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Abstract—Electroplating facilities often face the Cyclic Hoist
Scheduling Problem when a repetitive sequence of moves is
searched for the hoists. This paper addresses this optimization
problem extended to the design of the workshop, where we aim to
minimize both the cycle time and the number of hoists used. For
this goal, we propose a genetic meta-heuristic approach which
introduces a novel solution encoding to enlarge the solutions’
search space. Our encoding procedure is based on hoists’ empty
moves, and includes separator characters. With the latter, we
obtain solutions that were not reachable by previous approaches.
Each solution obtained thanks to the genetic operators is evalu-
ated by using a Mixed Integer Linear Program. This one checks
the constraints of the problem (such as capacity constraints and
soaking time bounds) and computes the smallest cycle time for a
given moving sequence and its associated number of hoists. Some
results are presented using benchmark instances for which our
approach allows to improve the best known solutions.

Index Terms—Cyclic Hoist Scheduling Problem, Design of
Electroplating Facilities, Encoding approach, Genetic Algorithm.

I. INTRODUCTION

Automated material handling devices are extensively used
in contemporary manufacturing systems. Like in electroplating
facilities, programmable cranes (also called robots or hoists)
are responsible for transporting parts from a work station to
another. These robots represent one primordial component for
the productivity of the line as they must respect restrictive
bounded processing times of the parts, while performing
transportation tasks. The production system is an automated
electroplating line which consists of a number of chemical
tanks arranged in a row. These tanks are usually ordered
following the processing sequence. The first tank of the line
is the loading station where batches of parts are prepared
and mounted on carriers and the last tank is the unloading
station where carriers are unloaded after being processed. In
some cases, both operations of loading and unloading may
occur in the same first station which is called associated
loading-unloading station. After being loaded, the carriers
soak successively in the chemicals following the processing
sequence. They must dwell in the tanks within given time-
windows, otherwise, the parts are considered defective. At the
end of every soaking operation, the carriers are removed and
transferred to the next tank via a material handling hoist. An
electroplating line can have one or several operational hoists.

These programmable robots move on a single track fixed above
the tanks line (Fig. 1).

Fig. 1. An electroplating line with associated loading-unloading station

This paper considers the design and scheduling problem
in electroplating facilities where the production is cyclic
(Manier and Lamrous [1]). We call it the Cyclic Hoist Design
and Scheduling Problem (CHDSP). Design means that we
search for the convenient number of hoists that fulfills the
production and cost objectives like enhancing productivity,
lowering investment and energy costs, etc. For this reason, we
solve the problem for different hoist fleet sizes. Scheduling is
wanted to order the hoists’ moves while respecting processing
and time-window constraints. It aims at minimizing the cycle
period. To solve this problem, we propose a genetic algorithm
based approach. The assignment of a hoist number to the line
with a respective moving sequence to every hoist is done due
to an encoding approach based on empty moves. This one
extends the initial encoding proposed by Manier and Lamnous
in 2006 [1]. An MILP model is used to evaluate the feasibility
of the moving sequences and to compute the period of the
cycle.

The paper is organized as follows: Section 2 describes the
problem and introduces the notation used. Section 3 gives a
state of the art to the handled problem. In Section 4, we present
our genetic solving approach, whose first step is an assignment
phase based on the empty moves and the separator characters.



Experiments and results are reported and discussed in Section
5 and, finally, Section 6 draws a conclusion to this work.

II. PROBLEM DESCRIPTION

In electroplating systems, a great number of parts often
go through the same processing sequence. As such, a fixed
processing sequence is repeated constantly and then, the
production is considered cyclic. The duration of the cycle is
the cycle period or the cycle time. The hoists, responsible
for the transport operations, will also repeat the same moving
sequences. A hoist cyclic schedule is the cyclic move sequence
composed of transfer operations for which we determine the
starting and the ending times. Hence, the CHDSP we address
in this study intends to find the cyclic schedule that minimizes
the cycle period for each number of hoists that can be assigned
to the line. As such, we will get several best possible couples
of fleet size and cycle period, together with their associated
schedules. These outcomes represent a decision support system
that will enable decision-makers to choose a suitable couple
of parameters to their production systems with regards to
investment costs and productivity objectives.

The production line that we consider is composed of N
tanks (Fig. 1). The first (fictive) tank is an associated loading-
unloading station. The tanks from 2 to N are the soaking
tanks. Then N +1 operations are performed in the processing
sequence: N − 1 in chemical tanks and 2 in tank 1 (the
first (loading) and the last (unloading) operations). The line
consists of H hoists which ensure the transfer of carriers
between processing tanks (h ∈ J1, HK). This fleet size H is
a variable of the problem. The repetitive move sequence of
hoist h is denoted by Sh. It is an alternation of loaded and
unloaded moves. In the first type, the hoist transfers a carrier
from one tank i to its consecutive i + 1. In the second type,
the hoist travels empty from tank i + 1 to a tank j, from
which the next loaded move starts. We refer to loaded moves
by (i, i + 1), to unloaded moves by (i, j), to unloaded move
times by di,j and to loaded move times by ri (i, j ∈ J1, NK).
ri = di,i+1 + c, where c is a constant time needed by the
hoist to lift a carrier from tank i, to pause if necessary above
tank i and let the carrier drip-off, then to stabilize when
arrived to tank i+ 1 and to lower the carrier into tank i+ 1.
The times di,j and ri are given constants. We denote by T
the cycle time (period). Both the tanks and the hoists are
disjunctive resources. They can only process one carrier at
a time. Besides, the hoists need enough time to travel empty
between two successive transportation tasks. They evenly must
not pause during transport operations unless it is a dripping
pause of the carrier. In other respects, the carriers must follow
the same processing sequence and visit every tank just once.
Once started, the soaking of a carrier cannot be interrupted.
Furthermore, the soaking time in each tank i must range
between a minimum and a maximum time bounds, denoted
respectively by mi and Mi. After being processed, a carrier
must leave the soaking tank without any delay to not exceed
the maximum time limit. Once it has left, it must immediately

be transferred to the next tank because intermediate buffer is
not allowed.

III. STATE OF THE ART

The scheduling dimension of the CHDSP is known as
the Cyclic Hoist Scheduling Problem (CHSP). It consists in
searching the cyclic schedule of hoists’ moves that minimizes
the cycle period. CHSP is one variant of the general Hoist
Scheduling Problem (HSP) for which Manier and Bloch [2]
have identified four big classes: Cyclic ”CHSP”, Predictive
”PHSP” [3], [4], Dynamic ”DHSP” [5], [6] and Reactive
”RHSP” [7], [8]. The authors have also provided a general no-
tation to the HSP Based on it, the suitable notation of the han-
dled problem is the following: CHSP |H,N−1, 1//ass|/N+
1|(Tmin, Hmin). It is the cyclic hoist scheduling problem in
a single basic line with H hoists, N − 1 single capacitated
tanks, plus the associated loading and unloading stations, a
processing sequence of N+1 operations (including the loading
and the unloading operations), in a bi-objective optimization
problem (minimize both the period T and the fleet size H).

The CHSP was broadly studied in the literature with differ-
ent production specifications and physical system parameters
and solved with various approaches. Phillips and Unger [9]
were the first to investigate it within a single hoist line. They
considered the objective of throughput maximization and pro-
posed a Mixed Integer Programming Model (MILP) to solve
the problem. Subsequently, many other researchers have dealt
with the CHSP in the single hoist case. Most of them proposed
exact solving approaches like linear programming models [10],
constraint logic programming models [11], binary search pro-
cedures [12], branch and bound solution procedures [13], etc.
In the range of approximate approaches, Lim [14] suggested
a genetic algorithm based procedure to solve the CHSP. As
for the multiple hoist case, the CHSP has also stirred up
the attention of researchers. Many of them assumed a zoning
approach that divides the line into a number of disjunctive sets
of tanks and then, each hoist is assigned to a set ( [15]–[18]).
Likewise, they fulfilled the collision free constraint because the
partitioned zones are not overlapped. Other researchers have
treated the multi-hoist case differently. Hanen and Munier [19]
assigned the transport moves arbitrarily to the hoists and
advanced a MILP model and a branch and bound procedure to
solve the problem. Manier et al. [20] investigated the CHSP in
systems with duplicated and multi-function tanks that are near
to real industrial environments. The authors suggested a static
partitioning method that assigns the transfer operations to the
hoists, so that the hoists’ zones may overlap and the tanks
inside may not be adjacent. Che and Chu [21] formulated
the collision free constraints as disjunctive inequalities and
examined two additional properties that inspect collisions for
all the feasible solutions. To solve the problem, they introduced
a branch and bound procedure. Zhou and Liu [22] studied the
CHSP in bi-hoist systems with overlapping hoist zones and
introduced a heuristic algorithm to generate and assign moving
sequences to the hoists. They developed a linear programming
model with the collision avoidance constraints to find the



optimal schedule among the feasible assignments. Chtourou
et al. [23] tackled also the CHSP in a bi-hoist system and
proposed a collision test procedure to check collisions on the
generated moving sequences.

Other recent studies have focused on the multi-degree or
k-degree aspect. In a k-degree CHSP, k identical parts enter
and leave the production line in one cycle. Li et al. [33] and
Mao et al. [34] developed a MILP model to solve the problem
also in the multi-hoist case. In [33], systems with parallel
machines were considered. The CHSP was also studied with
other optimization objectives, like in the study of Xu et
al. [24] where they investigated the waste minimization for
an environment friendly electroplating line. Liu et al. [25]
also advanced a triple objective model where they focused
on productivity maximization, energy saving and freshwater
minimization. Thereby, within the intensive studies of the
CHSP, the design dimension was rarely examined and each
time with a different vision. For Zhao et al. [26], it concerned
the arrangement of the production line to optimize the spatial
allocation of the tanks. Qu et al. [27] treated the simultaneous
design and operation problem of CHSP in 2-Dimension line
structures where they supposed that the production line is a
compact 2-D structure rather than 1-D line. When the design
dimension has been deployed as the objective of minimizing
the number of hoists to be used in the line [16] [17], the
studies only focused on this objective and did not consider
the minimization of the cycle time.

Hence, to our best knowledge, the CHDSP with both ob-
jectives of minimizing the fleet size and minimizing the cycle
time has only and first be tackled by Manier and Lamrous [1]
and [28]. In these studies, the fleet size was a variable of the
problem. The authors introduced a novel encoding approach
of the solutions based on the hoists’empty moves. For each
generated solution, a decoding procedure gives the fleet size
together with the cyclic move sequence of each hoist. The
scheduling dimension was formulated with a Mixed Integer
Linear Programming model and the whole problem was solved
with an evolutionary algorithm. Nonetheless, the encoding
approach, as it was initially proposed, does not represent
the whole search space and then, is not able to reach all
the possible solutions. As a result, in this paper, we address
the CHDSP with the aim to upgrade the empty move based
encoding approach. We will show its limit and propose an
adjustment to overtake it.

IV. CHDSP SOLVING APPROACH

A. The Empty move based assignment

The empty move based encoding approach [1] is a novel and
interesting approach to encode the solutions for the CHDSP.
Previous studies have always used the hoist loaded moves to
encode the solutions. Due to the empty move based encoding,
the solutions can represent many hoist moving sequences Sh

whose number is equal to the fleet size H . Then, each solution
corresponds to a number of hoists that can be integrated
to the production line. Hence, the approach provides at the
same time a couple of information: the fleet size H and the

moving sequence Sh of each hoist. The approach principle
is the following: A solution of the problem is any possible
combination of tank numbers i (i ∈ J1, NK). It is encoded
as a list of these numbers, that we denote by L. The size of
the list is S (2 ≤ S ≤ N ). Every two successive numbers i
and j (i, j ∈ J1, NK) of the list represents an empty move
(i, j) between the tanks i and j. The number of decoded
empty moves from a list is equal to its size S. Hence, the
decoding should be cyclic and the last decoded empty move
should begin with the last tank number of the list and ends
with its first tank number. In general, the number of empty
moves corresponding to a solution should be equal to N ,
to coordinate with all the N loaded moves and to ensure
that all soaking operations are filled. However, sometimes the
hoists, after performing a loaded move (i, i+ 1), should wait
above the same tank i + 1, at least during the soaking time,
before performing the next loaded move(i + 1, i + 2). Here,
the empty move (i + 1, i + 1) has a duration but has not
a spatial component, so it is called “fictive empty move”.
Then, if fictive empty moves exist in a solution, they are
recognized from the absent associated tank numbers in its list
(as S ≤ N ). They are decoded as the couples of the same
absent tank number. In each couple, an absent tank number
figures twice. That is, if {ijk} is a list of a CHDSP solution
in a production line composed of 4 tanks (N = 4) and l is
the absent tank number, the decoding of this list provides four
empty moves: (i, j), (j, k), (k, i) and the fictive one (l, l).
Once the decoding of empty moves from a list is done, the
associated moving sequences can easily be inferred because,
the moving sequence alternates between loaded and unloaded
moves and loaded moves occur between two successive tanks.
That is, always with the list example {ijk}, the empty move
(i, j) is preceded by the loaded move (i− 1, i) and followed
by (j, j+1), the empty move (j, k) is preceded by the loaded
move (j − 1, j) and followed by (k, k + 1), and so forth.
Fig. 2 shows the outcome of the decoding procedure of the
list L = {1, 4, 2, 6} in a six-tank problem (N = 6). The
associated empty moves are (1,4), (4,2), (2,6), (6,1) with two
fictive empty moves (3,3) and (5,5). The alternation of loaded
and unloaded moves results in two cyclic moving sequences
which means that this solution example represents a line with
two hoists (H = 2).

Fig. 2. Decoding procedure of a list example



Nevertheless, the latter described approach, as defined
above, is not able to draw all possible solutions of the search
space. We prove this fact using a benchmark instance found
in [9]. We illustrate it on Fig. 3 whose first part gives the
optimal cyclic moving sequence for one hoist. We then can
identify the empty moves associated to this solution from
which we can infer the empty move based encoded list.
However, the deduced empty moves cannot be represented in
a single list but in fact, in two separated lists representing two
different cycles (for the example in Fig. 3 we obtain two sub-
lists {2, 11, 9, 10, 4, 8, 3, 13} and {7, 12, 5, 1}). As a result, the
initial empty move based encoding in [29] fails to represent
this optimal solution. More generally, it involves that some
solutions of the search space were not achievable using this
first approach.

To overtake this problem, and with the aim to upgrade
the same current approach, we have noticed that we can
introduce separators to gather the separated lists in only one
list. To translate this idea in the previous encoding approach,
we propose to encode a separator as the number zero. It
links in between the separated lists corresponding to the same
solution. As such, due to the improved approach, we can
represent the optimal solution deployed in Fig. 3 in one single
list ({2, 11, 9, 10, 4, 8, 3, 13, 0, 7, 12, 5, 1}). Thereby, with the
separator idea, we should redefine some elements of the
approach. The list L of a solution to the problem is any
possible combination of tank numbers i (i ∈ J1, NK) that could
contain some zeros to refer to separators. The size of the list is
always S, where S is the sum of the number of tank numbers
i (denoted by TN ) and the number of zeros contained in this
list (denoted by SN ). Thus, S = TN + SN . To have an
upper bound of the size S, we limit the number of separators
that could be integrated in a solution to a maximum allowed
number of separators that we denote by NSmax. The latter
depends on the problem case solved (2 ≤ S ≤ N + NSmax

and NSmax = bN−2
2 c). The decoding procedure remains

the same unless we meet a separator, the decoding should
be cyclic. That is, in a sub-list of a list, delimited by two
separators, the last decoded empty move begins with the
last tank number of the sub-list (that precedes the second
separator) and ends with its first tank number (that follows the
first separator). Hence, the extended approach allows to reach
more solutions in the search space as it enables to represent
all the possible combinations of empty moves due to the
integrated separators. In fact, if we consider a list as a graph
of empty moves, a solution encoded with the first approach is
associated to a graph with a unique circuit. However, with the
improved approach, a solution can be associated to a graph
with one or more circuits. We point out this fact in Fig. 4.
We draw the associated graphs of the list corresponding to the
optimal solution studied in Fig. 3 and the same list without
the separator.

B. The scheduling dimension

Once the generated lists are decoded, the corresponding
fleet size H and moving sequences Sh are deduced. Then,

we evaluate each associated solution. The evaluation is done
due to the same Mixed Integer Linear Programming Model
(MILP) proposed by Manier and Lamrous [28]. If the schedule
is feasible (i.e., if all constraints are respected), this evaluation
provides the resulting period T for each moving sequence Sh

decoded from the list L. Hence, for each generated list L, we
get the triplet (H,Sh, T ).

C. The Genetic algorithm based resolution

Genetic Algorithms (GA) [30] [31] are meta-heuristic meth-
ods inspired from the Darwinist principle of the evolution the-
ory. It is a population-based stochastic algorithm that performs
a random search by crossovers and mutations between indi-
viduals within the population. Non-dominated sorting genetic
algorithm proposed by Deb and al. in [32] is a multi-objective
genetic algorithm originally designed to determine an optimum
Pareto. The algorithm is based on a rather classical mechanism
of genetic algorithm. It is an elitist algorithm that makes a
selection by tournament so as to choose individuals to cross
and mutate to generate new populations.

In our case study, the problem is a bi-objective one. We aim
to minimize both the cycle time and the number of hoists.
The number of feasible solutions of one hoist (H = 1)
being commonly low, we have tried to start our GA with
at least one feasible solution of this configuration among all
the solutions of the initial population. The improvement of
the Pareto front must operate globally on all configurations,
mono and multi hoists. Indeed, if all solutions of one hoist
are tested as not feasible, the cycle time for this configuration
is defined identically to a large value, to simulate the infinity.
The improvement process, hence, in this case, becomes purely
random.

GA follows here the same operations as the algorithm
published in [32]. The novelty in this paper brings up a new
type of non-digital gene that is the separator, as explained in
the first part of this paper. The manipulation of the separators
operates in the same way as for the integer type genes. The
mutation operator allowing either to switch two genes, to add
an absent gene, or simply to delete a gene randomly, can bring
out solutions without separators.

The crossover probability is 0.8. This represents the fraction
of the population at the next generation, not including elite
children, that the crossover function creates. The remaining of
the population is completed by mutation to provide the same
population size at each generation. To ensure the process of
maintaining distances between individuals, we use crowding
distance. This distance aims at preserving diversity within
the population. For this, it assigns to each individual a rank
according to the proximity of its score to individuals with the
closest scores; the more distant an individual is, the better is
its rank. This distance is calculated according to the scores of
the individuals for the objective functions.

After defining the initial population of 100 individuals
integrating at least one feasible solution of a single hoist,
GA operates as follows: (1) Select the parents for the next
generation using the current population selection function. The



Fig. 3. Representation of the single-hoist optimal solution for the Phillips and Unger’s instance [9]

Fig. 4. Multi-circuit graphs with or without separator improvement approach

only integrated selection function is the tournament. (2) Create
children from selected parents by mutation and crossover.
(3) Score the children by calculating their objective function
values and their feasibility. (4) Combine the current population
and children in a matrix, the extended population. (5) Compute
the rank and crowding distance for all individuals in the
extended population. (6) Trim the extended population to have
the appropriate number of individuals of each rank.

The algorithm stops when the condition of no evolution
results over 100 successive generations is true.

V. EXPERIMENTS AND RESULTS

Experimentation is performed on an Intel® Core™ i7-3770
CPU @ 3.40 GHz, 8GB RAM, 64-bit using Matlab under
Windows Operating System. For each instance we performed
20 executions. The average execution time for each instance is
145 min. Compared to [28] with the same material conditions,
population sizes and stopping conditions, the execution time is
almost halved. This reduction would be explained by the direct
resolution of the problem with a bi-objective algorithm. A
Pareto front containing solutions is reached faster than in [28].
The computation time of the initialization phase represents
70 % of this time. Indeed, it is not easy to find a feasible
solution of one hoist.

Our proposed genetic algorithm including separators in the
encoding procedure is named SGA in the following. This
algorithm has been tested on three industrial benchmarks of the
literature, found in [9] (instance named Phil here) and in [29]
(instances named Ligne1 and Ligne2). These benchmarks in-
clude 12 or 13 tanks and various specific characteristics which
makes them rather representative of the existing facilities. A

more complete description of these instances, as well as the
associated data, can be found in [28]. In table I, we provide the
results that we obtained for these instances, in terms of best
and mean cycle times, found for each configuration of hoists
from 1 to 7. We compare them with the results of the genetic
algorithm in [28] (named GA in the table), and also with the
best known cycle times obtained with exact methods solving
either the single hoist scheduling problem, or sometimes, the
two-hoist scheduling problem.

The first main result is that, with SGA, our encoding enables
us to represent all the solutions, which can be seen for instance
Phil and for which we found the optimal single hoist cycle
time 521 (not reachable by using GA without separators).
We also improved solutions for 2, 3 and 4 hoists, and we
obtained the same ones for more hoists. For instances Ligne1
and Ligne2, we found the same best results for 2 hoists and
more. The obtained cycle times (361 and 661) are involved by
the dominating tank which has the greatest minimal soaking
time and which has become the critical resource of the line.
For one hoist, the cycle time obtained by SGA is worse than
GA for Ligne1, but better than GA for Ligne2 as we found
the optimal solution. So globally, we have shown that SGA
improves the previous approach GA, as it most often obtains
better values of the best cycle time. Moreover, SGA is able to
reach optimal solutions in some cases. However, one drawback
of SGA is the robustness of the method as we obtain bigger
mean cycle time (more variations among the replications). This
point should be improved.

VI. CONCLUSION AND PERSPECTIVES

This paper has proposed a valuable extension of the method
previously proposed in [28]. It consists of a performing hybrid
genetic algorithm with an original encoding procedure for
a workshop scheduling problem addressing both the sizing
of the transportation resources and the scheduling of the
tasks. As a further work, as well as improving the stability
and performance of our proposed algorithm, collision free
constraints could be included within a subsequent procedure
that checks collisions on the best obtained feasible solutions.
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