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Abstract

We are interested in recovering information on a stochastic block model from the subgraph dis-
covered by an exploring random walk. Stochastic block models correspond to populations structured
into a finite number of types, where two individuals are connected by an edge independently from
the other pairs and with a probability depending on their types. We consider here the dense case
where the random network can be approximated by a graphon. This problem is motivated from the
study of chain-referral surveys where each interviewee provides information on her/his contacts in
the social network. First, we write the likelihood of the subgraph discovered by the random walk:
biases are appearing since hubs and majority types are more likely to be sampled. Even for the case
where the types are observed, the maximum likelihood estimator is not explicit any more. When the
types of the vertices is unobserved, we use an SAEM algorithm to maximize the likelihood. Second,
we propose a different estimation strategy using new results by Athreya and Roellin. It consists in
de-biasing the maximum likelihood estimator proposed in Daudin et al. and that ignores the biases.

Keywords: random graph; graphon; random walk exploration; sampling bias; EM estimation; stochas-
tic approximation expectation-maximization; incomplete likelihood; respondent driven sampling; chain-
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Timothée Tabouy for discussions. This work was supported by the GdR GeoSto 3477, by the ANR
Econet (ANR-18-CE02-0010) and by the Chair “Modlisation Mathmatique et Biodiversit” of Veolia
Environnement-Ecole Polytechnique-Museum National d’Histoire Naturelle-Fondation X.

1 Introduction

A way to infer a random structure such as the graph of a social network and discover its properties is
to explore it with random walks (e.g. [25]). This mathematical idea can be put into practice to reveal
hidden populations such as drug users by using referral chain sampling where each new person provides
information on her/his contacts: see for example the snowball sampling [13] or the ‘respondent-driven
sampling’ (RDS) introduced by Heckathorn [14] (see also the PhD thesis of the second author [30]).
These methods were first used to estimate the size of the hidden population or to infer population means,
under the assumption that subjects’ network degree determines their probability of being sampled, see
Volz and Heckathorn [31] (see also [20]). Because the inclusion probability of a subject is complicated
to compute, due to the dependencies associated with the graph and the fact that the sampling should
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be in practice without replacement, an important numerical literature on the subject has followed (see
e.g. [11, 12, 24]). Gile [10] proposed an improved estimator for population means taking into account
the without replacement sampling, and Rohe established critical threshold for the design effects [26].
Because of privacy restrictions, the social-network information is usually only a tree, as each interviewee
has been ‘invited’ into the survey by a previously interviewed subject. Crawford, Wu and Heimer [8] use
a Bayesian approach to integrate over the missing edge between recruited individuals.
It appears that the information gathered in chain-referral surveys can also be used in estimating the social
network itself or at least properties associated with its topology. Recent surveys allow to gather connec-
tivity information for recruited members: see for example the Rolls et al. [27] and Jauffret-Roustide et
al. [29]. Interviewees are asked for a description of their contacts, and for a first name or a nickname.
This information allows to reconstruct partially the social network and obtain a subgraph that is not a
tree. It is then natural to wonder how much information on the total graph can be recovered from the
observation of the subgraph obtained by the chain-referral sampling. Of course, biases have been empha-
sized as individuals of high degrees (hubs) are sampled with higher probability and ‘common profiles’ are
much more likely to be discovered (e.g. [18]). This motivates the present paper. To fix the framework
of study, we consider a particular class of random graphs, namely the Stochastic Block Models (SBM)
that are popular models for social networks (see [15] and the review [1]). For this parametric model,
inferring the distribution of the random graph boils down to a finite dimensional parameter estimation.
Also, for simplification, we consider here a model of random walk on the continuous version of the SBM
graph, namely the SBM graphon that is introduced in the next paragraph. Two estimations strategies
are considered in this paper. First, we establish the likelihood of a random walk exploring this struc-
ture, and which accounts for the sampling biases. Two cases are classically considered, depending on
whether the types of the visited nodes are observed or not. Even in the case of a complete observation,
the maximum likelihood estimator has no explicit form. When the types of the vertices are unobserved,
we adapt the Stochastic Approximation Expectation-Maximization algorithm (SAEM) as introduced in
[6, 19]. Second, we propose a new estimation using new theoretical probabilistic results by Athreya and
Roellin [3] who compute an exact formula for the bias. We provide a consistent estimator in the case of
complete observations and a de-biasing strategy for the usual maximum likelihood estimator of Daudin
et al. [9] in the case where the types of the explored nodes are unknown.

We consider as a toy model a Stochastic Block Model graphon with Q classes. Graphons, considered
here as symmetric integrable functions from [0, 1]2 to R, can be seen as limit of dense graphs (see e.g. [21]).
Recall that SBM graphs are a generalization of Erdös-Rnyi graphs, where each node i is characterized
by a type, Zi ∈ {1, . . . , Q}, with Q the number of different possible values. The random variable (r.v.)
Zi are assumed independent and identically distributed (i.i.d.) with P(Zi = q) = αq > 0. The graph is
non oriented. Each pair of nodes {i, j} is connected independently with a probability πZi,Zj ∈ (0, 1) that
depends only on the types. When the number of vertices of the graph tends to infinity, it is known that
the dense graph converges to a limiting continuous object called graphon, see e.g. [4, 5, 21]. Let us recall
the definition of the SBM graphon.

For the sequel, we introduce the partition of [0, 1] defined by

Iq =
[ q−1∑
k=1

αk,

q∑
k=1

αk
)
, q ∈ {1, . . . Q}. (1)

The SBM graphon is the function from [0, 1]2 to [0, 1] defined as follows:

κ(x, y) =

Q∑
q=1

Q∑
r=1

πqr 1Iq (x)1Ir (y). (2)

Heuristically, we can see [0, 1] as a continuum of vertices, and κ is the limit of the adjacency matrix of
the graph in the sense that κ(x, y) measures the probability of connection between x and y.
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We consider a random walk on the graphon κ, i.e. the process X = (Xm)m≥1 with values in [0, 1] and
transition kernel:

Kκ(x, dy) =
κ(x, y)dy∫ 1

0
κ(x, v)dv

=

∑Q
q=1

(∑Q
r=1 πqr 1Ir (y)

)
1Iq (x) dy∑Q

q=1

(∑Q
r=1 πqrαr

)
1Iq (x)

. (3)

This random walk is the analogous of the classical random walk on a graph that jumps from a vertex to
one of its neighouring vertices chosen uniformly at random.
From the exploration of this random walk, we can construct a subgraph of the ‘nodes’ visited. Assume that
we observe n steps of the random walk, i.e. X(n) = (X1, . . . , Xn). The associated path (up to its nth step)
is a subgraph (chain) Hn = (Vn, En) with vertices Vn = {X1, . . . Xn} and edges En = ∪n−1

m=1{Xm, Xm+1}.
This chain is completed by sampling independently edges between vertices that are not already connected
with probability according to their types. Following the notation of Athreya and Roellin [3], we denote
by Gn := G(X(n), κ,Hn) the random graph, which is completed from Hn w.r.t. the graphon κ:

Definition 1. The vertices of Gn = G(X(n), κ,Hn) are the nodes X(n), and the edges are as follows.
Let i and j be two vertices.

• If there is an edge between i and j in Hn, i ∼Hn
j then there is also an edge between these nodes

in Gn: i ∼Gn
j.

• If there is no edge between i and j in Hn, we connect i and j in Gn with probability κ(Xi, Xj).

This subgraph Gn is the RDS graph. We assume that this is the model generating our data and that
the observation corresponds to a realization of Gn. In the sequel, we denote the parameter of the SBM
by θ = (α1, . . . αQ, πqr; q, r ∈ {1, . . . Q}). Our purpose is to estimate θ using the subgraph Gn. In the
literature, the estimation of SBM graphs has been extensively studied, but often in a framework where
the number of nodes is known. In particular, variational EM approaches have been used in many cases
where types are unknown, see [9, 28, 22]. The estimation of SBM graphs, when the total population size
is unknown and when we only have a subgraph obtained by a chain-referral method, is not studied to
our knowledge. We develop in this paper two approaches that we compare in a final numerical section
(Section 5).

First, it is possible to write the likelihood of Gn. Here, because graph is explored through an RDS
random walk, our likelihood differs from the likelihoods in these papers: it accounts both on the transitions
of the random walk and on the connectivity of vertices given their types. We study in Section 3 the
maximum likelihood estimator (MLE) in our setting for both cases, when the nodes types are observed or
not. Even when the observation is complete, the maximum likelihood estimator does not have an explicit
form. When the types are unknown, we adapt to our likelihood the variational EM approach of [9].
The second approach developed in Section 4 is inspired by the recent work of Athreya and Roellin [3].
These authors showed that when we observe the random walk sufficiently long (n→ +∞), the sequence
of graphs (G(Hn, κ))n≥1 converges to a biased graphon of κ. Based on their probabilistic result, a natural
estimator of the biased graphon turns out to be the MLE in the ‘classical’ case studied by [9]. Based on
this estimator that is not consistent in our case, we propose a new consistent estimator of κ.

2 Probabilistic setting

In this section, we give some important properties of the RDS Markov chain X(n), in particular on its
long term behaviour. Then we explain the biases that appear when estimating the graphon κ from the
RDS subgraph Gn.
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2.1 Exploration by a random walk

Assumption 1. In all the paper, we assume that κ is the graphon of an SBM graph (see (2)) and that
κ is connected, i.e. that for all measurable subset A ⊂ [0, 1] such that |A| ∈ (0, 1),∫

A

∫
Ac

κ(x, y)dx dy > 0.

Proposition 1. Under Assumptions 1, the random walk X = (Xn)n≥1 admits a unique invariant prob-
ability measure

m(dx) =

∫ 1

0
κ(x, v)dv∫ 1

0

∫ 1

0
κ(u, v)du dv

dx =

∑Q
q=1

(∑Q
r=1 πqrαr

)
1Iq (x) dx∑Q

q=1

∑Q
r=1 πqr αq αr

. (4)

The general proof is given in [3, Prop. 4.1] but for the case of SBM graphons, the result is easy to prove.

From expression (4), we see that the stationary measure m(dx) put more weight on the intervals Iq
corresponding to frequent types (large αq) or hubs (πq. close to one). Because m(dx) is not the uniform
measure, we expect biases in how the graphon κ is discovered by Gn.

2.2 Convergence of dense graphs

We are interested in the case where n → +∞. Then, the (dense) RDS graph Gn might converge to a
graphon, and it is natural to compare the possible limit to the graphon κ on which the random walk
moves. Let us recall briefly some topological facts. We refer the interested reader to [21].

Let us give first some notations. For integers n and k ≤ n, [[1, n]] = {1, 2 · · ·n} and (n)k = n(n −
1) · · · (n− k+ 1). For a graph G, E(G) denotes the edges of G and i ∼G j means that {i, j} ∈ E(G). We
can define the subgraph F density in G by:

t(F,G) =
#{injections from F to G}

(n)k
=

1

(n)k

∑
(i1,···ik)∈[[1,n]]

∏
{`,`′}∈E(F )

1i`∼Gi`′ (5)

where
∑

(i1,···ik)∈[[1,n]] is a sum ranging over all vectors (i1, · · · ik) with mutually different coordinates in

[[1, n]]. This notion of subgraph density can be generalized to a graphon κ by:

t(F, κ) =

∫
[0,1]k

∏
{`,`′}∈E(F )

κ(x`, x`′)dx1 · · · dxk. (6)

Let F denote the class of isomorphism classes on finite graphs and let (Fi)i ≥ 1 be a particular enumer-
ation of F . Then, the distance of two graphs G and G′ is:

dsub(G,G′) =
∑
i≥0

1

2i
∣∣t(Fi, G)− t(Fi, G′)

∣∣ (7)

The convergence of the large graphs to graphons can be expressed with this distance [21, Chapter 11].

2.3 Biases in the discovery of κ

Let us denote by Γ the cumulative distribution function of π(dx):

Γ(x) =

∑Q
q=1

∑Q
r=1

(
πqrαr

)[
min

(
αq, x−

∑q−1
k=1 αk

)]
+∑Q

q=1

∑Q
r=1 πqr αq αr

(8)

Athreya and Roellin [3] have proved that the graphon discovered by the RDS is biased:
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Proposition 2 (Corollary 2.2 [3]). We have under Assumptions 1 that:

lim
n→+∞

dsub

(
Gn, κΓ−1

)
= 0,

where the generalised inverse of Γ is

Γ−1(v) = inf{u ∈ [0, 1] : Γ(u) ≥ v},

and where for all x, y ∈ [0, 1],
κΓ−1(x, y) = κ

(
Γ−1(x),Γ−1(y)

)
. (9)

This proposition, that is true not only for SBM graphons but also in more general cases, as developed
in [3], says that the topology of the subgraph discovered by the RDS is biased compared with the true
underlying structure (κ) because the random walk visits more likely the nodes with high degrees (hubs)
and the frequent types.

Example 1. When Q = 2, the graphon is given:

κ(x, y) =

 π11, 0 ≤ x, y ≤ α;
π12, α < x ≤ 1 or α < y ≤ 1;
π22, otherwise.

This function is represented in Fig. 1 The invariant probability measure is:

α1

α1

1

0 1

π11

π22π12

π21

x

y

Figure 1: Function κ(x, y) for an SBM graphon with Q = 2 classes.

m(dx) =
(π11α+ π12(1− α))1x∈[0,α](x) + (π12α+ π22(1− α))1x∈(α,1](x)

π11α2 + 2π12α(1− α) + π22(1− α)2
dx.

Then the cumulative distribution of m is:

Γ(x) =
(π11α+ π12(1− α))x

π11α2 + 2π12α(1− α) + π22(1− α)2
1x<α

+

[
π11α

2 + π12(1− α)α

π11α2 + 2π12α(1− α) + π22(1− α)2
+

(π12α+ π22(1− α))(x− α)

π11α2 + 2π12α(1− α) + π22(1− α)2

]
1x≥α.

The biased graphon κΓ−1 is here:

κΓ−1(x, y) :=


π11, if (x, y) ∈ [0,Γ(α)]× [0,Γ(α)];

π22, if (x, y) ∈ [Γ(α), 1]× [Γ(α), 1];

π12, otherwise;

(10)

with

Γ(α) =
(π11α+ π12(1− α))α

π11α2 + 2π12α(1− α) + π22(1− α)2
. (11)

It can be seen that Γ(α) = α when (1− α)(π12 − π22) = α(π12 − π11). This is satisfied for example when
π11 = π12 = π22 (Erdös-Rnyi) or when α = 1/2 and π11 = π22 (both types are symmetric).
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2.4 Empirical cumulative distribution

As seen in the previous paragraph, the bias linked with the discovery of the graphon κ by the RDS
subgraph Gn is expressed in term of the cumulative distribution Γ of the stationary distribution m of
X(n). In the sequel, the empirical cumulative distribution of m will be useful and we recall here some
facts:

Γn(x) =
1

n

n∑
i=1

1Xi≤x and Γ−1
n (y) = inf

{
x ∈ [0, 1] : Γn(x) ≥ y

}
. (12)

Lemma 3. Γn and Γ−1
n converge a.s. uniformly to Γ and Γ−1 respectively.

Proof. The almost sure pointwise convergence of Γn to Γ is a consequence of the ergodic theorem. Then,
the a.s. uniform convergence is obtain by the Glivenko-Cantelli theorem.
Let us prove the uniform convergence of Γ−1

n to Γ−1. Because all the αq’s are positive, Γ is a nondecreasing
and piecewise affine bijection and the inverse bijection Γ−1 is also nondecreasing and piecewise affine.
Let ε > 0 and n0 ∈ N sufficiently large so that for all n ≥ n0, ‖Γn − Γ‖∞ ≤ ε. Let y ∈ [0, 1]. For n ≥ n0,∣∣Γ−1

n (y)− Γ−1(y)
∣∣ ≤C∣∣Γ(Γ−1

n (y))− y
∣∣.

Because the jumps of Γn are a.s. of size 1/n, we necessarily have that y − ε ≤ Γ(Γ−1
n (y)) ≤ y + ε + 1

n .
Thus, ∣∣Γ−1

n (y)− Γ−1(y)
∣∣ ≤C( 1

n
+ ε
)
,

which proves the uniform convergence of Γ−1
n to Γ−1.

3 Likelihood estimation

In this section, we write the likelihood of Gn and compute the MLE of the parameters θ. Here our
likelihood is specific to the RDS exploration. The MLE does not have an explicit formula and we explain
how to compute it numerically. Then, we study the case where the types Zi of the nodes are unobserved.
Notice that the estimation in this Section 3 makes only use of the connectivity information carried by
the random variables Yij . The estimators here do not depend on the positions Xi. The types Zi may be
known or unobserved.

Let us introduce some notations. We define by Nq
n, q ∈ {1, ..., Q} the number of vertices of type q

sampled by the Markov chain. For q, r ∈ {1, ..., Q} we also define by:

Nq↔r
n = Card

{
(i, j) | i, j ∈ X(n), Zi = q, Zj = r, Yi,j = 1

}
;

Nq=r
n = Card

{
(i, j) | i, j ∈ X(n), Zi = q, Zj = r, Yi,j = 0

}
the number of couples of types (q, r) that are connected (resp. not connected).

3.1 Complete observations

Assume that we observe a subset of explored nodes X(n) = (X1, . . . Xn) ⊂ [0, 1]n discovered by the RDS,
with their classes and connections: (Zi, Yij ;Xi, Xj ∈ X(n), i 6= j) ∈ {1, · · ·Q}n × {0, 1}n(n−1).

Proposition 4. The complete likelihood of the observations is

L(Z, Y,X, θ) =

Q∏
q=1

(
πqq

1− πqq

)Nq↔q
n

(1− πqq)N
q
n(Nq

n−1)/2
∏
q 6=r

(
πqr

1− πqr

)Nq↔r
n

(1− πqr)N
q
nN

r
n

×
Q∏
q=1

α
Nq

n
q

(
∑Q
q′=1 πqq′αq′)

Nq
n−1Zn=q

. (13)
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Proof. We have that

L(Zi, Yij ; i, j ∈ X(n); θ) = αZ1

n−1∏
m=1

πZmZm+1
αZm+1∑Q

q=1 πZmqαq
×

∏
i,j:Xi,Xj∈X(n),
{Xi,Xj}/∈Hn

π
Yi,j

ZiZj
(1− πZiZj )(1−Yi,j),

where the first product corresponds to the likelihood of the types sampled along the Markov chain, and
the second product corresponds to the likelihood of edges between vertices that are not visited successively
by the Markov chain. Thus:

L(Zi, Yij ; i, j ∈ X(n); θ) =

∏n
i=1 αZi∏n−1

i=1

∑Q
q=1 πZiqαq

×
∏

i,j∈[[1,n]]

Xi,Xj∈X(n)

b(Yij , πZiZj
), (14)

where b(Yij , πZiZj ) = π
Yij

ZiZj
(1−πZiZj )1−Yij . Finally, rewritting the above likelihood using Nq

n, Nq↔r
n , we

obtain (13).

Proposition 5. The MLE θ̂ = (α̂, π̂) is the solution of the following system of equations:

n∑
m=1

1Zm=q

αq
−

n−1∑
m=1

πZmq∑Q
q′=1 πZmq′α

′
q

= 0; (15)

n−1∑
m=1

(
1(Zm,Zm+1)=(qr)

πqr
− αr1Zm=q∑Q

q′=1 πqq′αq′

)
+

∑
i,j:Xi,Xj∈X(n)

{Xi,Xj}/∈Hn

(
Yi,j
πqr
− 1− Yi,j

1− πqr

)
1(Zi,Zj)=(qr) = 0. (16)

Proof. The log likelihood of the observations is:

logL =

Q∑
q=1

(
Nq
n logαq − (Nq

n − 1Zn=q) log
( Q∑
q′=1

πqq′αq′
))

+

Q∑
q=1

(
Nq↔q
n log

( πqq
1− πqq

)
+
Nq
n(Nq

n − 1)

2
log(1− πqq)

)

+

Q∑
q=1

(∑
r 6=q

Nq↔r
n log

( πqr
1− πqr

)
+Nq

nN
r
n log(1− πqr)

)
When we take the derivative of function logL with respect to the parameters, we obtain:

Nq
n

αq
−

Q∑
p=1

Np
nπpq∑Q

q′=1 πpq′αq′
= 0; (17)

Nq↔r
n

πqr
− Nq=r

n

1− πqr
−Nq

n

αr∑Q
q′=1 πqq′αq′

= 0. (18)

The identifiability of the model is a result by Allman et al. [2]. Since the likelihood is differentiable, there
exists a sequence of solutions of (17) that converge to the true parameter θ.
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Remark 6. Notice that in absence of bias, the classical likelihood, as obtained in Daudin et al. [9] is:

Lclass(Zi, Yij ; θ) =

n∏
i=1

αZi
×

∏
i,j∈(Xn)

b(Yij , πZiZj
)

=

Q∏
q=1

α
Nq

n
q ×

Q∏
q=1

(
πqq

1− πqq

)Nq↔q
n

(1− πqq)N
q
n(Nq

n−1)/2
∏
q 6=r

(
πqr

1− πqr

)Nq↔r
n

(1− πqr)N
q
nN

r
n .

(19)

The difference between (19) and (14) is the first product which corresponds of the likelihood of the node
types. In the classical case, these types are chosen independently whereas here they are discovered by the
successive states of the Markov chain. In this classical case, the MLE has an explicit formula:

α̂class
q =

Nq
n

n
, π̂class

qr =
Nq↔r
n

Nq
nNr

n

, π̂class
qq =

2Nq↔q
n

Nq
n(Nq

n − 1)
. (20)

Here, for the likelihood (13), the MLE which solves (15) is not explicit any more. In Section 3.1.1,
we detail in the case of two classes (Q = 2) the computation of the MLE.

3.1.1 Case where Q = 2

Let us solve the likelihood equations when Q = 2. The parameter is then θ = (α, π11, π12, π22). Define

θ̂ = (α̂, π̂11, π̂12, π̂22) the estimator of θ. Then the estimators θ̂ is the solution of

N1
n

α̂
− N1

nπ̂11

π̂11α̂+ π̂12(1− α̂)
− N2

nπ̂12

π̂12α̂+ π̂22(1− α̂)
= 0; (21)

N2
n

1− α̂
− N1

nπ̂12

π̂11α̂+ π̂12(1− α̂)
− N2

nπ̂22

π̂12α̂+ π̂22(1− α̂)
= 0; (22)

N1↔1
n

π̂11
− N1=1

n

1− π̂11
− N1

nα̂

π̂11α̂+ π̂12(1− α̂)
= 0; (23)

N1↔2
n

π̂12
− N1=2

n

1− π̂12
− N1

n(1− α̂)

π̂11α̂+ π̂12(1− α̂)
= 0; (24)

N2↔1
n

π̂12
− N1=2

n

1− π̂12
− N2

nα̂

π̂12α̂+ π̂22(1− α̂)
= 0; (25)

N2↔2
n

π̂22
− N2=2

n

1− π̂22
− N2

n(1− α̂)

π̂12α̂+ π̂22(1− α̂)
= 0. (26)

Proposition 7. The MLE θ̂ = (α̂, π̂11, π̂12, π̂22) can be expressed as a function of π̂12:

π̂11 =
(N1↔1

n +N1↔2
n −N1

n)− (N1
nN

2
n −N1

n +N1↔1
n )π̂12

(
N1

n(N1
n−1)

2 −N1
n +N1↔2

n )− (
N1

n(N1
n−1)

2 +N1
nN

2
n −N1

n)π̂12

, (27)

π̂22 =
(N2↔2

n +N1↔2
n −N2

n)− (N2↔2
n +N1

nN
2
n −N2

n)π̂12

(
N2

n(N2
n−1)

2 −N2
n +N1↔2

n )− (
N2

n(N2
n−1)

2 +N1
nN

2
n −N2

n)π̂12

, (28)

α̂ =
β̂

1 + β̂
, (29)

with

β̂ =
(N1

n −N2
n)π̂12 +

√
(N1

n −N2
n)2π̂12

2
+ 4N1

nN
2
nπ̂11π̂22

2N2
nπ̂11

, (30)
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and where π̂12 is one of the root of

π̂12
2

=
(N1↔1

n +N1↔2
n −N1

n)− (N1
nN

2
n −N1

n +N1↔1
n )π̂12

(
N1

n(N1
n−1)

2 −N1
n +N1↔2

n )− (
N1

n(N1
n−1)

2 +N1
nN

2
n −N1

n)π̂12

× (N2↔2
n +N1↔2

n −N2
n)− (N2↔2

n +N1
nN

2
n −N2

n)π̂12

(
N2

n(N2
n−1)

2 −N2
n +N1↔2

n )− (
N2

n(N2
n−1)

2 +N1
nN

2
n −N2

n)π̂12

× (N1↔2
n −N1

nN
2
nπ̂12)2

[(N1↔2
n −N1

n)− (N1
nN

2
n −N1

n)π̂12][(N1↔2
n −N2

n)− (N1
nN

2
n −N2

n)π̂12]
. (31)

Proof. Multiply (23) by π̂11 and (24) by π̂12, and sum them up, we have

N1=1
n

π̂11

1− π̂11
+N1=2

n

π̂12

1− π̂12
= N1↔1

n +N1↔2
n −N1

n. (32)

Similarly, from equations (25) and (26), we deduce

N1=2
n

π̂12

1− π̂12
+N2=2

n

π̂22

1− π̂22
= N1↔2

n +N2↔2
n −N2

n. (33)

Also, the system of equations (23)-(26) gives(
N1↔1
n

π̂11
− N1=1

n

1− π̂11

)(
N2↔2
n

π̂22
− N2=2

n

1− π̂22

)
=

(
N1↔2
n

π̂12
− N1=2

n

1− π̂12

)2

. (34)

Notice that N1=2 +N1↔2 = N1
nN

2
n, N1=1 +N1↔1 =

N1
n(N1

n−1)
2 and N2=2 +N2↔2 =

N2
n(N2

n−1)
2 and we

consider π̂12 as a parameter. Solving the system (32)-(33) for π̂11, π̂22 provides the two first equations of
(27). Using this, (34) is equivalent to:

(N1↔2
n −N1

nN
2
nπ̂12)2

[(N1↔2
n −N1

n)− (N1
nN

2
n −N1

n)π̂12][(N1↔2
n −N2

n)− (N1
nN

2
n −N2

n)π̂12]

π̂11π̂22

π̂12
2 = 1. (35)

This gives the (31).

For the estimator of α, let us denote β := α
(1−α) . Then equations (21) and (22) are the same and

equivalent to

N1
n

π̂11β̂ + π̂12

=
N2
nβ̂

π̂12β̂ + π̂22

. (36)

The unique positive solution is β̂ and provides in turn α̂.

Let us explain how the preceding proposition allows us to compute numerically the MLE θ̂.

First: there might be several solutions of (31), see Fig. 2. For each of them, we compute the corre-
sponding estimators of π11, π22 and α, which allows us to obtain the corresponding likelihood of the
observations. We choose the set of estimators that provides the best likelihood for our observations.

Second: to solve numerically the equation (31), we use the bisection method with the following con-
straints:

• The equation (31) has 4 excluded values that make the denominator zero:

π̄1
12 =

N1↔2
n −N2

n

N1
nN

2
n −N2

n

π̄2
12 =

N1↔2
n −N1

n

N1
nN

2
n −N1

n

(37)
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Figure 2: Equation (31) can be rewritten as φ(π12) = 0. The function φ is represented graphically on the
figure above as a function of π12. The vertical dotted lines correspond to the excluded values π̄1

12, . . . π̄
4
12

given in (37).

π̄3
12 =

N1
n(N1

n−1)
2 −N1

n +N1↔2
n

N1
n(N1

n−1)
2 −N1

n +N1
nN

2
n

; and π̄4
12 =

N2
n(N2

n−1)
2 −N2

n +N1↔2
n

N2
n(N2

n−1)
2 −N2

n +N1
nN

2
n

It is observed that max(π̄1
12, π̄

2
12) < min(π̄3

12, π̄
4
12). And if N1

n < N2
n, we have them ordered:

π̄1
12 < π̄2

12 < π̄3
12 < π̄4

12.

• All the estimators π̂11, π̂12, π̂22 and α̂ take values in the interval (0, 1).

Taking care of the points above, we solve (31) with the bisection method on a grid that includes the
excluded points {π̄i12, i ∈ {1, 2, 3, 4}}.
For each root of (31), corresponding to a possible value of π̂12, we compute the corresponding estimators
of π11, π22.

For the numerical simulations, we refer the reader to Section 5.

3.2 Incomplete observations: SAEM Algorithm

Here, we assume that the types (Zi)i=1,...,n are unobserved. In this case, the likelihood of the observed
data (Yij ; i, j ∈ [[1, n]]) is obtained by summing the complete-data likelihood (14) over all the possible
values of the unobserved variables Z:

L(Yij ; i, j ∈ [[1, n]]; θ) =

Q∑
q1,···qn=1

[ n∏
i=1

1Zi=qi

∏n
i=1 αqi∏n−1

i=1

∑Q
q=1 πqiqαq

×
∏

i,j:Xi,Xj∈X(n))

b(Yij , πqiqj )
]
, (38)

Unfortunately, this sum is not tractable and it is classical to use the Expectation-Maximization (EM)
algorithm to compute the maximum likelihood. Here we follow the steps in [9] by adapting the expression
to our setting with the likelihood (13).

Let us sum up the EM algorithm (see e.g. [6, 7, 19]). Given the observed data: the Markov chain X(n),
the connections (Yij , i, j ∈ X(n)) and the number of blocks Q and the current estimator θ, and given the
value θ(k−1) at the (k−1)th iteration of the EM, on the kth step, we compute the conditional expectation
of the log-likelihood L(Z|X,Y, θ(k)) given X,Y for the current fit θ(k). Here there is no explicit expression
for the latter likelihood because the exact distribution of Z given X,Y is unknown and this we need to
approximate it numerically by using an SAEM algorithm [6, 19], proceeding as follows.
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3.2.1 The SAEM algorithm

Given the information of the k − 1 iteration θ(k−1) = (α(k−1), π(k−1)), at the kth iteration of SAEM:

Step 1: Choosing the appropriate Z(k)

- Simulate a candidate Zc following the proposal distribution qθ(k−1)(.|Z(k−1)). The choice of pro-
posal distribution is discussed in Section 3.2.2, where we use a variational approach.
- Calculate the acceptance probability

ω(Z(k−1), Zc) := min

{
1,
L(Zc, Y, θ(k−1)) · qθ(k−1)(Z(k−1)|Zc)
L(Z(k−1), Y, θ(k−1)) · qθ(k−1)(Zc|Z(k−1))

}
; (39)

- Accept the candidate Zc with probability ω: P(Z(k) = Zc) = ω and P(Z(k) = Z(k−1)) = 1− ω.

Step 2: Stochastic approximation Update the quantity

Q(k)(θ) = Q(k−1)(θ) + sk

(
logL(Z

(k)
i , Yij , θ)−Q(k−1)(θ)

)
, (40)

with the initialization Q(0)(θ) := E[logL(Z, Y, θ(0))] and (sk)k∈N is a positive decreasing step sizes
sequence satisfying

∑∞
k=1 sk =∞ and

∑∞
k=1 s

2
k <∞.

Step 3: Maximization Choose θ(k) to be the value of θ that maximizes Q(k)

θ(k) := arg max
θ

Q(k)(θ). (41)

Kuhn and Lavielle studied the convergence of the sequence θ(k) in [19].

3.2.2 Variational approach

For the proposal distribution qθ(k−1)(. | Z(k−1)) of Z(k), we follow Daudin et al. [9], who use a variational
approach. Let us recall the main idea of this approach. The general strategy has been described in
Jordan et al. [17] or Jaakkola [16].

Recall the likelihood L(Y, θ) of the incomplete data (38). The idea of the variational approach is to
replace the likelihood by a lower bound:

J (RY,θ) = L(Y, θ)−KL(RY,θ(Z),L(Z|Y, θ)), (42)

where KL(µ, ν) :=

∫
dµ log

(
dµ

dν

)
is the Kullback-Leibler divergence of distributions µ and ν, and where

RY,θ(Z) is an approximation of the conditional likelihood L(Z|Y, θ). When RY,θ is a good-approximation
of L(Z|Y, θ), J (RY,θ) is very closed to L(Y, θ).

11



Here, Z takes discrete values in {1, ..., Q}. Then,

J (RY,θ) = logL(Y, θ)−
∑

(Z1,...,Zn)∈{1,...,Q}n
RY,θ(Z) log

RY,θ(Z)

L(Z|Y, θ)

= logL(Y, θ)−
∑

Z∈{1,...,Q}n
RY,θ(Z) logRY,θ(Z) +

∑
Z∈{1,...,Q}n

RY,θ(Z) logL(Z|Y, θ)

= logL(Y, θ)−
∑

Z∈{1,...,Q}n
RY,θ(Z) logRY,θ(Z) +

∑
Z∈{1,...,Q}n

RY,θ(Z) logL(Z, Y, θ)

−
∑

Z∈{1,...,Q}n
RY,θ(Z) logL(Y, θ)

=
∑

Z∈{1,...,Q}n
RY,θ(Z) logL(Z, Y, θ)−

∑
Z∈{1,...,Q}n

RY,θ(Z) logRY,θ(Z).

Following [9], we restrict to distributions RY,θ that belong to the family of multinomial probability
distributions parameterized by τ = (τ1, · · · τQ), as approximated conditional distribution of Z given Y
and θ. If we look for the parameter τ that maximizes (42), we will hence obtain the best approximation
of L(Z|Y, θ) among the multinomial distributions. We will chose the latter to be the proposal distribution
for Z in the Step 1 of the SAEM algorithm.

If 1Zi
follows the multinomial distribution M(1; (τi1, ..., τiq)), with τiq = P(Zi = q|Y, θ), for i ∈

{1, ..., n}, q ∈ {1, ..., Q} then,

RY,θ(Z) =

n∏
i=1

τi,Zi
. (43)

As a consequence, J (RX) is rewritten as

J (RY,θ) =
∑

Z∈{1,...Q}n


n∏
j=1

τj,Zj

 n∑
i=1

logαZi
−
n−1∑
i=1

log(

Q∑
q=1

πZiqαq) +
∑

i,j:Xi,Xj∈X(n)

log b(Yij ;πZiZj
)


−

∑
Z∈{1,...Q}n

n∏
j=1

τj,Zj

(
n∑
i=1

log τi,Zi

)
.

We aim at calculating the parameter τ̂ that maximizes the lower bound of L(Y, θ). Then the proposal
distribution qθ(k−1)(. | Z(k−1)) for updating the types will be given by (43) with the parameters τ̂ given
in the next proposition:

Proposition 8. Given α, π, the optimal parameter

τ̂ := arg max
τ

J (RY,θ), (44)

with constraint
∑Q
q=1 τiq = 1,∀i ∈ {1, ..., n}, satisfies the fixed point relation

τiq ∝
αq∑Q

`=1 πq`α`

∏
i 6=j

Q∏
`=1

b(Yij , πq`)
τj` . (45)
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Proof. To simplify J (RY,θ), we have

∑
Z∈{1,...Q}n

n∏
i=1

τi,Zi

n∑
i=1

logαZi
=

∑
Z∈{1,...Q}n

n∑
i=1

n∏
j=1
j 6=i

τj,Zj
(τi,Zi

logαZi
)

=

n∑
i=1

Q∑
Zi=1

τi,Zi
logαZi

∑
Z1,...,Zn\Zi

∏
j 6=i

τj,Zj
=

n∑
i=1

Q∑
q=1

τi,q logαq
∏
j 6=i

 Q∑
Zj=1

τj,Zj


=

n∑
i=1

Q∑
q=1

τiq logαq.

Similarly,

∑
Z∈{1,...Q}n

n∏
j=1

τj,Zj

(
n∑
i=1

log τi,Zi

)
=

n∑
i=1

Q∑
q=1

τiq log τiq.

In addition,

∑
Z

n∏
j=1

τj,Zj

n−1∑
i=1

log(

Q∑
q=1

πZi,qαq) =

n−1∑
i=1

∑
Z\Zi

(

n∏
j=1

τj,Zj
) log

(
Q∑
q=1

πZi,qαq

)
τi,Zi

=

n−1∑
i=1

Q∑
q=1

log

(
Q∑
q=1

πZi,qαq

)
τi,Zi

,

and ∑
Z

n∏
k=1

τk,Zk

∑
i<j

log b(Yij , πZi,Zj
) =

∑
i<j

∑
Z\{Zi,Zj}

(
∏
k 6=i,j

τk,Zk
)
∑
Zi,Zj

b(Yij , πZi,Zj
)τj,Zi

τj,Zj

=
∑
i<j

Q∑
q,r=1

τiqτjrb(Yij , πqr).

In conclusion,

J (RY,θ) =

n∑
i=1

Q∑
q=1

τiq logαq −
n∑
i=1

Q∑
q=1

τiq log τiq +
1

2

∑
i 6=j

Q∑
q,r=1

τiqτjr log b(Yij , πqr)−
n−1∑
i=1

Q∑
q=1

log

(
Q∑
r=1

πqrαr

)
τiq.

(46)

To solve the optimization problem arg maxτ J (RY,θ) with constraint
∑Q
q=1 τiq = 1, we use the method of

Lagrange multipliers, that is finding the optimal parameters τ, λ that maximize the Lagrangian function
Lag(τ, λ) := J (RY,θ) +

∑n
i=1 λi(

∑Q
q=1 τiq − 1), where λi is the Lagrange multiplier. Take the derivative

of Lag w.r.t. λi and τ , we have
∂Lag

∂λi
=

Q∑
q=1

τiq − 1

∂Lag

∂τiq
= logαq − log τiq + λi − 1− log

Q∑
r=1

πqrαr +
1

2

∑
j 6=i

Q∑
r=1

τjr log b(Yij , πqr) +
1

2

∑
j 6=i

Q∑
r=1

τjr log b(Yji, πrq)
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The optimal solution must satisfy
∂Lag

∂λi
=
∂Lag

∂τiq
= 0, which implies

log τiq = logαq + λi − 1− log

Q∑
r=1

πqrαr +
∑
j 6=i

Q∑
r=1

τjr log b(Yij , πqr).

In another word,

τiq = eλi−1 αq∑Q
r=1 πqrαr

∏
i6=j

Q∏
r=1

b(Yij , πqr)
τjr . (47)

In the case Q = 2, it turns out the problem is more simple since for each i ∈ {1, ..., n}, τi1 + τi2 = 1.
For sake of simplification, we denote by τi instead of τi1. Hence, τi2 = 1− τi1 = 1− τi.

Proposition 9. When Q = 2, the variational parameter τi has formula:

τi =
φi(τ)

1 + φi(τ)
=: Φi(τ), (48)

where

φi(τ) :=
α

1− α
απ21 + (1− α)π22

απ11 + (1− α)π12

∏
j 6=i

(
b(Yij , π12)

b(Yij , π22)

)1/2∏
j 6=i

(
b(Yij , π11)b(Yij , π22)

b(Yij , π12)2

)τj/2
. (49)

Proof. We solve directly the optimization problem maxτ J (RY,θ) without using the Lagrangian multiplier
λ. The quantity J (RY,θ) is written explicitly as:

J (RY,θ) =

n∑
i=1

(τi logα+ (1− τi) log(1− α))−
n∑
i=1

(τi log τi + (1− τi) log(1− τi))

+
1

2

∑
i 6=j

[τiτj log b(Yij , π11) + τi(1− τj) log b(Yij , π12) + (1− τi)τj log b(Yij , π21)

+ (1− τi)(1− τj) log b(Yij , π22)]−
n−1∑
i=1

[τi log(απ11 + (1− α)π12) + (1− τi) log(απ21 + (1− α)π22].

Take the derivative of J (RY,θ) w.r.t. τi,

∂J
∂τi

= log
α

1− α
+ log

1− τi
τi

+
1

2

∑
j 6=i

{
τj log

b(Yij , π11)

b(Yij , π21)
+ (1− τj) log

b(Yij , π12)

b(Yij , π22)

}
− log

απ11 + (1− α)π12

απ21 + (1− α)π22

= log
α

1− α
− log

τi
1− τi

− log
απ11 + (1− α)π12

απ21 + (1− α)π22
+

1

2

∑
j 6=i

τj log
b(Yij , π11)b(Yij , π22)

b(Yij , π12)2
+

1

2

∑
j 6=i

log
b(Yij , π12)

b(Yij , π22)
.

Then the variational parameter τi is the solution of equation ∂J
∂τi

= 0, which gives

τi
1− τi

=
α

1− α
× απ11 + (1− α)π12

απ21 + (1− α)π22
×
∏
j 6=i

(
b(Yij , π12)

b(Yij , π22)

)1/2∏
j 6=i

(
b(Yij , π11)b(Yij , π22)

b(Yij , π12)2

)τj/2
= φi(τ).

(50)

It implies that τi = φi(τ)
1+φi(τ) = Φi(τ).
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3.2.3 Proposal distribution for the Step 1 of SAEM

For the sake of simplicity, we treat here the case Q = 2, but generalization is straightforward. Using the
previous results, we can now detail the Step 1 of the SAEM algorithm. Given the parameters θ(k−1), the
types Z(k−1) and the data (Yij ; i, j ∈ [[1, n]]), we proceed as follows.

Step 1: We compute the parameters τ
(k)
i as in Proposition 9. The parameters in (49) are given by θ(k−1)

and the terms b(Yij , π
(k−1)
11 ), b(Yij , π

(k−1)
12 ) and b(Yij , π

(k−1)
22 ) are computed with the types Z(k−1).

Step 2: We simulate a candidate Zc ∈ {1, 2}n for Z such that Zci − 1 follows the law Ber(τi). Recall
that the acceptance probability is

µ(Z(k−1), Zc) := min

{
1,
Lcomplete(Zc, Y, θ(k−1))qθ(k−1)(Z(k−1)|Zc)
Lcomplete(Z(k−1), Y, θ(k−1))qθ(k−1)(Zc|Z(k−1))

}
, (51)

where the complete likelihood with respect to α, π, Z, Y is

Lcomplete(Z, Y, θ) =

Q∏
q=1

(
πqq

1− πqq

)Nq↔q
n

(1− πqq)N
q
n(Nq

n−1)/2
∏
q 6=r

(
πqr

1− πqr

)Nq↔r
n

(1− πqr)N
q
nN

r
n

×
Q∏
q=1

α
Nq

n
q

(
∑Q
q′=1 πqq′αq′)

Nq
n−1Zn=q

.

and

qθ(k−1)(Zc|Z(k−1)) =
∏
i=1

τ
2−Zc

i
i (1− τi)Z

c
i−1; qθ(k−1)(Z(k−1)|Zc) =

∏
i=1

τ
2−Z(k−1)

i
i (1− τi)Z

(k−1)
i −1.

4 Estimation via biased graphon and ‘classical likelihood’

In Section 3, the MLE are computed but they do not have explicit formula in the case of RDS exploration.
We thus investigate other estimators. The most natural one is the graphon estimator corresponding to
(20). It turns out that we can study the asymptotic bias of this estimator thanks to the result of Athreya
and Roellin [3]. Here, we need some to have the knowledge on the positions Xi of the Markov chain X(n).
The types Zi may be observed or not.

4.1 Complete observations

Assume in this section that we observe X(n) = (X1, . . . Xn), the types (Zi)i∈{1,...n} and the adjacency

matrix (Yij)i,j∈{1,...n} of the subgraph Gn = G(X(n), κ,Hn).

It is natural that Gn converges to an SBM graphon of parameters γ = (γ1, ..., γQ) and the connection
probabilities ρ = (ρqr)q,r∈{1,...,Q}:

χ∞(x, y) =

Q∑
q=1

Q∑
r=1

ρqr1Jq (x)1Jr (y).

where J = (J1, ..., JQ) is a partition of [0, 1] defined by

Jq =
[ q−1∑
k=1

γk,

q∑
k=1

γk
)
, q ∈ {1, . . . Q}. (52)

The parameters γ correspond to the frequencies of the types and the parameters ρ give the probabilities
of connection. Thus, a natural estimator for χ∞ is given by:
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Definition 2. Denote by

γ̂nq :=
Nq
n

n
; ρ̂nqr :=

Nq↔r
n

Nq
nNr

n

for q 6= r and ρ̂nqq :=
2Nq↔q

n

Nq
n(Nq

n − 1)
. (53)

an estimator of (γ, ρ). The graphon associated to these estimators is defined as:

χ̂n(x, y) :=

Q∑
q=1

Q∑
r=1

ρ̂nqr1Jn
q

(x)1Jn
r

(y), (54)

with Jnq =
[∑q−1

k=1 γ̂
n
k ,
∑q
k=1 γ̂

n
k

)
, q ∈ {1, . . . Q}.

We notice that this estimator corresponds to the MLE in the ‘classical case’ (see (20)). Thanks to
the Proposition 2 (due to [3]), we can study the asymptotic limit of χ̂n.

4.1.1 Limit of χ̂n

We have two empirical approximations of the limiting graphon χ∞: the graph Gn and the graphon χ̂n.
These two approximations are asymptotically equal:

Proposition 10. We have under Assumption 1 that:
(i) when n→ +∞,

lim
n→+∞

dsub(Gn, χ̂n) = 0. (55)

(ii) The limit of the empirical graphon χ̂n is thus the biased graphon κΓ−1 .

lim
n→+∞

dsub(χ̂n, κΓ−1) = 0. (56)

Proof. We postpone the proof of Proposition 10 (i) to the Section 4.1.2. For the point (ii), we have:

dsub(χ̂n, κΓ−1) ≤dsub(χ̂n, G(Hn, κ)) + dsub(G(Hn, κ), κΓ−1).

The first term in the right hand side is upper bounded by C/n by Proposition 10. The second term is
the Proposition 2 shown in [3, Corollary 2.2].

As a consequence, using the result of Athreya and Roellin [3] (see Proposition 2), we obtain:

Proposition 11. Under Assumptions 1,
(i) ρ̂ is a consistent estimator of π, and for q, r ∈ [[1, Q]],

lim
n→+∞

ρ̂nqr = πqr, and lim
n→+∞

γ̂nq = Γ(

q∑
r=1

αr)− Γ
( q−1∑
r=1

αr
)

=: γq. (57)

It follows that a consistent estimator of αq is

α̂nq = Γ−1
n

( q∑
r=1

γ̂nr
)
− Γ−1

n

( q−1∑
r=1

γ̂nr
)
. (58)

(ii) In the special case of Q = 2, an estimator of α1 is α̂n1 = Γ−1
n (γ̂n1 ).
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Proof. Let us consider point (i). The limit for γ̂nq follows from the ergodic theorem. Indeed, we can write
that

γ̂nq =
Nq
n

n
=

1

n

n∑
i=1

1
X

(n)
i ∈]

∑q−1
r=1 αr,

∑q
r=1 αr]

.

The ergodic theorem for the Markov chain (Xn)n says that

lim
n→+∞

1

n

n∑
i=1

1
X

(n)
i ∈Iq

= Em[1X1∈Iq ] = Γ(

q∑
r=1

αr)− Γ(

q−1∑
r=1

αr) = γq.

It remains to prove that ρ̂nqr is a consistent estimator of πqr. Rewrite ρ̂nqr as

ρ̂nqr =
Nq↔r
n /n2

Nq
n

n
Nr

n

n

=
1

γ̂nq γ̂
n
r

1

n2
Nq↔r
n .

Recall that the subgraph Gn is constructed from the Markov chain X(n) and that each pair of non-
consecutive vertices Xi and Xj are connected with probability κ(Zi, Zj) depending on theirs types and
independently of the others edges. Let us focus on the number of edges Nq↔r

n : two cases have to be
distinguished.

Case 1, q 6= r: The number of edges of types (q, r) is

Nq↔r
n =

n−1∑
i=1

1Xi∈Iq,Xi+1∈Ir +
∑

1≤i,j≤n
{Xi,Xj}/∈E(Hn)

1i∼Gn j
1Xi∈Iq,Xj∈Ir .

Then,

ρ̂nqr =
1

γ̂nq γ̂
n
r n

(
1

n

n−1∑
i=1

1Xi∈Iq,Xi+1∈Ir

)
+

1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gn j
1Xi∈Iq,Xj∈Ir
γ̂nq γ̂

n
r

(59)

By the ergodic theorem for Markov chain X(n), we have

lim
n→+∞

1

n

n−1∑
i=1

1Xi∈Iq,Xi+1∈Ir = Em[1X0∈Iq,X1∈Ir ] = γqπqr < +∞.

Since limn→+∞ γ̂nq = γq > 0 in probability, there exists a constant c > 0 such that c ≤ infq∈{1,...Q} γq and

lim
n→+∞

P

(
1

γ̂nq γ̂
n
r n

(
1

n

n−1∑
i=1

1Xi∈Iq,Xi+1∈Ir

)
≤ 1

c2n

(
1

n

n−1∑
i=1

1Xi∈Iq,Xi+1∈Ir

))
= 1,

and hence the first term in the right hand side of (59) converges to 0 in probability.

Consider now the second term in the r.h.s. of (59). Let us define the function

f(Gn) =
1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gn j
1Xi∈Iq,Xj∈Ir ,
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then f is a function of the n(n− 1)/2− (n− 1) = (n− 1)(n− 2)/2 random edges on n vertices. We see
that

E[f(Gn)] = E
[ 1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gn j
1Xi∈Iq,Xj∈Ir

]
=

(n− 1)(n− 2)

n2
πqrγqγr.

We have

P
(∣∣ 1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gn j
1Xi∈Iq,Xj∈Ir
γ̂nq γ̂

n
r

− πqr| > ε
)

≤P
( 1

γ̂nq γ̂
n
r

∣∣f(Gn)− E[f(Gn)]
∣∣ > ε−

∣∣ 1

γ̂nq γ̂
n
r

E[f(Gn)]− πqr
∣∣)

=P
(∣∣f(Gn)− E[f(Gn)]

∣∣ > εγ̂nq γ̂
n
r − |E[f(Gn)]− γ̂nq γ̂nr πqr|

)
=P
(∣∣f(Gn)− E[f(Gn)]

∣∣ > εγ̂nq γ̂
n
r − πqr

∣∣∣∣ (n− 1)(n− 2)

n2
γqγr − γ̂nq γ̂nr

∣∣∣∣)
For c < infq∈{1,...Q} γq,

P
(∣∣f(Gn)− E[f(Gn)]

∣∣ > εγ̂nq γ̂
n
r − πqr

∣∣∣∣ (n− 1)(n− 2)

n2
γqγr − γ̂nq γ̂nr

∣∣∣∣)
≤ P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > c2ε− c3

2
ε

)
+ P

(∣∣∣∣ (n− 1)(n− 2)

n2
γqγr − γ̂nq γ̂nr

∣∣∣∣ > c3ε

2πqr

)
+ P(γ̂nq γ̂

n
r < c2).

(60)

Since limn→+∞ γ̂nq = γq > 0 in probability, for fixed ε > 0,

lim
n→∞

P
(∣∣∣∣ (n− 1)(n− 2)

n2
γqγr − γ̂nq γ̂nr

∣∣∣∣ < c3ε

2πqr
and γ̂nq γ̂

n
r > c2

)
= 1

Thus the second and the third terms on the right hand side of (60) tend to zero as n tends to infinity. It
remains the first term to be treated. When one edge is changed, the value of f is changed by most 1/n2.
Applying McDiarmid’s concentration [23] for function f , we obtain:

P
(∣∣f(Gn)− E[f(Gn)]

∣∣ > c2ε− c3

2
ε

)
≤ 2 exp

(
−

2(c2 − c3

2 )ε
(n−1)(n−2)

2
1
n4

)
≤ 2e−4n2c2(1−c/2)ε.

Note that 0 < c < 1 then c2(1 − c/2) > 0. We use Borel-Cantelli’s Theorem to conclude that

limn→+∞ P
(∣∣f(Gn)− E[f(Gn)]

∣∣ > c2ε− c3

2 ε
)

= 0 and hence,

∣∣ 1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gn j
1Xi∈Iq,Xj∈Ir
γ̂nq γ̂

n
r

− πqr| −→ 0

in probability as n→∞. This finishes the proof for Case 1.

Case 2, q = r: The proof follows by similar arguments, with notice that there are a few modifications
because the expression of Nq↔q

n is slightly different:

Nq↔q
n =

n−1∑
i=1

1Xi∈Iq,Xi+1∈Iq +
1

2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gn j
1Xi∈Iq,Xj∈Iq .
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Then,

ρ̂nqq =
1

γ̂nq
(
nγ̂nq − 1

) ( 1

n

n−1∑
i=1

1Xi∈Iq,Xi+1∈Iq

)
+

1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gn j
1Xi∈Iq,Xj∈Iq

γ̂nq
(
γ̂nq − 1/n

) (61)

We have that the first term on r.h.s. of (61) converges in probability to 0 as in case 1. For the second
term on r.h.s. of (61), we define the function f as in Case 1 by

f(Gn) =
1

2n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gn j
1Xi∈Iq,Xj∈Iq ,

For a fixed ε > 0,

P

∣∣ 1

n2

∑
1≤i,j≤n

{Xi,Xj}/∈E(Hn)

1i∼Gn j
1Xi∈Iq,Xj∈Iq

γ̂nq
(
γ̂nq − 1/n

) − πqq
∣∣ > ε


≤ P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > εγ̂nq

(
γ̂nq − 1/n

)
− πqq

∣∣∣∣ (n− 1)(n− 2)

n2
(γq)

2 − γ̂nq
(
γ̂nq − 1/n

)∣∣∣∣)
≤ P

(∣∣f(Gn)− E[f(Gn)]
∣∣ > c

(
c− 1

n

)
ε− c3

2
ε

)
+ P(γ̂nq < c)

+P
(∣∣∣∣ (n− 1)(n− 2)

n2
(γq)

2 − γ̂nq
(
γ̂nq −

1

n

)∣∣∣∣ > c3ε

2πqq

)
.

As in Case 1, the second and the third term on r.h.s. of above inequality are negligible. Applying
McDiarmid’s concentration for f with notice that when changing 1 edge in Gn, the value of f changes
at most 1/n2,

P
(∣∣f(Gn)− E[f(Gn)]

∣∣ > c(c− 1/n)ε− c3

2
ε

)
≤ 2 exp

(
−

2(c2 − c/n− c3

2 )ε
(n−1)(n−2)

2
1
n4

)
≤ 2e−2(n2c2(1−c/2)−nc)ε.

Finally, using Borel-Cantelli’s Theorem, |f(Gn) − E[f(Gn)]| → 0 almost surely as n tends to infinity.
Thus, the point (i) is proved.

4.1.2 Proof of Proposition 10

From now on, for the sake of simplicity, we assume for the that there are two classes of vertices in the
graph, i.e. Q = 2. The proof can be generalized to general Q by following the same steps. Our parame-
ters’ notations are simplified as γ1

n =: γn and γ1
∞ =: γ∞ = Γ(α).

Our purpose is to prove a convergence of graphons for the distance dsub introduced in (7) using the
densities (5). If F is an edge (meaning that F = K2, the complete graph of 2 vertices), then the density
of F in Gn := G(Xn, Hn, κ) is the proportion of edges,

t(F,Gn) =
1

n(n− 1)

∑
`,`′∈[[1,n]]

1`∼Gn`
′

and t(F, χn) =

∫
[0,1]2

χ̂n(x1, x2)dx1dx2 =

Q∑
q,r=1

γ̂nq γ̂
n
r ρ̂

n
qr.
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In general case, if F is a graph of k vertices,

t(F,Gn) =
1

(n)k

∑
(i1,···ik)∈[[1,n]]

∏
{`,`′}∈E(F )

1i`∼Gi`′ (62)

t(F, χn) =

∫
[0,1]k

∏
{`,`′}∈E(F )

(
Q∑

q,r=1

ρ̂qrn 1Jn
q ×Jn

r
(x`, x`′)

)
dx1 · · · dxk (63)

Let us first consider the case where F is an edge.

|t(F,Gn)− t(F, χn)| =

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈[[1,n]]

1i∼Gn j
−
∫

[0,1]2
χ̂n(x1, x2) dx1dx2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈[[1,n]]

(
1i∼Gn j

− ρ̂Zi,Zj

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈[[1,n]]

ρ̂Zi,Zj − (γ̂n1 )2ρ̂n11 − 2γ̂n1 (1− γ̂n1 )ρ̂n12 − (1− γ̂n1 )2ρ̂n22

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

(n)2

∑
(i,j)∈[[1,n]]

(
1i∼Gn j

− ρ̂Zi,Zj

)∣∣∣∣∣∣+

∣∣∣∣∣∣ρ̂n11

 ∑
(i,j) | (Zi,Zj)=(1,1)

1

(n)2
− (γ̂n1 )2

∣∣∣∣∣∣
+

∣∣∣∣∣∣ρ̂n22

 ∑
(i,j) | (Zi,Zj)=(2,2)

1

(n)2
− (1− γ̂n1 )2

∣∣∣∣∣∣+

∣∣∣∣∣∣∣∣ρ̂
n
12

 ∑
(i,j) | (Zi,Zj)=(1,2)

or(Zi,Zj)=(2,1)

1

(n)2
− 2γ̂n1 (1− γ̂n1 )


∣∣∣∣∣∣∣∣ .

By the law of large numbers and using (57) whose proof does not depend on the Proposition 10, the four
terms converge to zero.

In the general case, proceeding in a similar way leads to:

|t(F,Gn)− t(F, χn)|

≤

∣∣∣∣∣∣ 1

(n)k

∑
(i1,···ik)∈[[1,n]]

∏
{`,`′}∈E(F )

1i`∼Gi`′ −
1

(n)k

∑
(i1,··· ,ik)

∏
{`,`′}∈E(F )

(
Q∑

q,r=1

ρ̂nqr1Zi`
=q,Zi

`′
=r

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

(n)k

∑
(i1,··· ,ik)

∏
{`,`′}∈E(F )

(
Q∑

q,r=1

ρ̂nqr1Zi`
=q,Zi

`′
=r

)
− 1

nk

∑
1≤i1,··· ,ik≤n

∏
{`,`′}∈E(F )

(
Q∑

q,r=1

ρ̂nqr1Zi`
=q,Zi

`′
=r

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

nk

∑
1≤i1,··· ,ik≤n

∏
{`,`′}∈E(F )

(
Q∑

q,r=1

ρ̂nqr1Zi`
=q,Zi

`′
=r

)
−
∫

[0,1]k

∏
{`,`′}∈E(F )

(
Q∑

q,r=1

ρ̂nqr1Jn
q ×Jn

r
(x`, x`′)

)
dx1 · · · dxk

∣∣∣∣∣∣
As
∏
{`,`′}∈E(F ) 1i`∼Gi`′ and

∏
{`,`′}∈E(F )

(∑Q
q,r=1 ρ̂

n
qr1Zi`

=q,Zi
`′

=r

)
are bounded by 1, there exist c(k)

such that the first term and the second term in the right hand side are bounded by c(k)/n. For the third
term, it is equal to∣∣∣∣∣∣

∑
1≤q1,...,qk≤Q

∏
{`,`′}∈E(F )

ρ̂nq`,q`′

 1

nk

∑
1≤i1,··· ,ik≤n

1Zi1
=qi1 ,··· ,Zik

=qik
−
∫

[0,1]k

k∏
h=1

1Jn
qh

(xh)dx1 · · · dxk

∣∣∣∣∣∣
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Since 0 ≤
∏
{`,`′}∈E(F ) ρ̂

n
q`,q`′

≤ 1 and {Zi1 = qi1 , · · · , Zik = qik} = {Γ(Xi1) ∈ Jq1 , · · · ,Γ(Xik) ∈ Jqk},
the third term is thus bounded by

∑
1≤q1,...,qk≤Q

∣∣∣∣∣∣ 1

nk

∑
1≤i1,··· ,ik≤n

1Γ(Xi1
)∈Jq1 ,··· ,Γ(Xik

)∈Jqk −
∫

[0,1]k

k∏
h=1

1Jn
qh

(xh)dx1 · · · dxk

∣∣∣∣∣∣
=

∑
1≤q1,...,qk≤Q

∣∣∣∣∣∣ 1

nk

∑
1≤i1,··· ,ik≤n

k∏
`=1

1Γ(Xi`
)∈Ji` −

k∏
`=1

∫
[0,1]

1Jn
i`
dx`

∣∣∣∣∣∣
=

∑
1≤q1,...,qk≤Q

∣∣∣∣∣
∏k
`=1

∑n
i`=1 1Γ(Xi`

)∈Jql
nk

−
k∏
`=1

∫
Jn
q`

dx`

∣∣∣∣∣
=

∑
1≤q1,...,qk≤Q

∣∣∣∣∣
k∏
`=1

Nq`
n

n
−

k∏
`=1

γ̂nq`

∣∣∣∣∣ = 0.

Hence limn→+∞ |t(F,Gn)−t(F, χn)| = 0. Because t(F,Gn) and t(F, χn) are bounded independently from
n, this provides the announced result.

4.2 Incomplete observations and graphon de-biasing

In Proposition 11, it is shown that the ‘classical’ SBM estimator (20) obtained by neglecting the bias
coming from the sampling scheme can be corrected by using the inverse of the cumulative distribution
function Γ of m. When the types are unobserved, we proceed in the same way. We assume here that
the types Zi are unobserved, but we need the observation of the marks Xi, otherwise no de-biasing is
permitted since the cumulative distribution function Γ can not be estimated. We detail this estimation
procedure in the case Q = 2 for the sake of simplicity, but generalization is straightforward.

Step 1: First, we perform an estimation of the SBM neglecting the sampling biases. This amounts to
computing the estimator proposed in [9]:

• We follow the algorithm described in Section 3.2.1, but with the likelihood Lclass(Zi, Yij ; θ) given
in (19). We denote the parameter here by θ = (γ1, 1− γ1, π11, π12, π21, π22).

• For the proposal distribution of the types Zc, it is simpler since we assume that the Xi’s are known.
Assume that we are at step k and that we dispose of the parameters θ(k−1). We initialize the
types by attributing the types 1 to the Xi ≤ γ(0) and 2 to the others. At each step, the threshold

is modified from γ
(k−1)
1 to γ

(k)
1 by following a random walk: a gaussian increment (mean 0 and

variance s2) is added. All the Xi smaller than this increment are given the type Zi = 1 and the
others the type Zi = 2.

Step 2: We estimate the cumulative distribution function Γn (see (12)) and deduce the graphon estimator
α̂n1 of α1 using (58). This provides the estimator of κ:

κ̂n(x, y) :=

Q∑
q=1

Q∑
r=1

ρ̂nqr1[
∑q−1

k=1 α̂
n
k ,

∑q
k=1 α̂

n
k )(x)1[

∑r−1
k=1 α̂

n
k ,

∑r
k=1 α̂

n
k )(y). (64)

5 Numerical results

For the simulation, we consider RDS graphs obtained from the exploration of SBM graphons with Q = 2
classes, of respective proportions α1 = 2/3 and α2 = 1/3. The connection probabilities are:

π =

(
0.7 0.4
0.4 0.8

)
.
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The RDS graphs consist of n = 50 vertices.

We proceed to the four estimations presented in this paper:

• the algorithm of Section 3.1 for complete observations by assuming that the types Zi ∈ {1, 2}
are observed. In the estimation, the system of equations (21)-(26) is solved. For this, we look
numerically for the zeros of (31) and choose the solution corresponding to the highest likelihood.
For the bisection method (REF), we use a grid of step 10−2.

• the SAEM algorithm of Section 3.2.1 when the types Zi are unobserved. The SAEM is based on
an iteration on k and we perform K = 200 iterations.

• the computation of the estimators given in Proposition 11 assuming complete observations,

• the debiasing of the SAEM algorithm of Daudin et al. presented in Section 4.2. Again, we use
K = 200 iterations for the SAEM iterations.

We proceed to a Monte-Carlo study of the estimators’ distributions. We simulate 200 RDS graphs, and
for each of them, apply the four estimation strategies. The empirical distribution of the estimators are
represented in Fig. 3, and this allows us to estimate the associated mean squares errors (MSE) for each
method, see Table 1.

Complete SAEM De-biased De-biased
Parameters likelihood graphon graphon with SAEM

π11 3.74 10−4 9.69 10−3 4.45 10−4 4.43 10−4

π12 4.88 10−4 1.32 10−2 6.63 10−4 8.92 10−4

π22 1.30 10−3 2.70 10−2 1.45 10−3 1.36 10−3

α 1.04 10−2 3.77 10−2 9.35 10−4 7.60 10−4

Table 1: Mean square errors.

Without surprise, the estimation is better when we have complete observations (columns 1 and 3).
The estimation of α based on the estimator (58) is better than the MLE obtained in column 1 from an
MSE point of view.
To understand the difficulty in estimating α, recall that for the MLE estimators based on the true
likelihood, α̂ is estimated from β̂ (see (29)). The shape of function β = α

1−α (see figure 5) indicates that
values of α smaller than 1/2 give similar values of β and thus, when α ∈ (0, 1/2), its estimation from β is
more difficult. For that reason, when α < 1/2, we can not obtain a good estimation, even though π might
be well-estimated. Nevertheless, in the case α ∈ (1/2, 1), β varies sufficiently to allow an estimation of α
with better precision. So our recommendation is that when there are 2 classes of vertices, to choose as
type 1 the majority type so that α > 1/2. However, it seems that estimating α from γ (see (58)) rather
than from β is much more precise.

When the types Zi are not observed, we achieve better MSEs with the debiasing of the classical
SAEM method of Daudin et al. (column 4 of Table 1). Notice first that the columns 2 and 4 of Table 1
are not completely equivalent, since the debiasing methods of Section 4 necessitate the knowledge of the
positions Xi of the Markov chain, when the likelihood (13) necessitates only the connections Yij and the
types Zi’s. Second, the updating of the types in the SAEM algorithm is easier in Section 4.2 when the
Xi’s are known since it amounts to choosing the threshold that separates the types 1 and 2. Finally, the
SAEM algorithm on the classical likelihood (19) seems to converge more easily than for the likelihood
(13).

5.1 Conclusion

Four statistical methods are studied in this paper, for estimating SBM parameters using a subgraph
obtained from the exploration of the graphon by a Markov chain. This is a toy model for estimating
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Figure 3: E stimation on complete data for a graph of n = 50 vertices with Q = 2 classes and parameters
α1 = 2/3, π11 = 0.7, π12 = π21 = 0.4 and π22 = 0.8. 200 such graphs are simulated and the empirical
distributions of the estimators are represented here with the true parameters in red line. (a): estimator
of α, (b): estimator of π11, (c): estimator of π12, (d) estimator of π22.

random networks from chain-referral sampling techniques and there exist sampling biases. The two first
methods compute the maximum likelihood estimator when the types of the nodes are known or unknown.
On simulations, it appears that the SAEM algorithm used when the types are unobserved is not very
robust and provides relatively large MSEs. An alternative approach is proposed by taking advantage of
recent results by Athreya and Roellin [3]: this allows to correct the classical SBM estimators that would
be proposed if one ignores the sampling biases. These methods provide good estimators but rely on the
precise knowledge of the Markov chain exploring the SBM graphon (in particular the positions Xi’s),
which is not always available.
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