem.9) and the system is asymptotically stable. However, the regional poles assignment technique (Table .1) provides the intervals of gains which ensure that all the interval eigenvalues are strictly negative. Therefore, it is sufficient to apply an iterative search strategy only on the solution boxes provided by the recursive SIVIA-based algorithm (Table .1) to find the gains that minimize the quadratic cost function [START_REF] Gutman | A general theory for matrix root-clustering in subregions of the complex plane[END_REF]. This search can be done using intelligent optimization techniques such as Particle Swarm Optimization (PSO) and Genetic algorithm (GA).

PSO and GA have an equal effectiveness to find the minimum quadratic cost function but in view of computational efficiency, we propose to use the PSO because it consumes less time than the GA to converge to the minimum as explained in [START_REF] Hassan | A comparison of particle swarm optimization and the genetic algorithm[END_REF]. An overview of Particle Swarm Optimization (PSO) technique is provided in Appendix.A.

Before moving to the experimental validation of the proposed approach, the main work done in this paper can be summarized by the following points:

-If an interval system (A, B, C, D) is output controllable (i.e. satisfies ( 13)) for any A ∈ A and B ∈ B, then A set of robust gains can be found using the proposed SIVIA-based algorithm (Table1) that ensure the stability and satisfy the desired performances that take into account the physical limitation of the system.

-If the interval system is a high order system, it is always preferable to reduce the complexity of the problem of searching for a robust gains by reducing the order of the system using cyclic design technique as outlined in subsection 3.4.

-After finding the set of robust gains using the SIVIAbased algorithm we can always search for an optimal gains among the set of the robust gains by the resolution of the interval Lyapunov equation [START_REF] Dorf | Modern control systems[END_REF] and the use of the PSO techniques as summarized in section.6.

Application to piezoelectric tube actuator

Piezoelectric tube actuators are among the most used actuator in micro/nano-scales applications particularly in micro/nano manipulation, Scanning Probe Microscopy (SPM), and Atomic Force Microscopy (AFM) due to their high speed (large bandwidth up to 1kHz), high precision (subnanometric), high resolution, and multi-degrees of freedom [START_REF] Rakotondrabe | Smart Materials Based Actuators at the Micro/Nano-Scale[END_REF][START_REF] Xie | Characterizing piezoscanner hysteresis and creep using optical levers and a reference nanopositioning stage[END_REF][START_REF] Devasia | A survey of control issues in nanopositioning[END_REF][START_REF] Agnus | Robotic microassembly and micromanipulation at femto-st[END_REF]. Unfortunately, piezoelectric tube actuators are characterized by nonlinearities (hysteresis and creep) and by high sensitivity to the environment (vibrations and thermal variation) which will be discussed in the next subsection.

The experimental setup is pictured in fig. 4. It is composed of a piezoelectric tube actuator (PT230.94), two optical displacement sensors (LC2420 from Keyence company), a voltage amplifier (up to ±200V ). The actuator and the sensors are connected to the computer through a dSPACE-1103 acquisition board. The piezoelectric tube is made of lead-zirconate-titanate (PZT) material coated by one inner electrode (in silver) and four external electrodes (in coppernickel alloy). In order to control the tube along X-axis or Y-axis, a potential +U is applied on one electrode and the opposite potential -U is applied to the counterpart electrode as depicted in fig. 5. Furthermore, if potentials with the same sign is applied on the four electrodes a relative displacement on the Z-axis will be produced. In the terminal of the piezoelectric tube, a small cube with perpendicular and flat sides have been placed to be able to measure the linear displacement of the tube deflections.

Modeling of piezoelectric tube actuator

Piezoelectric actuators such as piezoelectric tube and piezoelectric multimorph cantilever are sensitive to the environmental variations (e.g. temperature variation) and are characterized by nonlinearities (hysteresis and creep..) which make the control of these systems not a trivial task. In fact, there are several methods to control these actuators including real-time adaptive and nonlinear techniques that take into account these nonlinearities [3, [START_REF] Rakotondrabe | Smart Materials Based Actuators at the Micro/Nano-Scale[END_REF][START_REF] Antonio Escareno | Backstepping-based robust-adaptive control of a nonlinear 2-dof piezoactuator[END_REF]. There are also other robust methods to control the piezoelectric actuators on the basis of linear models with uncertainties that embrace the nonlinearities [START_REF] Rakotondrabe | Quadrilateral modelling and robust control of a nonlinear piezoelectric cantilever[END_REF][START_REF] Rakotondrabe | Piezoelectric systems for precise and high dynamic positioning: design, modeling, estimation and control[END_REF]. Moreover, in [START_REF] Khadraoui | Interval modeling and robust control of piezoelectric tors[END_REF]2,9], an interval technique has been used which is based on bounding the parametric uncertainties by intervals using transfer function representation. In this paper an interval state-space representation will be used to further derive a robust and optimal controller using the proposed algorithm.

During the experimental process we focus only on two axes (two degrees of freedom: 2-DoF). We will note U x and U y the related applied voltages. The 2-DoF model for the piezoelectric tube actuator can be expressed by the following linear equations which represent the relation between the deflections along the x and y axes and the applied input voltages, whereas, the actuator sensitivity and its nonlinear behaviors will be approximated by parametric uncertainties bounded by intervals [START_REF] Rakotondrabe | Smart Materials Based Actuators at the Micro/Nano-Scale[END_REF].

σ x = G xx (s)U x + G xy (s)U y σ y = G yx (s)U x + G yy (s)U y (38) 
where σ x and σ y are the deflections along x-and y-axis. G xx (s), G xy (s), G yx (s), and G yy (s) are the transfer functions that represent the relations between U x → σ x , U x → σ y , U y → σ x , and U y → σ y respectively.

To characterize the 2-DoF piezoelectric tube, we apply first a step voltage U x of amplitude 200V and we set U y to zero and capture the deflections σ x and σ y . Then we repeat the same procedures with U y in which we apply a step voltage of amplitude 200V on U y where U x is a null input and we capture the deflection σ y and σ x . The transfer function G(s) to be identified for 2-DoF piezoelectric tube is composed of four transfer functions G xx (s), G xy (s), G yx (s), and G yy (s) as shown in equation [START_REF] Jaulin | Introduction to the algebra of separators with application to path planning[END_REF]. After identification by mean of System Identification MatlabToolbox [START_REF] Ljung | System identification toolbox: User's guide[END_REF] using Box-Jenkins method and the step response data, the transfer functions (39) is defined. Particularly, a fourth order model for G xx (s) and G yy (s) and a second order model for cross-couplings trans-fer functions G yx (s) and G xy (s) have been chosen in our case because they are largely sufficient to represent the dynamics of the piezoelectric tube.

G(s) = G xx (s) G xy (s) G yx (s) G yy (s) (39) 
where, To obtain the interval model, we propose to consider each parameter of (39) as center and we add a radius of 10%. We therefore obtain:

G xx (s) = [b 10 ]s 4 +[b 11 ]s 3 +[b 12 ]s 2 +[b 13 ]s+[b 14 ] s 4 +[a 11 ]s 3 +[a 12 ]s 2 +[a 13 ]s+[a 1 ] G xy (s) = [b 20 ]s 2 +[b 21 ]s+[b 22 ] s 2 +[a 21 ]s+[a 22 ] G yx (s) = [b 30 ]s 2 +[b 31 ]s+[b 32 ] s 2 +[a 31 ]s+[a 32 ] G yy (s) = [b 40 ]s 4 +[b 41 ]s 3 +[b 42 ]s 2 +[b 43 ]s+[b 44 ] s 4 +[a 41 ]s 3 +[a 42 ]s 2 +[a 43 ]s+[a 44 ] (40) 
where, In fact, it is shown that creating the interval model by using 10% of radius calculated from the center is sufficient enough for a large number of cases and of applications in piezoelectric actuators [START_REF] Khadraoui | Interval modeling and robust control of piezoelectric tors[END_REF]2]. Also these 10% are a good compromise between the thinness of parameters uncertainties and the feasability to find a feedback controller.

The above interval transfer function model of the piezoelectric tube actuator can be expressed by the flowing MIMO state-space model using canonical blocks [START_REF] Kailath | Linear systems. Prentice Hall information and system sciences series[END_REF][START_REF] Premaratne | Multivariable canonical forms for model reduction of 2-d discrete time systems[END_REF]:

ẋ(t) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) (41) 
where,

A =             0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 -[a 14 ]-[a 13 ]-[a 12 ]-[a 11 ] 0 0 -[a 22 ]-[a 21 ] 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 -[a 32 ]-[a 31 ]-[a 44 ]-[a 43 ]-[a 42 ]-[a 41 ]             ; B = 00010001 00010001 t ; D = [b 10 ][b 20 ] [b 30 ][b 30 ] ; C = C xx C xy C yx C yy C xx = [b 14 ] -[a 14 ][b 10 ][b 13 ] -[a 13 ][b 10 ][b 12 ] -[a 12 ][b 10 ][b 11 ] -[a 11 ][b 10 ] ; C xy = 00[b 22 ] -[a 22 ][b 20 ][b 21 ] -[a 21 ][b 20 ] ; C yx = 00[b 32 ] -[a 32 ][b 30 ][b 31 ] -[a 31 ][b 30 ] ; C yy = [b 44 ] -[a 44 ][b 40 ][b 43 ] -[a 43 ][b 40 ][b 42 ] -[a 42 ][b 40 ][b 41 ] -[a 41 ][b 40 ] ;

Controller calculation and experimental tests

The use of the interval model of the piezoelectric tube allows us to find a robust output-feedback controller which satisfies the desired performances. Indeed, in micro positing applications, the rapidity is highly required and the overshoot is extremely undesirable because it may cause micro/nano objects damage. Therefore, the following desired performances are adopted: negligible overshoot (1%) and a settling time T s ≤ 40ms. By using [START_REF] Jaulin | Set inversion via interval analysis for nonlinear bounded-error estimation[END_REF] we have ξ = 74.9 and ω n = 52rad/s. Fig. 6: The control design of a multi-input multi-output piezoelectric tube actuator using output-feedback with integral compensator.

Before using the recursive SIVIA-based algorithm (Table.1) to compute the real gain p × n matrix K for outputfeedback control, the MIMO cyclic output-feedback design is used to reduce the complexity of calculation which is simply based on converting the MIMO to SIMO system under cyclic condition as explained previously. However to make the problem as simple as possible, before applying cyclic design, the MIMO system is considered as two subsystems with two independent outputs. Thus, two Multi Input Single Output (MISO) systems are obtained . In order to retain controllability, we will need to chose α and β such that α + β = 0. This condition ensures that [b] is not a zero vector. For each subsystem we choose its corresponding vector q. For example we can choose q 1 = [1 0.1] and q 2 = [0. 1 1] . In fact the recursive SIVIA-based algorithm (Table .1) can be used directly to compute the real gain p × n matrix K for the output-feedback control but it takes much time, so it is always preferable to reduce the complexity of computation and the number of parameters as possible to make the convergence to the solution more rapidly. In the case of MIMO systems, this can be done by using cyclic design or decentralized feedback control [START_REF] Skogestad | Multivariable feedback control: analysis and design[END_REF].

To characterize the set solution [K] of each subsystem (with Furthermore to test the obtained solutions an arbitrary point from the checked solution fig. 7-a is selected that corresponds to the controller parameters of the first subsystem K y1 = -5 and K i1 = 1000, and from fig. 7-b with the same manner the parameters of the second subsystem is chosen as K y2 = -1 and K i2 = 1000. Thus the obtained gain matrices are: In order to simulate the impact of the systems uncertainties on the locations of the closed-loop eigenvalues and to show the robustness of the proposed controller against these uncertainties, a simulation test using Monte-Carlo Technique is performed. During the simulation test, robust control gains were selected randomly from the solution boxes, depicted in fig. 7, and values for the system matrices (A, B,C) inside the interval system ( [A],[B],[C]) and in each time the obtained eigenvalues are drawn, as depicted in fig. 9. The eigenvalues placement show clearly that the closed-loop system is always stable and satisfies the desired performance related to the damping ration and the natural pulsation (defined previously), as well as the system matrices are inside the interval system ([A], [B], [C]) which means that the controller is robust against system uncertainties. -c) it can be seen that the closedloop system ensures the rejection of the perturbation in low and high frequencies, whereas, for the law frequencies the rejection has a very small amplitude compared with high frequencies.

[K] = [[K y1 ] [K i1 ]] or [K] = [[K y2 ] [K i2 ]]) the pro- posed recursive SIVIA-based algorithm described in Table.1 is used . Foremost an initial box [K y ] × [K i ] = [-5 × 10 1 , 5 × 10 1 ] × [-1×10 3 , 1×10 3 ] is
k y = [q 1 K y1 , q 2 K y1 ] = - 5 
In order to test the tracking performances of the closedloop system, an experimental test is carry out with various trajectories including helix and series of steps shape trajectories. The result for the series of steps trajectory is depicted in fig. 12. It is clearly shown that the piezoelectric tube actuator tracks successfully the reference with the desired performances (negligible overshoot (1%) and settling time less then 40ms).

To test the ability of the closed-loop to track complex trajectories, the piezoelectric tube has been forced to track an helix shaped trajectory, by applying simultaneously a sine wave of amplitude 20µm on X and Y axes with frequencies 0.2Hz and 0.5Hz, respectively. Fig. 13 shows that the helix trajectory tracking is successfully achieved, with the tracking error less than 0.5µm for X and Y axis. 

Controller calculation using LQ tracker design

To demonstrate the advantage of using the LQ tracker design, an experimental comparison between choosing the feedback gains from the solution boxes (fig. 7) randomly and by means of LQ tracker design has been considered. As explained in section 5, in order to find the optimal gains that minimize the quadratic cost function [START_REF] Gutman | A general theory for matrix root-clustering in subregions of the complex plane[END_REF] we take the solution boxes [K in ] from fig. 7-a and -b provided by our recursive SIVIA-based algorithm and we apply the Particle Swarm Optimization (PSO) technique. Indeed the number of vertex matrices used to calculate the quadratic cost function [START_REF] Gutman | A general theory for matrix root-clustering in subregions of the complex plane[END_REF] is 2 12 = 4096 vertex which makes the use of intelligent optimization technique compulsory. Notwithstanding, the use PSO highly reduce the time of finding the optimal gains. After several iteration of PSO algorithm using the weight factors of 0.5, 1.5 and 1.5 for w, c1, and c2 respectively the optimal gains were obtained at [-11.155 3.8795 756.7 717.85].

Fig. 14 shows a comparison between choosing the feedback gains from the solution boxes (fig. 7) randomly and by means of LQ tracker design. Actually it can see clearly that all of the step responses of the closed-loop system using different gains satisfy the desire performance with negligible overshoot (1%) and with a settling time T s ≤ 40ms. However the optimal gains provide relatively better response. Hence, we can conclude that the obtained robust and optimal outputfeedback gains ensure that the closed-loop system is always stable under system uncertainties and simultaneously minimize the quadratic cost function.

Finally, the advantage of the proposed approach is that it provides a global ideas about the variation of the gains and their impact on the system stability which gives the possibility to choose the robust gains easily. Furthermore, with the proposed optimal synthesis it is very easy to find the optimal gains among the robust ones with better understanding of the system functionality.

Conclusions

In this paper an algorithm to determine the bounds of the gains of an output-feedback control scheme, with integral compensator, that clusters the closed-loop eigenvalues of interval systems inside a desired region was presented. The algorithm, called recursive SIVIA-based algorithm, is based on the combination of the Set Inversion Via Interval Analysis (SIVIA) approach, the Hladik and Rohn methods of calculation of intervals eigenvalues and the eigenvalues clustering techniques. The proposed recursive SIVIA-based algorithm is used here for robust output-feedback, but it can be used for robust state-feedback for both non-interval and interval systems. Furthermore, an LQ tracker design with Particle Swarm Optimization (PSO) technique is proposed to find the optimal gains that ensure the best behaviors of the closedloop system and minimize the inputs/outputs energy. Experimental applications were carried out on a piezoelectric tube actuator working in MIMO (Multi Input Multi output) case demonstrated the efficiency of the proposed approach. "Combining h-inf approach and interval tools to design a low order and robust controller for systems with parametric uncertainties: application to piezoelectric actua-
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  (A, B, C 1 , D 1 ) and (A, B, C 2 , D 2 ) where C 1 = C xx C xy , C 2 = C yx C yy , D 1 = D xx D xy and D 2 = D yx D yy then the cyclic design is applied on each subsystem by replacing [b] := [B]q such that q = [αβ]

  chosen for each subsystem and an accuracy of paving ε= 0.1. The obtained subpaving of each subsystem is depicted in fig.7. The red boxes correspond to the inner subpavings [K in ], i.e. the set solutions [K y ] and [K i ] that satisfy the inclusion[START_REF] Hladík | Bounds on eigenvalues of real and complex interval matrices[END_REF]. The white boxes correspond to the subpavings [K In f easible ] where the inclusion condition is not satisfied. The yellow boxes refer to [K out ] where no decision on the inclusion is taken. The boxes in green color correspond to the checked solution [K checked ] in which the sufficient condition of eigenvalues clustering in the desired region (Theorem.5) is verified.
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Appendix A: Particle Swarm Optimization(PSO)

Particle Swarm Optimization (PSO) is a heuristic search method that is inspired from the collaborative behavior and swarming in biological populations [START_REF] Hassan | A comparison of particle swarm optimization and the genetic algorithm[END_REF]. It consists of three steps: 1) generation of positions and of velocities of particles, 2) updating velocity, 3) and position update. In our case a particle refers to a point, which represent a feedback gains in the set solution given by the recursive SIVIA-based algorithm, and that changes its position from one move (iteration) to another based on velocity updates.

In the following we denote consequently x i k and v i k the position and the velocity respectively of the i th particle at time k. First, the positions x i k and velocities v i k of the initial swarm of particles are randomly generated using upper and lower bounds on the design variables values x min and x max as expressed in [START_REF] Rohn | Systems of linear interval equations[END_REF] and [START_REF] Oettli | On the solution set of a linear system with inaccurate coefficients[END_REF]. The uniformly distributed random variable (rand) is used on [START_REF] Rohn | Systems of linear interval equations[END_REF] and [START_REF] Oettli | On the solution set of a linear system with inaccurate coefficients[END_REF] to allow the swarm particles to be randomly distributed.

The second step is to update the velocities of all particles at time k + 1 using the particles fitness or objective values which represent in our case the quadratic cost function [START_REF] Gutman | A general theory for matrix root-clustering in subregions of the complex plane[END_REF].

where c 1 and c 2 are self and swarm confidence factors consequently, w is inertia factor , J i is the best position of each particle over time, and J g k is the best global value in the current swarm.

Lastly, The Position of each particle is updated in each iteration using its velocity vector as shown in [START_REF] Rakotondrabe | Smart Materials Based Actuators at the Micro/Nano-Scale[END_REF].

The three steps are repeated until a desired convergence criterion is achieved, in which the maximum change in best fitness J g k should be smaller than specified tolerance for a specified number of iterations.