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Abstract

We present a novel instance based approach to handle regression tasks in the context
of supervised domain adaptation. The approach developed in this paper relies on
the assumption that the task on the target domain can be efficiently learned by
adequately reweighting the source instances during training phase. We introduce
a novel formulation of the optimization objective for domain adaptation which
relies on a discrepancy distance characterizing the difference between domains
according to a specific task and a class of hypotheses. To solve this problem, we
develop an adversarial network algorithm which learns both the source weighting
scheme and the task in one feed-forward gradient descent. We provide numerical
evidence of the relevance of the method on public datasets for domain adaptation
through reproducible experiments accessible via an online demo interface: https:
//antoinedemathelin.github.io/demo/.

1 Introduction

Many applications of machine learning methods require to learn a regression task, for instance,
estimation of manufactured products performance, sentiment analysis of customer reactions, fore-
casting of supply and demand or prediction of the time spent by a patient in a hospital. In most of
these applications, groups of products or patients define several domains with different distributions.
Acquiring a sufficient amount of labeled data to provide a model performing well on all of these
domains is often difficult and expensive. In practical cases, only a few labeled data are available for
the target domain of interest whereas a large amount of labeled data are available from other source
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domains. One then seeks to leverage information from these source domains to learn efficiently the
task on the target one through supervised training with a small sample of labeled target data.

Most of previous works on domain adaptation have focused on the unsupervised scenario where
no target labels are available. Unlabeled target data are then used to correct the difference between
source and target distributions by either creating a new feature space (feature-based methods [9], [25],
[5]) or reweighting the training instance losses (instance-based methods [13], [24], [6]).

Available domain adaptation methods for regression are essentially instance-based methods which
reweights the loss of source instances in order to minimize a distance between source and target
distributions, such as the KL-divergence [24], [10], the MMD [13], [26], or the discrepancy [16], [6],
[19], [1]. The latter offers the advantage, of being adapted to the underlying task and the particular
class of hypotheses chosen to learn this task. An extension of the discrepancy, known as the Y-
discrepancy, introduced in [19], defined as the maximal difference between source and target risk
over a set of hypotheses, presents tighter theoretical bounds of the target risk than the discrepancy
[17]. However, as far as we know, previous discrepancy minimization algorithms do not estimate
the Y-discrepancy directly. As they focus on the use of unlabeled target data, they choose instead
to consider unsupervised approximation of this distance as the discrepancy [19] or the generalized
discrepancy [7].

Most instance-based methods rely on the use of functions induced by positive semi-definite kernels
and their weighting strategy consists in general in solving a quadratic problem [6], [7], [13], [26].
Thus, these methods present a computational burden when the number of data is important. The work
of [20] presents a boosting method for domain adaptation with regression tasks which scales better
with large datasets by using neural networks or decision trees as base learner.

In this paper, we present a novel instance-based method for supervised domain adaptation for
regression tasks using a few labeled target data. We propose the Weighting Adversarial Neural
Network (WANN) algorithm to learn the optimal weights to correct the difference between source
and target distributions. WANN proceeds to the minimization, in one feed-forward gradient descent,
of an original objective function composed of the empirical Y-discrepancy between source and
target domains and the task risk on these same domains (section 2). Compared to other discrepancy
minimization algorithms, we use adversarial neural networks to estimate at each gradient step the
importance weights of source instances and the empirical Y-discrepancy. We thus propose an efficient
way to extend adversarial domain adaptation to regression tasks. After presenting related work in
section 3, we show on several experiments that the novel weighting strategy of WANN leads to results
which outperform state of the art methods for domain adaptation in regression and provides a method
which scales better with large datasets. All the code for the experiments presented in this paper is
available on GitHub. We also implement an online demo of our algorithm which can be found via the
links provided in section 4.

2 Weighting Adversarial Neural Network

2.1 Notations

Given X ⊂ Rp and Y ⊂ R, we consider the supervised domain adaptation regression setting where
S = {(x1, y1), ..., (xm, ym)} ∈ (X × Y )m and T = {(x1, y1), ..., (xn, yn)} ∈ (X × Y )n are
respectively the labeled source and target datasets. In this setting, the sample size n of T is typically
much smaller than m, the one of S (n << m).

We consider two classes of neural networks H,H ′ of a given architecture and activation functions.
We introduce three networks ht, hd ∈ H and W ∈ H ′ called respectively the task, the discrepancy
and the weighting network.

2.2 Objective function

Our approach is based on the instance-based assumption that an optimal task hypothesis ht ∈ H
for the regression task on the target domain can be computed by optimally weighting the loss of the
source instances during the training phase. We suppose in addition that the optimal source weights
can be computed by a weighting network W ∈ H ′ such that W : X → R+ learns the relationship
between the input space and the source weights. A reweighting of the source instances is considered
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to be optimal if it minimizes the empirical Y-discrepancy between the reweighted source and the
target distributions. However, computing the empirical Y-discrepancy requires finding a maximum
over the set of hypothesesH which is difficult in general. We then introduce a discrepancy hypothesis
hd ∈ H to approximate the empirical Y-discrepancy using adversarial techniques introduced by [9].

This leads to the objective functionG provided below (equation 1). The functionG can be understood
as a regularization of the target risk (second term of G) by the weighted source risk (first term of
G). Since the sample size of T is small, adding a selection of labeled source data will prevent from
overfitting. The weighting network W is trained to "select" the most informative source instances
which are "close" to the target instances in term of the estimated Y-discrepancy (third term of G).

G(W,ht, hd) =
1

m

∑
(xi,yi)∈S

W (xi)(ht(xi)− yi)2 +
1

n

∑
(xj ,yj)∈T

(ht(xj)− yj)2

+

∣∣∣∣∣∣ 1m
∑

(xi,yi)∈S

W (xi)(hd(xi)− yi)2 −
1

n

∑
(xj ,yj)∈T

(hd(xj)− yj)2
∣∣∣∣∣∣ .

(1)

In order to approximate the Y-discrepancy which consists of the maximal difference between source
and target risks, the network hd is trained to maximize the third term of G, i.e hd seeks to provide
antagonist performances on the two distributions. Thus, by looking for the source weights minimizing
the Y-discrepancy, the network W learns a new source distribution on which any hypothesis hd in H
will perform as well as on the target distribution.

The purpose of using a weighting neural network W is to capture the underlying dependence between
source instances. Indeed, the weights of dependent source instances should increase or decrease
altogether as these instances will be similarly related to the target data. Using a neural network for
this purpose provides a way to preserve the spatial structure in the source weighting scheme such that
the weights of source instances close to each other in the input space will be similar (section 4.1).

Figure 1: The WANN algorithm trains three networks in parallel in the same gradient descent. W
learns the source instance weights which are multiplied to the source losses of networks ht and
hd. The last network, which estimates the Y-discrepancy between the reweighted source and target
instances, is trained with an opposite objective function (−G). This is done by using a Reversal
Gradient Layer (RGL) in bold on the Figure. Source and target data are denoted respectively (XS , YS)
and (XT , YT ).

2.3 Weighting Adversarial Neural Network Algorithm

We define here βt, βd, βw the parameters of the respective networks ht, hd and W which will be
denoted in this section hβt

t , h
βd

d and W βw for the sake of clarity. In the same way, the objective
function G from equation 1 will be denoted as a function of the parameters.
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The details of WANN gradient descent are presented in Algorithm 1. The goal of this algorithm is to
approximate the saddle point (β∗w, β

∗
t , β
∗
d) verifying:

(β∗w, β
∗
t ) = argmin

βw,βt

G(βw, βt, β
∗
d)

β∗d = argmax
βd

G(β∗w, β
∗
t , βd) .

(2)

A reversal gradient layer, as defined in [9], is used to change the sign of the gradient in back-
propagation. Thus, in the same gradient step, the current objective function G(βw, βt, βd) is back-
propagated through W βw and hβt

t whereas its opposite value is returned to hβd

d (Figure 1).

There are no theoretical guarantees that G admits this saddle point. However, in practice, we observe
numerical convergence of WANN and improved performance on the target task compared to other
methods (section 4).

A constraint is applied on each network by projecting the weights of their layers at each gradient step
on the Euclidean ball of radius C [23]. This constraint is used in several adversarial algorithms such
as WGAN [2] and DANN [9]. Furthermore, mini-batch gradient descent is also used. Notice finally
that we consider, in the algorithm, the squared Y-discrepancy in order to make G differentiable.

Algorithm 1 WANN algorithm

1: Input:
• S = {(xi, yi)}i<m, T = {(xj , yj)}j<n
• D,D′ dimensions of neural networks
• E number of epochs, B batch size,
µ learning rate, C projecting constant

2: Output: neural networks W βw , hβtt and hβdd
3: Initialization
4: βt ← Glorot uniform∗ ∈ RD

5: βw ← Glorot uniform ∈ RD
′

6: βd ← Glorot uniform ∈ RD
7: Reshape: T ← T × bm/nc
8: for e from 1 to E do
9: Split S, T in {Sk, Tk}k<bm/Bc batches

10: for k from 1 to bm/Bc do

11: Forward propagation
12: ∆St ←

∑
Sk
W βw (xi)(h

βt
t (xi)− yi)2

13: ∆Tt ←
∑
Tk

(hβtt (xj)− yj)2

14: ∆Sd ←
∑
Sk
W βw (xi)(h

βd
d (xi)− yi)2

15: ∆Td ←
∑
Tk

(h
βd
d (xj)− yj)2

16:
17: Back propagation
18: βt ← PC

(
βt − µ

(
∂∆St
∂βt

+ ∂∆Tt
∂βt

))
19: βw ←

PC
(
βw − µ

(
∂∆St
∂βw

+ ∂|∆Sd−∆Td|2
∂βw

))
20: βd ← PC

(
βd + µ

(
∂|∆Sd−∆Td|2

∂βd

))
end for

end for

Note: In this pseudo-code, PC refers to the projection of the weights of each layer of a neural network on the
ball of radius C. ∗ Glorot uniform is the initialization procedure proposed in [11].

3 Related work

3.1 Discrepancy Minimization

The present work is in line with discrepancy minimization methods, which were first introduced in
[16] and further developed in [6], [19], [15], [28] and [7]. More specifically, the WANN algorithm
aims at minimizing the empirical Y-discrepancy introduced in [19].

Definition and theoretical results for the Y-discrepancy are provided in [17] (Definition 5, Proposition
1) where theoretical bounds of the average loss over the target domain can be found. Considering the
empirical source and target distributions Q̂ and P̂ and labeling functions fQ, fP , it is showed that
the task risk on the target distribution can be upper bounded by the empirical risk on any reweighted
source distribution plus the empirical Y-discrepancy. Besides, the target risk is also upper bounded
by its empirical estimation plus a Rademacher complexity term.

Following these considerations, it appears that to minimize the target risk, one should minimize the
Y-discrepancy and the task risk on the empirical distributions Q̂ and P̂ . This is the purpose of WANN
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algorithm which aims at solving the following optimization formulation:

min
ht∈H,W∈H′

(
LW (Q̂)(ht, fQ) + LP̂ (ht, fP ) + max

hd∈H
|LW (Q̂)(hd, fQ)− LP̂ (hd, fP )|

)
, (3)

where LW (Q̂)(h, fQ) = Ex∼Q̂[W (x)L(h(x), fQ)], and LP̂ (h, fP ) = Ex∼P̂ [L(h(x), fP )] are re-
spectively the reweighted source risk and the target risk with L a loss function over pairs of labels.

The optimization formulation (3) is a min-max optimization problem. The algorithms in [6] and [7]
solve a related problem for respectively the discrepancy and the generalized discrepancy on the class
of functions induced by PSD kernels using quadratic programming. In this paper, we choose instead
to estimate the "max" part of the equation with a discrepancy network hd trained with adversarial
techniques.

3.2 Adversarial neural networks

As far as we know, our WANN algorithm is the first application of adversarial techniques to domain
adaptation for supervised regression tasks. Indeed, adversarial techniques, originally introduced for
domain adaptation in [9], are essentially used in unsupervised feature-based methods for classification
tasks. DANN [9] and ADDA [27] algorithms, focus on finding a new representation of the input
features where source and target instances cannot be distinguished by any discriminative hypothesis.
This process aims at minimizing theH-divergence introduced by [3]. Considering other distances,
the adversarial methods MCD [22] and MDD [28] learn a new features representation by minimizing
respectively the absolute difference between the predictions of two classifiers and the disparity
discrepancy between source and target domains. Similarly, in [1], the discrepancy distance is
considered for the training of GANs.

4 Experiments

In this section, we report the results of WANN algorithm compared to other domain adaptation
methods for regression. The experiments are conducted on one synthetic and three public datasets:
Superconductivity [12], Kin-familly [21] and Amazon review [4]. Following the standards of repro-
ducible experiments, the source code of the used methods and all the scripts to obtain the presented
results are available on GitHub 1 with an online demo. GDM code used is the one provided by
the authors of [7] 2. All results presented in this section have been computed on a (1.8 GHz, 8 G
RAM) computer. The following competitors are selected to compare the performance of the WANN
algorithm:

• TrAdaBoostR2 [20] is based on a reverse-boosting principle where the weight of source
instances poorly predicted are decreased at each boosting iteration. We choose the two-
stage version of TrAdaBoostR2 with 10 first stage and 5 second stage iterations. A 5 fold
cross-validation is performed at each first stage and the best hypothesis is returned.

• Generalized Discrepancy Minimization (GDM) [7] is an adaptation of DM algorithm
[6] to the supervised scenario. The GDM hyper-parameter λ is selected from the set
{2i,−10 ≤ i ≤ 10} and the r and σ hyper-parameters from the set: , {2i,−5 ≤ i ≤ 5}, the
selection is made with cross-validation on the few available labeled target data.

• Kullback-Leibler Importance Estimation Procedure (KLIEP) [24] is a sample bias
correction method minimizing the KL-divergence between a reweighted source and target
distributions. We choose the KLIEP likelihood cross validation (LCV) version with selection
of Gaussian kernel bandwidth in the set σ = {2i,−5 ≤ i ≤ 5}.

• Kernel Mean Matching (KMM) [13] reweights source instances in order to minimize the
MMD between domains. A Gaussian kernel is used with σ ∈ {2i,−5 ≤ i ≤ 5} selected
with cross-validation on labeled target data. Parameters B and ε are set to 1000 and

√
m√
m−1 .

• Discriminative Adversarial Neural Network (DANN) [9] is used here for regression
tasks by considering the mean squared error as task loss instead of the binary cross-entropy

1https://github.com/antoinedemathelin/wann
2https://cims.nyu.edu/~munoz/
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proposed in the original algorithm. In the following DANN uses all labeled data to learn
the task and all available training target data (including unlabeled ones) to find a common
feature space. The trade-off parameter λ is selected on 7 values between 0.01 and 1 with
cross-validation on the training labeled target data.

To compare only the adaptation effect of each method, we use, for all of them, the same class of
functions H to learn the task which is the class of fully-connected neural networks with ReLU
activation functions and a static architecture. All networks implement a projecting regularization of
parameter C. Adam optimizer [14] is used in all experiments for the training of neural networks. For
WANN algorithm, the two networks ht, hd are chosen in the specified class H . For DANN algorithm,
a linear discriminative network is placed at the last hidden layer of the task network, thus DANN
uses the same hypothesis as other compared methods to learn the task.

4.1 Synthetic Experiment

We first propose to give an intuitive understanding of WANN behavior through a one-dimensional
dataset. For this purpose, we consider the synthetic experiment where source and target input
instances are drawn uniformly on [0, 1]. Source instances follow (with equal probability) one of these
five labeling functions: fk(x) = sin(20x) + kx3 + ε for k ∈ [−2,−1, 0, 1, 2], with ε = N (0, 0.1).
Target instances follow the labeling function f(x) = sin(20x)− 0.75x3 + ε. As presented in Figure
2.A, we thus model a domain adaptation scenario where target and source data have fairly the same
behaviour on the first half of the distribution but differ on the second. We consider 10 labeled target
data equally separated along the domain with additional noise (black squares).

Figure 2: Visualization of synthetic experiment results.

Figure 2.B displays the predictions computed with the "No reweight" method which attributes uniform
weights to all training instances. It appears that the "No reweight" strategy fails to provide a suitable
hypothesis for the target task by following the mean of source tasks on the second half of the domain.
In the contrary, the two domain adaptation methods TrAdaBoostR2 (Figure 2.C) and WANN (Figure
2.D) are able to "select", with an appropriate reweighting, the source instances which present similar
behaviour than the target data and to discard the others. WANN, however, presents a more continuous
reweighting than TrAdaBoostR2 due to the use of a weighting network which conserves some spatial
structure. In this case, a slight benefit is observed for WANN in terms of target risk. We notice
however for some cases in this synthetic setup (in particular for high learning rate), suboptimal
convergence of WANN which may be due to the instability of adversarial training [18].

4.2 Experiments on a large dataset

A major advantage of WANN algorithm over previous instance-based methods for domain adaptation
in regression is to propose a weighting strategy suited for neural networks. Thus our method scales
better to large datasets than other methods involving kernels and quadratic programming. We propose
here to demonstrate the efficiency of WANN on the UCI dataset Superconductivity [12], [8], against
"No Reweight", TrAdaBoostR2 and DANN which can also handle large datasets.

The goal is to predict the critical temperature of superconductors based on features extracted from their
chemical formula. This is a common regression problem in industry, as industrials are particularly
interested to model the relationship between a material and its properties.
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Table 1: Superconductivity experiments MSE (× 1000)

Expe. l→ ml l→ mh l→ h ml→ l ml→ mh ml→ h mh→ l

Tgt Only 432 (54) 412 (68) 385 (63) 726 (46) 488 (60) 527 (76) 875 (82)
Src Only 563 (35) 512 (50) 883 (176) 525 (34) 316 (23) 513 (55) 1996 (85)
No Re. 444 (28) 436 (35) 498 (56) 499 (12) 317 (19) 477 (63) 1167 (105)
DANN 597 (39) 589 (66) 755 (90) 484 (21) 343 (20) 465 (62) 1526 (254)
TrAdaB. 313 (17) 340 (39) 383 (62) 483 (44) 281 (6) 383 (35) 659 (22)
WANN 235 (10) 324 (18) 392 (40) 430 (9) 261 (13) 352 (26) 626 (25)

Expe. mh→ ml mh→ h h→ l h→ ml h→ mh Avg MSE Avg rank

Tgt Only 669 (77) 599 (59) 982 (106) 725 (81) 602 (80) 618 (71) 4.67
Src Only 629 (29) 353 (14) 3092 (531) 1101 (209) 372 (16) 904 (105) 5.00
No Re. 566 (34) 344 (13) 740 (41) 493 (40) 345 (17) 527 (39) 3.42
DANN 503 (29) 387 (39) 1808 (553) 527 (65) 355 (23) 695 (105) 4.33
TrAdaB. 458 (36) 338 (9) 656 (23) 555 (61) 404 (23) 438 (31) 2.25
WANN 392 (12) 339 (10) 625 (30) 503 (28) 331 (23) 401 (20) 1.33

We divide this dataset in separate domains following the setup of [20]. We select an input feature with
a moderate correlation factor with the output (∼ 0.3). We then sort the set according to this feature
and split it in four parts: low (l), midle-low (ml), midle-high (mh), high (h). Each part defining a
domain with around 5000 instances. The considered feature is then withdrawn from the dataset. We
conduct an experiment for each pair of domains which leads to 12 experiments. All source and 10
target labeled instances are used in the training phase, the other target data are used to compute the
results reported in Table 1. We also report the average MSE as well as the average rank over the 12
experiments. Notice that each experiment is repeated 10 times to obtain the standard deviation in
brackets. Here, the networks from H used by all methods to learn the task is composed of a layer of
100 neurons, with a projecting parameter C = 1. WANN weighting network W is taken in H with a
projecting constant equal to 0.1. The learning rate is set to 0.001, the number of epochs to 200 and
the batch size to 1000. A standard scaling preprocessing is performed with the training data on both
input and output features. We also consider the two basic methods: "Src Only", trained on source
data only and "Tgt Only", trained on the few labeled target data only.

The results of Table 1 underlined the ability of WANN to efficiently adapt between domains. In
particular, we observe significant gains against DANN, "No Reweight", "Src Only" and "Tgt Only",
when the source and target domains are less related, for instance when adapting from "midle-high" to
"low" (mh→ l). TrAdaboostR2 shows competitive results to WANN in some experiments. It should
be mentioned however, that this method requires to train 100 networks where the others only have
to train one. Besides, as boosting iterations need to be executed successively, the training of these
networks cannot be parallelized. The fact that WANN algorithm is based on the minimization of a
theoretically well founded objective function may explain its better performances over TrAdaBoostR2.

4.3 Experiments on small datasets

In order to compare our method against KMM, KLIEP and GDM, we consider several experiments
on smaller datasets extracted from respectively Kin-8xy [21] and Amazon review [4]. We choose the
same experimental setups than GDM in [7] for the choice of training and testing data. Notice that the
training set in all experiments is composed of the source and a few labeled target instances as well
as unlabeled target instances. However, WANN and TrAdaBoostR2 do not use the unlabeled ones.
It should also be underlined that KMM and KLIEP are two stage methods which first reweight the
training instances and then learn the task hypothesis. Gaussian kernels are used only in the first stage.
To learn the task, the same class of hypotheses H is used for all methods. Exception is made for
GDM algorithm which is a one stage algorithm implemented for hypotheses induced by PSD kernels.

The first experiments are conducted on Kin-8xy [21] which is a family of datasets synthetically
generated from a realistic simulation of the forward kinematics of an 8 link all-revolute robot arm.
The task consists in predicting the distance of the end-effector from a target. The task for each dataset
has a specific degree of noise (moderate "m" or high "h") and linearity (fairly-linear "f", non-linear
"n"). We conduct one experiment on each of the 12 pairs of domains defined by these 4 datasets. We
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Table 2: Sentiment analysis experiments summary (MSE ×1000).

WANN TrAdaBoost DANN No Rew. KLIEP KMM GDM

1st rank 8 2 0 0 0 1 1
Avg MSE 970 (24) 1002 (33) 1127 (36) 1017 (19) 1019 (18) 1020 (18) 1039 (2)
Avg rank 1.42 2.92 6.83 3.92 4.08 4.17 4.67

pick 200 source, 200 target unlabeled and 10 target labeled instances. 400 other target instances are
used to compute the MSE scores reported in Figure 3.

We conduct the next experiments on the cross-domain sentiment analysis dataset of Amazon review
[4] where reviews from four domains: dvd, kitchen, electronics and books are rated between 1 and
5. The task consists in predicting the rating given one review. For pre-processing, we select the top
1000 uni-grams and bi-grams. Here, 700 labeled source and unlabeled target data are given as well as
50 labeled target data. The results are computed on 1000 target data.

For both datasets, the networks of H used to learn the task are composed of 2 layers of respectively
100 and 10 neurons, parameter C is set to 1. Dropouts are added at the end of each layer with the
respective rates (0.5, 0.2). A learning rate of 0.001, 300 epochs and a batch size of 32 are used in the
optimization for the experiments on Kin-8xy. For the ones on Amazon review the number of epochs is
set to 200 and the batch size to 64. All experiments are run 10 times to compute standard deviations.

The choice of WANN hyper-parameters lies in the choice of W network architecture. In the experi-
ments, we arbitrarily choose the same architecture as task networks from H . For each dataset, we
choose the same Cw projecting parameter of W in all experiments, the choice of Cw is done using
cross-validation on one of the 12 experiments using the few training labeled target data. The constant
selected here is 1 for Kin-8xy and 0.2 for Amazon review. We try other architectures and choices of
parameter Cw for W and also notice leading results for WANN algorithm.

Figure 3.A presents the results of kin experiments. WANN provides the best MSE in a majority
of experiments, in particular when labeling functions differ between source and target domains.
Again, our algorithm presents better performance than other methods on the sentiment analysis
experiments (Table 2). As the only difference between WANN and the other domain adaptation
methods (at the exception of GDM and DANN) is the weighting strategy, these results underline the
efficiency of using a neural network to learn the source instances weights. Notice that our method and
TradaboostR2 do not take advantage of unlabeled target data, however the two methods present the
best score in almost all experiments. These considerations highlight the difficulty to make consistent
unsupervised adaptation on a regression task. This fact can also be observed on Figure 3.B presenting
the impact of the number of labeled target data on the target risk. We observe that significant decreases
of MSE are due to the presence of labeled target data more than to the method used, in particular
when labeling functions differ between domains (fm→ nh or nh→ fm). In these cases, it appears that
it is better to use a "No reweight" strategy with a few labeled target data than to use an unsupervised
algorithm. However, we observe that the "No Reweight" strategy needs between 30 to 100 labeled
target data to obtain the same level of MSE obtained with WANN algorithm using only 10 of them.

5 Conclusion

In this work, we present a novel instance based approach for regression tasks in the context of
supervised domain adaptation. We show that the weights accorded to source instance losses during
the training phase can be optimally adjusted with a neural network in order to learn efficiently the
target task. We propose the WANN algorithm which minimizes with adversarial techniques an
original objective function involving the Y-discrepancy. WANN algorithm provides, on various
experiments, results which outperform baselines for regression domain adaptation and proposes a
weighting strategy able to handle large datasets. We show that using a weighting network for instance-
based domain adaptation provides an efficient way to conserve spatial structure in the weighting
scheme. Our work also reveals the importance of labeled target data to obtain performing models in
the context of domain adaptation with regression tasks.
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Figure 3: Kin experiments results: (A) presents the comparison of MSE for each experiment
normalized in the way that "No reweight" score is always 1. (B) presents the evolution of MSE
depending on the number of labeled target instances in the training set for three experiments.
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