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Abstract

We are interested in recovering information on a stochastic block model from the subgraph dis-
covered by an exploring random walk. Stochastic block models correspond to populations structured
into a finite number of types, where two individuals are connected by an edge independently from
the other pairs and with a probability depending on their types. We consider here the dense case
where the random network can be approximated by a graphon. This problem is motivated from the
study of chain-referral surveys where each interviewee provides information on her/his contacts in
the social network. First, we write the likelihood of the subgraph discovered by the random walk:
biases are appearing since hubs and majority types are more likely to be sampled. Even for the case
where the types are observed, the maximum likelihood estimator is not explicit any more. When the
types of the vertices is unobserved, we use an SAEM algorithm to maximize the likelihood. Second,
we propose a different estimation strategy using new results by Athreya and Roellin. It consists in
de-biasing the maximum likelihood estimator proposed in Daudin et al. and that ignores the biases.

Keywords: random graph; graphon; random walk exploration; sampling bias; EM estimation; stochas-
tic approximation expectation-maximization; incomplete likelihood; respondent driven sampling; chain-
referral survey.
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1 Introduction

A way to infer a random structure such as the graph of a social network and discover its properties is
to explore it with random walks (e.g. [25]). This mathematical idea can be put into practice to reveal
hidden populations such as drug users by using referral chain sampling where each new person provides
information on her/his contacts: see for example the snowball sampling [13] or the ‘respondent-driven
sampling’ (RDS) introduced by Heckathorn [14] (see also the PhD thesis of the second author [30]).
These methods were first used to estimate the size of the hidden population or to infer population means,
under the assumption that subjects’ network degree determines their probability of being sampled, see
Volz and Heckathorn [31] (see also [20]). Because the inclusion probability of a subject is complicated
to compute, due to the dependencies associated with the graph and the fact that the sampling should
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be in practice without replacement, an important numerical literature on the subject has followed (see
e.g. [11, 12, 24]). Gile [10] proposed an improved estimator for population means taking into account
the without replacement sampling, and Rohe established critical threshold for the design effects [26].
Because of privacy restrictions, the social-network information is usually only a tree, as each interviewee
has been ‘invited’ into the survey by a previously interviewed subject. Crawford, Wu and Heimer [8] use
a Bayesian approach to integrate over the missing edge between recruited individuals.

It appears that the information gathered in chain-referral surveys can also be used in estimating the social
network itself or at least properties associated with its topology. Recent surveys allow to gather connec-
tivity information for recruited members: see for example the Rolls et al. [27] and Jauflret-Roustide et
al. [29]. Interviewees are asked for a description of their contacts, and for a first name or a nickname.
This information allows to reconstruct partially the social network and obtain a subgraph that is not a
tree. It is then natural to wonder how much information on the total graph can be recovered from the
observation of the subgraph obtained by the chain-referral sampling. Of course, biases have been empha-
sized as individuals of high degrees (hubs) are sampled with higher probability and ‘common profiles’ are
much more likely to be discovered (e.g. [18]). This motivates the present paper. To fix the framework
of study, we consider a particular class of random graphs, namely the Stochastic Block Models (SBM)
that are popular models for social networks (see [15] and the review [1]). For this parametric model,
inferring the distribution of the random graph boils down to a finite dimensional parameter estimation.
Also, for simplification, we consider here a model of random walk on the continuous version of the SBM
graph, namely the SBM graphon that is introduced in the next paragraph. Two estimations strategies
are considered in this paper. First, we establish the likelihood of a random walk exploring this struc-
ture, and which accounts for the sampling biases. Two cases are classically considered, depending on
whether the types of the visited nodes are observed or not. Even in the case of a complete observation,
the maximum likelihood estimator has no explicit form. When the types of the vertices are unobserved,
we adapt the Stochastic Approximation Expectation-Maximization algorithm (SAEM) as introduced in
[6, 19]. Second, we propose a new estimation using new theoretical probabilistic results by Athreya and
Roellin [3] who compute an exact formula for the bias. We provide a consistent estimator in the case of
complete observations and a de-biasing strategy for the usual maximum likelihood estimator of Daudin
et al. [9] in the case where the types of the explored nodes are unknown.

We consider as a toy model a Stochastic Block Model graphon with @ classes. Graphons, considered
here as symmetric integrable functions from [0, 12 to R, can be seen as limit of dense graphs (see e.g. [21]).
Recall that SBM graphs are a generalization of Erdos-Rnyi graphs, where each node ¢ is characterized
by a type, Z; € {1,...,Q}, with @ the number of different possible values. The random variable (r.v.)
Z; are assumed independent and identically distributed (i.i.d.) with P(Z; = q) = o4 > 0. The graph is
non oriented. Each pair of nodes {4, 5} is connected independently with a probability 7z, z, € (0,1) that
depends only on the types. When the number of vertices of the graph tends to infinity, it is known that
the dense graph converges to a limiting continuous object called graphon, see e.g. [4, 5, 21]. Let us recall
the definition of the SBM graphon.

For the sequel, we introduce the partition of [0, 1] defined by

Iq:[iak,zak), qe{1,...Q}. (1)
k=1 k

=1

The SBM graphon is the function from [0, 1]? to [0, 1] defined as follows:

Q Q
Ii(l’,y) = Z Zﬂ—qr 1Iq (x)lh(y) (2)

Heuristically, we can see [0,1] as a continuum of vertices, and & is the limit of the adjacency matrix of
the graph in the sense that x(x,y) measures the probability of connection between x and y.



We consider a random walk on the graphon &, i.e. the process X = (X,;,)m>1 with values in [0, 1] and
transition kernel:

Qfl Qﬂ mgr 11, 1; (x) d
K, (z,dy) = ’f(:c,y)dy _ Y (2 I (y)) 1, () y' "

Jo &z, v)dv Zqul (Z?:l qua,,) 17, (x)

This random walk is the analogous of the classical random walk on a graph that jumps from a vertex to
one of its neighouring vertices chosen uniformly at random.

From the exploration of this random walk, we can construct a subgraph of the ‘nodes’ visited. Assume that
we observe n steps of the random walk, i.e. X(™) = (X1,..., X,,). The associated path (up to its nth step)
is a subgraph (chain) H,, = (V,,, E,,) with vertices V,, = {X1,... X,,} and edges E,, = Uy { Xy, Xony1}-
This chain is completed by sampling independently edges between vertices that are not already connected
with probability according to their types. Following the notation of Athreya and Roellin [3], we denote
by G, := G(X("), K, H,) the random graph, which is completed from H,, w.r.t. the graphon k:

Definition 1. The vertices of G, = G(X(”),H,Hn) are the nodes X ™, and the edges are as follows.
Let © and j be two vertices.

o If there is an edge between i and j in Hy, i ~p, j then there is also an edge between these nodes
in Gup:ir~a, J.

o If there is no edge between i and j in H,, we connect i and j in G, with probability x(X;, X;).

This subgraph G,, is the RDS graph. We assume that this is the model generating our data and that
the observation corresponds to a realization of GG,,. In the sequel, we denote the parameter of the SBM
by 0 = (ai,...aq,mg;q,7 € {1,...Q}). Our purpose is to estimate 6 using the subgraph G,,. In the
literature, the estimation of SBM graphs has been extensively studied, but often in a framework where
the number of nodes is known. In particular, variational EM approaches have been used in many cases
where types are unknown, see [9, 28, 22]. The estimation of SBM graphs, when the total population size
is unknown and when we only have a subgraph obtained by a chain-referral method, is not studied to
our knowledge. We develop in this paper two approaches that we compare in a final numerical section
(Section 5).

First, it is possible to write the likelihood of G,,. Here, because graph is explored through an RDS
random walk, our likelihood differs from the likelihoods in these papers: it accounts both on the transitions
of the random walk and on the connectivity of vertices given their types. We study in Section 3 the
maximum likelihood estimator (MLE) in our setting for both cases, when the nodes types are observed or
not. Even when the observation is complete, the maximum likelihood estimator does not have an explicit
form. When the types are unknown, we adapt to our likelihood the variational EM approach of [9].
The second approach developed in Section 4 is inspired by the recent work of Athreya and Roellin [3].
These authors showed that when we observe the random walk sufficiently long (n — +00), the sequence
of graphs (G(H,, k))n>1 converges to a biased graphon of k. Based on their probabilistic result, a natural
estimator of the biased graphon turns out to be the MLE in the ‘classical’ case studied by [9]. Based on
this estimator that is not consistent in our case, we propose a new consistent estimator of .

2 Probabilistic setting

In this section, we give some important properties of the RDS Markov chain X, in particular on its
long term behaviour. Then we explain the biases that appear when estimating the graphon x from the
RDS subgraph G,,.



2.1 Exploration by a random walk

Assumption 1. In all the paper, we assume that k is the graphon of an SBM graph (see (2)) and that
K is connected, i.e. that for all measurable subset A C [0,1] such that |A| € (0,1),

/ / k(z,y)dx dy > 0.
A c

Proposition 1. Under Assumptions 1, the random walk X = (X,,)n>1 admits a unique invariant prob-
ability measure

fol k(z,v)dv ZqQ:1 (Z?:l 77(17“0‘7') 1, (z) dz
m(dr) =—7 dx = o) o) . (4)
Jo Jo E(u,v)du dv a1 2re1 Tgr Qg Qi

The general proof is given in [3, Prop. 4.1] but for the case of SBM graphons, the result is easy to prove.

From expression (4), we see that the stationary measure m(dz) put more weight on the intervals I,
corresponding to frequent types (large o) or hubs (7. close to one). Because m(dz) is not the uniform
measure, we expect biases in how the graphon « is discovered by G,,.

2.2 Convergence of dense graphs

We are interested in the case where n — +o00. Then, the (dense) RDS graph G,, might converge to a
graphon, and it is natural to compare the possible limit to the graphon x on which the random walk
moves. Let us recall briefly some topological facts. We refer the interested reader to [21].

Let us give first some notations. For integers n and k < n, [1,n] = {1,2---n} and (n)r = n(n —
1)---(n—k+1). For a graph G, E(G) denotes the edges of G and i ~¢ j means that {i,j} € E(G). We
can define the subgraph F' density in G by:

#{injections from F' to G} 1
“UEG) = (n)k ~ () 2 I e (5)
(i1, -+ix)E[1,n] {£,€’}YEE(F)

where 37 i )e[1,n] IS & sum ranging over all vectors (i1, - -ix) with mutually different coordinates in
[1,n]. This notion of subgraph density can be generalized to a graphon « by:

t(F,k) = / H k(Te, e )dzy - - - dxg. (6)
01" e.eyen(r)

Let F denote the class of isomorphism classes on finite graphs and let (F;); > 1 be a particular enumer-
ation of F. Then, the distance of two graphs G and G’ is:

dn(G.G) = 3 S [t(F.G) — (£, G| g

i>0

The convergence of the large graphs to graphons can be expressed with this distance [21, Chapter 11].

2.3 Biases in the discovery of «

Let us denote by I' the cumulative distribution function of 7 (dz):

. -1
25:1 Z?:l (quo‘r) [mm (O‘q’ DY O‘k)} n
qQ=1 Zerl Tgr Qg Qr

Athreya and Roellin [3] have proved that the graphon discovered by the RDS is biased:

I(z)




Proposition 2 (Corollary 2.2 [3]). We have under Assumptions 1 that:
lim  doub (Gns kir-1) =0,

n—-+o0o
where the generalised inverse of T' is
I ') =inf{u € [0,1] : ['(u) > v},
and where for all z,y € [0, 1],
kp-1(z,y) = w07 (2), T (y)). 9)
This proposition, that is true not only for SBM graphons but also in more general cases, as developed
in [3], says that the topology of the subgraph discovered by the RDS is biased compared with the true

underlying structure (x) because the random walk visits more likely the nodes with high degrees (hubs)
and the frequent types.

Example 1. When Q = 2, the graphon is given:

m1, 0<z,y<a
Klz,y) =< 72, a<z<1l or a<y<l;
Too, otherwise.

This function is represented in Fig. 1 The invariant probability measure is:
¥

1

T2 T2

sl 1

o 1 X

Figure 1: Function k(x,y) for an SBM graphon with ¢) = 2 classes.

(miia+ ma(l — @) laep,0) () + (T120 + Toa (1 — @)1y (a,1]()
m(dx) = dx.
7T110l2 -+ 27T12()é(1 — Ol) + 71'22(]. — O[)z

Then the cumulative distribution of m is:

(71'110[ —+ ’/T12(1 — Oé))l‘

Ple) = m1102 + 2ma(l — ) + moa(1 — «)? lo<a
102 + m2(1 — a)a (20 + ma2(1 — @) (x — ) 1
1102 + 2mp0(l — @) + Toa(1 — )2 w102 + 2mp0(l — @) + moa(1 — )2 |~ °2
The biased graphon kp-1 is here:
T, i (2,y) €[0,D(a)] x [0,T(a)];
kr-1(z,y) =< T, if (2,y) € [[(a), 1] x [[(a), 1]; (10)

T12, otherwise;
with
(m1a+ m2(1 — @)

T = . 11
<a) 7T110[2 + 2’/T120&(1 — a) + 7T22(1 — Ot)2 ( )

It can be seen that T'(a) = a when (1 — &) (w12 — m22) = a(mia — m11). This is satisfied for example when
T = W1 = 7oo (Erdds-Rnyi) or when o = 1/2 and 711 = mea (both types are symmetric).



2.4 Empirical cumulative distribution

As seen in the previous paragraph, the bias linked with the discovery of the graphon s by the RDS
subgraph G,, is expressed in term of the cumulative distribution I" of the stationary distribution m of
X In the sequel, the empirical cumulative distribution of m will be useful and we recall here some
facts:

Th(z) = %Z 1x,<z and I '(y)=inf{z €[0,1] : Ty(z) >y} (12)

Lemma 3. T, and I';;} converge a.s. uniformly to T' and T~ respectively.

Proof. The almost sure pointwise convergence of I';, to I' is a consequence of the ergodic theorem. Then,
the a.s. uniform convergence is obtain by the Glivenko-Cantelli theorem.

Let us prove the uniform convergence of I',;* to I'"!. Because all the a,’s are positive, I is a nondecreasing
and piecewise affine bijection and the inverse bijection I'"! is also nondecreasing and piecewise affine.
Let € > 0 and ng € N sufficiently large so that for all n > ng, |, —T'|lec <e. Let y € [0, 1]. For n > ny,

T (y) =T (y)| <C|T@ () -y

Because the jumps of I';, are a.s. of size 1/n, we necessarily have that y — e < T'(I;}(y)) <y +e+ L.
Thus,

P ) - T ()] <O( +2),

which proves the uniform convergence of I';! to I'"1. O

3 Likelihood estimation

In this section, we write the likelihood of G, and compute the MLE of the parameters 8. Here our
likelihood is specific to the RDS exploration. The MLE does not have an explicit formula and we explain
how to compute it numerically. Then, we study the case where the types Z; of the nodes are unobserved.
Notice that the estimation in this Section 3 makes only use of the connectivity information carried by
the random variables Y;;. The estimators here do not depend on the positions X;. The types Z; may be
known or unobserved.

Let us introduce some notations. We define by NZ, g € {1,...,@Q} the number of vertices of type ¢
sampled by the Markov chain. For ¢,r € {1,...,Q} we also define by:
NgoT = Card{(i,j) | ijeX™, Zi=q Z;=r Yi;=1};
Ng%’r:card{(la]) | ivjEX(n)v Zi:(L Zj:T7 )/iaj:()}

the number of couples of types (g,r) that are connected (resp. not connected).

3.1 Complete observations

Assume that we observe a subset of explored nodes X (™ = (X1,...X,,) C [0,1]" discovered by the RDS,
with their classes and connections: (Z;,Y;;; X;, X, € XM i #£4)e{1,---Q}" x {0,1}(»=1),

Proposition 4. The complete likelihood of the observations is

Q Nged Na©r
£(z,v,x,0)=]] ( Mg ) (1= g MV T (”qr ) (1 — 7qr)VANG
g=1

1—
Taq q#r




Proof. We have that

n—1
‘C(Z szgz 7] EX(n) 9) = Qz, H Q
m=1 Zq:l TZmq%q 1,§: X5, X;€X (M)
{Xi. X} ¢Hy

T Zm Zmt1 X Zmt1 % H Yl

where the first product corresponds to the likelihood of the types sampled along the Markov chain, and
the second product corresponds to the likelihood of edges between vertices that are not visited successively
by the Markov chain. Thus:

‘C(Z K]v 7] € X(n) 9) Hl Ql 2z X H b(Y;ja’/TZiZj)7 (14)
TS Z =17Ziq% i,5€[1,n]
X, Xex™
where b(Yj;,7z,2,) = 7T§JZJ (1—mz,2,)' Y. Finally, rewritting the above likelihood using N, Ni©", we
obtain (13). O

Proposition 5. The MLE o= (a, ) is the solution of the following system of equations:

) _
Zm=q Z 7Tqu —0: (15)

INGE

m=1 / 1 T Zmgq' X
n—1
12,2 arly, - Y,. 1-Y,
oL 20 el DY) —h = ) 15, 7)=(qr) =0 (16)
Tgr ZQ Taa’ X’ Tgr 1—-m T
m=1 q q’'=1"qq'%q i§: X5, X, eX™ a a

{Xi,X;}¢H,

Proof. The log likelihood of the observations is:

Q Q
log £ = Z (N,‘{ logag — (NI —1z,—4)log ( Z qu/aqz)>

q=1 q'=1
¢ qq Tqq Nr%(Ng — 1)

+ Z (Nn log (1 — qu) + 5 log(1 — qu))
g=1
Q

—|—Z (ZNq‘_’Tlog ) —|—NqNT10g(1—7rqr))

q=1 r#q
When we take the derivative of function log £ with respect to the parameters, we obtain:

Q

N1 NP
T g =0 (17)
L A— E =1 Tpq’' Oq’
NaoT NI ,
no S NI = (18)
Tqr L=y > gi=1Tqq' O’

The identifiability of the model is a result by Allman et al. [2]. Since the likelihood is differentiable, there
exists a sequence of solutions of (17) that converge to the true parameter 6. O



Remark 6. Notice that in absence of bias, the classical likelihood, as obtained in Daudin et al. [9] is:

n

CClass(Zi,Y;j;a) :Hazi X H b(K]vﬁZiZj)

=1 1,5€(Xn)
Q Niea Na©T
N4 s " q_ s " apnT
= I | Qg " X II (1 E ) (1= mgq) R (1 E ) (1- qu')N”'N"-
- II -
q=1 q=1 a4 a#r a

(19)

The difference between (19) and (14) is the first product which corresponds of the likelihood of the node
types. In the classical case, these types are chosen independently whereas here they are discovered by the
successive states of the Markov chain. In this classical case, the MLE has an explicit formula:

q q<r qq
aclass _ Nn %Class _ Nn /ﬂ\.class _ 2Nn (20)
a n’ o T NINT 9 = NINI-1)

Here, for the likelihood (13), the MLE which solves (15) is not explicit any more. In Section 3.1.1,
we detail in the case of two classes (@ = 2) the computation of the MLE.
3.1.1 Case where Q =2

Let us solve the likelihood equations when @ = 2. The parameter is then § = (a, 711, 712, 722). Define
6 = (@, 711, T12,T22) the estimator of §. Then the estimators 6 is the solution of

N} N7 N2775
Sno il T2, (21)
a ma+ (1l —a@)  7ea+ me(l —a)

N2 N7 N2

n/\ B n/’fl? S 22 _ :O7 (22)
11—« 71'1104—"-7'(12(1—@) 7T120[+7T22(1—04)
N1<—>1 N1<+>1 Nl’\

. T A (23)
11 177’(11 7T110£+7T12(1*Oé)
N1<—>2 N1<—/->2 Nl 1—a

7/1\ _ n/\ _ /\An(/\ O[) _ :0; (24)
12 1—-7 7na+7e(l-—a)
N2<—>1 N1<—/—>2 NQ’\

TR T —— (25)
T12 1— 9 7r12a+7r22(1—a)
N2<—>2 N2<+>2 N2 1—a

ﬁ\ _ n/\ _ /\An(/\ a) _ =0. (26)
o2 1—To T2@+ ma(l —a)

Proposition 7. The MLE 0 = (Q, 11,12, T22) can be expressed as a function of Tia:

. (N1<—>1 + N1<—>2 ) (N1N2 N1<—>1)7ﬂ\2
T = T(NI_ 711 7 ) (27)
NI(NL-1) 1 NL(N, —~
( 2, _N N1<—>2) ( I\ T2 n _|_N1N2 N%)THQ
76\2 _ (N2<—>2 + N1<—>2 ) ( 2<—>2 + N1N2 NQ)@ (28)
(N A(N2—1) — N2 4 N1e2) - (N (N -1 + NIN2 — Ng)@’
+
with
—~ (NTIL N 7T12 + \/ Nl N2)2’/T12 + 4N71LN72L7?1\17?2\2
B= (30)

)
2N72L7T11



and where 715 is one of the root of

=2 (NPT Ny©2 = Ny) = (Na Nig = Ny + Np @ D)
12 _(N%,(J\Q’%fl) — N1+ Nio2) - (N%,(J\Qf},fl) + NINZ - N
(V22 4 N2 N2) — (N 4 NINZ - N2)
(Nﬁ,(f\é%—l) — N2 + Nle2) — (NE,(J\;%—U + NIN2Z — N2)ip
(N71L<—>2 — N71LN37?1\2)2

. 1
X [(NI97 — 1) = (NINZ — NDJRSl[(NAF — N2) = (NINZ = N3)7 (31

X

Proof. Multiply (23) by 711 and (24) by 712, and sum them up, we have

1 12
Np T i T ren ez )
1-— T11 1-— 12

Similarly, from equations (25) and (26), we deduce

2 23
Ny?—2_ 4 N2#2 2 = NI92 4 N292 - N2 (33)
1 — 2 1 —7oa

Also, the system of equations (23)-(26) gives

Nlet N1l N262 N22 N1e2 N1e2 2
2 - 0 2 -1 )=l -—"— . 34
( T 1—71'11) ( T2 1—7T22) < T2 1—71'12> (34)

1 1 2 2
Notice that N1#2 4 N1©2 = NIN2, N1l Niet = Ml g N2 4 N2e2 = M@l ang we
consider 73 as a parameter. Solving the system (32)-(33) for 717, o2 provides the two first equations of
(27). Using this, (34) is equivalent to:

(N, 72 — Ny Nafs)® 1722
[(N322 = N}) = (NGNZ = N)FR|[(N3©? = N2) — (NN = N2 ] 7p°

=1 (35)
This gives the (31).

Moo

For the estimator of «, let us denote 8 :=
equivalent to

Then equations (21) and (22) are the same and

N N2B (36)
B+ T2 Ti2f+ T2
The unique positive solution is B and provides in turn a. O

Let us explain how the preceding proposition allows us to compute numerically the MLE 0.

First: there might be several solutions of (31), see Fig. 2. For each of them, we compute the corre-
sponding estimators of w11, mo2 and «, which allows us to obtain the corresponding likelihood of the
observations. We choose the set of estimators that provides the best likelihood for our observations.

Second: to solve numerically the equation (31), we use the bisection method with the following con-
straints:

e The equation (31) has 4 excluded values that make the denominator zero:

1+2 2 12 1
~1 Nn _Nn —2 Nn _Nn

T™TNINEoNz T NN A 0



Figure 2: Equation (31) can be rewritten as ¢(m12) = 0. The function ¢ is represented graphically on the
figure above as a function of 712. The vertical dotted lines correspond to the excluded values 71y, ... 7,
given in (37).

Na(Na-1) 2 152

—4
T =
—i— — N7 + Ny N7

N (N, —1) 1 162

NLI(NI-1) 1 1na’
Moo=l _ N1 4 NIN2

and
It is observed that max(iy, 1) < min(@dy, 71y). And if N} < N2, we have them ordered:
—1 _2 _3 —4

e All the estimators 711, 712, 22 and & take values in the interval (0, 1).

Taking care of the points above, we solve (31) with the bisection method on a grid that includes the
excluded points {7},,7 € {1,2,3,4}}.

For each root of (31), corresponding to a possible value of 712, we compute the corresponding estimators
of 11, T22.

For the numerical simulations, we refer the reader to Section 5.

3.2 Incomplete observations: SAEM Algorithm

Here, we assume that the types (Z;);=1,..» are unobserved. In this case, the likelihood of the observed
data (Y;;; 4,7 € [1,n]) is obtained by summing the complete-data likelihood (14) over all the possible
values of the unobserved variables Z:

Q n n
cvigigeln = > [[]1z= icioa [T oumag)|  (38)

n—1 Q
g1, qn=1 i=1 Hi:l Zq:lwqiqaq 1,5: X, X;€X ()

Unfortunately, this sum is not tractable and it is classical to use the Expectation-Maximization (EM)
algorithm to compute the maximum likelihood. Here we follow the steps in [9] by adapting the expression
to our setting with the likelihood (13).

Let us sum up the EM algorithm (see e.g. [6, 7, 19]). Given the observed data: the Markov chain X (")
the connections (Y;;, 4,7 € X (”)) and the number of blocks ) and the current estimator 6, and given the
value 0¢-~1) at the (k—1)!" iteration of the EM, on the k*" step, we compute the conditional expectation
of the log-likelihood £(Z|X,Y,0®)) given X,Y for the current fit #*). Here there is no explicit expression
for the latter likelihood because the exact distribution of Z given X,Y is unknown and this we need to
approximate it numerically by using an SAEM algorithm [6, 19], proceeding as follows.

10



3.2.1 The SAEM algorithm

Given the information of the k — 1 iteration 0~ = (a(F=1) 7(=1)) at the k' iteration of SAEM:

Step 1: Choosing the appropriate Z*)

- Simulate a candidate Z¢ following the proposal distribution gye-1) (.|Z%*~). The choice of pro-

posal distribution is discussed in Section 3.2.2, where we use a variational approach.
- Calculate the acceptance probability

c k—1 k—1 c
w(Z®D | z¢) = min{l, L7 Y, 000) - gy (Z07|2°) };

L(Z(k_l)7 Y7 e(k_l)) *qy(k—1) (ZC|Z(k_1))

- Accept the candidate Z¢ with probability w: P(Z*®) = Z¢) = w and P(Z*F) = Z*:-D) =1 — w.

Step 2: Stochastic approximation Update the quantity

QM (8) = Q1 (8) + sy, (o (2", ;. 0) — Q*(9)) (40)

(39)

with the initialization Q(©)(6) := E[log £(Z,Y,0)] and (si)ren is a positive decreasing step sizes

sequence satisfying Y ;- | s = oo and Y o, 57 < oo.

Step 3: Maximization Choose 6(*) to be the value of § that maximizes Q%)

0" .= arg max Q¥ (9). (41)
0

Kuhn and Lavielle studied the convergence of the sequence §() in [19].

3.2.2 Variational approach

For the proposal distribution gye—1) (. | Z*~1) of Z*) | we follow Daudin et al. [9], who use a variational
approach. Let us recall the main idea of this approach. The general strategy has been described in

Jordan et al. [17] or Jaakkola [16].

Recall the likelihood L(Y,0) of the incomplete data (38). The idea of the variational approach is to

replace the likelihood by a lower bound:

J(Ry,) = L(Y,0) — KL(Ry,0(2), L(Z]Y,0)), (42)

d
where KL(u, v) := / dulog <du) is the Kullback-Leibler divergence of distributions x and v, and where
v

Ry ¢(Z) is an approximation of the conditional likelihood £(Z[Y,8). When Ry g is a good-approximation

of L(Z|Y,0), J(Ryy) is very closed to L(Y,6).

11



Here, Z takes discrete values in {1,...,@Q}. Then,

Ryo(Z
T(Rye)=logLv,0)— Y Rye(2) 1og£(’g@f/9))
(Z1,..Zn)E{1,..., 1 ’
=logL(Y,0)— > Rys(Z)logRye(Z)+ Y. Rys(Z)logL(Z]Y,0)
zZe{1,...,Q}™ ze{1,...,Q}m
=logL(Y,0)— Y Rye(2)logRye(Z)+ > Rye(Z)logL(Z,Y,0)
Ze{1,...,Q}™ zZe{1,...,Q}m
— > Rys(2)logL(Y,0)
Ze{1,...,Q}"
= Y Ryve(Z)IogL(Z,Y,0)— > Ryy(Z)logRys(Z).
Ze{1,...,Q}m zZe{1,...,.Q}"

Following [9], we restrict to distributions Ry g that belong to the family of multinomial probability
distributions parameterized by 7 = (71,---7g), as approximated conditional distribution of Z given Y’
and 6. If we look for the parameter 7 that maximizes (42), we will hence obtain the best approximation
of L(Z|Y,6) among the multinomial distributions. We will chose the latter to be the proposal distribution
for Z in the Step 1 of the SAEM algorithm.

If 15, follows the multinomial distribution M(1; (71, ...,Tiq)), with 754 = P(Z; = ¢|Y,0), for i €
{1,...,n},q € {1,...,Q} then,

Ry}g(Z) = HTi,Zz" (43)
i=1

As a consequence, J(Rx) is rewritten as

n n n—1 Q
J(Ry,) = Z HTj,Zj Zlog oz, — ZIOg(Z TZ,q0q) + Z log b(Yij; 72, 2,)

zZe{l,..Q}™ \J=1 i=1 i=1 q=1 i,5: X, X;€X (™)
n n
_ E HTLZ]. g log iz |-
Ze{l,..Q}n j=1 i=1

We aim at calculating the parameter 7 that maximizes the lower bound of £(Y,8). Then the proposal
distribution gp—1) (. | Z*~1) for updating the types will be given by (43) with the parameters 7 given
in the next proposition:

Proposition 8. Given a,m, the optimal parameter

7:=argmax J(Ryyg), (44)

with constraint 22221 Tig = 1,Vi € {1, ...,n}, satisfies the fized point relation

Tig X —o5 H H b ij5 7Tq€ (45)
Zz 1 Tqe® g p=1

12



Proof. To simplify J(Ry,s), we have

n n n
Z HTi,ZfzIOgO‘Zi = Z ZHTL (73,2, log az,)

Ze{1,..Q}i=1 i=1 Zef{1,..Q}n i=1 j=1
J#i
n  Q n Q Q
=2 2 malsaz, 3 lmz =3> malse ]| X0z
i=1 Z;=1 Z1,e Za\Zi §#i i=1 g=1 j#i \ Z;=1

n Q
= ZZTM log ayg.
i=1 g=1

Similarly,

NE

Zﬂq IOg Tiq-

q=1

SERICD <210gm) _

Ze{1,..Q}n j=1

2

Il
-

In addition,

n n—1 n—1 n Q
Z H Tj.7; Zlog Zﬂthaq = Z ()| 75.2,) log (Z 7rzq7qo¢q> Ti Z;
z

Jj=1 =1 = =1 Z\Zi Jj=1 q=1
n—1 Q Q
=D log{ > 77404 | Tiz,
i=1 g=1 q=1

and

STz D> logb(YVigomzoz) =Y >, (] wz) D 0Yiji 72,275,272,
Z

k=1 i<j i<j z\{z. Z;} ki Z:.Z;

= E : E TigTjrb(Yij, Tqr)-

i<j q,r=1
In conclusion,
n Q n—-1 Q
J(Ry,p) = Z Z Tiqlog ag — Z Z Tiqlog Tig + = Z Z TigTjr log b(Yij, mqr) Z Z log (Z wqra,«> Tig-
i=1 g=1 i=1 g=1 z;éjqu i=1 g=1

(46)

To solve the optimization problem arg max_J(Ry,9) with constraint Zqul Tiqg = 1, we use the method of
Lagrange multipliers, that is finding the optimal parameters 7, A that maximize the Lagrangian function
Lag(T,\) := T (Ry,0) + >y Ai(Z?:l Tig — 1), where ); is the Lagrange multiplier. Take the derivative
of Lag w.r.t. \; and 7, we have

8£
ag Z Tig —

OLag
87'“]

=logay —logTig+ A —1— longqTozT + = ZZTJT log b(Y;;, mgr) z ZTJT log b(Yji, mrq)

r=1 j7617 1 j;ézT 1

13



OLag  OLag
8)\1 o 67'7;(1

The optimal solution must satisfy = 0, which implies

log 7y = logag + A; — 1 —logZWqTar +ZZTJT10gb Yij, mgr)-
j#i r=1

In another word,

Tiq = il Z H H b(Yij, mgr) 70" (47)

r=1TqrOr j4jr=1

In the case Q = 2, it turns out the problem is more simple since for each i € {1,...,n}, 71 + 72 = 1.
For sake of simplification, we denote by 7; instead of 7;1. Hence, 1jo =1 -7, =1 — 7.

Proposition 9. When QQ = 2, the variational parameter T; has formula:

(1) _ o.r

T, =

where

() 1= — 2T + (1 — a)map 11 <b(Yij,7T12))l/2 I <b(3€],7r11)b(Y”,7r22)>r¢/2. o)

1 —aam + (1 —a)m i b(Yij, m22) ki b(Yij, m12)?

Proof. We solve directly the optimization problem max, J(Ry,p) without using the Lagrangian multiplier
A. The quantity J(Ry,g) is written explicitly as:

J(Ry,) :Z Tiloga+ (1 — 7;) log(1l — ) Z TilogTi + (1 —7;)log(1 — 1))

i=1 i=1
+ 5 Z [’Ti’Tj lOgb(Y;],’lTll) =+ 7—7,(]- — Tj)logb(Y;j,mg) + (1 — Ti)Tj logb(Yw,Wm)
i#]
n—1

+ (1 — 7—7,)(]- — Tj) logb(Y;j,ﬂ'QQ)] — Z[TZ IOg(OZﬂ'H + (1 — CM)7T12) + (]. — Ti) 10g(a7r21 + (1 — C¥)7T22].
i=1

Take the derivative of J(Ry,p) w.r.t. 7,

8j o 17 b()/z 7T11) b(}/l 7T12)} 057711+(1704)ﬂ'12
=lo +1o L4z Tilog —2 2 4 (1 —71))log —L 224 1o
87,» gl—a & Ti ;{ J gb(Yw, ) ( ) gb(Y”,ﬂ'QQ) C¥7721+(1—04)7T22
T am + (1 — a)mi2 zg>7r11)b 1j;7T22 b(Yij, mi2)
=lo —lo — lo + = T + = log ———=.
1 -a gl—Tz‘ amor + (1 — a)ma Z ’ b(Yij, mi2)? Z b( Yij, m22)

Then the variational parameter 7; is the solution of equation gf_ = 0, which gives

T __a  omy + (1 — )2 y H (W>1/2H (b(K]ﬂrn)b(YwﬂTm))Tj/Q = ¢i(1).

1—-7 1—a amg+(1—a)ms b b(Yi;, m22) i b(Yi;, mi2)?
(50)
. . () _ 5.
It implies that 7; = Tré,(r) — (7). =

14



3.2.3 Proposal distribution for the Step 1 of SAEM

For the sake of simplicity, we treat here the case @) = 2, but generalization is straightforward. Using the
previous results, we can now detail the Step 1 of the SAEM algorithm. Given the parameters (%=1 the
types Z(*~1 and the data (Yi;;4,j € [1,n]), we proceed as follows.

Step 1: We compute the parameters T(k) as in Proposition 9. The parameters in (49) are given by gk—1)
and the terms b(Yw,ﬂ(k 1)) b(YUJr(]C 1)) and b(Y;;, ﬁég_l)) are computed with the types Z(*—1).

Step 2: We simulate a candidate Z¢ € {1,2}" for Z such that Z¢ — 1 follows the law Ber(7;). Recall
that the acceptance probability is

- . Leomplete(Z°,Y, 9<k—1>)q o (21| Z¢)
Z(k 1) 7¢Y) .— 1 complete 0 51
M( 3 ) min ’»CcompletE(Z(k 1) g(k 1) )qg(k 1)(20‘2 (k—1) ) ( )
where the complete likelihood with respect to a, 7, Z,Y is
Ecomplete Z Y 0 H < 449 ) (1 — 7Tq N (Nz-1)/2 H <1 _qﬂ_qr) (1 — ﬂ'qT)NnNn

g=1 gt

E =1 Tqq' ¥’ )Nz_lz"m’ .

and

c c _p(k=1) _
Qo (220 0) = T[22 7 (- 1)% Y g (2020 = [[777 -2

4 Estimation via biased graphon and ‘classical likelihood’

In Section 3, the MLE are computed but they do not have explicit formula in the case of RDS exploration.
We thus investigate other estimators. The most natural one is the graphon estimator corresponding to
(20). It turns out that we can study the asymptotic bias of this estimator thanks to the result of Athreya
and Roellin [3]. Here, we need some to have the knowledge on the positions X; of the Markov chain X (™).
The types Z; may be observed or not.

4.1 Complete observations

Assume in this section that we observe X(™ = (X,...X,), the types (Zi)ieq1,..ny and the adjacency
matrix (Yi;); je{1,..n} of the subgraph G, = G(X ) 1, Hy,).

It is natural that G,, converges to an SBM graphon of parameters v = (1, ...,7¢) and the connection
probabilities p = (pgr)q,ref1,....Q}:

where J = (Ji, ..., Jg) is a partition of [0,1] defined by

- Z Z qe{l,...Q}. (52)

The parameters -y correspond to the frequencies of the types and the parameters p give the probabilities
of connection. Thus, a natural estimator for y is given by:
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Definition 2. Denote by

N4 Naer 2N

Ta = P = ey Jor 4T end P = wavg =y

an estimator of (v, p). The graphon associated to these estimators is defined as:

= Z Z IBZT]'J" ].Jn (y) (54)

q=1r=1

with J? = [ Y4140 S0 AF), a € {1,...Q}.

We notice that this estimator corresponds to the MLE in the ‘classical case’ (see (20)). Thanks to
the Proposition 2 (due to [3]), we can study the asymptotic limit of .

4.1.1 Limit of x,

We have two empirical approximations of the limiting graphon y..: the graph G, and the graphon X,.
These two approximations are asymptotically equal:

Proposition 10. We have under Assumption 1 that:
(i) when n — 400,

Hm gy (G Xn) = 0. (55)

n—-+oo
(i) The limit of the empirical graphon Xy is thus the biased graphon kp-1.

lim dsub(s&u K}l"—l) =0. (56)

n——+00

Proof. We postpone the proof of Proposition 10 (i) to the Section 4.1.2. For the point (ii), we have:

dsun ()/(\nv HFfl) <dsup (55%7 G(Hna H)) + dsub(G(an “)7 ’{Ffl)-

The first term in the right hand side is upper bounded by C/n by Proposition 10. The second term is
the Proposition 2 shown in [3, Corollary 2.2]. O

As a consequence, using the result of Athreya and Roellin [3] (see Proposition 2), we obtain:

Proposition 11. Under Assumptions 1,
(i) p is a consistent estimator of w, and for q,r € [1,Q],

q q—1
Jim g =g, and L )= F(; ar) = T( ; a) =7 (57)
1t follows that a consistent estimator of oy is
q q—1
~n —1 ~n —1 ~n
aq:Fn (Z 7')_Fn ( 7) (58)
r=1 r=1
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Proof. Let us consider point (i). The limit for 7' follows from the ergodic theorem. Indeed, we can write

that

-~n
Yo = le(’”e 1202 an, o0y an]”

The ergodic theorem for the Markov chain (X™),, says that

q q—1

. ~ . . .~
It remains to prove that Pgr 18 a consistent estimator of mg,. Rewrite Pqr s

NI&T /p? 11
a N Ny ArAR n?
n n

q>r

Recall that the subgraph G, is constructed from the Markov chain X and that each pair of non-
consecutive vertices X; and X; are connected with probability x(Z;, Z;) depending on theirs types and
independently of the others edges. Let us focus on the number of edges NI": two cases have to be

distinguished.

Case 1, ¢ # r: The number of edges of types (g,r) is

n—1
qer . .
Nn = E 1X7;€Iq,X7:+1€IT + E lzNGnJ]'XiEIrpXjelr'

Then,
n—1
a0 1 1 L1 Ling,ilxier, X;el,
== E X,€l4,Xip1€l, g ——
qr nin qrhitl 2 N
Vg Ve \ T n 1<i5<n Vg Vr

By the ergodic theorem for Markov chain X ("), we have

n—1

ngriloo - El 1x.er,.Xien, = Emllxoer, x,e1,] = 7qTqr < +00.
1=

Since lim,, 4 oo ﬁl’; = 74 > 0 in probability, there exists a constant ¢ > 0 such that ¢ < infqe{lw

1 1 n—1
1 < — | — ) ) =
nEIiIOQP <7q "Fn ( Z X, qu,Xz+1617> <z, <n ; 1X@€Iq,X1+1eIr>> 1,

and hence the first term in the right hand side of (59) converges to 0 in probability.

Consider now the second term in the r.h.s. of (59). Let us define the function

1
f(Gn>=7 Z Lino, s 1xier, X 11

17
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then f is a function of the n(n —1)/2 — (n — 1) = (n — 1)(n — 2)/2 random edges on n vertices. We see
that

1 n—1)(n-—2
E[f(Gn)] = E[ﬁ Z 1i~gnj1Xielq,XjeIT] = (ZL#WW%’YW
1<i,j<n
{Xi.X;}¢E(Hy)
We have
1 Licg, jlxicr, x;er1
Pl eestelven
n 1<io%n Yo vr
{X:, X;Y¢E(Hn)
1 1
<P(——|f(Gn) —E[f(Gn)]| > ¢ — | —E[f(G,)] — 74
(%}W?' (Gn) —E[f(Gy)]] ’%’%’f [£(Gn)] = gr)

N —1 -2 U
P (1£(Gn) - B > 333 - e | 0 =D, — 352
n )

(n—1)(n—-2) s
2 YoV

)

For ¢ < infyeqi,..0) Vg

(n—1)(n—2)

P(U@M—EUGMH>ﬁﬁf—mr (n=2) e A

<P (}f(Gn) —E[f(Gyp)]| > ¢®e - c;a) +P (

e
P ~Snon 2 .
> ) +RER <€)
(60)

Since lim,,—; 4 o0 7y = 74 > 0 in probability, for fixed ¢ > 0,

lim P (
n— o0

Thus the second and the third terms on the right hand side of (60) tend to zero as n tends to infinity. It
remains the first term to be treated. When one edge is changed, the value of f is changed by most 1/n2.
Applying McDiarmid’s concentration [23] for function f , we obtain:

- c3e
2T gr

(n—1)(n—2) s
2 Yo

and 7,7, > 02) =1

3 2(02 _ 03)5 2 2
_ 2. ¢ _ 2 —4n“c*(1—c/2)
]P’(’f((?n) ]E[f(Gn)H > c’e 25) < 2exp ( 7(71—1)2(71—2) 14) < 2e e

Note that 0 < ¢ < 1 then ¢*(1 — ¢/2) > 0. We use Borel-Cantelli’s Theorem to conclude that
lim, 400 P (’f(Gn) - ]E[f(Gn)H > c%e — %g) = 0 and hence,
1

1 i~a, i 1X €1, X €l

— E 'n.jA i Rt _7rq7‘| 0
1<i,j<n ar

{Xi,X;}¢E(Hn)

in probability as n — oco. This finishes the proof for Case 1.

Case 2, ¢ = r: The proof follows by similar arguments, with notice that there are a few modifications
because the expression of N7 is slightly different:

n—1

1
q<q _ E . .
N7t = E 1xier, xiper, + 2 Ling,ilxier, x; el

i=1 1<i,j<n
{X:, X;}¢E(Hn)
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Then,

7 : (1 S ) DI = O
= ~7 = |- Xi€lg, Xip1€l n2 (7,
Vg (g =)\ 7 o iy % (3 = 1/m)
{X,X;}¢E(Hn)

We have that the first term on r.h.s. of (61) converges in probability to 0 as in case 1. For the second
term on r.h.s. of (61), we define the function f as in Case 1 by

f(Gn) = —= Z 1i~gnj1Xi€Iq,X_7‘€Iq7
1<ij<n
{Xi, X }¢E(Hy)

For a fixed € > 0,

— Tgq| > ¢

n2 . Jn(Am —1/n)
{X:. X;}¢E(Hn)

1 Z ling, ilxien, x;e1,

< P (|60 ~ BLAG| > 35 (5 — 1) = mog| =200 = 53 G5~ 1/) )
03
< P (|60 - BIAG]| > el = 7)o 28) +PE; <o)
(n—1)(n-2)

1 e
P 2 _ osn(mcn . — > .
- ( n? (’Yq) Ta (’Vq n) ’ 27qu>
As in Case 1, the second and the third term on r.h.s. of above inequality are negligible. Applying
McDiarmid’s concentration for f with notice that when changing 1 edge in G,,, the value of f changes

at most 1/n?,

c? 2(c? —¢/n — é)e o2 (1 e/9) me)e
P <|f(Gn) —E[f(Gp)]| > clc—1/n)e — 25) < 2exp(— <n—1>2<n_2>£ ) < 2e~2n*(1—c/D)=ne)e,

Finally, using Borel-Cantelli’s Theorem, |f(G,) — E[f(Gy)]| — 0 almost surely as n tends to infinity.
Thus, the point (i) is proved. O
4.1.2 Proof of Proposition 10

From now on, for the sake of simplicity, we assume for the that there are two classes of vertices in the
graph, i.e. Q = 2. The proof can be generalized to general @) by following the same steps. Our parame-
ters’ notations are simplified as 7} =: 7, and 7L, =: 7o, = ['().

Our purpose is to prove a convergence of graphons for the distance dg,; introduced in (7) using the

densities (5). If F' is an edge (meaning that F' = K5, the complete graph of 2 vertices), then the density
of F in G,, := G(X,,, H,, k) is the proportion of edges,

1
HFG) = S Ly

n(n—1) 6,0e[1,n]

and  ¢(F,xn) = / Xn (21, 22)dw1das = Z Vo Vr Par-
[0,1]2 q,r=1
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In general case, if F' is a graph of k vertices,

t(F,Gn):ﬁ ) I tieen (62)

(i1,ix)E[1,n] {£,0'}EE(F)

Q
t(F, Xn) = / H ( Z Z)\%T].J;XJ:L (:L’g,l‘y)) d:El s dl‘k (63)
01" feeryem(r)

q,r=1

Let us first consider the case where F' is an edge.

1 ~
H(F,Gn) = t(Foxn)l = | Y. ling,; —/ Xn(21, 22) dzidas
)2 Sefim [0.1]2

Sﬁ Z (Ling, j — P2..2,)

2 (ig)elln]

1 o~ ~n -~n
+ (ni) Z PZ;.Z - ) =297 (1 =A7)p1a — (1 =71 )2352
% (ig)€lLn]
1 ~ ~n 1 ~n\2
S (Ying, s = Pz.2,)| + P11 Z — — (1)
n)z - - _ (n)z
(Z,])EIIL”]] (Z’J) | (Ziij)*(lfl)
-~ 1 ~n\2 ~n 1 ~n, ~n
+ | P22 Z —— — (1 =A")° ||+ |PT2 Z — =27 (1-77)

(n)2 (n)2

(4.9) | (Z:,2)=(2,2) (1,9) | (Zi,2;)=(1,2)

or(z;,zZ;)=(2,1)

By the law of large numbers and using (57) whose proof does not depend on the Proposition 10, the four
terms converge to zero.

In the general case, proceeding in a similar way leads to:

|t(Fa Gn) - t(Fv Xn)‘

Q

(i1,--ik) €[] {£,L' e E(F) R i in) {601 €B(F) \gr=1

Q Q
+ Z H (Z //)\Zr]-Ziz—q,Zie,—r> - % Z H (Z bT]LT]‘Zi[_q,ZiZ,_T)

'(117 k) {6 YeE(F) \gr=1 1<iy, - ip<n {LL}YEE(F) \gr=1

Q
+ % Z H (Z pqr Ziy=q,2 r> - /[0 . Z ﬁgrngxJﬁ(xZal'é’)> dxy - - dxy,

1<iy, ik <n {L,0'}EE(F) A feeyenwr) <w—1

As [Toerenr Yienaip a0d [l iyenr) (Zgrzl ﬁgrlzi,z=q,21:€, :r> are bounded by 1, there exist ¢(k)
such that the first term and the second term in the right hand side are bounded by ¢(k)/n. For the third
term, it is equal to

1
> II P nk > 1Zi1:qi1,---,zik:qik—/ Hlm (zn)dxy - - - dry

1<q1, - <Q {0/ YEE(F) 1<y, ,ix<n [0,1]%
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Since 0 < H{Z,@’}EE(F) //52'27(12, < 1 and {Zil = Giy5" 7Zik = qzk} = {F(Xh) € Jqla"' aF(XZk) € qu}7
the third term is thus bounded by

1
> — D In(X)edy o (X0, ey, —/ 1_[1‘1w (zn)dzy - dwy

n
1<q1,e @k <Q | 1<in e yik<n [0.1]* p=4
L 1 1 d
= 2 w2 H N e, T H sy e
1<q1,..., e <Q 1<iy, - ,ixg<n =1
k
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‘
Hence lim,, 1 o [t(F, Gp) —t(F, xn)| = 0. Because t(F, G,,) and t(F, x,) are bounded independently from
n, this provides the announced result.

4.2 Incomplete observations and graphon de-biasing

In Proposition 11, it is shown that the ‘classical’ SBM estimator (20) obtained by neglecting the bias
coming from the sampling scheme can be corrected by using the inverse of the cumulative distribution
function I'" of m. When the types are unobserved, we proceed in the same way. We assume here that
the types Z; are unobserved, but we need the observation of the marks X;, otherwise no de-biasing is
permitted since the cumulative distribution function I' can not be estimated. We detail this estimation
procedure in the case @@ = 2 for the sake of simplicity, but generalization is straightforward.

Step 1: First, we perform an estimation of the SBM neglecting the sampling biases. This amounts to
computing the estimator proposed in [9]:

e We follow the algorithm described in Section 3.2.1, but with the likelihood L£1855(Z;,Y;;;0) given
n (19). We denote the parameter here by 6 = (v1,1 — v1, 711, T12, To1, T22).

e For the proposal distribution of the types Z¢, it is simpler since we assume that the X;’s are known.
Assume that we are at step k and that we dispose of the parameters 6%~ . We initialize the
types by attributing the types 1 to the X; < 79 and 2 to the others. At each step, the threshold
is modified from ’yik_l) to %k) by following a random walk: a gaussian increment (mean 0 and
variance s?) is added. All the X; smaller than this increment are given the type Z; = 1 and the
others the type Z; = 2.

Step 2: We estimate the cumulative distribution function T',, (see (12)) and deduce the graphon estimator
ay of oy using (58). This provides the estimator of &:

:ZZ ar [Zkiiak’zk lak)(x)l[ [ 1@272}';:1@2)(?!)' (64)

g=1r=1

5 Numerical results

For the simulation, we consider RDS graphs obtained from the exploration of SBM graphons with @ = 2
classes, of respective proportions a; = 2/3 and as = 1/3. The connection probabilities are:

(07 04
™1\ 04 08 )"
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The RDS graphs consist of n = 50 vertices.

We proceed to the four estimations presented in this paper:

e the algorithm of Section 3.1 for complete observations by assuming that the types Z; € {1,2}
are observed. In the estimation, the system of equations (21)-(26) is solved. For this, we look
numerically for the zeros of (31) and choose the solution corresponding to the highest likelihood.
For the bisection method (REF), we use a grid of step 1072

e the SAEM algorithm of Section 3.2.1 when the types Z; are unobserved. The SAEM is based on
an iteration on k and we perform K = 200 iterations.

e the computation of the estimators given in Proposition 11 assuming complete observations,

e the debiasing of the SAEM algorithm of Daudin et al. presented in Section 4.2. Again, we use
K = 200 iterations for the SAEM iterations.

We proceed to a Monte-Carlo study of the estimators’ distributions. We simulate 200 RDS graphs, and
for each of them, apply the four estimation strategies. The empirical distribution of the estimators are
represented in Fig. 3, and this allows us to estimate the associated mean squares errors (MSE) for each
method, see Table 1.

Complete SAEM De-biased De-biased

Parameters | likelihood graphon  graphon with SAEM
11 3.74107% 9.69 1073 | 4.45 1077 4.43 10~
12 4.88107* 1.321072 | 6.63 10~* 8.92 1074
22 1.30 1073 2.70 1072 | 1.45 1073 1.36 1073
o 1.041072 3.771072 | 9.35 10~* 7.60 1071

Table 1: Mean square errors.

Without surprise, the estimation is better when we have complete observations (columns 1 and 3).

The estimation of o based on the estimator (58) is better than the MLE obtained in column 1 from an
MSE point of view.
To understand the difficulty in_estimating «, recall that for the MLE estimators based on the true
likelihood, @ is estimated from 3 (see (29)). The shape of function § = 1%~ (see figure 5) indicates that
values of « smaller than 1/2 give similar values of 8 and thus, when « € (0,1/2), its estimation from £ is
more difficult. For that reason, when o < 1/2; we can not obtain a good estimation, even though 7 might
be well-estimated. Nevertheless, in the case a € (1/2,1), 8 varies sufficiently to allow an estimation of «
with better precision. So our recommendation is that when there are 2 classes of vertices, to choose as
type 1 the majority type so that o > 1/2. However, it seems that estimating « from 7 (see (58)) rather
than from [ is much more precise.

When the types Z; are not observed, we achieve better MSEs with the debiasing of the classical
SAEM method of Daudin et al. (column 4 of Table 1). Notice first that the columns 2 and 4 of Table 1
are not completely equivalent, since the debiasing methods of Section 4 necessitate the knowledge of the
positions X; of the Markov chain, when the likelihood (13) necessitates only the connections Y;; and the
types Z;’s. Second, the updating of the types in the SAEM algorithm is easier in Section 4.2 when the
X;’s are known since it amounts to choosing the threshold that separates the types 1 and 2. Finally, the
SAEM algorithm on the classical likelihood (19) seems to converge more easily than for the likelihood
(13).

5.1 Conclusion

Four statistical methods are studied in this paper, for estimating SBM parameters using a subgraph
obtained from the exploration of the graphon by a Markov chain. This is a toy model for estimating
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Figure 3: Estimation on complete data for a graph of n = 50 vertices with () = 2 classes and parameters
ay = 2/3, w1 = 0.7, m2 = w91 = 0.4 and 7oy = 0.8. 200 such graphs are simulated and the empirical
distributions of the estimators are represented here with the true parameters in red line. (a): estimator
of a, (b): estimator of w11, (c¢): estimator of w12, (d) estimator of 7as.

random networks from chain-referral sampling techniques and there exist sampling biases. The two first
methods compute the maximum likelihood estimator when the types of the nodes are known or unknown.
On simulations, it appears that the SAEM algorithm used when the types are unobserved is not very
robust and provides relatively large MSEs. An alternative approach is proposed by taking advantage of
recent results by Athreya and Roellin [3]: this allows to correct the classical SBM estimators that would
be proposed if one ignores the sampling biases. These methods provide good estimators but rely on the
precise knowledge of the Markov chain exploring the SBM graphon (in particular the positions X;’s),
which is not always available.

References

[1] E. Abbe. Community detection and stochastic block models: recent development. Journal of Machine Learning
Research, 18(177):1-86, 2018.

[2] E. Allman, C. Matias, and J. Rhodes. Parameter identifiability in a class of random graph mixture models. Journal
of Statistical Planning and Inference, 141(5):1719-1736, 2011.

23



[3]
(4]
[5]
[6]

[7]

beta

0.0 0.2 0.4 0.6 0.8 1.0

alpha

Figure 4: The correlation of 5 and a.

S. Athreya and A. Rollin. Dense graph limits under respondent-driven sampling. Annals of Applied Probability,
44:2193-2210, 2016.

C. Borgs, J. Chayes, L. Lovasz, V. Sés, and K. Vesztergombi. Convergent sequences of dense graphs i: Subgraph
frequencies, metric properties and testing. Advances in Mathematics, 219(6):1801-1851, 2008.

C. Borgs, J. Chayes, L. Lovéasz, V. S6s, and K. Vesztergombi. Convergent sequences of dense graphs ii. multiway cuts
and statistical physics. Annals of Mathematics, pages 151-219, 2012.

G. Celeux, D. Chauveau, and J. Diebolt. Stochastic versions of the em algorithm: an experimental study in the mixture
case. Journal of Statistical Computation and Simulation, 55(4):287-314, 1996.

G. Celeux and J. Diebolt. The sem algorithm: a probabilistic teacher algorithm derived from the EM algorithm for
the mixture problem. Computational Statistics Quarterly, 2:73-82, 1985.

F. Crawford, J. Wu, and R. Heimer. Hidden population size estimation from respondent-driven sampling: a network
approach. Journal of the American Statistical Association, 113:755-766, 2018.

J.-J. Daudin, F. Picard, and S. Robin. A mixture model for random graphs. Statistics and Computing, 18(2):173-183,
2008.

K. Gile. Improved inference for Respondent-Driven Sampling data with application to HIV prevalence estimation.
Journal of the American Statistical Association, 106(493):135-146, 2011.

K. Gile and M. Handcock. Respondent-driven sampling: an assessment of current methodology. Sociol. Methodol.,
40:285-327, 2010.

K. Gile, L. Johnston, and M. Salganik. Diagnostics for respondent-driven sampling. Journal of the Royal Statistical
Society A, 178:241-269, 2015.

L. Goodman. Snowball sampling. The Annals of Mathematical Statistics, 32(1):148-170, 1961.

D. Heckathorn. Respondent-driven Sampling: a new approach to the study of hidden populations. Social Problems,
44(1):74-99, 1997.

P. Holland, K. Laskey, and S. Leinhardt. Stochastic blockmodels: some first steps. Social Networks, 5:109-137, 1983.

T. Jaakkola. Tutorial on variational approximation methods. In Advanced Mean Field Methods: Theory and Practice,
Cambridge, 2000. MIT Press.

M. Jordana, Z. Ghahramani, T. Jaakkola, and L. Saul. An introduction to variational methods for graphical models.
Machine Learning, 37:183-233, 1999.

M. Khabbazian, B. Hanlon, Z. Russek, and K. Rohe. Novel sampling design for respondent-driven sampling. Electronic
Journal of Statistics, 11(2):4769-4812, 2017.

E. Kuhn and M. Lavielle. Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM:
PS, 8:115-131, 2004.

24



[20]
[21]
[22]
[23]
[24]
[25]

[26]
27]

(28]
29]
(30]

(31]

X. Li and K. Rohe. Central limit theorems for network driven sampling. Electronic Journal of Statistics, 11(2):4871—
4895, 2017.

L. Lovész. Large networks and graph limits, volume 60 of Colloquium Publications. American Mathematical Society,
Rhode Island, 2012.

M. Mariadassou and T. Tabouy. Consistency and asymptotic normality of stochastic block models estimators from
sampled data. arXiv:1903.12488, 2019.

C. McDiarmid. On the method of bounded differences. In Surveys in Combinatorics, volume 141 of London Mathe-
matical Society Lecture Note Series, pages 148-188, Cambridge, 1989. Cambridge University Press.

T. Mouw and A. Verdery. Network sampling with memory: a proposal for more efficient sampling from social networks.
Sociological Methodology, 42:206—256, 2012.

O. Riordan. The phase transition in the configuration model. Combinatorics, Probability and Computing, 21(1-2):265—
299, 2012.

K. Rohe. A critical threshold for design effects in network sampling. Annals of Statistics, 47(1):556-582, 2019.

D. Rolls, P. Wang, R. Jenkinson, P. Pattison, G. Robins, R. Sacks-Davis, G. Daraganova, M. Hellard, and E. McBryde.
Modelling a disease-relevant contact network of people who inject drugs. Social Networks, 35(4):699-710, 2013.

T. Tabouy, P. Barbillon, and J. Chiquet. Variational inference for stochastic block models from sampled data. Journal
of the American Statistical Association, 2019.

V. Tran, C. Jangal, P. Feuillet, A. Bardot, C. Dumont, I. Condamine-Ducreux, and M. Jauffret-Roustide. Respondent-
driven sampling survey among people who inject drugs in paris. in progress, 2020.

T. Vo. Eaxploration d’un graphe aléatoire par des méthodes Respondent Driven Sampling. PhD thesis, Université
Sorbonne Paris Nord, Paris, France, 2020.

E. Volz and D. Heckathorn. Probability-based estimation theory for respondent-driven sampling. Journal of Official
Statistics, 24:79-97, 2008.

25



