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AN INFINITE-DIMENSIONAL SIS MODEL

JEAN-FRANÇOIS DELMAS, DYLAN DRONNIER, AND PIERRE-ANDRÉ ZITT

Abstract. In this article, we introduce an infinite-dimensional deterministic SIS model
which takes into account the heterogeneity of the infections and the social network among
a large population. We study the long-time behavior of the dynamic. We identify the
basic reproduction number R0 which determines whether there exists a stable endemic
steady state (super-critical case: R0 > 1) or if the only equilibrium is disease-free (critical
and sub-critical case: R0 ≤ 1). As an application of this general study, we prove that
the so-called “leaky” and “all-or-nothing” vaccination mechanism have the same effect on
R0. This framework is also very natural and intuitive to model lockdown policies and
study their impact.

1. Introduction

1.1. Motivation.

1.1.1. The SIS model. Some infections do not confer any long-lasting immunity. With
such infections, individuals become susceptible again once they have recovered from the
disease. The simplest deterministic way to model this kind of epidemics in a constant
size population is the following system of ordinary differential equations, introduced by
Kermack and McKendrick in [29] and known as the SIS (susceptible/infected/susceptible)
model:







Ṡ = −K
N IS + γI,

İ = K
N IS − γI,

where S = S(t) and I = I(t) are the number of susceptible and infected individuals, the
total sizeN = S(t)+I(t) of the population is constant in time, and K and γ are two positive
numbers which represent the infectiousness and the recovery rate of the disease. The
proportion U(t) = I(t)/N of infected individuals in the population evolves autonomously,
according to:

(1) U̇ = (1− U)KU − γU.

Looking at a time change of U given by V (t) = U(t/γ) and setting R0 = K/γ, one gets
that V̇ = (1−V )R0V −V . The parameter R0 can be interpreted as the number of infected
individuals one infected individual generates on average over the course of its infectious
period, in an otherwise uninfected population. This basic reproduction number was first
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introduced by Macdonald [41], and appears in a large class of models in epidemiology, see
the monograph [7] from Brauer and Castillo-Chavez . The ordinary differential equation
in V is well-posed and admits an explicit solution. If V (0) = 0, then V (t) = 0 for all t:
as V represents the proportion of infected individuals, this constant solution is called the
disease-free equilibrium. Now assume V (0) = V0 ∈ (0, 1]. If R0 6= 1, the proportion of
infected individuals in the population for t ≥ 0 is given by:

U(γt) = V (t) =
R0 − 1

R0 + ((1 −R0)/V0 −R0)e(1−R0)t
·

If R0 = 1, then the proportion of infected individuals in the population is given by:

U(γt) = V (t) =
1

(1/V0) + t
·

Hence, one can identify three possible longtime behaviors for the dynamical system:

Sub-critical regime: If R0 < 1, U(t) converges exponentially fast to 0, and the only
equilibrium is the disease-free solution U(t) = 0.

Critical regime: If R0 = 1, U(t) still converges to 0 but not exponentially. The disease-
free equilibrium is still the only one.

Super-critical regime: If R0 > 1, the constant solution 0 becomes unstable and another
equilibrium appears, G∗ = 1 − R−1

0 . This equilibrium is called endemic, and is
globally stable in the sense that U(t) converges towards G∗ for all initial positive
conditions.

1.1.2. The multidimensional Lajmanovich Yorke extension. In a pioneering paper [32], La-
jmanovich and Yorke introduced an extension of the SIS model for the propagation of
gonorrhea, which takes into account the fact that the propagation of the virus is highly
non homogeneous among the population — we refer to the survey [47, Section V.A.2]
from Pastor-Satorras, Castellano, Mieghem and Vespignani (and more precisely Section 2
therein) for broader context and more details.

In this model the population is divided into n groups and the transmission rates of the
disease between these groups are not equal, leading to a system of coupled ODEs:

(2) U̇i = (1− Ui)
n
∑

j=1

Ki,j Uj − γiUi, ∀i ∈ { 1, 2, . . . , n }

where Ui is the proportion of infected individuals in group i with Ui(0) ∈ [0, 1] for all
1 ≤ i ≤ n, K = (Ki,j)1≤i,j≤n is a non-negative matrix that represents the transmission
rates of the infection between the different groups, and the non-negative number γi > 0 is
the recovery rate of group i. Since the matrix K/γ = (Ki,j/γj)1≤i,j≤n has non-negative
entries, we recall it has a Perron eigenvalue, that is, an eigenvalue R0 ∈ R+ such that all
other complex eigenvalues λ of K/γ satisfy |λ| ≤ R0. The following result is given in [32].

1. There exists a unique solution (Ui(t) : t ≥ 0)1≤i≤n of Equation (2) and Ui(t) ∈ [0, 1]
for all t ∈ R+.

2. If R0 ≤ 1, Ui(t) converges to 0 for all 1 ≤ i ≤ n, so that the disease-free equilibrium
(0, 0, . . . , 0) is globally stable.
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3. If K is irreducible and R0 > 1, then there exists an endemic equilibrium G∗ =
(G∗

i )1≤i≤n such that for i = 1 . . . n:

lim
t→∞

Ui(t) = G∗
i ∈ (0, 1),

provided that U(0) 6= (0, 0, . . . , 0).

Thus, under the assumption that people are connected enough, the epidemic has two
possible behaviors exactly like in the one-dimensional model:

Biotheorem 1, [32] Either the epidemic will die out naturally for every
possible initial stage of the epidemic, or when it is not true and the initial
number of infectives of at least one group is nonzero, the disease will remain
endemic for all the future time. Moreover, the number of infectives and
susceptibles of each group will approach nonzero constant levels which are
independent of the initial levels.

1.1.3. Towards a generalization. The epidemiologic models discussed so far assume a large
population, possibly made of a few groups with different behaviours, so that the epidemics
is deterministic. At the opposite side of the modelling spectrum, some probabilistic models
of interacting particles may be seen as modelling epidemics.

In 1974, Harris [24] introduced the so-called contact process on Zd. The contact process
is a continuous-time Markov process often used as a model for the spread of an infection.
Nodes of the graph represent the individuals of a population. They can either be infected
or healthy. Infected individuals become healthy after an exponential time, independently
of the configuration. Healthy individuals become infected at a rate which is proportional
to the number of infected neighbors. The contact process share a numerous properties with
the multigroup SIS equations: the existence of an upper invariant measure, a disease-free
invariant measure and a monotone coupling [35, 36]. This proximity is not surprising since
Equation (2) can be obtained from a mean-field approximation of the contact process [47,
Section V.A]. Notice that Equation (2) can also be obtained as a limit of individual based
models, see [3].

We refer to [47], and the numerous references therein, for a survey on epidemic processes
in complex networks. Since social networks are a very large graphs, it is natural to consider
epidemic process on limit of large graphs using the theory developed during the last two
decades, on (i) graphings (which is used to deal with very sparse graphs, namely those
with bounded degree, see [1, 17, 39]), or, at the other extreme, on (ii) graphons (which are
comprehensive and flexible objects that define a limit for dense graphs where the mean
degree is of the same order as the number of vertices, see, for example, [39, 40]). See
[5, 6, 31] for several attempts approach to limit theory for all kind of graphs.

The SIS equation that we propose in the present paper has to be thought as the limit of
the mean-field approximations of the contact processes defined on a convergent sequence
of large graphs. Thus, the solutions take values in an abstract space Ω (the set of vertices),
which can be interpreted as the set of features of the individuals, the transmission of the
disease is given by a kernel κ and the recovery rate by a function γ (see Examples 1.3 and
1.2), see the infinite-dimensional evolution Equation (3) below.

The two main goals of this article are the following:
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• introduce an infinite-dimensional SIS model, generalizing the model developed by
Lajmanovitch and Yorke (see Equation (3) below), and prove a result similar to
[32, Biotheorem 1] in that general setting;

• argue that this general setting is flexible enough to take into account not only the
topology of the social network, or the disparities between different subgroups of
the population, but also the effect of vaccination policies (see Section 5), or the
effect of lockdown (see Section 6), in the spirit of the policies used to slow down
the propagation of Covid-19 in 2020.

1.2. The model. It is natural to extend the Lajmanovich and Yorke model (2) to a
population with an infinite number of groups. We choose to present this extension in an
abstract setting, which will allows us to include general vaccination and lockdown policies.
We denote by Ω the set of the features of the individuals in a given population. Since Ω
might not be countable, we shall consider a σ-field F on Ω so that (Ω,F ) is a measurable
space. We represent the transmission rate from an infinitesimal part of the population
dy to x by a non-negative kernel κ(x,dy): κ is a function from Ω × F to R+ such that,
for all A ∈ F , the mapping x 7→ κ(x,A) is measurable and, for all x ∈ Ω, the mapping
A 7→ κ(x,A) is a non-negative measure defined on (Ω,F ). We model the recovery rate
of individuals with feature x by γ(x), where γ is a non-negative measurable function
defined on (Ω,F ). The number 1/γ(x) can be thought as the typical time of recovery for
individuals with feature x. For x ∈ Ω and t ≥ 0, we denote by u(t, x) the probability for
an individual (or the proportion of individuals) with feature x to be infected at time t.
So the intensity of infection attempts on x coming from infected individuals in dy is given
by u(t, y)κ(x,dy). Recall that in a SIS model, the probability for an infection attempt to
succeed is proportional to the number of susceptibles individuals, i.e., those who are not
already infected; this explains the term (1 − u(t, x)) in front of the integral in the next
equation. The evolution equation of the function u for the SIS model of the probability
for being infected is given by the following differential equation (in infinite dimension):

(3)







∂tu(t, x) = (1− u(t, x))

∫

Ω
u(t, y)κ(x,dy) − γ(x)u(t, x), x ∈ Ω, t ∈ [0, τ),

u(0, x) = u0(x), x ∈ Ω,

where the measurable function u0 : Ω → [0, 1] is the so-called initial condition and the
solution u is defined up to time τ ∈ (0,∞]. We shall prove that Equation (3) is well
defined up to τ = +∞, and we will mainly focus our study on the long-time behavior
of the solutions to this equation and on the study of existence of equilibria. We refer to
Section 1.6 for a discussion on related work, and in particular the work by Thieme [59] on
spatial SIR model and by Busenberg, Iannelli and Thieme [9] on long-time behavior of an
age-structured SIS infection.

We check in the following example that the Lajmanovich and Yorke model (2) is a
particular example of (3).

Example 1.1 (Lajmanovich and Yorke model). Consider a finite set of features, Ω =
{ 1, 2, . . . , n } (with the σ-field F = P(Ω) of all sub-sets of Ω), a finite kernel κ and
a positive recovery rate γ. We set for all i, j ∈ Ω and t ≥ 0:

Ki,j = κ(i, { j }), γi = γ(i) and Ui(t) = u(t, i),



AN INFINITE-DIMENSIONAL SIS MODEL 5

where u is the solution to Equation (3). Then clearly, the functions Ui, for 1 ≤ i ≤ n
solves the finite-dimensional model (2).

There are two natural extensions of Example 1.1 to large bounded degree graphs and
large dense graphs, which is a first approach to model large complex social networks.

Example 1.2 (Graph model). Consider a representation of the social interaction of a pop-
ulation by a simple graph G, with set of vertices V (G) = Ω which is at most countable,
and set of edges E(G) ⊂ Ω × Ω. For x ∈ Ω, let N (x) = { y ∈ G : (x, y) ∈ E(G) } stands
for the neighborhood of x in G and degG(x) = Card (N (x)) for its degree. If the degree
of the vertices of G are finite, we may consider a kernel with the following form:

(4) κ(x,dy) = β(x)
∑

z∈N (x)

θ(y)δz(dy),

where β and θ are non-negative functions, which represent the susceptibility and the in-
fectiousness of the individuals respectively, and δz is the Dirac mass at z. Then Equation
(3) represents the evolution equation for a SIS model on a graph. The strength of the
formalism of (3) is that one can consider limit of large bounded degree undirected graphs
called graphings, see Section 18 in [39] for the definition of a graphings.

Example 1.3 (Graphon form). One of the initial motivation of this work, was to consider
a SIS model on graphons, which are limit of large dense graphs, see the monograph [39]
from Lovàsz. Recall the set of features of the individuals in the population is given by a
set Ω. In this approach, the typical form of the transmission kernel κ we may consider is:

(5) κ(x,dy) = β(x)W (x, y)θ(y)µ(dy),

where β represents the susceptibility and θ the infectiousness of the individuals; W mod-
els the graph of the contacts within the population and the quantity W (x, y) ∈ [0, 1] is
interpreted as the probability that x and y are connected, or as the density of contacts
between individuals with features x and y; µ is a probability measure on (Ω,F ) and µ(dy)
represents the infinitesimal proportion of the population with feature y. Formally, β and θ
are non-negative measurable functions, and the function W : Ω× Ω → [0, 1] is symmetric
measurable. The quadruple (Ω,F , µ,W ) is called a graphon. The degree degW (x) of
x ∈ Ω (i.e. the average number of his contacts) and the mean degree dW for a graphon W
are defined by:

(6) degW (x) =

∫

Ω
W (x, y)µ(dy) and dW =

∫

Ω
degW (x)µ(dx) =

∫

Ω2

W (x, y)µ(dy)µ(dx).

(i) (Constant graphon.) One elementary example, is the constant graphon, W =
p ∈ [0, 1]. In this case, the degree function is constant, equal to the mean degree
and thus equal to the parameter p. We recall this constant graphon appears as
the limit, as n goes to infinity, of Erdös-Rényi random graphs with n vertices and
parameter p (that is: independently, for each pair of vertices, there is an edge
between those two vertices with probability p). If furthermore the functions β, θ
and γ from (3) are constant on Ω, then we recover the SIS model (1) with K = pβθ
and U(t) =

∫

Ω u(t, x)µ(dx).
(ii) (Stochastic block model.) The stochastic block models of communities corre-

sponds to the case where W is constant by block, i.e. there exists a finite partition
(Ωi : 1 ≤ i ≤ n) of Ω such that W is constant on the blocks Ωi × Ωj for all i, j,
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and equal say to Wi,j. If furthermore, the functions β, θ and γ from (3) are also
constant on the partition, then we recover the Lajmanovich and Yorke model, see
(2), with: Ki,j = βiWi,j θj µ(Ωj); βi, θi and γi are the constant values of β, θ and
γ on Ωi; and Ui(t) =

∫

Ωi
u(t, x)µ(dx)/µ(Ωi).

(iii) (Geometric graphon.) We also mention the geometric graphon, where the prob-
ability of contact between x and y depends on their relative distance. For exam-
ple, consider the population uniformly spread on the unit circle: Ω = [0, 2π] and
µ(dx) = dx/2π. Let f be a measurable non-negative function defined on R which
is bounded by 1 and 2π-periodic. Define the corresponding geometric graphon Wf

by Wf (x, y) = f(x−y) for x, y ∈ Ω. In this case, the degree of x ∈ [0, 1] is constant
with:

degWf
(x) = dWf

=
1

2π

∫

[0,2π]
f(y) dy.

1.3. Main assumptions and definition of the reproduction rate. In order for Equa-
tion (3) to make sense, we will need the following assumption. It will always be in force
throughout this paper without supplementary specification.

Assumption 0. The function γ is positive, bounded and the non-negative kernel κ is
uniformly bounded:

(7) sup
x∈Ω

κ(x,Ω) <∞.

Assuming the recovery rate γ to be bounded is equivalent to require the time of recovery
1/γ to be bounded from below by a positive constant. The function 1/γ is also finite for
all individuals because γ is supposed to be positive. It is possible with Assumption 0 to
have individuals with arbitrary large time of recovery, though. Finally, Equation (7) limits
the maximal force of infection that can be put upon a susceptible individual.

In Examples 1.1, 1.2 and 1.3, we observe that the kernel has a density with respect to
a reference measure (the counting measure in the first two examples and the probability
measure µ in the third one). From an epidemiological point of view, the reference measure µ
can be seen as a way to quantify the size of the population and its sub-groups (defined by
a given feature such as sex, spatial coordinates, social condition, health background, ...).
If the measure µ is finite, then for every measurable set A, the number µ(A)/µ(Ω) is the
proportion of individuals in the population whose features belong to A. We shall consider
the case where the density k of κ with respect to the reference measure µ satisfies some
mild integrability condition. We stress that we do not assume any smoothness condition
on the density k. By a slight abuse of language, we will also call the density k a kernel.

Assumption 1. There exists a finite positive measure µ on (Ω,F ), a non-negative mea-
surable function k : Ω×Ω → R+ such that for all x ∈ Ω, κ(x,dy) = k(x, y)µ(dy). Besides,
there exists q > 1 such that:

(8) sup
x∈Ω

∫

Ω

k(x, y)q

γ(y)q
µ(dy) <∞.

Notice that since we assume that γ is bounded, then Equation (8) implies the following
integrability condition for the kernel k:

(9) sup
x∈Ω

∫

Ω
k(x, y)q µ(dy) <∞.
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We shall study in Section 4.5 an example which does not satisfy the integrability condi-
tion (8) nor (9).

In addition to Assumption 1, we will sometimes need the following assumption on the
connectivity of the kernel k.

Assumption 2 (Connectivity). The kernel k is connected, that is, for all measurable set
A such that µ(A) > 0 and µ(Ac) > 0, we have that:

(10)
∫

A×Ac

k(x, y)µ(dx)µ(dy) > 0.

The sociological interpretation of the connectivity assumption is that we cannot separate
the population into two groups of individuals with no interaction. Each time Assumptions
1 or 2 are used, it will be specified.

Remark 1.4 (The finite dimensional case). Assumption 1 is automatically satisfied in the
finite-dimensional model of Example 1.1, where we supposed Assumption 0. We can indeed
take µ to be the counting measure and Equation (8) is true because k is bounded from above
and γ is bounded from below by a positive constant as it is positive. Notice Assumption
2 is equivalent to the matrix of transmission rates K = (Ki,j)1≤i,j≤n being irreducible.

The basic reproduction number of an infection, denoted by R0, has originally been de-
fined as the number of cases one typical individual generates on average over the course
of its infectious period, in an otherwise uninfected population. This number plays a fun-
damental role in epidemiology as it provides a scale to measure how difficult to control
an infectious disease is. More importantly, R0 is often used as a threshold which deter-
mines whether the disease will die out (if R0 < 1) or whether it can invade the population
(if R0 > 1).

In mathematical epidemiology, Diekmann, Heesterbeek and Metz [14] define rigorously
the basic reproduction number for a class of models with heterogeneity in the population.
They propose to consider the next-generation operator which gives the distribution of
secondary cases arising from an infected individual picked randomly according to a certain
distribution – the population being assumed uninfected otherwise. In our model, under
Assumption 1, following [14, Equation (4.2)], we define the next generation operator,
denoted by Tk/γ , as the integral operator:

(11) Tk/γ(g)(x) =

∫

Ω

k(x, y)

γ(y)
g(y)µ(dy) for all x ∈ Ω,

which is, thanks to (8), a bounded positive operator on the space L ∞(Ω) of bounded real-
valued measurable functions defined on Ω. And the basic reproduction number is defined
by, see [14, Definition of R0 in Section 2]:

(12) R0 = r(Tk/γ),

where r is the spectral radius, whose exact definition in our general setting will be recalled
below (Equation (34)). These definitions of the next-generation operator and the basic
reproduction number are consistent with the finite dimensional SIS model given in [60].

1.4. Long time behavior of solutions to the evolution equation (3). We now state
our main result concerning solutions of the evolution equation (3). Recall the initial
condition of (3), u0, takes values in [0, 1].



8 JEAN-FRANÇOIS DELMAS, DYLAN DRONNIER, AND PIERRE-ANDRÉ ZITT

Theorem 1.5. We have the following properties.

(i) (Equation (3) is well defined and τ = +∞.) Under Assumption 0, there
exists a unique solution u to Equation (3). This solution is such that, for all
(x, t) ∈ Ω× R+, u(t, x) ∈ [0, 1].

(ii) (Disease free equilibrium in the critical and sub-critical case.) Assume
that Assumptions 0 and 1 are in force. Let R0 be defined by (12). If R0 ≤ 1, then
the disease dies out: for all x ∈ Ω,

lim
t→∞

u(t, x) = 0.

(iii) (Stable endemic equilibrium in the super-critical case.) Assume that As-
sumptions 0, 1 and 2 are in force. If R0 > 1, then there exists a unique equilibrium
g∗ : Ω → [0, 1] with nonzero integral. For all initial condition u0 such that its
integral is positive:

∫

Ω
u0(x)µ(dx) > 0,

the solution u to (3) converges pointwise to g∗, i.e., for all x ∈ Ω:

lim
t→∞

u(t, x) = g∗(x).

If u0 = 0 µ-a.e. then the solution u to (3) converges pointwise to 0.

For property (i), see Proposition 2.9; property (ii) is a consequence of Theorems 4.6 and
4.7; and property (iii) follows from Corollary 4.9 and Theorem 4.14.

Remark 1.6 (Uniform convergence). The convergence of u(t, ·) towards 0 in (ii) or to-
wards g∗ in (iii) in Theorem 1.5 is uniform on any measurable subset A ⊂ Ω such that
infA γ > 0, see Theorem 4.18. In particular these convergences hold in uniform norm if
the recovery rate γ is bounded from below.

1.5. Modelling vaccination policies, vaccination mechanisms and lockdown.

1.5.1. Vaccination. In Section 5, we propose extensions of Equation (3) which take into
account the effect of a vaccination policy. Vaccination confers a direct protection on
the targeted individuals but also acts indirectly on the rest of the population through
herd immunity. However, all vaccinated individuals will not be totally immune to the
disease. In [57], Smith, Rodrigues and Fine propose two possible models to explain vaccine
efficacy. In the first model, the vaccine offers complete protection to a portion of the
vaccinated individuals but does not take in the remainder of vaccinated individuals. The
second model supposes that the vaccination confers a partial protection to every vaccinated
individual. In [53], Halloran, Lugini and Struchiner called the former mechanism the all-
or-nothing vaccination and the latter one the leaky vaccination. We define below one
infinite-dimensional SIS model for each of these two mechanisms.

In order to write the vaccination model, we adapt the one-group SIR models proposed by
Shim and Galvani in [53] to the one-group SIS model. Let us denote by ηv the proportion
of vaccinated individuals in the total population, and let ηu = 1 − ηv. Let Uv and Uu

be the proportion of infected individuals in the vaccinated and unvaccinated population
respectively, so that ηvUv + ηuUu is the proportion of infected individuals in the total
population. For both models, we assume that vaccinated individuals who are nevertheless
infected by the disease become less contagious (see [49, 52] for instance). We will denote
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the vaccine efficacy for infectiousness, that is, the relative reduction of infectiousness for
vaccinated individuals by a parameter δ ∈ [0, 1]. In what follows, K and γ represent
the transmission rate and the recovery rate of the disease as in the model (1) or (2) and
are assumed to be the same for the vaccinated and unvaccinated population. We now
introduce two models for the so-called vaccine efficacy e, see [22, 23, 53, 57] for discussion
on this parameter.

In the leaky vaccination, we denote the relative reduction of susceptibility for vaccinated
individual by a parameter e ∈ [0, 1]. Following [53, Equations (1)-(8)], with the parameters
δ and e corresponding to σ and α in [53], the evolution equations for the leaky vaccination
are given by:

(13)







U̇v = (1− Uv)(1− e)K((1 − δ)ηvUv + ηuUu)− γUv,

U̇u = (1− Uu)K((1− δ)ηvUv + ηuUu)− γUu.

In the all-or-nothing vaccination, we denote the proportion of vaccinated individuals
immunized to the disease (people who can neither contract not transmit the disease) by
the parameter 1 − e ∈ [0, 1]. Following [53, Equations (13)-(20)], the evolution equations
for the all-or-nothing vaccination in the SIS setting are given by:

(14)







U̇v = (1− e− Uv)K((1 − δ)ηvUv + ηuUu)− γUv,

U̇u = (1− Uu)K((1− δ)ηvUv + ηuUu)− γUu.

Since vaccinated individuals that are immunized cannot get the disease, we have Uv(t) ≤
1− e for all t ∈ R+.

Remark 1.7. Notice that, in both models, the unvaccinated population can be viewed as
a population inoculated with a vaccine of efficacy equal to 0.

In Section 5, we derive in Equations (63) and (66) the analogue of (13) and (14) in
the infinite-dimensional setting. Those two equations can be seen as a particular case of
Equation (3). We also prove that, as far as the basic reproduction number is concerned the
two different vaccination mechanisms, the all-or-nothing and leaky mechanisms, have the
same effect in the infinite dimensional model, see Proposition 5.2. This result was already
observed in a one-group model by Shim and Galvani [53]. In the case of a perfect vaccine,
where vaccinated people cannot be infected nor infect others, the evolution equation of the
proportion of infected among the non vaccinated population is also given by Equation (3)
with the kernel κ(x,dy) replaced by η0(y)κ(x,dy) where η0(y) is the proportion of indi-
viduals with feature x ∈ Ω which are not vaccinated, see Equation (70). We shall study in
a future work the optimal vaccination in this setting with the basic reproduction number
as a criterium to minimize.

1.5.2. Effect of lockdown policies. Eventually, we model the effect of lockdown (see Sec-
tion 6) for graphon models presented in Example 1.3, in the spirit of the policies used to
slow down the propagation of Covid-19 in 2020, for example the study in Île de France [13].
In particular, we prove that a lockdown which bounds the number of contacts of the indi-
viduals (this roughly corresponds to reduce significantly the number of contacts for highly
connected groups) is enough to reduce the basic reproduction number, see Proposition 6.3.
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Recall the definition of the degree degW (x) of x and the mean degree dW for a graphon W
defined in (6). Following Remark 6.4, we get that the heterogeneity in the degree for the
graphon model implies larger value of the basic reproduction number. In this direction,
see also [38, Section 1.1] on the SIS model from Pastor-Satorras and Vespignani, where
the basic reproduction number increases with the variance of the degrees of the nodes in
a finite graph.

Corollary 1.8. Consider the SIS model (3) with transmission kernel given in a graphon
form (5) (so that k(x, y) = β(x)W (x, y)θ(y)). Assume that the susceptibility β, the in-
fectiousness θ and the recovery rate γ are constant and positive. The weakest value of the
basic reproduction number R0 defined by (12) among all graphons W with mean degree
dW ≥ p for some threshold p ∈ [0, 1] is obtained for graphons with constant degree equal to
p (i.e. graphon W such that degW (x) = p for all x ∈ Ω).

We recall from Example 1.3 (i) and (iii), that the constant graphon and the geometric
graphons have constant degree. Considering a geometric graphon with (mean) degree p,
we get that R0 = γ−1 βθp, and for R0 > 1, we deduce (directly or from Proposition
2.19), that the equilibrium g∗ is constant equal to 1−R−1

0 (compare with model (1) with
K = βθp). Furthermore, the example of the geometric graphon with a given mean degree,
indicates that, if the parameters β, θ and γ are constant, then the contamination distance
(or support of the function f , see end of Remark 6.4) from an infected individual is not
relevant for the value of the basic reproduction number nor for the equilibria.

1.6. Discussion and related results. The binary dynamic described in [32, Biothe-
orem 1] has been established for many other compartmental models and possibly their
multigroup version by using Lyapunov function techniques (see for instance [4, 37]). For a
survey, we refer to Fall, Iggidr, Sallet and Tewa [18]. In [26, Section 6] and [54], Hirsch and
Smith proved the long-time behavior of Equation (2) thanks to their theory of order pre-
serving systems, thereby giving a completely new perspective to the study of mathematical
epidemic models. Their work greatly inspired Li and Muldowney [34] in their important
proof of the global stability of the endemic equilibrium of the SEIR model (susceptible-
exposed-infected-recovered) which was a long-standing conjecture at that time.

In the 70s, models involving transmission rates that depend on the localization of the
individuals [2, 43] or their age [27] were introduced. Models using localization can be
thought of as multigroup models with a continuous set of groups and therefore lead to
differential equations in infinite-dimensional space. In this setting, results about global
stability of the endemic or the disease-free equilibrium have also been obtained.

In [9], Busenberg, Iannelli and Thieme established the long-time behavior of an age-
structured SIS infection. They proved, thanks to semi-group theory and positive operators
methods, that the system converges to a unique endemic equilibrium if it exists. Otherwise,
it converges to the disease-free equilibrium. In this work the transmission kernel is assumed
to be bounded from above and below by product kernels (see Equation (2.9) therein). This
represents a restriction (see the discussion at the end of [9]) as it is not possible to forbid
contacts between some but not all groups. By contrast, in the setting of Example 1.3, it is
easy and natural to model the absence of contact between individuals with feature x and y
by imposing that W (x, y) = 0, without imposing conditions on the probability of contact
between x and other features than y.
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In [19] Feng, Huang and Castillo-Chavez considered a similar dynamic for a multigroup
age-structured SIS model, but where the endemic equilibrium exists but is not globally
stable. They assume that the system has a quasi-irreducibility property (see Definition 3.1
therein) which is a weaker assumption than Assumption 2, but impose bounds on the
transmission kernel.

In [58], Thieme also used an operator approach to study a SIR model with variable
susceptibility (see Section 4 therein). In particular, he studied the close relation be-
tween the spectral bound of the operator Tk − γ and of the basic reproduction num-
ber R0 which is the spectral radius of the operator Tk/γ . In [59], Thieme analyzed a
space-structured SIR model with birth. In this model, the incidence term, i.e. the equiv-
alent of (1 − u(t, x))u(t, y)κ(x,dy) in Equation (3), is replaced by a non bilinear term
f(x, y, 1− u(t, x), u(t, y)) dy, where the function f is continuous, locally Lipschitz contin-
uous and increasing in its third and fourth argument. Imposing also that the recovery
rate γ is bounded away from 0, he proved an analogue of [32, Biotheorem 1] (see Theorems
7.1, 8.2, 9.1 and 12.1 therein) using Lyapunov functions. Part of those results would not
hold in general if inf γ = 0. In contrast to those works, we consider very few regularity
assumptions on the parameters, and in particular allow that inf γ = 0.

The principal tools we use to prove Theorem 1.5, see also the key Lemma 3.4 and
Proposition 2.7, can be summarized as follows.

Cooperative systems: The function g 7→ F (g) = (1 − g)Tκ(g) − γg is cooperative (see
Definition 2.1 and Remarks 2.2 and 2.3), which implies that the solution of (3) are
well defined and the corresponding dynamical system is order preserving. For an
approach based on cooperation (or quasi-monotonicity) and monotone dynamical
system, see [26, 54, 56, 55, 3, 25].

Positive operators: Under Assumption 1 and Equation (8), the integral operator Tk/γ
can be seen as an Hille-Tamarkin operator on Lp(µ) with the corresponding com-
pactness property see [63, Theorem 41.6]. Then the positivity of the operator Tk/γ
allows to use Krein-Rutman theorem to get that its spectral radius is an eigenvalue
with a non-negative eigen-function. This argument has been widely used, see for
example [9] (where the operator is of rank one, and thus is compact) and also
[58, 59].

Connectivity: Under Assumption 2 on the connectivity of kernel k (which in finite di-
mension corresponds to the irreducibility of non-negative matrices and is related to
the Perron-Frobenius theorem), we can consider the unique corresponding eigen-
vector, thanks to the Perron-Jentzsch theorem (see [50, Theorem V.6.6] or [21,
Theorem 5.2]). This eigenvector is an essential tool to study the long-time behav-
ior of the solution to Equation (3) in the super-critical regime. In finite dimension,
see [32], where the matrix K from (2) is assumed to be irreducible, or [3] for a
more general finite-dimensional model. In infinite dimension, see [19] for a weaker
quasi-irreducibility condition.

Finally let us remark that we do not use the standard tool of Lyapunov functions, in
contrast with many previous works, see for example [4, 37, 59].

1.7. Structure of the paper. In Section 2 we construct the semi-flow associated to
the infinite dimensional SIS model (3), and prove its main regularity and monotonicity
properties. We introduce in Section 3 some important tools of spectral analysis in Banach
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lattices. This allows us to define in Section 4.1 the basic reproduction number R0. The
convergence of the system towards an equilibrium is established in Section 4. In Section 5,
we take into account the effect of a vaccination policies on the propagation of the disease.
Eventually, in Section 6, we model the impact of lockdown policies on the propagation of
the disease when κ takes the graphon form of Example 1.3.

2. Model analysis

2.1. Preamble. In this paragraph, we recall some definitions of functional analysis. Most
of them can be found in [12]. Let (X, ‖·‖) be a Banach space. The topological dual X⋆ of
X is the space of all bounded linear forms and we use the notation 〈x⋆, x〉 for the value of
an element x⋆ ∈ X⋆ at x ∈ X. We consider K a proper cone on X, i.e. a closed convex
subset of X such that λK ⊂ K for all λ ≥ 0 and K ∩ (−K) = { 0 }. The proper cone K
defines a partial ordering ≤ on X: x ≤ y if y − x ∈ K. It is said to be reproducing if
K −K = X (any element x ∈ X can be expressed as a difference of elements of K). The
dual cone of K is the set K⋆ ⊂ X⋆ consisting of all x⋆ such that 〈x⋆, x〉 ≥ 0 for all x ∈ K.
If the proper cone K is reproducing then the set K⋆ is a proper cone (see beginning of [12,
Section 19.2]).

We denote by L(X) the space of bounded linear operators from X to X. The operator
norm of a bounded operator A ∈ L(X) is given by:

‖A‖ = sup { ‖Ax‖ : x ∈ X, ‖x‖ ≤ 1 } .

The topology associated to ‖·‖ in L(X) is called the uniform operator topology. A linear
bounded operator A ∈ L(X) is said to be positive (with respect to the proper cone K) if
AK ⊂ K.

Let F be a function defined on an open domain D ⊂ X and taking values in X. The
function F is said to be Fréchet differentiable at x ∈ D, if there exists a bounded linear
operator DF [x] such that:

lim
y→0

‖F (x+ y)− F (x)−DF [x](y)‖/‖y‖ = 0.

The operator DF [x] is called the Fréchet derivative of F at point x.
We define the cooperativeness property which is related to the definition of quasi-

monotony firstly introduced by Volkmann [61] for abstract operators.

Definition 2.1 (Cooperative function). Let D1,D2 ⊂ X. A function F : X → X is said
to be cooperative on D1 × D2 (with respect to K) if, for all (x, y) ∈ D1 × D2 such that
x ≤ y and for all z⋆ ∈ K⋆, we have the following property:

(15) 〈z⋆, x− y〉 = 0 =⇒ 〈z⋆, F (x) − F (y)〉 ≤ 0.

We shall mainly consider the cases D1 = X or D2 = X.

Remark 2.2. For a better understanding of the cooperativeness property, let us examine
the finite dimensional case. Let d ≥ 2, X = R

d and K = R
d
+. Then, for a smooth function

F = (F1, F2, . . . , Fd), it is easy to see that F is cooperative on X ×X with respect to K
if and only if:

(16)
∂Fj

∂xi
(x) ≥ 0 for all x ∈ R

d and all i 6= j.
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We recover the definition of cooperativeness introduced by Hirsch [26]. Suppose the vector
x represent the utilities of a group of agents { 1, 2, . . . d } and F is the dynamic of the
system, i.e., ẋ = F (x). Then, the higher the utilities of agents j 6= i are, the more the
situation is beneficial for the agent i as it increases the value of the time derivative of xi.
For this reason, the function F satisfying (16) is called cooperative.

We extend the differential version of cooperativeness of Remark 2.2 to infinite dimension
in the next remark.

Remark 2.3. Let X be a Banach space, D an open domain and F : X → X be a Fréchet
differentiable function. Assume that F is cooperative on D ×X. Let (x, z) ∈ D ×K and
let z⋆ ∈ K⋆ such that 〈z⋆, z〉 = 0. Since F is cooperative on D ×X, we have:

〈z⋆, (F (x+ λz)− F (x))/λ〉 ≥ 0,

for all λ > 0. Letting λ go to 0, we obtain the following inequality:

(17) 〈z⋆,DF [x](z)〉 ≥ 0.

Using path integrals in Banach space, we can prove the reverse implication in the case
D = X. Indeed, for all x, y ∈ X and all z⋆ ∈ X⋆, we have:

(18) 〈z⋆, F (x)− F (y)〉 = −

∫ 1

0
〈z⋆,DF [(1− λ)x+ λy](y − x)〉 dλ.

Assume (17) holds for z⋆ ∈ K⋆ and z ∈ K. Then, if x ≤ y, z⋆ ∈ K⋆ and 〈z⋆, y − x〉 = 0,
we get that 〈z⋆, F (x) − F (y)〉 is non-positive thanks to Equation (17). Thus the function
F is cooperative.

Ordinary differential equations (ODEs) driven by cooperative vector fields enjoy a num-
ber of nice properties that we now review. Let us first recall a few definitions and classical
properties of ODEs. Let a > 0. We consider a function G : [0, a) × X → X. We sup-
pose that G is locally Lipschitz in the second variable, that is: for all (t, x) ∈ [0, a) ×X,
there exist η = η(t, x) > 0, L = L(t, x) > 0 and a neighborhood Ux of x such that
‖G(s, y) − G(s, z)‖ ≤ L‖y − z‖ for all s ∈ [0, a) ∩ [t, t + η] and y, z ∈ Ux. With this
assumption over G, the Picard- Lindelöf theorem ensures the existence of 0 < b ≤ a and a
continuously differentiable function y from J = [0, b) to X which is the unique solution of
the Cauchy problem:

(19)







y′(t) = G(t, y(t)) t ∈ J,

y(0) = y0,

where y0 ∈ X is the so-called initial condition (see [11, Section 1.1]). A solution y defined
on an interval [0, b) is said to be maximal if there is no solution of Equation (19) defined
on [0, c) with c > b. A solution is said to be global if it is defined on [0, a).

Global existence, existence and theorems on differential inequalities are intimately con-
nected with the flow invariance of certain subsets in the domain of G, i.e., the question
whether every solution starting in D remains in D as long as it exists. We recall the
definition of flow invariance given in [11, Section 5].

Definition 2.4 (Forward invariance). A set D ⊂ X is said to be forward invariant with
respect to G if the maximal solution (y, J) of the Cauchy problem (19) takes values in D
for t ∈ J provided that y0 ∈ D.
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In most applications, the set D owns a structure which make the forward invariance
easier to show. For instance, when D is the translation of a cone, the forward invariance
is implied by the following condition, which is proved in Section A.

Theorem 2.5. Let G : [0, a) ×X → X be locally Lipschitz in the second variable. Let K
be a proper cone of X with non-empty interior and y ∈ X. If for all (x, t) ∈ ∂K × [0, a)
and for all x⋆ ∈ K⋆ such that 〈x⋆, x〉 = 0, we have: 〈x⋆, G(t, y + x)〉 ≥ 0, then y +K is
forward invariant with respect to G.

We will mainly use this result through the following corollary which roughly asserts that
cooperative flow preserve the order.

Corollary 2.6 (Comparison Theorem). Let K be a proper cone of X with non-empty
interior. Denote by ≤ the corresponding partial order. Let F : X → X be locally Lipschitz,
D1,D2 ⊂ X, a > 0, and let u : [0, a) → D1 and v : [0, a) → D2 be C1 paths such that
u(0) ≤ v(0). We suppose that F is cooperative on D1 ×X or on X ×D2, and that:

(20) u′(t)− F (u(t)) ≤ v′(t)− F (v(t)) ∀t ∈ [0, a).

Then, we have that: u(t) ≤ v(t) for all t ∈ [0, a).

Corollary 2.6 is in the spirit of [11, Theorem 5.2]. For the sake of completeness, a proof
is given in Section A.

2.2. Notations. In this section, we will work in the Banach space L ∞(Ω) of measurable
bounded real-valued functions defined on Ω equipped with the supremum norm ‖·‖. We
shall write L ∞ when there is no ambiguity on the underlying space. The set:

(21) L
∞
+ = { f ∈ L

∞ : f(x) ≥ 0 ∀x ∈ Ω } ,

is a proper cone in L ∞ with non-empty interior. The order defined by this proper cone is
the usual order: g ≤ h if g(x) ≤ h(x) for all x ∈ Ω.

We denote by L ∞,⋆, the topological dual of L ∞. It can be identified as the space
of bounded and finitely additive signed measures on Ω equipped with the total variation
norm (see [62, Section 2]). Since L ∞

+ is reproducing, the dual cone L
∞,⋆
+ is a proper cone.

It consists of the continuous linear positive forms on L ∞.

Let κ be a non-negative kernel on L ∞ (endowed with its Borel σ-field) satisfying As-
sumption 0. We denote by Tκ the operator:

Tκ : L
∞ → L

∞(22)

g 7→

(

x 7→

∫

Ω
g(y)κ(x,dy)

)

.

According to Assumption 0, the operator Tκ is a bounded linear operator with:

(23) ‖Tκ‖ = sup
x∈Ω

κ(x,Ω) <∞.

Since, for all x ∈ Ω, κ(x,dy) is a positive measure, the operator Tκ is moreover positive.
We also define the function F from L ∞ to L ∞ by:

(24) F (g) = (1− g)Tκ(g)− γg.
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Then, Equation (3) may be rewritten as an ODE in the Banach space (L ∞, ‖·‖):

(25)







∂tu = F (u), t ∈ [0, τ)

u(0, ·) = u0,

where u0 ∈ L ∞ and τ ∈ (0,∞]. Let ∆ be the set of non-negative functions bounded by 1:

(26) ∆ = { f ∈ L
∞ : 0 ≤ f ≤ 1 } .

Since the solution u(t, x) of Equation (3) defines the proportion of x-type individuals being
infected at time t, it should remain below 1 and above 0. Hence, for (3) to make a biological
sense, the initial condition should belong to ∆ and the solution (if it exists) should remain
in ∆ (that is ∆ is forward invariant with respect to F ). This will be checked in Proposition
2.9.

2.3. Properties of the vector field. Recall that Assumption 0 is in force. The main
results of this section are gathered in the following proposition.

Proposition 2.7 (Properties of F ). The function F defined in (24) has the following
properties.

(i) F is of class C∞ on L ∞.
(ii) F and its repeated derivatives are bounded on bounded sets.
(iii) F is continuous on ∆ with respect to the topology of pointwise convergence.
(iv) F is cooperative on (1− L ∞

+ )× L ∞ where:

(27) 1− L
∞
+ = { g ∈ L

∞ : g ≤ 1 } .

Proof. The bilinear map (g, h) 7→ gh and the linear maps g 7→ γg and g 7→ Tκ(g) are
bounded on L ∞ (hence, smooth as they are linear). Since the function F is a sum of
compositions of the previous maps, properties (i) and (ii) are proved.

Now, we prove property (iii). Let (gn, n ∈ N) be a sequence of functions in ∆ converging
pointwise to g ∈ ∆. Let x ∈ Ω. The functions gn are dominated by the function equal to 1
everywhere. The latter is integrable with respect to the measure κ(x,dy) since κ(x,Ω) <∞
according to (7). Therefore, we can apply the dominated convergence theorem and obtain:

lim
n→∞

∫

Ω
gn(y)κ(x,dy) =

∫

Ω
g(y)κ(x,dy).

Thus, the operator Tκ is continuous on ∆ with respect to the pointwise convergence topol-
ogy. The maps (h1, h2) 7→ h1h2 and (h1, h2) 7→ h1+h2 are also continuous with respect to
the pointwise convergence topology. Hence, property (iii) is proved since F is a composition
of these functions.

Finally, let us prove property (iv). Let g, h ∈ L ∞ such that g ≤ 1 and g ≤ h, and let
ν ∈ L

∞,⋆
+ such that 〈ν, g − h〉 = 0. We have:

〈ν, F (g) − F (h)〉 = 〈ν, (1− g)Tκ(g − h) + (h− g)(Tκ(h) + γ)〉

= 〈ν, (1− g)Tκ(g − h)〉 ,

where we used Lemma 2.8 below (with g replaced by h− g and h by Tκ(h) + γ) in order
to get that 〈ν, (h− g)(Tκ(h) + γ)〉 is equal to 0. Since Tκ is a positive operator and g ≤ 1,
the function (1 − g)Tκ(g − h) is non-positive. The number 〈ν, (1 − g)Tκ(g − h)〉 is also
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non-positive because ν ∈ L
∞,⋆
+ . Hence, we get that 〈ν, F (g) − F (h)〉 ≤ 0. This ends the

proof thanks to Definition 2.1. �

Property (iv) of Proposition 2.7 was proved using the following lemma.

Lemma 2.8. Let g ∈ L ∞
+ and ν ∈ L

∞,⋆
+ such that 〈ν, g〉 = 0. Then, for all h ∈ L ∞, we

have 〈ν, hg〉 = 0.

Proof. Let g ∈ L ∞
+ and ν ∈ L

∞,⋆
+ such that 〈ν, g〉 = 0. Since g is everywhere non-negative,

we have:
−‖h‖ g ≤ hg ≤ ‖h‖ g.

Since ν ∈ L
∞,⋆
+ , the previous inequalities give:

−‖h‖ 〈ν, g〉 ≤ 〈ν, hg〉 ≤ ‖h‖ 〈ν, g〉 .

By assumption, 〈ν, g〉 is equal to 0. Hence, the lemma is proved. �

2.4. Properties of the ODE semi-flow. The aim of this subsection is to define a semi-
flow associated to Equation (3) and to study its main properties. Proposition 2.7 (ii)
enables to apply the Picard-Lindelöf theorem and show the existence of local solutions
of in L ∞ of Equation (3). We can actually prove a stronger result. Recall that ∆ =
{ f ∈ L ∞ : 0 ≤ f ≤ 1 }.

Proposition 2.9. Let F defined by (24).

(i) The domain ∆ is forward invariant with respect to F .
(ii) Maximal solutions of Equation (25) such that u0 ∈ ∆ are global, i.e., they are

defined on R+.

Proof. We first prove property (i). The domain ∆ is the intersection of the cone L ∞
+

defined by (21) and the set 1−L ∞
+ defined by (27). So, it is sufficient to prove that each

of them is forward invariant with respect to F . Let g ∈ ∂L ∞
+ and let ν ∈ L

∞,⋆
+ such that

〈ν, g〉 = 0.
The function F being cooperative on (1−L ∞

+ )×L ∞ according to Proposition 2.7 (iv),
the following inequality holds:

〈ν, F (0) − F (g)〉 ≤ 0.

We deduce that 〈ν, F (g)〉 ≥ 0 because F (0) = 0. Since L ∞
+ is a proper cone with non-

empty interior, we can apply Theorem 2.5 with G(t, ·) = F (·), K = L ∞
+ , x = g, x⋆ = ν

and y = 0 in order to get that L ∞
+ is forward invariant with respect to F .

The function F being cooperative on (1−L ∞
+ )×L ∞ according to Proposition 2.7 (iv),

the following inequality holds:

〈ν, F (1− g) − F (1)〉 ≤ 0.

Since F (1) = −γ ≤ 0, we get that 〈ν, F (1− g)〉 ≤ 0. By using Theorem 2.5 with G(t, ·) =
F (·), K = −L ∞

+ , x = −g, y = 1 and x⋆ = −ν, we obtain that 1−L ∞
+ is forward invariant

with respect to F . This ends the proof of property (i).

Now we prove property (ii). Let (y, [0, τ)) be a solution of Equation (3) with y(0) ∈ ∆.
Assume that τ is a positive finite number. Property (i) asserts that y(t) ∈ ∆, for all
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0 ≤ t < τ . Since F is bounded on ∆ (see Proposition 2.7 (ii)), s 7→ F (y(s)) is integrable
and:

lim
t→τ−

y(t) = y(0) + lim
t→τ−

∫ t

0
F (y(s)) ds = y(0) +

∫ τ

0
F (y(s)) ds.

The solution y can be extended up to its right boundary, i.e., on [0, τ ]. This shows that y
is not maximal. We deduce that the maximal solution is defined on R+. �

Thanks to Proposition 2.9, it is possible to define the semi-flow associated to the au-
tonomous differential equation (3) on ∆, i.e., the unique function φ : R+×∆ → ∆ solution
of:

(28)







∂tφ(t, g) = F (φ(t, g)),

φ(0, g) = g.

It satisfies the semi-group property, that is, for all g ∈ ∆ and for all t, s ∈ R+, we have:

φ(t+ s, g) = φ(t, φ(s, g)).

The result below is a fundamental property about the semi-flow of the SIS model. It
express the intuitive idea that if an epidemics is worse everywhere compared to a reference
state, it will remain worse compared to the evolution of this reference state in the future.

Proposition 2.10 (Order-preserving flow). If 0 ≤ g ≤ h ≤ 1, then we have φ(t, g) ≤
φ(t, h) for all t ∈ R+.

Proof. Since ∂tφ(t, g)−F (φ(t, g)) = 0 and ∂tφ(t, h)−F (φ(t, h)) = 0, the inequality (20) is
satisfied on R+ for the paths u : t 7→ φ(t, g) and v : t 7→ φ(t, h). By assumption, we have
also that g = φ(0, g) ≤ φ(0, h) = h. Furthermore F is locally Lipschitz (see Proposition
2.7 (ii)) and cooperative on (1−L ∞

+ )×L ∞ (see Proposition 2.7 (iv)) and thus on ∆×L ∞.
Hence, we can apply Corollary 2.6 with u(t) = φ(t, g) and v(t) = φ(t, h) to obtain that
φ(t, g) ≤ φ(t, h) for all t ∈ R+. �

As a consequence of the previous proposition, we have the following result.

Corollary 2.11 (Local Monotony implies Global Monotony). Let g ∈ ∆. Suppose that
there exist 0 ≤ a < b such that, for all t ∈ [a, b), the inequality φ(a, g) ≤ φ(t, g) (resp.
φ(a, g) ≥ φ(t, g)) holds. Then, t 7→ φ(t, g) is non-decreasing (resp. non-increasing) on
[a,∞).

Proof. It is sufficient to show that t 7→ φ(t, g) is non-decreasing on all subintervals of [a,∞)
whose lengths are bounded from above by b − a. Let t > s ≥ a such that t − s < b − a.
By assumption, we have: φ(a, g) ≤ φ(a+ t− s, g). Thus, Proposition 2.10 gives:

φ(s− a, φ(a, g)) ≤ φ(s− a, φ(a + t− s, g)).

By the semi-group property of the semi-flow, this implies that φ(s, g) ≤ φ(t, g). �

Proposition 2.12. Let g ∈ ∆. The path t 7→ φ(t, g) is non-decreasing (resp. non-
increasing) if and only if F (g) ≥ 0 (resp. F (g) ≤ 0).

Proof. Let g ∈ ∆. Suppose F (g) ≥ 0. Let h ≥ g and ν ∈ L
∞,⋆
+ . According to Proposition

2.7 (iv), if 〈ν, h− g〉 = 0, then 〈ν, F (h) − F (g)〉 ≥ 0. Since ν is a positive linear form, it
follows that 〈ν, F (g)〉 ≥ 0 and then 〈ν, F (h)〉 ≥ 0. Applying Theorem 2.5 with G(t, ·) =
F (·), K = L ∞

+ , x = h − g, y = g and x⋆ = ν (and assuming that h − g ∈ ∂L ∞
+ ), we get
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that g + L ∞
+ is forward invariant with respect to F . This means that for all t ≥ 0, the

following inequality holds:
g = φ(0, g) ≤ φ(t, g).

Thus, t 7→ φ(t, g) is non-decreasing according to Corollary 2.11.

Now, suppose that t 7→ φ(t, g) is non-decreasing. Then, for all t > 0, the function
(φ(t, g)−g)/t belongs to L ∞

+ . Since L ∞
+ is closed, it follows that F (g) = limt→0+(φ(t, g)−

g)/t belongs also to L ∞
+ .

The equivalence between F (g) ≤ 0 and the fact that t 7→ φ(t, g) is non-increasing is
proved the same way. �

Now we give some results about the regularity of the semi-flow.

Proposition 2.13 (Flow regularity). Let φ : R+ × ∆ → ∆ be the semi-flow defined by
Equation (28).

(i) For all g ∈ ∆, t 7→ φ(t, g) is C∞ and its repeated derivatives are bounded.
(ii) For all t ∈ R+, g 7→ φ(t, g) is Lipschitz with respect to ‖·‖.
(iii) For all t ∈ R+, g 7→ φ(t, g) is continuous with respect to the pointwise convergence

topology.

Remark 2.14. Stronger regularity property than (ii) could be proved as in finite dimension.
Since we use only the Lipschitz continuity property, we didn’t go further in this direction.

Proof. We begin with property (i). The smoothness of the semi-flow with respect to the
time variable can be shown by recurrence in a classical way. We have indeed:

∂tφ(t, g) = F (φ(t, g)), ∂2t φ(t, g) = DF [φ(t, g)](∂tφ(t, g)), . . .

Since F is of class C∞ and its repeated derivatives are bounded on ∆ (see (i) and (ii) in
Proposition 2.7), the function t 7→ φ(t, g) is of class C∞ and its repeated derivatives are
bounded for all g ∈ ∆.

We prove (ii). Recall that, since φ is the semi-flow associated to Equation (25), the
following equality holds for all g ∈ ∆ and t ∈ R+:

(29) φ(t, g) = g +

∫ t

0
F (φ(s, g)) ds.

Let g, h ∈ ∆. We have the following control:

‖φ(t, g)− φ(t, h)‖ ≤ ‖g − h‖+

∫ t

0
‖F (φ(s, g)) − F (φ(s, h))‖ ds

≤ ‖g − h‖+ C

∫ t

0
‖φ(s, g) − φ(s, h)‖ ds,

where C is the Lipschitz coefficient of F on ∆ (see Proposition 2.7 (ii)). We conclude by
applying Grönwall’s inequality.

We prove property (iii). Let (gn, n ∈ N) be a sequence of functions in ∆ converging
pointwise toward g ∈ ∆. We define for n ∈ N:

gn = sup
j≥n

gj and g
n
= inf

j≥n
gj .
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The sequence (gn, n ∈ N) is non-increasing while (g
n
, n ∈ N) is non-decreasing. We also

have g
n
≤ gn ≤ gn for all natural number n. Since the semi-flow is order-preserving by

Proposition 2.10, the following inequalities hold for all (t, x) ∈ R+ × Ω and all n ∈ N
∗:

(30) φ(t, g
n−1

)(x) ≤ φ(t, g
n
)(x) ≤ φ(t, gn)(x) ≤ φ(t, gn)(x) ≤ φ(t, gn−1)(x).

Thus, we can define two measurable functions v,w : R+ × Ω → [0, 1] by:

v(t, x) = lim
n→∞

φ(t, g
n
)(x), w(t, x) = lim

n→∞
φ(t, gn)(x),

for all (t, x) ∈ R+ × Ω. Notice that v(t, x) ≤ w(t, x) by construction.
Fix x ∈ Ω and t ≥ 0. We have:

φ(t, gn)(x) = gn(x) +

∫ t

0
F (φ(s, gn))(x) ds.

The sequence of functions (gn(x), n ∈ N) converges to g(x) while the sequence of func-
tions (φ(s, gn), n ∈ N) converges pointwise to w(s, ·) ∈ ∆ for all s ≥ 0. By continuity (see
Proposition 2.7 (iii)), F (φ(s, gn))(x) converges to F (w(s, ·))(x). Furthermore, the func-
tions s 7→ F (φ(s, gn))(x) are uniformly bounded since F is bounded on ∆ (see Proposition
2.7 (ii)). Hence, we deduce from the dominated convergence theorem that:

w(t, x) = g(x) +

∫ t

0
F (w(s, ·))(x) ds.

The previous equality is true for all x ∈ Ω and t ≥ 0. Since t 7→ φ(t, g) is the only
solution of (3) having g as initial condition, we have necessarily w(t, ·) = φ(t, g). We prove
that v(t, ·) = φ(t, g) the same way. Letting n go to infinity in (30) proves that φ(t, gn)
converges pointwise to φ(t, g), for all t ≥ 0. �

2.5. Equilibria. A function g ∈ ∆ is an equilibrium of the dynamical system (∆, φ)
(also called a stationary point) if for all t ∈ R+, φ(t, g) = g. The latter assertion is
equivalent to F (g) = 0. The function equal to 0 everywhere is a trivial stationary point.
In mathematical epidemiology, the other equilibria, if they exist, are called endemic states
because they model a situation where the infection is constantly maintained at a baseline
level in the population.

The following result gives an easy way to identify those special states in the system. It
is a well-known fact in dynamical system theory which we prove anyway.

Proposition 2.15 (Limit points are equilibria). Let g ∈ ∆. If t 7→ φ(t, g) converges
pointwise to a limit h∗ ∈ ∆ when t goes to ∞, then the function h∗ is an equilibrium.

Proof. For all x ∈ Ω and s ≥ 0, we have

φ(s, h∗)(x) = lim
t→∞

φ(s, φ(t, g))(x) = lim
t→∞

φ(s+ t, g)(x) = h∗(x),

where the first inequality follows from the continuity of φ with respect to the pointwise
convergence topology given in Proposition 2.13 (iii). Thus, h∗ is an equilibrium. �

In the next remark, we check that any equilibrium is continuous with respect to an
intrinsic distance on Ω based on κ and γ.
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Remark 2.16 (Continuity of the equlibria). We consider for all x, y ∈ Ω:

r(x, y) = ‖κ(x, ·) − κ(y, ·)‖TV + |γ(x)− γ(y)|,

where ‖·‖TV is the total variation norm. The function r defines a pseudo-metric on the
space Ω. This pseudo-metric can be thought as an extension of the neighborhood distance
on graphons (see [39, Section 13.3]). Notice that the Borel σ-field associated to the topology
defined by r is included in F since γ is measurable and κ is a kernel.

We have that if h∗ is an equilibrium of the dynamical system (∆, φ), then it is continuous
with respect to r. Indeed, we have for all x ∈ Ω:

h∗(x) =
λ(x)

λ(x) + γ(x)
with λ(x) =

∫

Ω
h∗(z)κ(x,dz).

Both λ and γ are continuous with respect to r and the function (a, b) 7→ a/(a + b) is
continuous on R+ ×R

∗
+. This implies that h∗ is continuous.

2.6. The maximal equilibrium. As a consequence of Proposition 2.9 and Corollary 2.11,
the path t 7→ φ(t, 1) is non-increasing and bounded below by 0. Thus, the path t 7→ φ(t, 1)
converges pointwise to a limit say g∗ when t goes to infinity:

(31) g∗(x) = lim
t→+∞

φ(t, 1)(x), ∀x ∈ Ω.

Proposition 2.17. Let g∗ be defined by (31). We have the following properties.

(i) The function g∗ is the maximal equilibrium of the dynamical system (∆, φ), i.e., if
h∗ is an equilibrium, then h∗ ≤ g∗.

(ii) For all g∗ ≤ g ≤ 1, φ(t, g) converges pointwise to g∗ as t goes to infinity.

Proof. We first prove property (i). The function g∗ is an equilibrium according to Propo-
sition 2.15. Let h∗ be another equilibrium in ∆. By Proposition 2.10, we have that
h∗ = φ(t, h∗) ≤ φ(t, 1) for all t. Letting t goes to infinity, we obtain that h∗ ≤ g∗ and thus
g∗ is the maximal equilibrium.

Now we prove property (ii). Let g∗ ≤ g ≤ 1. By Proposition 2.10, we have:

g∗ ≤ φ(t, g) ≤ φ(t, 1).

Then, (31) implies that φ(t, g) converges to g∗ as t tends to infinity for the pointwise
convergence. �

Remark 2.18. Since γ(x) > 0 for all x ∈ Ω according to Assumption 0 and F (g∗) = 0, we
have that g∗(x) < 1 for all x ∈ Ω.

In general, g∗ cannot be computed thanks to a closed-form expression even for the
finite-dimensional model. However, if the function x 7→ κ(x,Ω)/γ(x) is constant, then the
formula used for the one-group model can be extended.

Proposition 2.19. Suppose that there exists C ∈ R+ such that κ(x,Ω)/γ(x) = C for all
x ∈ Ω. Then, g∗ is a constant function equal to max(0, 1 − 1/C).

Proof. It is straightforward to check that the function x 7→ max(0, 1− 1/C) is an equilib-
rium. Now, we prove that it is maximal. Let h∗ ∈ ∆ be an equilibrium. From F (h∗)/γ = 0,
we obtain the inequality:

h∗ ≤ C(1− h∗)‖h∗‖.
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Taking a sequence (xn, n ∈ N) such that h∗(xn) converges to ‖h∗‖, we obtain at the limit
that ‖h∗‖ ≤ C(1− ‖h∗‖)‖h∗‖. It follows that ‖h∗‖ ≤ max(0, 1 − 1/C). �

Since we cannot determine g∗ in the general case, the important question that naturally
arises is to find out whether the epidemic can survive in the population or if it will die out
whatever the initial condition is, i.e., we have to determine if g∗(x) = 0 for all x ∈ Ω. In
the following, we answer this question with Assumption 1 which imposes further conditions
on the transmission kernel κ and the recovery rate γ.

3. Kernels with density

In this section, we introduce some tools that we will use in Section 4.

3.1. Banach lattices. For any notion not explained in the text, we refer the reader to
the standard texts [63] and [50] on the subject. We recall that a partial order is a binary
relation ≤ over a set X which is reflexive, antisymmetric and transitive. The inverse (or
converse) of ≤, denoted ≥, is the relation that satisfies y ≥ x if and only if x ≤ y. A lower
bound of a subset S of the partially ordered set (X,≤) is an element a of X such that
a ≤ x for all x in S. A lower bound a of S is called an infimum (or greatest lower bound)
of S if for all lower bounds y of S in X, y ≤ a (a is larger than or equal to any other lower
bound). Similarly, an upper bound of a subset S of a partially ordered set (X,≤) is an
element b of X such that b ≥ x for all x in S. An upper bound b of S is called a supremum
(or least upper bound) of S if b is less than any other upper bound. Infima and suprema
do not necessarily exist. However, if an infimum or supremum does exist, it is unique.

A lattice is an ordered set such that a subset consisting of two points has a supremum
and an infimum. In a lattice X, the infimum and supremum of the subset {x, y } ⊂ X are
denoted x ∧ y and x ∨ y respectively. By induction it is immediately evident that every
finite subset of X has a supremum and an infimum.

A Riesz space is a vector space X endowed with a lattice structure (denoted ≤) such
that, for any x, y ∈ X:

- Translation invariance: if x ≤ y then x+ z ≤ y + z for all z ∈ X.
- Positive homogeneity: if x ≤ y, then λx ≤ λy, for all scalar λ ≥ 0.

We define the absolute value |x| of an element x of a Riesz space by |x| = x ∨ (−x). We
proceed with some further definitions.

Definition 3.1. A Banach lattice (X,≤, ‖·‖) is a Riesz space (X,≤) equipped with a
complete norm ‖·‖ and such that, for any x, y ∈ X, we have:

(32) |x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖.

In the Banach lattice X, the positive cone:

X+ = {x ∈ E : x ≥ 0 } .

is a proper cone, as it is a closed (see Theorem 15.1 (ii) in [63]) convex set such that
λX+ ⊂ X+ for all λ ∈ R+, and X+ ∩ (−X+) = { 0 }. It is also a reproducing cone
(X = X+ −X+) as every element x in X can be decomposed as x = (x ∨ 0)− ((−x) ∨ 0)
and y ∨ 0 ∈ X+ for all y ∈ X.
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3.2. Spectral analysis in Banach lattices. In this section, we present some results of
spectral analysis in Banach spaces. Let (X, ‖·‖) be a Banach space. We recall that the
spectrum σ(A) of a bounded operator A on X is the of all complex numbers λ such that
A− λId does not have a bounded inverse operator. It is well known that the spectrum of
a bounded operator is a compact set in C. The essential spectrum σess(A) ⊂ σ(A) is the
set of complex numbers λ such that A− λId is not a Fredholm operator with index 0.

For a bounded operator A onX, the spectral bound, the spectral radius and the essential
spectral radius are defined as:

s(A) = sup {Re(λ) : λ ∈ σ(A) } ,(33)

r(A) = sup { |λ| : λ ∈ σ(A) } = lim
n→+∞

‖An‖1/n = inf
n∈N∗

‖An‖1/n,(34)

ress(A) = sup { |λ| : λ ∈ σess(A) } ,(35)

respectively, with the convention that sup ∅ = 0. We refer to [16, Section I.4] for definitions
of other essential spectra, which however define the same essential spectral radius (in our
setting σess(A) corresponds to the essential spectrum σe4(A) defined p. 37 in [16]). As
σess(A) ⊂ σ(A), we get:

(36) ress(A) ≤ r(A) ≤ ‖A‖.

The spectral theory of positive bounded operator on Banach lattice extends the Perron-
Frobenius theory in infinite dimension. Let A be a positive operator on a Banach lattice
(X,≤, ‖·‖) such that its spectral radius r(A) is positive. Recall X⋆

+ is the dual cone of X+.
A vector x ∈ X+\ { 0 } (resp. x⋆ ∈ X⋆

+\ { 0 }) such that Ax = r(A)x (resp. A⋆x⋆ = r(A)x⋆)
is called a right (resp. left) Perron eigenvector. We have the following important result.

Theorem 3.2. Let (X,≤, ‖·‖) be a Banach lattice. Let A,B be positive bounded operators
on X. We have the following properties.

(i) If B −A is a positive operator, then r(A) ≤ r(B).
(ii) The spectral radius r(A) belongs to σ(A) and thus r(A) = s(A).
(iii) If ress(A) < r(A), then, there exists x ∈ X+\ { 0 } such that: Ax = r(A)x.

Proof. Property (i) is proved in [42, Theorem 4.2]. Property (ii) is proved in [51] (notice
that (32) implies that X+ is normal in the setting of [51]), see also [63, Lemma 41.1.(ii)].
Property (iii) was shown by Nussbaum in [46, Corollary 2.2] (notice that a reproducing
cone is total), where the essential spectrum in [46] is defined in [45] and corresponds to
σe5(A) in [16, p. 37]. However, the essential spectral radius of σe5(A) is equal to ress(A)
the essential spectral radius of σe4(A), according to [16, Theorem I.4.10]. �

It A is assumed to be a compact operator, then Theorem 3.2 (iii) is the so called Krein-
Rutman theorem, see [63, Theorem 41.2]. We will also need the following result proved in
[20, Propositions 2.1-2.2].

Proposition 3.3 (Collatz-Wielandt inequality). Let (X,≤, ‖·‖) be a Banach lattice and
A be a positive bounded operator on X. We have:

sup {λ ∈ R : ∃x ∈ X+\ { 0 } , Ax ≥ λx } ≤ r(A).
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3.3. The Banach lattice of bounded measurable functions. The Banach space
(L ∞, ‖·‖) equipped with the partial order ≤ defined by the proper cone L ∞

+ from (21) is
a Banach lattice.

Let ν be a finite signed measure on (Ω,F ). For g ∈ L ∞, we write 〈ν, g〉 =
∫

Ω g(x) ν(dx)
and thus identify ν as an element of L ∞,⋆, the dual space of L ∞. (Recall that L ∞,⋆ can
be identified as the space of bounded and finitely additive signed measures on (Ω,F ).)

Let µ be a given finite positive measure on (Ω,F ). For q ∈ (1,+∞), denote by
(Lq(µ), ‖·‖q) the usual Banach space of real-valued measurable functions f defined on

(Ω,F ) such that ‖f‖q =
(∫

Ω |f(x)|q µ(dx)
)1/q is finite and quotiented by the equivalence

relation of the µ-almost everywhere equality.
Let ι be the natural linear application ι from L ∞ to Lp(µ), with p = q/(q − 1) the

conjugate of q, and ι⋆ its dual. For f ∈ Lq(µ), we can see ι⋆(f) as the bounded σ-finite
signed measure f(x)µ(dx) elements of L ∞,⋆. By convention, for f ∈ Lq(µ) and g in L ∞,
we write:

〈f, g〉 = 〈ι⋆(f), g〉 =

∫

Ω
f(x)g(x)µ(dx).

Let k be a non-negative measurable function defined on (Ω × Ω,F ⊗ F ) such that
supx∈Ω

∫

k(x, y)µ(dy) <∞. We define the integral operator Tk as the operator Tκ defined
by (22) with kernel κ(x,dy) = k(x, y)µ(dy). Let q ∈ (1,+∞). We assume the following
condition holds:

sup
x∈Ω

∫

k(x, y)q µ(dy) <∞.(37)

Then, we can also define the bounded operator:

T̃k : Lp(µ) → L
∞

g 7→

(

x 7→

∫

Ω
g(y) k(x, y)µ(dy)

)

.

Using the density of the range of ι, we get that Tk = T̃kι. We also define the bounded
operator T̂k from Lp(µ) to Lp(µ):

(38) T̂k = ιT̃k.

And we have the following commutative diagram:

L ∞ Lp(µ)

L ∞ Lp(µ)

Tk

ι

T̃k

T̂k

ι

The following lemma has a fundamental importance for the development of Section 4.
The last property of the following Lemma on connected integral operator is part of the
Perron-Jentzsch theorem, see [50, Theorem V.6.6 and Example V.6.5.b].

Lemma 3.4. Let k be a non-negative measurable function defined on (Ω×Ω,F ⊗F ) such
(37) holds for some q ∈ (1,+∞). Then, the positive bounded operators Tk : L ∞ → L ∞

and Tk : L
p(µ) → Lp(µ), with p = q/(q − 1), satisfies:
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(i) If g = 0 µ-a.e., then we have Tkg = 0.
(ii) The operator Tk is weakly compact.

(iii) The operators T 2
k

and T̂k are compact.

(iv) The operators Tk and T̂k have the same spectrum, and thus r(Tk) = r(T̂k).
(v) If r(Tk) > 0, then the operator Tk has a right Perron eigenvector in L ∞

+ \ { 0 } and
a left Perron eigenvector in Lq

+(µ)\ { 0 } ⊂ L
∞,⋆
+ \ { 0 }.

(vi) If k is connected in the sense of Assumption 2, then r(Tk) > 0 and the right and
left Perron eigenvector are unique (up to a multiplicative constant) and are µ-a.e.
positive, with the left Perron eigenvector seen as an element of Lq

+(µ)\ { 0 }.

Proof. Property (i) is straightforward.

We prove property (ii). The natural linear application ι (resp. the operator T̃k) from
L ∞ to Lp(µ) (resp. from Lp(µ) to L ∞) is weakly compact thanks to [15, Corollary
IV.8.2 and Corollary VI.4.3], which state that Lp(µ) is reflexive and that a bounded linear
operator taking values in a reflexive Banach space is weakly-compact. In particular, we
deduce that the operator Tk, which is the product of a weakly compact operator and a
bounded operator, is weakly compact, see [15, Theorem VI.4.5].

We prove property (iii). Notice that ‖f ∨ g‖ = ‖f‖ ∨ ‖g‖ for all f, g ∈ L ∞
+ . Thus the

Banach lattice L ∞ is an AM-space, according to [50, Definition II.7.1] and thus enjoys
the Dunford-Pettis property thanks to [50, Theorem II.9.9]. Then [50, Corallary II.9.1]
gives that the operator T 2

k
is compact. And we also deduce from [50, Theorem II.9.7] that

T̂k is compact. This ends the proof of property (iii).

We prove property (iv). If Ω is finite then the operators Tk and T̂k coincide and there
is nothing to prove. So, we assume that Ω is infinite. In this case, σess(Tk) and σess(T̂k)

are non empty according to [28, Footnote 2, p. 243]. As T̂k and T 2
k

are compact, we
deduce from [15, Theorems VII.4.5 and VII.4.6] respectively, that the essential spectra
of T̂k and Tk are reduced to {0}, and that the non-null elements of their spectrum are
eigenvalues. Then, use that ιTk = T̂kι and property (i), to deduce that if f ∈ L ∞ \ { 0 }
is an eigenvector of Tk, then ι(f) belongs to Lp(µ)\ { 0 } thanks to property (i) and that
ι(f) is thus an eigenvector of T̂k corresponding to the same eigenvalue. If v ∈ Lp(µ)\ { 0 }

is an eigenvector of T̂k corresponding to the eigenvalue λ, then f = T̃k(v) belongs to L ∞

and f 6= 0 (as ι(f) = T̂k(v) = λv). We have Tk(f) = T̃kιT̃k(v) = T̃k(Tk(v)) = λT̃k(v) = λf .
Thus λ is also an eignevalue of Tk. We deduce that σ(Tk) = σ(T̂k).

We prove property (v). We have seen that σess(Tk) ⊂ { 0 } and thus ress(Tk) = 0.
According to Theorem 3.2 (iii) (or the Krein-Rutman theorem) there exists a right Perron
eigenvector for Tk. Since T̂ ⋆

k
is a compact operator, thanks to Schauder Theorem [15,

Theorem VI.5.2], with the same spectrum as T̂k, thanks to [15, Lemma VII.3.7], and
which is clearly positive, we deduce from Theorem 3.2 (iii) that there exists a right Perron
eigenvector, v⋆ ∈ Lq

+(µ)\ { 0 }, for T̂ ⋆
k
. Since T ⋆

k
ι⋆ = ι⋆T̂ ⋆

k
, we deduce that ι⋆(v⋆), and thus

v⋆ by convention, is also a left Perron eigenvector for Tk. This gives property (v).

Now, let us prove property (vi). Set λ = r(Tk) = r(T̂k), see property (iv). According
to the Perron-Jentzsch theorem [50, Theorem V.6.6 and Example V.6.5.b], since k is con-
nected in the sense of Assumption 2, we have λ > 0 and there exists a unique (up to a
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multiplicative constant) eigenvector v of T̂k associated to the eigenvalue λ, and it can cho-
sen such that µ-a.e. v > 0. According to the proof of property (iv), we get that f = T̃k(v) is
an eigenvector of Tk associated to λ. Notice that f ≥ 0 as k ≥ 0. Since ι(f) = T̂k(v) = λv,
we deduce that µ-a.e. f > 0. Assume that g ∈ L ∞ \ { 0 } is a right Perron eigenvector of
Tk, then ι(g) is a right Perron eigenvector of T̂k and thus (up to a multiplicative constant
chosen to be equal to λ), we have µ-a.e. ι(g) = λv = ι(f). We deduce that µ-a.e. g−f = 0
and thanks to property (i), we deduce that λ(f − g) = Tk(f − g) = 0. So the right Perron
eigenvector of Tk is unique and µ-a.e. positive.

Let f⋆ be a left Perron eigenvector of Tk. Then v⋆ = T̃ ⋆
k
(f⋆) is an eigenvector of T̂ ⋆

k

associated to λ and v⋆ ∈ Lq
+(µ)\ { 0 } as k ≥ 0. By the Perron-Jentzsch theorem, we

get that v⋆ is unique (up to a multiplicative constant) and that µ-a.e v⋆ > 0. Since
ι⋆(v⋆) = λf⋆, we deduce that µ-a.e f⋆ > 0 and that f⋆ is unique (up to a multiplicative
constant). �

Remark 3.5. As a consequence of Lemma 3.4 (i), under Assumption 1, if h∗ is an equilibria
which is µ-a.e. equal to 0, then it is equal to 0 everywhere.

4. Infinite-dimensional SIS model when the kernel has a density

The objective of this section is to study the long time behavior of the solutions of
(3) under Assumption 0 and Assumption 1 (but for Section 4.2 where the latter is not
assumed). Recall the definition of the spectral bound given in (33). We will consider
the spectral bound s(Tk − γ) of the bounded operator Tk − γ on L ∞ to characterize
three different regimes: sub-critical, critical and super-critical, corresponding to the cases
s(Tk−γ) <,=, > 0 respectively. In the first part of the section, we establish a link between
s(Tk − γ) and the basic reproduction number R0 = r(Tk/γ) associated to (3).

4.1. Basic reproduction number and spectral bound. Recall that Assumption 0 is
in force. If we assume inf γ > 0, then the operator Tκ/γ , where κ/γ is the kernel defined
by (κ/γ)(x,dy) = κ(x,dy)/γ(y) is bounded. Thieme’s result [58, Theorem 3.5] implies the
following proposition.

Proposition 4.1. If inf γ > 0, then r(Tκ/γ)− 1 has the same sign as s(Tκ− γ) (i.e. these
two numbers are simultaneously negative, zero, or positive).

Proof. Consider the operators A = Tκ − γ and B = −γ, where −γ is the operator corre-
sponding to the multiplication by −γ. It is clear from [58, Definition 3.1] that the operator
B is a resolvent-positive operator, as the operator λ−B = λ+γ is invertible and its inverse
is positive for λ > 0. We also get that s(B) = s(−γ) = − inf γ < 0. Let Q = A + ‖γ‖.
The operator Q is positive. And for λ > r(Q), we get that (λ−Q)−1 is also positive since,
thanks to the Neumann series expansion, we have:

(λ−Q)−1 =

∞
∑

i=0

1

λi+1
Qi ≥ 0.

We deduce that (λ−A) is invertible and its inverse is positive for λ > r(Q)−‖γ‖. Hence, A
is resolvent-positive. Applying [58, Theorem 3.5] (notice it is required that L ∞

+ is normal,
which is the case, see [12, Proposition 19.1], as the norm ‖·‖ is monotonic: 0 ≤ f ≤ g
implies ‖f‖ ≤ ‖g‖), we deduce that s(A) has the same sign as r(−(A − B)B−1) − 1 =
r(Tκ/γ)− 1. �
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Notice that under Assumption 1, we have by definition R0 = r(Tκ/γ) = r(Tk/γ), as k is
the density of κ with respect to µ. In what follows, we also write Tk for Tκ. When γ is not
bounded away from 0, but still positive, R0−1 and s(Tk−γ) may not have the same sign.
For instance, if one takes Tk = 0 and inf γ = 0, then we clearly have s(Tk−γ) = s(−γ) = 0
and R0 = 0.

As we only assume that inf γ ≥ 0, we will get a weaker result but this will be sufficient
for our purpose. According to Assumption 1 (see (8)), the operator Tk/γ defined by (11) is
a bounded operator on L ∞ which satisfies the integrability condition of Lemma 3.4 with
k(x, y) = k(x, y)/γ(y).

Proposition 4.2. Suppose Assumption 1 is in force. Then, the following assertions are
equivalent:

(i) s(Tk − γ) > 0.
(ii) R0 > 1.
(iii) There exists λ > 0 and w ∈ L ∞

+ \ { 0 } such that:

(39) Tk(w)− γw = λw.

Proof. It is immediate that property (iii) implies property (i).

We suppose property (i) and we prove (ii). Let a ∈ (0, s(Tk − γ)), so that s(Tk − (γ +
a)) = s(Tk − γ) − a > 0. Using Proposition 4.1 (with γ replaces by γ + a), we get that
r
(

Tk/(γ+a)

)

> 1. Since r(Tk/γ) ≥ r
(

Tk/(γ+a)

)

according to Theorem 3.2 (i), property (ii)
is shown.

Now we assume property (ii), and we prove property (iii). Consider for any non-negative
real number a ≥ 0, the function:

ψ(a) = r(Tk/(γ+a)).

Property (ii) exactly means that:

(40) ψ(0) > 1.

Moreover, it follows from the inequality r(Tk/(γ+a)) ≤ ‖Tk/(γ+a)‖ ≤ ‖Tk‖/a (use (36) for
the first inequality), that:

(41) lim
a→∞

ψ(a) = 0.

Equation (8) of Assumption 1 enables to apply Lemma 3.4 (iii) and we obtain that all the
operators Tk/(γ+a), for a ∈ R+, are power compact (as T 2

k/(γ+a) is compact). According to
[30, Theorem p. 21], their spectra are totally disconnected. Moreover, since the function
a 7→ Tk/(γ+a) mapping R+ to L(L ∞) is continuous, we also get thanks to [44, Theorem
11] that the application a 7→ σ(Tk/(γ+a)) mapping R+ to the set K(C) of non-empty
compact subsets endowed with the Hausdorff distance (see Section B for the definition of
the Hausdorff distance) is continuous. Hence, the function ψ is continuous according to
Lemma B.1. From the continuity of ψ and Equations (40) and (41), we conclude that there
exists λ > 0 such that ψ(λ) = 1. According to Lemma 3.4 (v), there exists a function
v ∈ L ∞

+ \ { 0 } such that:

Tk

(

v

γ + λ

)

= v.

Then, Equation (39) holds with w = v/(γ + λ) which proves property (iii). �
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Remark 4.3. Using Lemma 3.4 (i), it is easy to show that w in Proposition 4.2 (iii) should
satisfy

∫

Ωw(x)µ(dx) > 0.

The next result is stronger than the implication (i) =⇒ (ii) in Proposition 4.2.

Lemma 4.4. Under Assumption 1, the following inequality holds:

(42) s(Tk − γ) ≤ max(‖γ‖(R0 − 1), 0).

Proof. If s(Tk − γ) ≤ 0, the result is obviously true. Suppose s(Tk − γ) > 0. Since
Tk − γ + ‖γ‖ is a positive operator, Theorem 3.2 (ii) implies that r(Tk − γ + ‖γ‖) =
s(Tk − γ + ‖γ‖). Since s(Tk − γ + ‖γ‖) = s(Tk − γ) + ‖γ‖ > ‖γ‖, we obtain that:

r(Tk − γ + ‖γ‖) > ‖γ‖.

Besides, we have ‖γ‖ ≥ r(‖γ‖−γ) according to Theorem 3.2 (i) and r(‖γ‖−γ) ≥ ress(‖γ‖−
γ) according to Equation (36). We deduce that:

r(Tk − γ + ‖γ‖ > ress(‖γ‖ − γ).

The operator Tk is weakly compact thanks to Lemma 3.4 (ii) since k satisfies (37), see
Assumption 1 and more precisely (9). Since L ∞ has the Dunford-Pettis property, see [50,
Section II.9], we deduce from [33, Theorem 3.1] (where σess(A) in our setting corresponds
to σe5(A) in [33]) that ress(‖γ‖ − γ) = ress(Tk − γ + ‖γ‖). Therefore, we get that:

r(Tk − γ + ‖γ‖) > ress(Tk − γ + ‖γ‖).

Hence, we can apply Theorem 3.2 (iii) with the positive operator Tk − γ + ‖γ‖, to get the
existence of a function w ∈ L ∞

+ \ { 0 } such that:

(43) Tk(w) − γw = s(Tk − γ)w,

where we used r(Tk − γ + ‖γ‖) = s(Tk − γ + ‖γ‖) = s(Tk − γ) + ‖γ‖ for the equality. We
have shown that one can actually take λ = s(Tk − γ) in Equation (39). Thus, we obtain:

Tk/γ(γw) = Tk(w) = (γ + s(Tk − γ))w ≥

(

1 +
s(Tk − γ)

‖γ‖

)

γw.

According to Proposition 3.3, we conclude that:

(44) R0 = r(Tk/γ) ≥ 1 +
s(Tk − γ)

‖γ‖
·

We deduce that Equation (42) holds. �

We continue the study with a proposition about the perturbation of the operator Tk/γ .
For g ∈ ∆, we define R0(g) = r(gTk/γ).

Proposition 4.5. Suppose Assumption 1 holds. The function g 7→ R0(g) defined on ∆ is
non-decreasing and continuous with respect to the L1(µ) topology.

Proof. The fact that g 7→ R0(g) is non-decreasing is a direct consequence of Theorem 3.2 (i).
For for g ∈ ∆, the bounded operator Ag = T̂k on Lp(µ) defined in Equation (38) with

the kernel k(x, y) = g(x)k(x, y)/γ(y) is compact according to Lemma 3.4 (iii). According
to Lemma 3.4 (iv), we have that for all g ∈ ∆:

(45) R0(g) = r(Ag).
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Besides, the function g 7→ Ag mapping ∆ to L(Lp(µ)) is continuous with respect to the
Lp(µ) norm. We deduce from [44, Theorem 11], that the function g 7→ σ(Ag) from (∆, ‖·‖p)
to (K(C), dH) is continuous, where K(C) is the set of non-empty compact subsets and dH
is the Hausdorff distance (see Section B for the definition of the Hausdorff distance).
Using Lemma B.1 and then Equation (45), we get that g 7→ R0(g) defined on (∆, ‖·‖p)
is continuous. In order to conclude, we notice that the topologies induced by Lp(µ) and
L1(µ) are equal on ∆ because ∆ is a bounded subset of L∞(µ). This proves that g 7→ R0(g)
defined on (∆, ‖·‖1) is continuous. �

4.2. The subcritical regime: s(Tκ − γ) < 0. Recall that Assumption 0 is in force.
Here, we show that in the subcritical regime, the solutions of Equation (25) converge
exponentially fast to 0 in norm.

Theorem 4.6 (Uniform exponential extinction). Suppose that s(Tκ − γ) < 0. Then, for
all c ∈ (0,−s(Tκ − γ)), there exists a finite constant θ = θ(c) such that, for all g ∈ ∆, we
have:

(46) ‖φ(t, g)‖ ≤ θ‖g‖ e−ct.

In particular, the maximal equilibrium g∗ is equal to 0 everywhere.

Proof. Recall Tκ − γ is a bounded operator. For all t ∈ R+, define:

(47) v(t) = et(Tκ−γ)1 =
∑

n∈N

tn

n!
(Tκ − γ)n 1.

We also have:

e‖γ‖tv(t) = et(Tκ−γ+‖γ‖)1 =
∑

n∈N

tn

n!
(Tκ − γ + ‖γ‖)n 1.

As Tκ − γ + ‖γ‖ is positive, we deduce that v(t) ≥ 0. As Tκ is positive, we deduce that:

v′(t)− F (v(t)) = (Tκ − γ)(v(t)) − F (v(t)) = v(t)Tκ(v(t)) ≥ 0.

Thus, the following inequality holds for all g ∈ ∆ and all t ≥ 0:

0 = ∂tφ(t, g) − F (φ(t, g)) ≤ v′(t)− F (v(t)).

As F is cooperative on ∆×L ∞
+ , see Proposition 2.7 (iv), we can apply Corollary 2.6 with

K = L ∞
+ , D1 = ∆, D2 = L ∞

+ and u(t) = φ(t, g) to obtain that:

(48) φ(t, g) ≤ v(t) for all t ∈ R+.

Besides, since Tk − γ is a bounded operator, its growth bound (i.e., the left member of the
equality below) is equal to its spectral bound according to [10, Theorem I.4.1]:

(49) inf

{

η ∈ R : sup
t∈R+

e−ηt‖exp(t(Tκ − γ))‖ <∞

}

= s(Tκ − γ).

We deduce from Equations (47), (48) and (49), that for all c ∈ (0,−s(Tκ−γ)), there exists
a finite constant θ such that Equation (46) is true. In particular, t 7→ φ(t, 1) converges
uniformly to 0. It then follows from Equation (31) that g∗ is equal to 0 everywhere. �
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4.3. Critical regime: s(Tk − γ) = 0. Assumption 1 holds. Recall that k is the density
of the kernel κ and that we then write Tk for Tκ. We give the main result of this section.

Theorem 4.7 (Extinction at criticality). Suppose Assumption 1 is in force and s(Tk−γ) =
0. Then the maximal equilibrium g∗ is equal to 0 everywhere. In other words, for all g ∈ ∆
and all x ∈ Ω, we have that:

lim
t→∞

φ(t, g)(x) = 0.

Proof. Suppose, to derive a contradiction, that g∗ is not equal to 0 µ-almost everywhere.
We know according to Remark 2.18 that 1− g∗ is positive everywhere. Hence, we get:

(50) Tk/γ(γg
∗) = Tk(g

∗) =

(

1 +
g∗

1− g∗

)

γg∗ ≥ γg∗.

According to Proposition 3.3, R0 is then greater than or equal to 1.

We will prove that in fact R0 > 1. Consider the set A = {x ∈ Ω : g∗(x) > 0 }. Equation
(50) remains true by replacing k by k′ = 1A k 1A (i.e. k′(x, y) = 1A(x)k(x, y)1A(y)):

(51) Tk′/γ(γg
∗) =

(

1 +
g∗

1− g∗

)

γg∗ ≥ γg∗.

Using Proposition 3.3, we get that r(Tk′/γ) ≥ 1. Since Assumption 1 is in force, Tk′/γ
has a left Perron eigenvector h in Lq

+(µ)\ { 0 } (see Lemma 3.4 (v)). By multiplying both
members of Equation (51) by h and integrating with respect to µ, we obtain:

(52) (r(Tk′/γ)− 1) 〈h, γg∗〉 = 〈h, (g∗)2γ/(1− g∗)〉

It is clear that h1Ac = 0. Since h ∈ Lq
+(µ)\ { 0 }, we have necessarily:

∫

A
h(x)µ(dx) > 0.

Hence, both brakets in Equation (52) are positive. Thus, we get that r(Tk′/γ) > 1. Using
Theorem 3.2 (i) and that the operator Tk/γ − Tk′/γ is positive, we deduce that R0 ≥
r(Tk′/γ) > 1. This is in contradiction with Proposition 4.2 which asserts that R0 ≤ 1 as
s(Tk − γ) = 0. Thus, we obtain that µ-a.e. g∗ = 0. We conclude using Remark 3.5. �

4.4. Supercritical regime: s(Tk − γ) > 0. Assumption 1 is in force in this section. We
consider the case s(Tk − γ) > 0. We will begin the analysis by proving that g∗ is different
from 0. Then, we will show the convergence of the system to g∗.

According to Proposition 4.5, there exists ε0 ∈ (0, 1) such that, for all ε ∈ (0, ε0),
R0((1 − ε)) > 1. For each ε ∈ (0, ε0), Proposition 4.2 ensures the existence of a vector
wε ∈ L ∞

+ \ { 0 } and a positive real number λ(ε) > 0, such that:

(53) (1− ε)Tk(wε) = (γ + λ(ε))wε.

We can take wε such that ‖wε‖ < ε. Moreover, according to Remark 4.3:

(54)
∫

Ω
wε(x) dx > 0.

Then, we get the following proposition.

Proposition 4.8 (Increasing trajectory). Suppose Assumption 1 is in force and that s(Tk−
γ) > 0. For all ε ∈ (0, ε0), the map t 7→ φ(t, wε) is non-decreasing.
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Proof. Let ε ∈ (0, ε0). We have:

0 ≤ λ(ε)wε = (1− ε)Tk(wε)− γwε ≤ (1− wε)Tk(wε)− γwε = F (wε),

where the last inequality holds because ‖wε‖ < ε. We conclude using Proposition 2.12. �

Proposition 4.8 shows that the equilibrium 0 is not asymptotically stable in the following
sense: we can find initial conditions arbitrarily close to 0 in norm such that φ(t, g) does
not converge to 0 pointwise. An easy consequence of Proposition 4.8 is that g∗ is not µ-a.e.
equal to 0.

Corollary 4.9. If Assumption 1 is in force and s(Tk − γ) > 0, then we have:
∫

Ω
g∗(x)µ(dx) > 0.

We deduce from Proposition 4.8 that t 7→ φ(t, wε) converges pointwise as t tends to
infinity since φ(t, wε) ≤ 1 for all t. According to Proposition 2.15, the limit is an equilib-
rium. It is not 0 but it might be different from g∗. We will use Assumption 2 to ensure
that 0 and g∗ are the only equilibria. In order to prove this result, we need the following
lemma.

Lemma 4.10 (Instantaneous propagation of the infection). Suppose Assumptions 1 and
2 are in force. If g ∈ ∆ is such that:

∫

Ω
g(x)µ(dx) > 0.

Then, for all t > 0, φ(t, g) is µ-a.e. positive.

Proof. Since the flow is order-preserving (see Proposition 2.10), it is sufficient to show the
proposition for g such that ‖g‖ < 1/2. It follows from Equation (29) that:

φ(t, g) ≤ ‖g‖+ t‖Tk‖.

Thus, for all t ∈ [0, c), with c = (1− 2‖g‖)/2‖Tk‖ (and c = +∞ if ‖T‖ = 0), we have that
φ(t, g) < 1/2. Now, we define the function:

u(t) = e−‖γ‖t etTk/2g.

We get the following inequality for all t ∈ [0, c):

u′(t)−(Tk/2−‖γ‖)(u(t)) = 0 ≤ (1/2−φ(t, g))Tk(φ(t, g)) ≤ ∂tφ(t, g)−(Tk/2−‖γ‖)(φ(t, g)).

Using Corollary 2.6 with v(t) = φ(t, g) and F = Tk/2 − γ (which is clearly cooperative as
it is linear), we get for t ∈ [0, c):

(55) φ(t, g) ≥ u(t).

Now, we fix t ∈ [0, c). We denote by A = {x ∈ Ω : u(t)(x) > 0 } the support of u(t). We
have:

0 = 〈1Ac , u(t)〉 = e−‖γ‖t
∑

n∈N

1

n!
〈1Ac , (tTk/2)

n(g)〉 .

This implies that 〈1Ac , (tTk/2)
n(g)〉 = 0 for all n, and thus that 〈1Ac , Tku(t)〉 = 0. We

deduce that:
∫

Ac×A
k(x, y)µ(dx)µ(dy) = 0.
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Since the set A contains the support of g, we get µ(A) > 0. It follows from Assumption 2
that µ(Ac) = 0. This means that u(t) is µ-a.e. positive. Hence, from Equation (55), we get
that, for t ∈ [0, c), φ(t, g) is µ-a.e. positive. Using the semi-group property of the semi-flow
this results propagates on the whole positive half-line and the result is proved. �

Remark 4.11. Lemma 4.10 together with Remark 3.5 shows that an equilibrium h∗ different
from 0 is µ-a.e. positive.

Remark 4.12. One can check from its proof, that Lemma 4.10 does not require the inte-
grability condition (8) in Assumption 1 to be true.

Now we can show the following important result.

Proposition 4.13 (Uniqueness of the endemic state). Under Assumptions 1 and 2, the
maximal equilibrium g∗ is the unique equilibrium different from 0.

Proof. Let h∗ be another equilibrium different from 0. Since g∗ is the maximal equilibrium,
we have h∗ ≤ g∗. We shall prove that h∗ is equal to g∗ almost everywhere. Let us define
the non-negative kernel k by:

k(x, y) = (1− g∗(x))
k(x, y)

γ(y)
for x, y ∈ Ω.

Notice that k satisfies (37). Since Tk(γg∗) = γg∗, we deduce from Proposition 3.3 that
r(Tk) ≥ 1. Let v ∈ Lq(µ)+\ { 0 } be a left Perron vector of the operator Tk (given by Lemma
3.4 (v)). The kernel k satisfies Assumption 2 as k does and 1 − g∗ is positive everywhere
(see Remark 2.18). Hence, v can be chosen positive µ-a.e. according to Lemma 3.4 (vi).
The following computation:

〈v, γg∗〉 = 〈v, Tk(γg
∗)〉 = r(Tk) 〈v, g

∗〉 ,

shows that r(Tk) is actually equal to 1 since 〈v, γg∗〉 > 0. Now we compute:

0 = 〈v, F (h∗)〉

= 〈v, Tk(γh
∗)− γh∗〉+ 〈v, (g∗ − h∗)Tk/γ(γh

∗)〉

= 〈v, (g∗ − h∗)Tk(h
∗)〉 ,

where we used that 〈v, Tkf − f〉 = 0 as r(Tk) = 1 and v is a left Perron eigenvector.
According to Remark 4.11, h∗ is µ-a.e. positive. Since we have Tk(h∗) = γh∗/(1−h∗), the
function Tk(h

∗) is also µ-a.e. positive. Hence g∗ and h∗ are equal µ-a.e. since v is µ-a.e.
positive, see Lemma 3.4 (vi). This implies in particular that Tk(h∗) = Tk(g

∗) by Lemma
3.4 (i). We deduce that, for all x ∈ Ω:

h∗(x) = Tk(h
∗)(x)/(γ(x) + Tk(h

∗)(x)) = Tk(g
∗)(x)/(γ(x) + Tk(g

∗)(x)) = g∗(x).

Therefore g∗ is then unique equilibrium different from 0. �

Now we can prove the main result of this section on the pointwise convergence of φ(t, g).
If g is µ-a.e. equal to 0, then clearly, as γ is positive, we get that lim

t→∞
φ(t, g) = 0 pointwise.

So only the case g not µ-a.e. equal to 0 is pertinent.

Theorem 4.14. Suppose that Assumptions 1 and 2 are in force. Let g ∈ ∆ such that
∫

Ω g(x)µ(dx) > 0. Then,we have that for all x ∈ Ω:

lim
t→∞

φ(t, g)(x) = g∗(x).
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Proof. By Lemma 4.10, it is enough to show the result for g µ-a.e. positive. We define,
for all n ∈ N

∗:
Ωn = {x ∈ Ω : g(x) ≥ 1/n } .

Since g is µ-a.e. positive, we get that limn→∞

(

1− 1
n

)

1Ωn = 1 in L1(µ). Besides, R0 is
greater than 1 by Proposition 4.2. Hence, according to Proposition 4.5, there exists n large
enough such that:

R0 ((1− 1/n)1Ωn) > 1.

By applying Proposition 4.2 (iii) to the kernel (1 − 1/n)1Ωn(x)k(x, y), we get that there
exists wn ∈ L ∞

+ \ { 0 } and λ > 0 such that:
(

1−
1

n

)

1ΩnTk(wn) = (γ + λ)wn.

We deduce that for all x ∈ Ωc
n, wn(x) = 0. Furthermore we can choose wn such that

‖wn‖ ≤ 1/n. This proves that wn ≤ g. Then, it follows from the monotony of the
semi-flow (see Proposition 2.10) that, for all t ∈ R+:

(56) φ(t, wn) ≤ φ(t, g) ≤ φ(t, 1).

Besides, we have:

0 ≤ λwn = (1− 1/n)1ΩnTk(wn)− γwn

≤ (1− 1/n)Tk(wn)− γwn

≤ (1− wn)Tk(wn)− γwn

= F (wn),

where the last inequality follows from the fact that ‖wn‖ ≤ 1/n. Thus, the path t 7→
φ(t, wn) is non-decreasing according to Proposition 2.12. Hence, it converges pointwise to
a limit h∗ 6= 0 since wn ∈ L ∞

+ \ { 0 }. This limit has to be an equilibrium by Proposition
2.15. Since 0 and g∗ are the only equilibria by Proposition 4.13, we have necessarily
h∗ = g∗. We conclude thanks to Equation (56). �

4.5. Endemic states in the critical regime. Here we show by a counter-example that
the integral condition (8) is necessary to obtain the convergence towards the disease-free
equilibrium in the critical regime. In the following example, the transmission kernel has
a bounded density with respect to a finite measure µ and we have inf γ > 0 and R0 = 1.
However, there exists a continuum set of distinct equilibria.

Consider the set N
∗ equipped with some finite measure µ such that µn = µ({n }) > 0

for all n ∈ N
∗. We choose γ constant equal to 1 and the kernel κ defined for i, j ∈ N

∗ by:

(57) κ(i, { j }) =

{

2i+2
2i−1 if j = i+ 1,

0 otherwise,
and γ(i) = 1.

Clearly Assumption 0 is satisfied. Moreover, the kernel κ has the following density k with
respect to µ defined by k(i, j) = κ(i, { j })/µ({ j }) for i, j ∈ N

∗. However condition (9),
and thus (8) from Assumption 1, is not satisfied. Indeed, for all q > 1 we have:

sup
n∈N∗

∫

N∗

k(x, y)q µ(dy) = sup
n∈N∗

k(n, n+ 1)q µn+1 = lim
n→∞

(2n + 1)q

(2n − 1)q
µ1−q
n+1 = +∞,
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where divergence of the sequence follows from the convergence of µn+1 to 0 (because µ is
a finite measure). The following proposition asserts that we are in the critical regime.

Proposition 4.15. Let κ be defined by (57), k be its density and γ = 1. We have for the
reproduction number: R0 = r(Tk/γ) = 1, and for the spectral bound: s(Tk − γ) = 0.

Proof. Since γ is the function constant equal to 1, we have s(Tk − γ) = R0 − 1 and
R0 = r(Tk). We compute the spectral radius of Tk using Gelfand’s formula:

r(Tk) = lim
n→∞

‖T n
k ‖

1/n = lim
n→∞

(

n
∏

i=1

2i+ 2

2i− 1

)1/n

= 1.

The limit is found by applying the logarithm to the sequence and using Cesàro lemma. �

The following result shows that even if we are in the critical regime, the maximal equi-
librium g∗ is not equal to 0 everywhere, and there exists infinitely many distinct equilibria.
For α ∈ [0, 1], we define the function g∗α on N

∗ by g∗α(1) = α and for n ∈ N
∗:

g∗α(n+ 1) =

{

2n−1
2n+2

g∗α(n)
1−g∗α(n)

if g∗α(n) < 1,

0 if g∗α(n) ≥ 1.

Proposition 4.16. Let κ be defined by (57), k be its density and γ = 1.

(i) The equilibria of Equation (3) are { g∗α : α ∈ [0, 1/2] }.
(ii) The function α 7→ g∗α defined on [0, 1/2] and taking values in ∆ ⊂ L ∞ is increasing

and continuous (with respect to ‖·‖). In particular, the set of equilibria is totally
ordered, compact and connected.

(iii) The equilibrium g∗1/2 is the maximal equilibrium. We have that g∗1/2(n) = 1/(2n)

for n ∈ N
∗.

Proof. We first explicit g∗1/2 and prove property (ii). Let Γ denote the function α 7→ g∗α
defined on [0, 1/2] and taking values in L ∞. By definition of g∗α, it is immediate that
g∗1/2(n) = 1/(2n) and g∗0(n) = 0 for n ∈ N

∗. Using that the function x 7→ λx/(1 − x) is
increasing on [0, 1) for all λ > 0, we deduce by induction that 0 ≤ g∗α(n) < g∗β(n) ≤ g∗1/2(n)

for all 0 ≤ α < β ≤ 1/2 and n ∈ N
∗. This implies that the function Γ. As g∗0 and g∗1/2

belong to ∆, we deduce that Γ takes values in ∆ by monotonicity. It is also immediate to
check that the function Γ is continuous for the pointwise convergence in ∆. Then using
that limn→∞ supα∈[0,1/2] g

∗
α(n) = limn→∞ g∗1/2(n) = 0, we deduce the function Γ is also

continuous with respect to the uniform convergence in ∆. This proves property (ii).

We prove property (i). It is clear that if h∗ is an equilibrium, then h∗(n) < 1 for all
n ∈ N

∗ thanks to Remark 2.18 and by the definition of the kernel κ that:

(58) h∗(n+ 1) =
2n− 1

2n+ 2

h∗(n)

1− h∗(n)
for all n ∈ N

∗.

This readily implies that g∗α is an equilibrium for α ∈ [0, 1/2] as, in this case, g∗α(n) ≤
g∗1/2(n) = 1/(2n) and g∗α solves (58). As g∗1(1) = 1, we also get that g∗1 is not an equilibrium.

Let α ∈ (1/2, 1). We shall now prove by contradiction that there exists n ∈ N
∗ such

that g∗α(n) ≥ 1. Let us assume that g∗α(n) < 1 for all n ∈ N
∗. Arguing as in the first part
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of the proof, we get g∗α(n) > g∗1/2(n) for all n ∈ N
∗. Thus the sequence v = (vn : n ∈ N

∗)

with vn = 2ng∗α(n) satisfies the following recurrence for n ∈ N
∗:

vn+1 = vn
2n− 1

2n − vn
and 1 < vn < 2n.

We deduce that the sequence v is increasing, and thus vn+1 ≥ vn
2n−1
2n−2α , as v1 = 2α.

We deduce that vn ≥ c nα−1/2 for some positive constant c. This in turn implies that
vn+1 ≥ vn

2n−1
2n−c nα−1/2 and thus vn ≥ c′ exp(c′′nα−1/2) for some positive constants c′ and c′′.

This contradicts the fact that vn < 2n for n ∈ N
∗. As a conclusion, there exists n ∈ N

∗

such that g∗α(n) ≥ 1. This implies that g∗α can not be an equilibrium. This ends the proof
of property (i).

We have already computed g∗1/2. We deduce from properties (i) and (ii) that g∗1/2 is the
maximal equilibrium. �

Since k is upper-triangular, the long-time behavior of the dynamic does not depend
on the first terms of the initial condition. Indeed, for n ≥ 2, consider the subspace
En = { g ∈ L ∞ : g(p) = 0 for 1 ≤ p < n } of functions whose first n − 1 terms are 0.
Denote by Pn the canonical projection from L ∞ on En. For n ≥ 2 and g ∈ ∆, we have:

(59) Pnφ(t, g) = Pn (φ(t, Pn(g))) .

Let us introduce a new partial order � defined by g � h if there exists n ≥ 2 such that
Pn(g) ≤ Pn(h). We have the following result.

Proposition 4.17. For all g ∈ ∆, we have:

g∗α−
≤ lim inf

t→∞
φ(t, g) ≤ lim sup

t→∞
φ(t, g) ≤ g∗α+

with
α− = max {α : g∗α � g } and α+ = min {α : (g ∧ g∗1/2) � g∗α } .

Proof. Using (59), it is easy to check that limt→+∞ φ(t, Png
∗
α) = g∗α for n ≥ 2. Using that

the flow is order preserving, we get that if g∗α � g � g∗β for some 0 ≤ α ≤ β ≤ 1/2, then:

g∗α ≤ lim inf
t→∞

φ(t, g) ≤ lim sup
t→∞

φ(t, g) ≤ g∗β .

The result then follows from the continuity and the monotonicity of α 7→ g∗α (for α ∈
[0, 1/2]) and that g∗1/2 is the maximal equilibrium (see Proposition 4.16). �

4.6. Uniform convergence. In Sections 4.3 and 4.4, we have obtained results about
pointwise convergence toward the equilibrium g∗. The next result implies in particular
that this convergence is uniform if inf γ > 0. (See the stronger result from Theorem 4.6 in
the sub-critical case, where the uniform convergence is exponentially fast.)

Theorem 4.18. Suppose that Assumption 1 and 2 are in force and let A ∈ F . If γ is
bounded away from 0 on A, that is:

inf
x∈A

γ(x) > 0,

then, for g ∈ ∆, with positive integral if g∗ 6= 0, we have:

lim
t→∞

sup
x∈A

|φ(t, g)(x) − g∗(x)| = 0.
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Proof. Set m = inf
x∈A

γ(x). For s ∈ R+, we have:

∂t(φ(s, 1) − g∗) = F (φ(s, 1)) − F (g∗)

≤ (1− φ(s, 1))Tk(φ(s, 1)− g∗)− γ(φ(s, 1) − g∗)

≤ Tk(φ(s, 1) − g∗)− γ(φ(s, 1) − g∗)

≤M ‖φ(s, 1)− g∗‖p − γ(φ(s, 1) − g∗),

where we used that Tk is positive for the second inequality and Hölder inequality for the
last with M = sup

x∈Ω

(∫

Ω k(x, y)
q µ(dy)

)1/q
< ∞. For s ∈ R+, set vs = ems(φ(s, 1) − g∗).

Notice that vs ≥ 0 and that ∂tvs(x) ≤ M ‖vs‖p for x ∈ A. Integrating for s ∈ [0, t], we
deduce that for x ∈ A:

0 ≤ (φ(t, 1) − g∗)(x) ≤ e−mt(1− g∗) +M

∫ t

0
e−m(t−s)‖φ(s, 1) − g∗‖p ds

≤ e−mt +M

∫ t

0
e−ms‖φ(t− s, 1)− g∗‖p ds.

Note the right hand-side does not depend on x. As φ(s, 1) converges pointwise to g∗ (see
Equation (31)) and is bounded by 1, using the dominated convergence theorem, we deduce
that the right hand-side goes to 0 as t goes to infinity. So, we obtain that:

(60) lim
t→+∞

sup
x∈A

|φ(t, 1)(x) − g∗(x)| = 0.

If g∗ = 0, use that 0 ≤ φ(t, g) ≤ φ(t, 1) for all g ∈ ∆ and t ∈ R+ to conclude.

If g∗ is non zero (which corresponds to the super-critical case), consider a function f ≤ g
with positive integral such that f ≤ g∗. By monotonicity of the flow, this implies that
0 ≤ g∗ − φ(s, f) for all s ∈ R+. Arguing similarly as above, we get for s ∈ R+:

∂t(g
∗ − φ(s, f)) ≤M ‖g∗ − φ(s, f)‖p − γ(g∗ − φ(s, f)).

Using that φ(s, f) converges pointwise to g∗ (see Theorem 4.14), we similarly get that

(61) lim
t→+∞

sup
x∈A

|φ(t, f)(x)− g∗(x)| = 0.

Then, use the monotonicity of the flow which implies that φ(t, f) ≤ φ(t, g) ≤ φ(t, 1) for
f ≤ g ≤ 1 as well as (60) and (61) to conclude. �

5. Vaccination model

5.1. Infinite-dimensional models. We write an infinite-dimensional model that take
into account the heterogeneity in the transmission of the infectious disease in the spirit of
(3) which generalizes Equations (13) and (14) and take into account a family of different
vaccines. Recall that the measurable space (Ω,F ) represents the features of the individuals
in a given population, the finite measure µ describes the size of the population and its sub-
groups, and the number γ(x) is the recovery rate of individuals with feature x ∈ Ω. The
transmission kernel κ describes the way the disease is spread among the population without
vaccination.

Suppose that we have different vaccines or treatments available that we can give to
individuals in order to fight the disease upstream. The set of vaccines is represented by
a set Σ which is finite in practice. We endow Σ with a σ-field G . We are also given two
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measurable functions e, δ : Ω × Σ → [0, 1]. For both models, the number δ(x, ξ) is the
relative reduction of infectiousness for people with feature x vaccinated by the vaccine
ξ. The coefficient e(x, ξ) is the efficacy of vaccine ξ given on individuals with feature x.
In Σ there is a particular type of vaccines ξ0 which is the absence of vaccination. This
vaccination has no efficacy upon the individuals: e(x, ξ0) = 0 and δ(x, ξ0) = 0 for all x ∈ Ω.
We define a vaccination policy as a non-negative kernel η : Ω×G → [0, 1]. The probability
for an individual with feature type x to be vaccinated by a vaccine in the measurable set
A ∈ G under the policy η is equal to η(x,A). The recovery rate can be affected by the
vaccine, and in this case γ is then a non-negative measurable function defined on Ω × Σ,
with γ(x, ξ) the recovery rate of individuals with feature x and vaccine ξ. The number
u(t, x, ξ) is the probability for an individual with feature x which has been inoculated by
the vaccine ξ to be infected at time t. The total number of infected individuals at time t
is therefore given by:

(62)
∫

Ω×Σ
u(t, x, ξ) η(x,dξ)µ(dx).

5.1.1. The leaky vaccination mechanism. In this setting, e(x, ξ) denotes the leaky vaccine
efficacy of ξ ∈ Σ on an individual with feature x, i.e., the relative reduction in the transmis-
sion rate. We generalize Equation (13) to get the following infinite dimensional evolution
equation:

(63) ∂tu(t, x, ξ) = −γ(x, ξ)u(t, x, ξ)

+ (1− u(t, x, ξ))(1 − e(x, ξ))

∫

Ω×Σ
(1− δ(y, ζ))u(t, y, ζ)κ(x,dy)η(y,dζ).

The evolution Equation (63) can be seen as the SIS evolution Equation (3) with:

- feature x = (x, ξ) and feature space Ω = Ω× Σ endowed with the σ-field F ⊗ G ,
- recovery rate: γ(x) = γ(x, ξ),
- transmission kernel:

(64) κ
a(x,dy) = (1− e(x, ξ))(1 − δ(y, ζ))κ(x,dy)η(y,dζ).

Remark 5.1. In the leaky mechanism, we suppose that the vaccine acts directly on the
susceptibility and the infectiousness of the individuals. Protective gears (like respirators
or safety glasses) which are designed to protect the wearer from absorbing airborne mi-
crobes or transmitting them have a similar effect. Hence, Equation (63) is not limited to
vaccination and can also be used as a model for distribution of equipment in the population.

5.1.2. The all-or-nothing mechanism. In this setting, e(x, ξ), is defined as the probability
to immunize completely the individual with feature x to the disease with vaccine ξ. We
generalize Equation (14) to get the following infinite dimensional evolution equation:

(65) ∂tu(t, x, ξ) = −γ(x, ξ)u(t, x, ξ)

+ (1− e(x, ξ) − u(t, x, ξ))

∫

Ω×Σ
(1− δ(y, ζ))u(t, y, ζ)κ(x,dy)η(y,dζ).

The probability v(t, x, ξ) = u(t, x, ξ)/(1 − e(x, ξ)) for an individual with feature x which
has not been vaccinated by the inoculation of vaccine ξ to be infected at time t satisfies
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the following equation:

(66) ∂tv(t, x, ξ) = −γ(x)v(t, x, ξ)

+ (1− v(t, x, ξ))

∫

Ω×Σ
(1− δ(y, ζ))v(t, y, ζ)(1 − e(y, ζ))κ(x,dy)η(y,dζ).

The evolution Equation (66) can be seen as the SIS evolution Equation (3) with:
- feature x = (x, ξ) and feature space Ω = Ω× Σ endowed with the σ-field F ⊗ G ,
- recovery rate: γ(x) = γ(x, ξ),
- transmission kernel:

(67) κ
ℓ(x,dy) = (1− e(y, ζ))(1 − δ(y, ζ))κ(x,dy)η(y,dζ).

Notice the difference between the evolution Equation (63) for leaky mechanism and the
evolution Equation (66) for the all-or-nothing mechanism is that e(y, ζ) in (66) (or in the
kernel κa from (67)) is replaced by e(x, ξ) in (63) (or in the kernel κℓ from(64)).

5.2. Discussion on the basic reproduction number. Suppose that Assumption 1 is
in force. Then, we can define a new basic reproduction number for the vaccination models.
We consider the following bounded operators on L ∞(Ω× Σ):

T (g)(x, ξ) =

∫

Ω×Σ
(1− δ(y, ζ))g(y, ζ)

κ(x,dy)

γ(y, ζ)
η(y,dζ),

M(g)(x, ξ) = (1− e(x, ξ))g(x, ξ).

Following Section 4.1, the all-or-nothing vaccination reproduction number Ra
0(η) associated

to Equation (66) and vaccine policy η is:

(68) Ra
0(η) = r(TM).

where we recall that r stands for the spectral radius. For the leaky vaccination, the basic
reproduction number associated to Equation (63) and vaccine policy η is:

(69) Rℓ
0(η) = r(MT ).

In [53], the authors already remarked that the two vaccination mechanisms actually leads
to the same basic reproduction number for the one-group models. This result also holds in
the infinite-dimension SIS model. Notice that Assumption 1 insures that those two basic
reproduction numbers are well defined.

Proposition 5.2. We assume Assumption 1 holds. Let η be a vaccination policy. The basic
reproduction number for the leaky vaccination and the for the all-or-nothing vaccination
are the same:

Rℓ
0(η) = Ra

0(η).

Proof. Thanks to the definition of the spectral radius (34) and the basic reproduction
numbers defined in (68) and (69), the result is a direct consequence of the following equality
on the spectra:

σ(MT ) ∪ { 0 } = σ(TM) ∪ { 0 } .

We prove this later equality by following [48, Appendix A1]. Let λ ∈ C\(σ(MT ) ∪ { 0 }).
By definition, there exists a bounded operator A on L ∞(Ω× Σ) such that:

A(λId−MT ) = (λId−MT )A = Id,
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where Id is the identity operator. Then, one can check easily that λ−1(Id + TAM) is the
inverse of λId − TM , whence λ ∈ C\(σ(TM) ∪ { 0 }). This gives that σ(TM) ∪ { 0 }) ⊂
σ(MT ) ∪ { 0 }). The other inclusion is proved similarly. �

5.3. The perfect vaccine. The most simplistic case is a situation where there is only
one vaccine with complete efficacy on every individuals: Σ = { ξ0, ξ1 } with e(x, ξ1) = 1
and δ(x, ξ1) = 1 for all x ∈ Ω. Recall that ξ0 corresponds to the absence of vaccine.
For simplicity, we denote by η0(x) = η(x, { ξ0 }) the probability for or the proportion of
individuals of type x ∈ Ω which are not vaccinated. We assume for simplicity that initially
no vaccinated individuals are infected, that is u(0, x, ξ1) = 0. Since individuals that have
been vaccinated are fully immunized, we have u(t, x, ξ1) = 0 for all x and t. The only
equation that matter is the one on u0(t, x) = u(t, x, ξ0) which represents the proportion of
unvaccinated individuals that are infected. For both mechanisms (all-or-nothing and leaky
vaccination), the evolution equation of u0 writes:

(70) ∂tu
0(t, x) = (1− u0(t, x))

∫

Ω
u0(t, y)η0(y)κ(x,dy)− γ(x)u0(t, x).

We shall use this formulation in a future work to find optimal vaccination policies for a
given cost.

6. Limiting contacts within the population

Motivated by the recent lockdown policies taken by many countries all around the world
to slow down the propagation of Covid-19 in 2020, we propose to investigate the possible
impact on our SIS model of the limitations of contacts within the population. We consider
the case where κ takes the form of Example 1.3:

κW (x,dy) = β(x)W (x, y)θ(y)µ(dy),

where β is the susceptibility function, θ is the infectiousness function, µ is a probability
measure on the space Ω of features of the individuals and the graphon W represents the
initial graph of the contacts between individuals of the population (recall that W (x, y) =
W (y, x) ∈ [0, 1] is the probability that x and y are connected and can be also seen as
the density of contact between the individuals with features x and y). In order to stress
the dependence in W , we write R0(W ) = r(TκW /γ) the corresponding basic reproduction
number and φW the semi-flow (28) associated to F = FW in (24) given by FW (g) =
(1− g)TκW

(g)− γg. We model the impact of a policy which reduces the contacts between
the individuals, by a new graph of contact given by a new graphon W ′. We say that W ′

is a perfect lockdown with respect to W if:

(71) W ′(x, y) ≤W (x, y), ∀x, y ∈ Ω.

Intuitively x and y have a lesser probability to be connected in the graphon W ′ than in
the graphon W . We get the following intuitive result as a direct application of Theorem
3.2 (i) and Corollary 2.6.

Proposition 6.1 (Perfect Lockdown). Assume that β and θ are bounded and γ is bounded
away from 0. If W ′ is a perfect lockdown with respect to W then R0(W

′) ≤ R0(W ) and
φW ′(t, g) ≤ φW (t, g) for all initial condition g ∈ ∆.
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However, assuming that all the contacts within the population are reduced might be
unrealistic (e.g. people can have stronger contacts with their family in lockdown). Instead,
we can suppose as a weaker condition, that each individual reduces the average number of
contacts he has. Recall (6) for the definition of the degree degW (x) of an individual x ∈ Ω
(i.e. the average number of his contacts) and the mean degree dW over the population for
a graphon W . as:

degW (x) =

∫

Ω
W (x, y)µ(dy) and dW =

∫

Ω
degW (x)µ(dx) =

∫

Ω2

W (x, y)µ(dy)µ(dx).

Recall that ‖·‖1 is the usual L1(µ) norm. The following lemma bounds the basic repro-
duction number with the supremum and the mean degree of the graphon.

Lemma 6.2. Let W be a graphon. Assume that β and θ/γ are bounded. We have that:

(72)
1

‖γ/βθ‖1
dW ≤ R0(W ) ≤ ‖βθ/γ‖ sup

x∈Ω
degW (x).

Proof. Recall Tk is the operator defined by (22) with κ(x,dy) = k(x, y)µ(dy). Let M(v)
be the operator corresponding to the multiplication by the function v. We have:

R0(W ) = r(M(β)TW M(θ/γ))

= r(M(βθ/γ)TW )

≤ ‖M(βθ/γ)TW ‖

= sup
x∈Ω

β(x)θ(x)

γ(x)

∫

Ω
W (x, y)µ(dy)

≤ ‖βθ/γ‖ sup
x∈Ω

degW (x),

where we used the definition of the basic reproduction number (12) for the first equal-
ity, arguments similar as in the proof of Proposition 5.2 for the second, and the (third)
definition of the spectral radius (34) for the first inequality.

Using similar arguments, we have:

R0(W ) = r(M(β)TW M(θ/γ)) = r (M(v)TW M(v)) ,

with v =
√

βθ/γ. Recall notations from Lemma 3.4, and notice that M(v)TW M(v) =
Tk is a bounded integral operator on L ∞ associated to the symmetric kernel k(x, y) =

v(x)W (x, y)v(y). According to Lemma 3.4 (iv) with q = p = 1/2 and T̂k the integral
operator on L2(µ) with the same kernel k, defined in (38), we get R0(W ) = r(T̂k). The
operator T̂k is self-adjoint, as k is symmetric, and compact according to (iii). Thanks to
the Courant-Fischer-Weyl min-max principle, we obtain:

R0(W ) = r(T̂k) = sup
g∈L2(µ)\{ 0 }

〈M(v) g, TW M(v) g〉

〈g, g〉
·

Taking g = 1/v, we get M(v)g = 1 and thus:

R0(W ) ≥
〈1, TW 1〉

‖γ/βθ‖1
=

dW
‖γ/βθ‖1

·

This ends the proof of Lemma 6.2. �
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We deduce from Lemma 6.2 the following result for a lockdown policy W ′ for which the
degree of each individuals is less than the average degree of the initial graphon W .

Corollary 6.3 (Partial Lockdown). Assume that β and θ/γ are bounded. If W ′ is a partial
lockdown of W , that is:

(73) sup
x∈Ω

degW ′(x) ≤ CdW with C =
1

‖βθ/γ‖ ‖γ/βθ‖1
,

then we have R0(W
′) ≤ R0(W ).

In the general case, we have C ≤ 1. But, if the functions β, θ and γ are constants (or
simply if βθ/γ constant), then we have C = 1 since µ is a probability measure.

Remark 6.4. Suppose that β, θ and γ are constants (or that βθ/γ is constant). Inequality
(72) shows that the graphon W which corresponds to a minimal basic reproduction number
R0(W ), when the mean degree dW is fixed, say equal to p, is any graphon with constant
degree equal to p, that is degW (x) = p for all x ∈ Ω. We then deduce from Lemma 6.2
that R0(W ) = pβθ/γ.

This is in particular the case for the constant graphon W = p ∈ [0, 1]. According to
Example 1.2(i), this corresponds to the one dimensional SIS model (1).

This is also the case for the geometric graphon, where the probability of edges between
x and y depends only on the distance between x and y. Keeping notations from Example
1.2(iii), we consider the population uniformly spread on the unit circle: Ω = [0, 2π] and
µ(dx) = dx/2π, and the graphon Wf defined by Wf (x, y) = f(x − y) for x, y ∈ Ω,
where f is a measurable non-negative function defined on R which is bounded by 1 and
2π-periodic. Let p = (2π)−1

∫

[0,2π] f(y) dy. We have: degW (x) = dW = p; the basic
reproduction number R0(Wf ) = pβθ/γ and the maximal equilibrium g∗ = max(0, 1 −

R−1
0 ). Furthermore, the graphon Wf minimizes the basic reproduction number among all

graphons with mean degree p. It is interesting to notice that R0(Wf ) does not depend on
the support of f or even on sup{|r| : r ∈ [−π, π] and f(r) > 0}, which can be seen as the
maximal contamination distance from an infected individual.

Appendix A. Proofs of the results of Theorem 2.5 and Corollary 2.6

Let X be a Banach space. For x ∈ X and D ⊂ X, we denote by ρ(x,D) the distance
between x and the set D:

(74) ρ(x,D) = inf
y∈D

‖x− y‖.

Let a > 0 and G : [0, a) ×X → X be a locally Lipschitz function with respect to the
second variable. Recall Definition 2.4 of a forward invariant set with respect to G. The
following result appears in [11, Theorem 5.2].

Lemma A.1. Let D be a closed convex set with non-empty interior. Suppose that G
satisfies:

(75) lim
λ→0+

1

λ
ρ(x+ λG(t, x),D) = 0, ∀(t, x) ∈ (0, a) × ∂D.

Then D is forward invariant with respect to G.
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If the set D is a proper cone with non-empty interior, the following equivalence enables
to establish (75) more easily. It is a consequence of [11, Lemma 4.1] and [11, Example 4.1.ii]

Lemma A.2. Let K be a proper cone and let x ∈ ∂K and z ∈ X. The following conditions
are equivalent:

(i) lim
λ→0+

λ−1 ρ(x+ λz,K) = 0.

(ii) For all x⋆ ∈ K⋆ such that 〈x⋆, x〉 = 0, we have 〈x⋆, z〉 ≥ 0.

Thanks to these two lemmas, we give the demonstration of the result of forward invari-
ance of Section 2.1:

Proof of Theorem 2.5. Let y ∈ X. We assume that, for all (x, t) ∈ ∂K × [0, a) and for all
x⋆ ∈ K⋆ such that 〈x⋆, x〉 = 0, we have: 〈x⋆, G(t, y + x)〉 ≥ 0. According to Lemma A.2,
we obtain:

lim
λ→0+

λ−1 ρ(x+ λG(t, y + x),K) = 0,

for all (x, t) ∈ ∂K × [0, a). Since ρ(y + x+ λG(t, y + x), y +K) = ρ(x+ λG(t, y + x),K)
by Equation (74), we can conclude the proof using Lemma A.1 with D = y +K. �

We end this section with the proof of the comparison theorem.

Proof of Corollary 2.6. We suppose that F is cooperative on D1 ×X and the inequality
(20) holds. Let w = v − u. The function w is solution of the ODE w′ = G(t, w) where:

G(t, x) = F (u(t)+x)−F (u(t))+ d(t) and d(t) = v′(t)−F (v(t))−u′(t)+F (u(t)).

First we show that G is locally Lipschitz with respect to the second variable. Let (t, x) ∈
[0, a) × X. Let U be a neighborhood of u(t) + x such that F is Lipschitz on U with a
Lipschitz constant L. By continuity of u, there exist a neighborhood Vx of x and a positive
constant η, such that u(s) + y ∈ U , for all s ∈ [t, t + η] ∩ [0, a) and y ∈ Vx. Thus, for all
s ∈ [t, t+ η] ∩ [0, a) and y, z ∈ Vx, we have ‖G(s, y)−G(s, z)‖ ≤ L‖y − z‖.

Let t ∈ [0, a), x ∈ ∂K and let x⋆ ∈ K⋆ such that 〈x⋆, x〉 = 0. Let us prove that
〈x⋆, G(t, x)〉 ≥ 0. By (20), we know that d(t) belongs to K. Furthermore, the inequality
〈x⋆, F (u(t) + x)− F (u(t))〉 ≥ 0 holds because the function F is cooperative on D1 × X.
Thus, 〈x⋆, G(t, x)〉 is non-negative. Hence, we can apply Theorem 2.5 with y = 0 and
obtain that K is forward invariant with respect to G. Since w(0) ∈ K, this shows that
w(t) ∈ K for all t ∈ [0, a), i.e., u(t) ≤ v(t) for all t ∈ [0, a).

When F is cooperative on X ×D2, the proof is similar. �

Appendix B. The Hausdorff distance on the compact sets of C

Let K(C) be the set of non-empty compact subsets of C. The Hausdorff distance between
A and B in K(C) is defined as:

(76) dH(A,B) = max

{

sup
z1∈A

inf
z2∈B

|z1 − z2|, sup
z2∈B

inf
z1∈A

|z2 − z1|

}

.

We recall that the space (K(C), dH) is a metric space, see [8, Section 7.3.1]. Since
sup { |z| : z ∈ A } = dH(A, { 0 }) for all A ∈ K(C), we deduce the following result.

Lemma B.1. The map A 7→ sup { |z| : z ∈ A } from (K(C), dH) to R endowed with the
usual Euclidean distance is continuous.
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