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Abstract

We consider the Riemannian random wave model of Gaussian linear combinations of
Laplace eigenfunctions on a general compact Riemannian manifold. With probability one
with respect to the Gaussian coefficients, we establish that, both for large band and monochro-
matic models, the process properly rescaled and evaluated at an independently and uniformly
chosen point X on the manifold, converges in distribution under the sole randomness of X to-
wards an universal Gaussian field as the frequency tends to infinity. This result is reminiscent
of Berry’s conjecture and extends the celebrated central limit Theorem of Salem–Zygmund
for trigonometric polynomials series to the more general framework of compact Riemannian
manifolds. We then deduce from the above convergence the almost-sure asymptotics of the
nodal volume associated with the random wave. To the best of our knowledge, these asymp-
totics were only known in expectation and not in the almost sure sense due to the lack of
sufficiently accurate variance estimates. This in particular addresses a question of S. Zelditch
regarding the almost sure equidistribution of nodal lines.
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1 Introduction and main results

1.1 Introduction

The central limit theorem by Salem and Zygmund [30] asserts that, when properly rescaled
and evaluated at a uniform random point on the circle, a generic real trigonometric polynomial
converges in distribution towards a Gaussian random variable. This classical result was recently
revisited in [3] where the authors established both a quantitative version and a functional version
of Salem–Zygmund theorem and then use these results to deduce the almost sure asymptotics
of the number of zeros of random trigonometric polynomials with symmetric coefficients. The
goal of the present article is to extend the latter results to the general Riemannian framework
and more particularly to the so-called Riemannian random wave model, where random trigono-
metric polynomials are naturally replaced by random, Gaussian, linear combinations of Laplace
eigenfunctions.

The study of nodal sets associated with Laplace eigenfunctions is the object of a vast liter-
ature, in particular thanks to Yau’s conjecture, see [33, 13] and [27, 25, 26] for recent break-
throughs. The introduction of probabilistic models in this context has numerous motivations
among which quantum chaos heuristics [35] and Berry’s conjecture [8], which roughly states
that under the hypothesis of a chaotic geodesic flow, a Laplace eigenfunction of high energy
statistically behaves like a universal Euclidean random wave. The most common probabilistic
model then consists in considering random linear combinations of Laplace eigenfunctions, whose
coefficients are independent and identically distributed standard Gaussian variables, see for in-
stance [29], [32] in the case of toral and spherical harmonics or [34] for the case of a general
Riemannian manifold.

The literature then covers the asymptotics behavior of natural geometric observables asso-
ciated with the nodal sets, such as their volume, their number of connected components [31]
and other topological invariants, see [15] or [24]. Note that most of these results concerns the
asymptotics of such quantities in expectation, sometimes accompanied with concentration esti-
mates, e.g. variance estimates. To the best of the author’s knowledge, there aren’t any results
concerning the almost sure asymptotics of random nodal sets on general Riemannian manifolds
(without extracting a subsequence of eigenvalues), which is precisely the object of this paper.

Indeed, we consider here a generic Gaussian combination of Laplace eigenfunctions and
this combination being fixed, we evaluate it at a uniform and independent random point on
the manifold. Under the sole randomness of this evaluation point, we then prove that when
properly normalized and localized in the neighboring of the point, the random field statistically
converges towards an explicit universal Euclidean random wave, see Section 2 below for precise
statements. This result is thus in line with Berry’s conjecture and generalizes Salem–Zygmund’s
central limit theorem to the Riemannian framework. Our method is inspired by [3] and makes
a crucial use of Weyl type estimates and some decorrelation estimates of the limit field.

Starting from a stochastic representation formula of the nodal volume, in the spirit of Bour-
gain’s derandomization technique [9, 10], we then deduce from the above convergence, the almost-
sure asymptotics of the nodal volume of a Riemannian random wave to an explicit universal
limit. This last result answers question raised by S.Zelditch in [34] about the almost sure con-
vergence of random nodal measure. Moreover, it allows to recover and reinforce the asymptotics
in expectation obtained so far in the literature, see e.g. [24, 12]. Note that our approach is only
based upon the almost sure convergence in distribution of the random field and some uniform
moment bounds, and it does not require any variance nor concentration estimates.
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1.2 Geometric and probabilistic setting

In order to state our main results, let us describe the geometric and probabilistic contexts and
fix our notations.

1.2.1 Geometric setting

Let (M, g) be a closed, compact manifold without boundary of dimension d. Without loss of
generality we will assume that the associated volume measure µ is normalized i.e. µ(M) = 1.
It is naturally equipped with the Laplace–Beltrami operator denoted ∆. The second order
differential operator ∆ is autoadjoint and has compact resolvent. Spectral theory asserts the
existence of an orthonormal basis (ϕn)n∈N of eigenfunctions of ∆ associated to the eigenvalues
(−λ2

n)n∈N (ordered and indexed with multiplicity). For all n ∈ N,

∆ϕn = −λ2
nϕn and

∫

M
ϕ2

ndµ = 1.

Given x, y ∈ M and λ ∈ R+, we define

Kλ(x, y) =
∑

λn≤λ

ϕn(x)ϕn(y) and Kλ(x) :=
∑

λn≤λ

ϕ2
n(x),

the two-point spectral kernel projector on the eigenspace generated by the eigenfunctions up to
order λ. Integrating the function x 7→ Kλ(x) on M we obtain

K(λ) := Card {n ∈ N | λn ≤ λ} =
∫

M
Kλ(x)dµ(x),

the eigenvalue counting function. A fundamental tool in spectral analysis is the local Weyl law,
first proved by Hörmander in [17]. It describes the precise asymptotics of the two-point spectral
projector. Let σd be the volume of the unit ball in R

d:

σd =
πd/2

Γ
(

d
2 + 1

) ,

and define for x ∈ R
d the function

Bd(‖x‖) :=
1
σd

∫

|ξ|≤1
ei〈x,ξ〉dξ.

It is well-defined since the right-hand since is invariant by rotation. The local Weyl law asserts
that uniformly on x, y ∈ M,

Kλ(x, y) =
σd

(2π)d
λdBd(λ. dist(x, y)) + O(λd−1). (1)

The limit kernel Bd only depends on the dimension d. It is related to the Bessel function of the
first kind J by the formula

Bd(‖x‖) =
1
σd

(
2π

‖x‖

)d/2

J d
2
(‖x‖).

The result of Hörmander goes beyond since the Weyl asymptotics is also true in the C∞ topology.
For an arbitrary number of derivatives in x and y, one has

∂α,βKλ(x, y) =
σd

(2π)d
λd∂α,β [Bd(λ. dist(x, y))] + O(λd+α+β−1), (2)
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and the remainder is also uniform and x and y. Taking x = y in the local Weyl law, one gets
the following classical Weyl law on the number of eigenvalues of magnitude lower than λ:

Kλ(x) =
σd

(2π)d
λd + O(λd−1) and K(λ) =

σd

(2π)d
λd + O(λd−1), (3)

from which one can deduce a first-order asymptotics for the n-th eigenvalue given by

λn ≃ 2π

(
n

σd

)1/d

. (4)

The remainder in the Weyl law is a widely discussed topic and can be improved in many cases,
see the general survey [21]. In the torus case T

2, it is the famous Gauss circle problem which is
deeply intertwined with number theory, see [18] or [19] for a general survey. The remainder is
sharp for the d-sphere, where the eigenvalues are explicit, see [32]. Under the hypotheses that
the geodesics are almost surely aperiodic (see [20] for a precise statement), the remainder in
Weyl law (3) is in fact a o(λd−1), which implies the following finer asymptotic:

k(λ) := Card {n ∈ N | λn ∈ [λ, λ + 1]} =
σd

(2π)d
dλd−1 + o(λd−1).

Along the same lines, under some geodesic conditions on M defined in [11] and [12] (which
roughly states that almost-surely, a geodesic never return to its starting point), the authors
proved a finer remainder for the local Weyl Law in the C∞ topology. We define

kλ(x, y) :=
∑

λn∈[λ,λ+1]

ϕn(x)ϕn(y),

the two-point spectral kernel projector on the eigenspace generated by the eigenfunctions asso-
ciated with eigenvalues between λ and λ + 1, and

Sd : ‖x‖ 7→ 1
dσd

∫

|ξ|=1
ei〈x,ξ〉dξ = Bd−2(‖x‖).

One has the following asymptotics, valid in the C∞ topology:

kλ(x, y) =
σd

(2π)d
dλd−1Sd(λ. dist(x, y)) + o(λd−1), (5)

and the remainder is uniform in x, y ∈ M (we refer to [12] for a thorough discussion on the
required hypotheses for (5) to hold true).

1.2.2 Probabilistic models

Let us now describe our main probabilistic models, classically known as the (large band) Rie-
mannian random wave model and monochromatic (or band-limited) Riemannian random wave
model. Let us consider (an)n≥0 a sequence of independent and identically distributed standard
Gaussian random variables on a probability space (Ω, F ,Pa). We will denote by Ea the as-
sociated expectation. The two models are defined as the following Gaussian combination of
eigenfunctions:

fλ : x 7→ 1√
K(λ)

∑

λn≤λ

anϕn(x) and f̃λ : x 7→ 1√
k(λ)

∑

λn∈]λ,λ+1]

anϕn(x).

In the monochromatic regime, we will always assume that the manifold M is chosen such that
the asymptotic estimate (5) is satisfied uniformly on x, y ∈ M. This condition implies that
d ≥ 2, and we will use this fact in the proofs. We could also have introduced an intermediate
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band regime, see for instance [7], for which λn ∈]αλ, λ] and α ∈ [0, 1[, but for the simplicity of
the statements, we choose to focus on the two “extreme” cases defined above. These processes
give a probabilistic interpretation of the projector kernels introduced above since they coincide
with the covariance kernel of theses processes. For all x, y ∈ M we have indeed

Ea[fλ(x)fλ(y)] =
Kλ(x, y)

K(λ)
and Ea[f̃λ(x)f̃λ(y)] =

kλ(x, y)
k(λ)

.

Consider the canonical Euclidean space R
d . For all x ∈ M we define

Ix : Rd −→ TxM,

an isometry between R
d and the tangent space at x. We only require the mapping x 7→ Ix to be

measurable. For the torus T
d we can choose for Ix the canonical isometry, but in all generality

there is no canonical choice (nor even a continuous choice) of a family (Ix)x∈M. Denoting expx

the Riemannian exponential based at x ∈ M we define

Φx := expx ◦Ix.

This map allows us to define a rescaled and flattened version of fλ and f̃λ (or any function on
M) around some point x ∈ M by setting

gx
λ : R

d −→ R g̃x
λ : R

d −→ R

v −→ fλ

[
Φx

(
v

λ

)]
v −→ f̃λ

[
Φx

(
v

λ

)]
.

In the literature the processes gx
λ and g̃x

λ have already been studied, see for instance [7, 12, 34].
Thanks to the Weyl law, they converge in distribution (at a fixed point x) towards an isotropic
Gaussian process whose covariance function is given by the function Bd and Sd respectively. In
particular the limit process only depends on the topological dimension d and is independent of
the base manifold M.

Let us now consider a random variable X, which is equidistributed on the manifold M
and independent of the coefficients sequence (an)n≥0. For consistency, we denote by PX the
(uniform) distribution of X and EX the associated expectation. Randomizing on the spatial
parameter x we define the following processes on R

d :

gX
λ : v 7→ fλ

(
ΦX

(
v

λ

))
and g̃X

λ : v 7→ f̃λ

(
ΦX

(
v

λ

))
, v ∈ R

d. (6)

1.3 Statement of the results and outline of the proofs

The first main result of the article is the following functional central limit theorem which gener-
alizes [3, Thm. 3] to the case of a general compact Riemannian manifold.

Theorem 1.1. Almost surely with respect to the probability Pa, the two processes (gX
λ (v))v∈Rd

and (g̃X
λ (v))v∈Rd converge in distribution under PX with respect to the C∞ topology, towards

isotropic Gaussian processes (g∞(v))v∈Rd and (g̃∞(v))v∈Rd with respective covariance func-
tions

EX [g∞(u)g∞(v)] = Bd(‖u − v‖) and EX [g̃∞(u)g̃∞(v)] = Sd(‖u − v‖).
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Let us emphasize that in the literature these kind of results are known only under Gaussian
expectation. The concentration result obtained in [12] allows the authors to prove a similar
result up to a subsequence of polynomial growth. Our result is new in the sense that the sole
randomization on the uniform random variable X suffices to recover the asymptotic behavior
of gλ (without extracting a subsequence), and open the door to almost-sure results concerning
functionals of fλ, as demonstrates the next Theorem 1.2 concerning almost-sure asymptotics of
the nodal volume. Moreover, it corroborates Berry conjecture, which roughly states that under
the hypothesis of a chaotic geodesic flow, a Laplace eigenfunction of high energy statistically
behaves like a universal Euclidean random wave.

The proof of Theorem 1.1 is the object of the next Section 2 and it is based upon convergence
of characteristic functions. Taking the expectation under Pa, the Gaussian framework allows us
to make – technical but explicit – computations of characteristic functions. By a Borel–Cantelli
argument we recover an almost sure convergence under Pa. The proof could certainly be applied
to more general settings as it uses mostly the following two main ingredients :

• The local Weyl law, which gives the limit distribution of gx
λ (as a Gaussian process) towards

the Gaussian process g∞.

• The statistical decorrelation of Lemma 2.4, which roughly states that if X and Y are
independent uniform random variables on M, then the associated Gaussian processes gX

λ

and gY
λ statistically decorrelate as λ goes to +∞. It is a consequence of the decaying rate

of the limit kernel Bd.

As usual, a proof of convergence for stochastic processes splits into two parts. The conver-
gence of finite dimensional distributions given by Theorem 2.1, and a tightness property given
by Theorem 2.6.

The second main result of the article is the following almost-sure asymptotics of the nodal
volume associated with the random fields fλ and f̃λ. Almost surely, the nodal sets {fλ = 0}
and {f̃λ = 0} are random smooth submanifolds of codimension one. We denote by Hd−1 the
(d − 1)−dimensional Hausdorff measure, and let B be a ball in R

d of Euclidean volume one.

Theorem 1.2. Almost surely with respect to the sequence (ak)k≥0,

lim
λ→+∞

Hd−1({fλ = 0})
λ

= EX [Hd−1({g∞ = 0} ∩ B)],

and

lim
λ→+∞

Hd−1({f̃λ = 0})
λ

= EX [Hd−1({g̃∞ = 0} ∩ B)].

This result improves the result[34, Thm. 1] or [24, Thm. 1.1] about the convergence of nodal
volume in expectation under Pa. Passing from an almost-sure convergence to a convergence
in expectation is a short corollary of our proof (see Corollary 3.13). It positively answers the
question raised by S. Zelditch in [34, Cor. 2], about the asymptotics of random nodal measure.
In that context, Theorem 1.2 only addresses the almost-sure asymptotics of the total nodal
volume, but our proof could be extended to the random nodal volume contained in any ball,
from which follows the almost-sure asymptotics of random nodal measure. In [24] is considered
the more general framework of random submanifolds. Here we only focused on the case of
hypersurfaces, but the same scheme of proof could have been applied to show the almost-sure
asymptotics of the nodal volume of random submanifolds.
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The right-hand side in Theorem 1.2 can be explicitly computed by the Kac–Rice formula for
random fields (see the Remark 3.3) and have in fact

lim
λ→+∞

Hd−1({fλ = 0})
λ

=
1√
π

1√
d + 2

Γ
(

d+1
2

)

Γ
(

d
2

) and lim
λ→+∞

Hd−1({f̃λ = 0})
λ

=
1√
π

1√
d

Γ
(

d+1
2

)

Γ
(

d
2

) .

The proof relies on the connection between the nodal volumes of the processes fλ and gX
λ

given by Lemma 3.2 which states

Hd−1({fλ = 0})
λ

≃ EX [Hd−1({gX
λ = 0} ∩ B)] =: EX [Zλ].

By Theorem 1.2 and the continuity of the random nodal volume for the C1-topology, the con-
tinuous mapping theorem asserts that the nodal volume of gX

λ on B, denoted Zλ, converges in
distribution towards the nodal volume of g∞.

To recover convergence of expectations and thus Theorem 1.2, it is then sufficient to prove
the uniform integrability of the family (Zλ)λ>0. Unfortunately the process gX

λ is not Gaussian
under PX , and sufficient conditions for the boundedness of power moments in the literature (as
the ones given in [5]) are too restrictive for our purpose. The approach we use to prove finiteness
of all positive moments in Theorem 3.11 do not rely on the Kac–Rice formula, ill-devised for
non Gaussian processes, but on more geometric considerations.

Thanks to a variant of the Crofton formula given by Lemma 3.9, we can relate the nodal
volume of gX

λ to the anti-concentration of gX
λ around zero on deterministic points. The anti-

concentration bound is given in Lemma 3.4 by the finiteness of a small negative moment of
gX

λ . The proof of the existence of a negative moment uses the explicit rate of convergence of
characteristic function given in Lemma 2.7. It allows us to rewrite the convergence in term of
the so-called smooth Wasserstein distance in Lemma 3.5 (following the approach in [5]), which
is a stronger notion of convergence than the convergence in distribution.

Throughout the different proofs, C will denote a generic constant which does not depend on
λ nor the sequence (an)n>0, and C(ω) will denote a constant which does not depend on λ but
may depend on the sequence (an)n>0 (generally, a constant that comes from a Borel–Cantelli
argument).

At last, we will prove the above theorems mostly in the long band regime, that is for the
process gX

λ , but the proofs apply almost verbatim in the monochromatic regime. The minor
differences arising between the two cases will be detailed in the proofs.

2 Salem–Zygmund CLT for Riemannian random waves

In this section we give the proof of Theorem 1.1, and a few corollary results which will be of use
in the study of the almost sure asymptotics of nodal volume in next Section 3. As usual, the
proof of the functional convergence splits into the convergence of finite dimensional marginals
and some tightness estimates.

2.1 Finite dimensional convergence and decorrelation estimates

We first establish a quantitative version of the convergence of the finite dimensional marginals of
gX

λ (resp. g̃X
λ ) towards those of g∞ (resp. g̃∞), the rate of convergence depending on the ambient

dimension. In small dimension we need to take into account small correctives, which reflects the

7



slow decay of the limit kernel Bd (resp. Sd) at infinity. Recall that the monochromatic regime
is considered only when the refined local Weyl law (5) is valid, which implies d ≥ 2. We set

η(λ) =





log λ in the large band regime and d = 1,
1 in the large band regime and d ≥ 2,√

λ in the monochromatic regime and d = 2,
1 in the monochromatic regime and d ≥ 3.

(7)

Fix an integer p ≥ 1, v = (v1, . . . , vp) ∈ (Rn)p and t = (t1, . . . , tp) ∈ R
p, and define in the large

band regime

Nλ(v, t) :=
p∑

i=1

ti gX
λ (vi) and N∞(v, t) :=

p∑

i=1

ti g∞(vi),

and respectively in the monochromatic regime

Nλ(v, t) :=
p∑

i=1

ti g̃X
λ (vi) and N∞(v, t) :=

p∑

i=1

ti g̃∞(vi).

We will simply write Nλ and N∞ when appropriate. Note that these linear combinations are
Gaussian random variables under Pa. We prove that the characteristic function of Nλ under PX

converges to the one of N∞ as λ goes to infinity.

Theorem 2.1. Almost surely with respect to the probability Pa, in the large band regime,

∀t ∈ R
p, ∀v ∈ R

p, lim
λ→+∞

EX

[
eiNλ(v,t)

]
= EX

[
eiN∞(v,t)

]
= exp


−1

2

p∑

i,j=1

titjBd(||vi − vj ||)

 ,

and in the monochromatic regime,

∀t ∈ R
p, ∀v ∈ R

p, lim
λ→+∞

EX

[
eiNλ(v,t)

]
= EX

[
eiN∞(v,t)

]
= exp


−1

2

p∑

i,j=1

titjSd(||vi − vj||)

 .

Since Nλ(v, t) is a Gaussian random variable under Pa, the explicit formula for the charac-
teristic function of a Gaussian variable gives

EX

[
eiNλ(v,t)

]
= e− 1

2
E[Nλ(v,t)2 ], and similarly, EX

[
eiN∞(v,t)

]
= e− 1

2
E[N∞(v,t)2 ].

In order to quantify the convergence rate, for any integer q > 0, we set

∆(q)
λ := Ea

[∣∣∣EX

[
eiNλ(v,t)

]
− EX

[
eiN∞(v,t)

]∣∣∣
2q
]

. (8)

Let K be a compact subset of Rd. In the following we will assume that the vectors v1, . . . , vp

belong to K.

Theorem 2.2. There is a constant C depending only on M, K and q, such that

∆(q)
λ ≤ C(1 + ‖t‖)4q

(
η(λ)

λ

)q

. (9)
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The proof of Theorem 2.1 is a direct consequence of the second assertion in Theorem 2.5 at
the end of this section, but observe that Theorem 2.2 implies a weak version of Theorem 2.1
and gives the core idea of the proof. Indeed, let us recall from Equation (4) that the sequence
(λn)n≥0 of eigenvalues grows as Cn1/d. Fix some t ∈ R

p and let ε > 0. Markov inequality implies
that

Pa



∣∣∣EX

[
eiNλn (v,t)

]
− EX

[
eiN∞(v,t)

]∣∣∣ > λε
n

√
η(λn)

λn


 ≤

∆(q)
λn

λ2qε
n

(
λn

η(λn)

)q

= O
(
n−2qε/d

)
.

For q > d/(2ε), the left-hand term is summable and Borel–Cantelli Lemma implies the existence
a constant C(ω, v, t) such that

∣∣∣EX

[
eiNλ(v,t)

]
− EX

[
eiN∞(v,t)

]∣∣∣ ≤ C(ω, v, t)

√
η(λ)

λ
1
2

−ε
. (10)

In particular, for a fixed t ∈ R
p and v ∈ R

p, this proves the convergence in distribution of
Nλ(v, t) towards N∞(v, t), almost surely with respect to the probability Pa. Note that Theorem
2.1 states that the convergence holds almost surely under Pa, simultaneously for all t ∈ R

d and
v ∈ Kp, and thus requires the inversion of quantifiers. We deal with this issue in Theorem 2.5
at the end of Section 2, which makes explicit the dependence of C(ω, v, t) in Equation (10) with
respect to v and t.

Proof of Theorem 2.2. Define

∆̃(q)
λ := Ea

[∣∣∣EX

[
eiNλ(v,t)

]
− EaEX

[
eiNλ(v,t)

]∣∣∣
2q
]

. (11)

By triangular inequality, we have

∆(q)
λ ≤ 4q

(
∆̃(q)

λ +
∣∣∣e− 1

2
EX [N∞(v,t)2 ] − EX

[
e− 1

2
Ea[Nλ(v,t)2 ]

]∣∣∣
2q
)

.

Using the 1−Lipschitz regularity of x 7→ e−x, we then get

∆(q)
λ ≤ 4q∆̃(q)

λ + 4q−1
∣∣∣EX

[
N∞(v, t)2

]
− EXEa

[
Nλ(v, t)2

]∣∣∣
2q

. (12)

The last term in Equation (12) can be evaluated as follows. The following direct computation
is done is the large band regime with limit kernel Bd, but it remain true in the monochromatic
regime with limit kernel Sd. We have first

Ea[N2
λ ] = Ea



( p∑

i=1

tig
X
λ (vi)

)2



=
p∑

i,j=1

titj
1

K(λ)

∑

λn≤λ

ϕn

[
ΦX

(
vi

λ

)]
ϕn

[
ΦX

(
vj

λ

)]

=
p∑

i,j=1

titj
Kλ

(
ΦX

(vi

λ

)
, ΦX

(vj

λ

))

K(λ)
.

Using Weyl law and the fact that v lives in a compact set, we obtain

∣∣∣Ea

[
N2

λ

]
− EX [N2

∞]
∣∣∣ ≤

p∑

i,j=1

|ti||tj |
∣∣∣∣∣
Kλ

(
ΦX

(vi

λ

)
, ΦX

(vj

λ

))

K(λ)
− Bd(‖vi − vj‖)

∣∣∣∣∣

≤
p∑

i,j=1

|ti||tj |
∣∣∣∣Bd

[
λ dist

(
ΦX

(
vi

λ

)
, ΦX

(
vj

λ

))]
− Bd(‖vi − vj‖)

∣∣∣∣ + ‖t‖2O

(
1
λ

)

≤
p∑

i,j=1

|ti||tj |
∣∣∣∣λ dist

(
ΦX

(
vi

λ

)
, ΦX

(
vj

λ

))
− ‖vi − vj‖

∣∣∣∣ + ‖t‖2O

(
1
λ

)
.
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The last line is justified by the fact that Bd (resp. Sd) is Lipschitz continuous. The differential
of the exponential map at 0 is the identity, which implies the following asymptotic, uniformly
on v in a compact subset:

∣∣∣∣λ dist
(

ΦX

(
vi

λ

)
, ΦX

(
vj

λ

))
− ‖vi − vj‖

∣∣∣∣ = O

(
1
λ

)
,

and we deduce ∣∣∣Ea

[
N2

λ

]
− EX [N2

∞]
∣∣∣ = ‖t‖2O

(
1
λ

)
.

Injecting this estimate in Equation (12), we get

∆(q)
λ ≤ 4q∆̃(q)

λ + ‖t‖4qO

(
1

λ2q

)
.

The conclusion of Theorem 2.2 then follows from the following lemma.

Lemma 2.3. There is a constant C depending only on M, K and q, such that

∆̃(q)
λ ≤ C(1 + ‖t‖4q)

(
η(λ)

λ

)q

. (13)

The proof of Lemma 2.3 is rather technical and for the sake of readability, it is postponed
until Section A.1 of the Appendix. To give the reader a taste of the arguments involved, the proof
is essentially based on explicit computations of characteristic functions and the key argument is
the following decorrelation Lemma 2.4. With the same notations as above, let Y be a uniform
random variable in M, independent of X and of the Gaussian coefficients (ak). Let us set

NX
λ :=

p∑

j=1

tjg
X
λ (vj), NY

λ :=
p∑

j=1

tjg
Y
λ (vj),

in the large band regime and respectively in the monochromatic regime

NX
λ :=

p∑

j=1

tj g̃
X
λ (vj), NY

λ :=
p∑

j=1

tj g̃
Y
λ (vj).

Lemma 2.4. There is a constant C depending only on M and K, such that

EX

[∣∣∣Ea

[
NX

λ NY
λ

]∣∣∣
]

≤ C‖t‖2 η(λ)
λ

.

Proof of Lemma 2.4. An explicit computation gives

∣∣∣Ea

[
NX

λ NY
λ

]∣∣∣ =

∣∣∣∣∣∣

p∑

i,j=1

titj
1

Kλ

∑

λn≤λ

ϕn

[
ΦX

(
vi

λ

)]
ϕn

[
ΦY

(
vj

λ

)]∣∣∣∣∣∣

≤
p∑

i,j=1

|ti||tj |
∣∣∣∣Bd

(
λ. dist(ΦX

(
vi

λ

)
, ΦY

(
vj

λ

))∣∣∣∣+ ‖t‖2O

(
1
λ

)
,
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and the remainder is uniform on X, Y . Again, the above computation is done in the large band
regime with limit kernel Bd, but it holds in the monochromatic regime with limit kernel Sd.
Define

cλ := λ. dist
(

ΦX

(
vi

λ

)
, ΦY

(
vj

λ

))
− λ dist(X, Y ).

By triangle inequality, |cλ| is bounded by 2|K|, where |K| is the diameter of the compact subset
K in which lives v1, . . . , vp. It follows that

∣∣∣Ea

[
NX

λ NY
λ

]∣∣∣ ≤
p∑

i,j=1

|ti||tj| |Bd (λ. dist(X, Y ) + cλ)| + ‖t‖2O

(
1
λ

)
.

Taking the expectation with respect to X we obtain

EX

[∣∣∣Ea

[
NX

λ NY
λ

]∣∣∣
]

≤
∫

M

p∑

i,j=1

|ti||tj | |Bd (λ. dist(x, Y ) + cλ)| dµ(x) + O

(
‖t‖2

λ

)

≤
p∑

i,j=1

|ti||tj |
(∫

dist(x,Y )≤ε
|Bd (λ. dist(x, Y ) + cλ)| dµ(x) +

∫

dist(x,Y )>ε
|Bd (λ. dist(x, Y ) + cλ)| dµ(x)

)
+ O

(
‖t‖2

λ

)

≤
p∑

i,j=1

|ti||tj |(I1 + I2) + O

(
‖t‖2

λ

)
, (14)

where I1 and I2 are the two integrals appearing in the last expression. For ε small enough we
can pass in local polar coordinates into the first integral I1. We obtain

I1 ≤ d σd

∫ ε

0
sup

c∈[−2,2]
|Bd (λr + c)| (1 + O(r2))rd−1dr

≤ C

λd

∫ λε

0
sup

c∈[−2,2]
|Bd (u + c)| ud−1du. (15)

We use the following asymptotics for Bd and Sd at infinity:

Bd(u) = Cu− d+1
2 sin

(
u − d − 1

4
π

)
+ O

(
u− d+3

2

)
,

Sd(u) = Cu− d−1
2 sin

(
u − d − 3

4
π

)
+ O

(
u− d+3

2

)
.

Injecting these asymptotics into expression (15) we obtain the four following cases:

I1 =





O(log λ/λ) in the large band regime and d = 1
O(1/λ) in the large band regime and d ≥ 2,

O(1/
√

λ) in the monochromatic regime and d = 2,
O(1/λ) in the monochromatic regime and d ≥ 3.

For the second integral and λ large enough, we use the fact that |cλ| ≤ 2|K| and the asymptotic
formula for Bd (resp. Sd) to obtain

I2 ≤ sup
t≥ε

sup
c∈[−2,2]

|Bd(λt + c)|,

from which we deduce

I2 =

{
O(1

√
λ) in the monochromatic regime and d = 2,

O(1/λ) else.

11



Finally we recover from inequality (14) and the definition (7) of η(λ) that

EX

[∣∣∣Ea

[
NX

λ NY
λ

]∣∣∣
]

≤ C‖t‖2 η(λ)
λ

.

In the following application of Theorem 1.1 to nodal volume, we will need finer estimates
on the constant C(ω, v, t) in Equation (10). The Borel–Cantelli Lemma does not allow to track
the dependence of C(ω, v, t) with respect to the parameters v and t. It is the content of the
following theorem, proved in Appendix A.2. The proof relies of Sobolev injections in order to
control the supremum norm by some W k,1 norm, which is more convenient to work with when
taking the expectation under Pa.

Theorem 2.5. Fix ε > 0. There is a constant C(ω) depending only K and ε, such that

sup
v∈K

∣∣∣∣EX

[
eitgX

λ
(v)
]

− e− t2

2

∣∣∣∣ ≤ C(ω)(1 + |t|2+ε)

√
η(λ)

λ
1
2

−ε
.

And more generally,

sup
v∈K

∣∣∣EX

[
eiNλ(v,t)

]
− e− 1

2
EX [N∞(v,t)2 ]

∣∣∣ ≤ C(ω)(1 + ‖t‖2+ε)

√
η(λ)

λ
1
2

−ε
.

In the worst case, η(λ) =
√

λ, so it holds independently from the dimension that

sup
v∈K

∣∣∣∣EX

[
eitgX

λ
(v)
]

− e− t2

2

∣∣∣∣ ≤ C(ω)
1 + |t|2+ε

λ
1
4

−ε
.

2.2 Tightness estimates

We now turn to the proof of the tightness for the family (gX
λ )λ>0. In the following, we set

δ := (σd)−1/d and B := B(0, δ), (16)

the Euclidean ball centered at zero with radius δ. Recall that the quantity σd is the volume of
the unit ball in R

d. The parameter δ is naturally chosen such that the ball B has unit volume.
The following theorem holds true for balls of any radius but the notations are simplified for
radius δ.

Theorem 2.6. Almost surely with respect to the probability Pa, the family of stochastic
processes (gX

λ )λ>0 is tight with respect to the Frechet topology on C∞(B).

The tightness in C1 topology is sufficient for the rest of the article but the proof of C∞

tightness does not cost any more calculations. The proof is short once we proved the following
lemma.

Lemma 2.7. Let p be a positive integer, and α a d-dimensional multi-index. There is a
constant C(ω) depending only p and α such that

EX

[∫

B
|∂αgX

λ (v)|2pdv

]
≤ C(ω).
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The proof of Lemma 2.7 is given in the Appendix B and relies on hypercontractivity and a
Borel–Cantelli argument.

Proof of Theorem 2.6. By Kolmogorov tightness criterion for stochastic processes (see [23, p. 39])
in dimension d with C∞ topology, it suffices to show that for every multi-index of differentiation
β, for some p > d/2, and for all u, v ∈ B,

EX

[∣∣∣∂βgX
λ (v) − ∂βgX

λ (u)
∣∣∣
2p
]

≤ C(ω)‖v − u‖2p.

We use the mean-value Theorem and Sobolev injection to get

EX



(

∂βgX
λ (v) − ∂βgX

λ (u)
‖v − u‖

)2p

 ≤ C

d∑

k=1

EX



(

sup
u∈B

∣∣∣∂k∂βgX
λ

∣∣∣
)2p




≤ C
d∑

k=1

EX

[(
‖∂k∂βgX

λ ‖W d+1,1

)2p
]

≤ C
∑

|α|≤|β|+d+2

EX

[(∫

B

∣∣∣∂αgX
λ (u)

∣∣∣ du

)2p
]

≤ C
∑

|α|≤|β|+d+2

EX

[∫

B

∣∣∣∂αgX
λ (u)

∣∣∣
2p

du

]
.

From Lemma 2.7, we have then

EX

[∫

B

∣∣∣∂αgX
λ (u)

∣∣∣
2p

du

]
≤ C(ω),

hence the result.

3 Almost sure asymptotics of nodal volume

As already mentioned above, almost surely in the random coefficients, the nodal sets {fλ =
0} and {f̃λ = 0} associated to the random wave models are random smooth submanifolds of
codimension one. The object of this section is to give the proof of Theorem 1.2 on the almost
sure asymptotics of the associated nodal volume.

3.1 A Stochastic representation formula

The first step in the proof of Theorem 1.2 consists in connecting the zeros of fλ (resp. f̃λ) to
the zeros of gX

λ (resp. g̃X
λ ). This is the object of Lemma 3.2 below. We first recall a variant

of co-area formula (see [14, p. 248]). Let f : M → R be a smooth function, ϕ : R → R be a
positive measurable function, and A a compact subset of M. Then

∫

A
ϕ(f(x))‖∇xf‖dµ(x) =

∫

R

ϕ(y)Hd−1({f = y} ∩ A)dy.

The following lemma is widely known in the literature but we could not find any explicit proof,
and we give here a proof for sake of completeness.

Lemma 3.1. Suppose that 0 is a regular value of f on A. Then the mapping

y 7→ Hd−1({f = y} ∩ A)
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is continuous in a neighborhood of 0 and the following formula holds true:

Hd−1({f = 0} ∩ A) = lim
ε→0

1
2ε

∫

A
1{|f(x)|<ε}‖∇xf‖dµ(x).

Proof. Define gy : x 7→ f(x) − y. The function gy converges to f in C1 topology when y → 0.
Since 0 is a regular value of f , then [2, Thm. 3] implies that the application

y 7→ Hd−1({gy = 0} ∩ A), (17)

is continuous in a neighborhood of 0, which proves the first part of the theorem. Now we
choose ϕε = 1

2ε1]−ε,ε[ in the co-area formula. By continuity of the mapping (17), we recover the
announced formula, letting ε go to zero.

Recall the definition of δ in (16).

Lemma 3.2. Let f : M → R a smooth function such that 0 is a regular value of f . Then

Hd−1({f = 0})
λd

=
(

1 + O

(
1
λ2

))
EX

[
Hd−1

(
{f = 0} ∩ B

(
X,

δ

λ

))]
,

and the Big-Oh does not depend on the function f .

Proof. From Lemma 3.1, we have

EX

[
Hd−1

(
{f = 0} ∩ B

(
X,

δ

λ

))]
= EX

[
lim
ε→0

1
2ε

∫

B(X, δ
λ )

1{|f(x)|<ε}‖∇xf‖dµ(x)

]
. (18)

From the inequality

1
2ε

∫

B(X, δ
λ)

1{|f(x)|<ε}‖∇xf‖dµ(x) ≤ 1
2ε

∫

M
1{|f(x)|<ε}‖∇xf‖dµ(x),

and using Lemma 3.1 (with A = M), we deduce that the last quantity is continuous in ε, thus
bounded by a constant. We can apply dominated convergence in (18) to obtain

EX

[
Hd−1

(
{f = 0} ∩ B

(
X,

δ

λ

))]
= lim

ε→0

1
2ε

∫

M

∫

M
1{dist(x,y)< δ

λ
}1{|f(x)|<ε}‖∇xf‖dµ(y)dµ(x)

= lim
ε→0

1
2ε

∫

M
VolM

(
B

(
x,

δ

λ

))
1{|f(x)|<ε}‖∇xf‖dµ(x).

Standard comparison theorem for geodesic ball asserts that uniformly on x,

VolM

(
B

(
x,

δ

λ

))
= VolRd

(
B

(
0,

δ

λ

))(
1 + O

(
1
λ2

))

=
1
λd

(
1 + O

(
1
λ2

))
,

from which we deduce

EX

[
Hd−1

(
{f = 0} ∩ B

(
X,

δ

λ

))]
=

1
λd

(
1 + O

(
1
λ2

))
lim
ε→0

∫

M

1{|f(x)|<ε}
2ε

‖∇xf‖dµ(y)dµ(x)

=
1
λd

(
1 + O

(
1
λ2

))
Hd−1({f = 0}).

Note that, alternatively, we could have proved the asymptotic representation formula given
by Lemma 3.2 using the closed Kac–Rice formula for manifolds in [22].
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3.2 Application of the Central Limit Theorem

The next step in the proof of Theorem 1.2 then consists in using the central limit theorem as
established in Section 2. We define the mapping

Φ(λ)
x : B −→ M

v −→ Φx

(
v

λ

)
.

Choosing f = fλ in Lemma 3.2 and recalling the relation (6) between gλ and fλ, we obtain

Hd−1({fλ = 0})
λd

= EX

[
Hd−1

(
{fλ = 0} ∩ B

(
X,

δ

λ

))](
1 + O

(
1
λ2

))

= EX

[
Hd−1

[
Φ(λ)

X

(
{gX

λ = 0} ∩ B
)]](

1 + O

(
1
λ2

))
. (19)

The mapping Φ(λ)
x is a diffeomorphism onto its image for λ small enough and uniformly on

x ∈ M. The exponential map is a local diffeomorphism and its differential at zero is the identity.
We deduce that the mapping Φ(λ)

x is bi-Lipschitz, and uniformly on x ∈ M,

Lip
(
Φ(λ)

x

)
=

1
λ

(
1 + O

(
1
λ

))
and Lip

(
(Φ(λ)

x )−1
)

= λ

(
1 + O

(
1
λ

))
.

Using scaling properties of Hausdorff measures under bi-Lipschitz mappings we obtain

Hd−1
[
Φ(λ)

X

(
{gX

λ = 0} ∩ B
)]

=
1

λd−1
Hd−1

[
{gX

λ = 0} ∩ B
](

1 + O

(
1
λ

))
,

and from expression (19) in follows that

Hd−1({fλ = 0})
λ

= EX

[
Hd−1

(
{gX

λ = 0} ∩ B
)](

1 + O

(
1
λ

))
. (20)

The function g 7→ Hd−1 ({g = 0} ∩ B) is continuous on the set of functions that are regular at
point 0, endowed with the C1 topology. The limit process g∞ is non-degenerate since the limit
kernels Bd and Sd are positive definite covariance functions, and Bulinskaya Lemma (see [6,
p. 34]) asserts that Pa-almost surely, the point 0 is a regular value for the process fλ (and hence
for gX

λ ) for λ large enough, say λ > λ0. Since there are only a countable number of eigenvalues,
then Pa-almost surely, 0 is a regular value for the whole family of functions (fλ)λ>λ0 , and hence
for the whole family of stochastic processes (gX

λ )λ>λ0 . Define

Zλ := Hd−1({gX
λ = 0} ∩ B) and Z∞ := Hd−1({g∞ = 0} ∩ B).

The continuous mapping theorem and the convergence in distribution of Theorem 1.1 imply the
following convergence in distribution under PX :

Pa − a.s., Zλ
PX=⇒ Z∞. (21)

Theorem 1.2 is proved if we can pass to the convergence of expectations under PX in (21),
according to the stochastic representation formula (20). Passing to the expectation follows from
the uniform integrability (with respect to PX) of the family of random variables (Zλ)λ>0. This
last point is the object of the next Sections 3.3 and 3.4.

Remark 3.3. The quantity EX [Hd−1({g∞ = 0} ∩ B)] in Theorem 1.2 has an explicit value,
thanks to the Kac–Rice formula. We roughly sketch the proof here (see [6, p. 177] for more
details). Taking the expectation in the co-area formula gives

∫

R

ϕ(y)EX

[
Hd−1({g∞ = y} ∩ B)

]
dy =

∫

B
EX

[
ϕ(g∞(x))‖∇xg∞‖

]
]dµ(x).
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The Gaussian process g∞ is stationary, hence its law does not depend on the point x. The
Gaussian variables g∞(x), ∂1g∞(x), . . . ∂dg∞(x) are independents. Hence,

∫

R

ϕ(y)EX

[
Hd−1({g∞ = y} ∩ B)

]
dy = Vol(B)EX [ϕ(g∞)]EX [‖∇g∞‖]

= EX [‖∇g∞‖]
1√
2π

∫

R

ϕ(y)e− y2

2 dy,

and we deduce that for almost all y ∈ R,

EX

[
Hd−1({g∞ = y} ∩ B)

]
=

e− y2

2√
2π

EX [‖∇g∞‖].

It is actually true for all y ∈ R, and this is the difficult part of the proof which we do not detail.
An direct computation gives

EX

[
(∂1g∞)2

]
= . . . = EX

[
(∂dg∞)2

]
=

1
d + 2

,

and

EX [‖∇g∞‖] =

√
2

d + 2

Γ
(

d+1
2

)

Γ
(

d
2

) .

Taking y = 0 we deduce

EX

[
Hd−1({g∞ = 0} ∩ B)

]
=

1√
π

1√
d + 2

Γ
(

d+1
2

)

Γ
(

d
2

) ,

When d = 1 we recover the classical asymptotics 1
π

√
3

for the number of real roots of a random
trigonometric polynomial. For the process g̃∞, we have

EX

[
(∂1g∞)2

]
= . . . = EX

[
(∂dg∞)2

]
=

1
d

,

which gives

EX

[
Hd−1({g̃∞ = 0} ∩ B)

]
=

1√
π

1√
d

Γ
(

d+1
2

)

Γ
(

d
2

) .

3.3 Negative moment estimates for the random field

The uniform integrability of the volume of the nodal set can be deduced from anti-concentration
of the stochastic process gX

λ around zero. If the manifold were real-analytic, it would be sufficient
to have the finiteness of a logarithmic moment, which is the approach taken in [3], see Remark
3.12 below. Since we consider here C∞ manifolds, we need a stronger control, given by the
following lemma.

Lemma 3.4. Let ν < 1
40d . There is a constant C(v, ω) such that

sup
λ>0

EX [|gX
λ (v)|−ν ] < C(v, ω).

Let α > 0, ε > 0 and (vi)i∈N be any sequence in B. There is a constant C(ω) (also depending
on α, ε and the sequence (vi)i∈N) such that

sup
λ>0

∫ +∞

1

1
t1+α+ε

⌈tα⌉∑

i=0

EX [|gX
λ (vi)|−ν ] dt < C(ω).
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The second technical assertion is a refinement of the first one and will be used in the final
step of the proof of uniform integrability. It compensates the fact that the constant C(v, ω) may
depend on v, see also Remark 3.8 below.

The proof of Lemma 3.4 relies on the two following lemmas, which relate the speed of
convergence of characteristic functions given in Theorem 2.5 to more classical distances on the
space of measures. The first lemma compares the Kolmogorov distance and the so-called smooth
Wasserstein distance.

Lemma 3.5. Given two random variables X, Y , and α ∈ N, we set

Wass(α)(X, Y ) := sup
{
E[|φ(X) − φ(Y )|]

∣∣∣ φ ∈ Cα(R), ‖φ‖∞ ≤ 1, . . . , ‖φ(α)‖∞ ≤ 1
}

,

and
Kol(X, Y ) := sup

t∈R

|P(X ≤ t) − P(Y ≤ t)|.

If Y has a density bounded by M , there is a constant C depending only on M and α such
that :

Kol(X, Y ) ≤ min
(
1, C Wass(α)(X, Y )

1
α+1

)
.

Proof. Fix some t ∈ R. Let 0 < ε < 1, and consider ϕ ∈ Cα(R) a nonincreasing function such
that

ϕ(x) =

{
1 if x ≤ 0
0 if x ≥ 1

.

Define ϕε : x 7→ ϕ((x − t)/ε), which is an upper Cα approximation of 1]−∞,t]. Then

P(X ≤ t) − P(Y ≤ t) ≤ (E[ϕε(X)] − E[ϕε(Y )]) + (E[ϕε(Y )] − P(Y ≤ t)) .

For the first term, observe that ‖ϕ
(k)
ε ‖∞ = ε−k‖ϕ(k)‖∞, and thus there is a constant C such that

E[ϕε(X)] − E[ϕε(Y )] ≤ C

εα
Wass(α)(X, Y ).

For the second term,
E[ϕε(Y )] − P(Y ≤ t) ≤ Mε,

We can make the same computations with a lower Cα approximation of 1]−∞,t], which gives a
similar lower bound on the quantity P(X ≤ t)−P(Y ≤ t). Optimizing in ε we obtain the desired
bound.

The second lemma relates the smooth Wasserstein distance and the rate of convergence of
characteristic functions. A general form of the theorem can be found in [7], but we will sketch
the proof here for completeness.

Lemma 3.6. Let (Xn)n≥0 a sequence of random variables converging in distribution towards
a random variable X. Assume that for some exponents m ∈ N and α ∈ R+ there is a constant
C such that ∣∣∣E

[
eitXn

]
− E

[
eitX

]∣∣∣ ≤ C
1 + |t|m

nα
,

and for some exponent β > 0 :
sup
n∈N

E[|Xn|β] < +∞.
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Then there is a constant C depending on m, α, β such that :

Wass(m+1)(Xn, X) ≤ Cn− 2αβ

2β+1 .

Proof. Let φ be a function in S(R), supported on the compact [−(M + 1), M + 1]. Using
Plancherel isometry we have (the constant C may change from line to line)

|E[φ(Xn) − φ(X)]| ≤ 1
2π

∫

R

∣∣∣E
[
eitXn

]
− E

[
eitX ]

]∣∣∣ |φ̂(t)|dt

≤ C

nα

∫

R

(1 + |t|m)|φ̂(t)|dt

≤ C

nα

∫

R

(1 + |t|m+1)|φ̂(t)| 1
1 + |t|dt

≤ C

nα

∫

R

|φ̂(t)| dt

1 + |t| +
C

nα

∫

R

|t|m+1|φ̂(t)| dt

1 + |t|

≤ C

nα

√∫

R

|φ̂(t)|2dt +
C

nα

√∫

R

|t|2m+2|φ̂(t)|2dt Jensen

≤ C

nα
‖φ‖2 +

C

nα
‖φ(m+1)‖2 Plancherel

≤ C

√
M + 1
nα

(
‖φ‖∞ + ‖φ(m+1)‖∞

)
. (22)

By standard approximation argument, the inequality is true for every φ ∈ Cm+1(R) with support
in [−(M + 1), M + 1]. Suppose now that φ does not have compact support. Let χM a smooth
function with support in [−(M + 1), M + 1] such that χM = 1 on [−M, M ]. Set φM = φ.χM .
We write

|E[φ(Xn) − φ(X)]| ≤ |E[φM (Xn) − φM (X)]| + P(Xn > M) + P(X > M).

From inequality (22) and Markov inequality applied to the function x 7→ |x|β,

|E[φ(Xn) − φ(X)]| ≤ C

√
M + 1
nα

(
‖φM ‖∞ + ‖φ

(m+1)
M ‖∞

)
+

C

Mβ
.

Using Leibniz rule, we have

‖φM ‖∞ ≤ ‖φ‖∞ and ‖φ
(m+1)
M ‖∞ ≤ Cm sup

k≤m+1
‖φ(k)‖∞.

Choosing

M =

(
nα

supk≤m+1 ‖φ(k)‖∞

) 1

β+ 1
2

and under the requirement that M > 1, we obtain

|E[φ(Xn) − φ(X)]| ≤ Cn
− 2αβ

2β+1

(
sup

k≤m+1
‖φ(k)‖∞

) 2β

2β+1

,

from which it follows that
Wass(m+1)(Xn, X) ≤ Cn

− 2αβ
2β+1 .
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Remark 3.7. Denote WassX
(α) is the smooth Wasserstein distance under PX , and let N be a

standard Gaussian random variable. Lemma 3.6 and the rate of convergence given by Theorem
2.5 imply that for every ε > 0 the existence of a constant C(ω) independent of v ∈ B, such that

WassX
(4)(g

X
λ (v), N) ≤ C(ω)

λ
1
4

−ε
.

The moment condition is satisfied for every β > 0 and uniformly in v ∈ B, by Sobolev injection
and Lemma 2.7.

We are now in position to give the proof of Lemma 3.4 on the negative moment of the random
field gλ.

Proof of Lemma 3.4 . We define φ : x 7→ |x|−ν . Let φM be a C∞(R) approximation of φ,
which coincide on R \ [− 1

M , 1
M ]. We can choose the function φM such that for all p ∈ N,

|φ(p)
M ‖∞ ≤ CpMν+p (see Figure 1).

φ

φM

Mν

1/M−1/M

Figure 1: The functions φ and φM .

Let N be a standard Gaussian random variable under PX . We write

EX

[
|gX

λ (v)|−ν − |N |−ν
]

= EX [φ(gX
λ (v)) − φM (gX

λ (v))]︸ ︷︷ ︸
∆1

+EX [φM (gX
λ (v)) − φM (N)]︸ ︷︷ ︸

∆2

+EX [φ(N) − φM (N)]︸ ︷︷ ︸
∆3

.

For the term ∆3, we use Cauchy–Schwarz inequality to obtain

EX [φ(N) − φM (N)] ≤ EX

[
(φ − φM )(N)1|N |≤ 1

M

]
≤
√

EX [|N |−2ν ]
M

=
C√
M

. (23)

For the term ∆2, we use the smooth Wasserstein estimate in Lemma 3.6 and Remark 3.7. We
have

|EX [φM (gX
λ (v)) − φM (N)]| ≤ max

p≤4
‖φ

(p)
M ‖∞ Wass(4)(g

X
λ , N) ≤ C

Mν+4

λ
1
4

−ε
. (24)

For the more difficult term ∆1, we use Cauchy–Schwarz inequality to obtain

EX [φ(gX
λ (v)) − φM (gX

λ (v))] ≤
√
EX [|gX

λ (v)|−2ν ] .

√
PX

(
|gX

λ (v)| <
1

M

)
. (25)
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For the right-hand term, using Kolmogorov distance and Lemma 3.5 we have

PX

(
|gX

λ (v)| <
1

M

)
≤ P

(
|N | <

1
M

)
+ 2 Kol(gX

λ (v), N)

≤ C

M
+ C Wass(4)(g

X
λ (v), N)

1
5

≤ C

M
+

C

λ
1

20
−ε

.

For the right-hand term we fix θ = νd + ε with ε > 0, and

p =
1

2ν + ε
d

.

The exponent p satisfies
2νp < 1 and 2θp > d.

We compute

Pa

(
EX [|gX

λ (v)|2ν | > λ2θ
)

≤
Ea

[
EX [|gX

λ (v)|−2ν ]p
]

λ2pθ

≤ EXEa[|gX
λ (v)|−2νp]

λ2pθ
.

Recall that gλ is a Gaussian variable under Pa, whose variance approaches 1 uniformly in X and
v. Since 2νp < 1 we obtain

Pa

(
EX [|gX

λn
(v)|−2ν ] > λ2θ

n

)
≤ C

EX

[
Ea

[
(gX

λn
(v))2

]−νp
]

λ2θp
n

≤ C

λ2θp
n

.

Since λn ≃ Cn1/d the left-hand side is summable and Borel–Cantelli lemma asserts the existence
of a constant C(v, ω) such that

EX [|gX
λn

(v)|−2ν ] ≤ C(v, ω)λ2θ
n .

Finally, bounding the terms in (25) we obtain

EX [φ(gX
λ (v)) − φM (gX

λ (v))] ≤ C(v, ω)λdν+ε

√
1

M
+

1

λ
1

20
−ε

. (26)

Adding the bounds on ∆1, ∆2 and ∆3 given by the expressions (23), (24) and (26), we obtain
the following bound:

EX

[
|gX

λ (v)|−ν
]

≤ EX [|N |−ν ] +
C√
M

+ C
Mν+4

λ
1
4

−ε
+ C(v, ω)λdν+ε

√
1

M
+

1

λ
1

20
−ε

.

We choose ν < 1
40d , and M = λ1/20. Since a Gaussian random variable has bounded negative

moments for exponents ν > −1, we deduce

sup
λ>0

EX

[
|gX

λ (v)|−ν
]

≤ C(v, ω). (27)

It remains to prove the second technical part of Lemma 3.4. We cannot directly apply
the first bound since the constant obtained in (27) may depend on v. Mimicking the previous
computation, we write

∫ +∞

1

1
tα+2

⌊tα⌋∑

i=0

EX [|gX
λ (vi)|−ν ] dt = ∆1 + ∆2 + ∆3.
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Estimates (23) and (24) for ∆1 and ∆2 remain unchanged. For the quantity ∆3, we keep the
previous notations. We have, using Markov inequality in the first line, and Hölder inequality in
the second line,

Pa



∫ +∞

1

1
t1+α+ε

⌊tα⌋∑

i=0

EX [|gX
λ (vi)|−2ν ] dt > λ2θ


 ≤ 1

λ2pθ
Ea





∫ +∞

1

1
tα

⌊tα⌋∑

i=0

EX [|gX
λ (vi)|−2ν ]

dt

t1+ε




p


≤ C

λ2pθ

∫ +∞

1

⌊tα⌋p−1

tpα+1+ε

⌊tα⌋∑

i=0

EX [Ea[|gX
λ (vi)|−2νp] dt

≤ C

λ2pθ

∫ +∞

1

⌊tα⌋p

tpα+1+ε
dt

≤ C

λ2pθ
.

The end of the proof remains unchanged.

Remark 3.8. The dependence in v of the constant C(v, ω) given in Equation (27) is not entirely
satisfactory, and is a consequence of Borel–Cantelli lemma in Equation (26). We were not able
to give a bound on the quantity

Ea

[
sup
v∈B

EX

[
|gX

λ (v)|−ν
]]

.

It does not impact the rest of the article since the second part of Lemma 3.6 suffices to carry
on our computations, but let us give a little more insight about what happens from a measure-
theoretic point of view.

The Sobolev trick we used before to obtain the uniformity on v does not apply here due to
the lack of regularity of the function x 7→ |x|−ν . Nevertheless it may happen in particular cases
that we can recover uniformity. If we are on a torus T

d endowed with any flat metric, we can
choose for the isometry Ix the canonical embedding into R

d and the mapping Φx is the usual
sum. If X is a uniform random variable on T

d, then so is X + v for any v ∈ T
d. It follows that

under PX and for all v, v′ ∈ R
d,

gX
λ (v) L= gX

λ (v′),

and quantities such as EX

[
|gX

λ (v)|−νp
]

do not depend on v, which gives the uniformity in
v. Denote by µv the pushforward of the measure µ under the mapping x 7→ Φx(v). For all
f ∈ C0(M), ∫

M
f(Φx(v))dµ(x) =

∫

M
f(x)dµv(x).

In the torus case, µv is the canonical measure and does not depend on the parameter v. In
all generality, few can be said about µv. It does not always admit a density with respect to
the Riemannian measure since the function x 7→ Φx(v) may have support on a 1-dimensional
subspace for an ill-chosen choice of isometries (Ix)x∈M. Nevertheless, if the measure µv has a
density hv belonging to Lp(M) space for some p > 1 and uniformly on v ∈ B, then

∫

M
|gX

λ (v)|−νdµ(x) =
∫

M
|fλ(x)|−νh v

λ
(x)dµ(x)

≤
(∫

M
|fλ(x)|−νq

)1/q

sup
v∈B

‖hv‖p with
1
p

+
1
q

= 1.

Taking the expectation under Pa, and choosing ν < 1
q , we obtain

Ea

[
sup
v∈B

EX

[
|gX

λ (v)|−ν
]]

≤ sup
v∈B

‖hv‖p

∫

M
Ea
[
|fλ(x)|−νq]1/q dx < +∞.
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At last, given a smooth compact Riemannian manifold M, it is always possible to construct a
family of isometries (Ix)x∈M such that the family (µv)v∈B has a density uniformly bounded in
L∞.

3.4 Uniform moment estimates for the nodal volume

In order to complete the proof of the uniform integrability of nodal volume, we now introduce
a geometric lemma which relates the nodal volume of a function to the number of zero of this
function on a straight line passing through predefined points. It is a variant of the Crofton
formula (see [1] for a general presentation of the various Crofton formulæ), and a d-dimensional
extension of [3, Thm. 6].

Lemma 3.9. Let E be a C2-hypersurface in R
d, intersecting the cube D = [0, a]d. Assume

that E has bounded curvature on D. Then there exists a segment S passing through one of
the vertices of the cube D and such that

Card(E ∩ S ∩ D) ≥ c
Hd−1(E ∩ D)

ad−1
, with c =

1
2d+1d

.

Proof. Both sides are dimensionless and it suffices to prove the assertion for a = 1. We can
assume that Hd−1(E ∩ ∂D) = 0, else we could find a segment S passing through one of the
vertices and such that H1(E ∩ S ∩ ∂D) > 0, and in that case the result is true.

We will prove Lemma 3.9 by a probabilistic method. We denote (Aj)1≤j≤2d the vertices of
the cube. Let P be a point chosen uniformly randomly on the cube [0, 1]d. Let (AjP ) be the
random line passing through the points Aj and P . We will in fact prove that

E




2d∑

j=1

Card {E ∩ (AjP ) ∩ D}

 ≥ 1

2d
Hd−1(E ∩ D), (28)

which implies the result, since for some realization of P and some j we must have

Card(E ∩ (AjP ) ∩ D) ≥ 1
2d+1d

Hd−1(E ∩ D).

Since we assumed that Hd−1(E ∩ ∂D) = 0 we can suppose that E ⊂ D̊. Since the manifold E
has bounded curvature, it is a doubling space and Vitali–Lebesgue covering theorem (see [16,
p. 4]) asserts that for all r0 > 0, we can find a disjoint family of (relatively compact) geodesic
balls (Ern)n≥0 in E such that the geodesic ball Ern has radius rn < r0, and such that

Hd−1


E \



⊔

n∈N

Ern




 = 0.

By linearity of both sides of (28) and monotone convergence, it is sufficient to prove the inequality
(28) by replacing E with Er, a small (relatively compact) geodesic ball of radius r < r0 centered
at some point x ∈ E. For r sufficiently small, the geodesic ball Er is comparable to a R

d−1-ball.
More precisely, set Br(x) = exp−1

x (Er). Riemannian volume comparison theorems asserts that

Hd−1(Br(x)) = Hd−1(Er)(1 + o(r0)),

and the estimate is uniform on E by the curvature bound assumption. We will prove that for
some j ∈ {1, . . . , 2d},

E




2d∑

j=1

Card {Er ∩ (AjP )}

 ≥ E [Card {Er ∩ (AjP )}] ≥ 1

2d
Hd−1(Er).
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Let nx denote a normal unit vector at x. A little geometry shows that we can choose j such
that

|〈−−→Ajx, nx〉| ≥ 1
2

. (29)

For r0 small enough and uniformly on E, the hypersurface Er is almost flat and the line (AjP )
has at most one point of intersection with Er. The opposite would imply that for some y ∈ Er

the line (Ajy) is tangent to Er at some point y. That is 〈−−→Ajy, ny〉 = 0. But it contradicts the
inequality (29) and the continuity on Er of the mapping

x 7→ |〈−−→Ajx, nx〉|.

The uniformity of E comes from the fact that the modulus of continuity of this application is
controlled by the curvature of E. We deduce

E [Card {Er ∩ (AjP )}] = P (Card {Er ∩ (AjP )} 6= Ø) .

Uniformly on x in E, we can find r′ = r + o(r0) such that every line that passes through Aj and
intersects the d − 1-dimensional ball Br′(x) ⊂ TxE, also passes through Er. Indeed, the central
projection of Er onto TxE with center of projection Aj is almost a R

d−1-ball and must contain
a ball of radius r′ = r + o(r0) (see Figure 2).

Aj

x
TxE

Br′(x)

Er

Figure 2: Construction of Br′(x).

We deduce
P (Card {Er ∩ (AjP )} 6= Ø) ≥ P (Card {Br′(x) ∩ (AjP )} 6= Ø) .

But the right hand side is easy to estimate. It is the volume of the cone in [0, 1]d, based at Aj

and generated by the ball Br′(x). The formula base × height/d gives

P (Card {Br′(x) ∩ (AjP )} 6= Ø) ≥ Hd−1(Br′(x))
d

|〈−−→Ajx, nx〉|

≥ 1
2d

Hd−1(Br(x))(1 + o(r0))

≥ 1
2d

Hd−1(Er)(1 + o(r0)).

Patching up the above estimates we recover

E




2d∑

j=1

Card {E ∩ (AjP ) ∩ D}

 ≥ 1

2d
Hd−1(E ∩ D)(1 + o(r)),
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and letting r go to zero we deduce the result.

Remark 3.10. If g : Rd → R is a smooth function and 0 is a regular value of g, then g−1({0}) is
a smooth manifold and we can apply Lemma 3.9 to deduce the existence of a segment S passing
through one of the vertices of the cube D = [0, a]d and such that

Card({g = 0} ∩ S ∩ D) ≥ c
Hd−1({g = 0} ∩ D)

ad−1
. (30)

Denote gS its restriction on S, and suppose that gS cancels at least p times at points w1, . . . , wp.
By the generalized Rolle lemma, for all v ∈ S, there exists a point cv in S such that

|g(v)| =

∏p
j=1 ‖v − wj‖

p!

∣∣∣g(p)
S (cv)

∣∣∣ .

Hence if the segment S passes through the vertex vj on the cube D then

|g(vj)| ≤ H1(S)p

p!

∑

|α|=p

‖∂αg‖∞

≤ Cap
∑

|α|=p

‖∂αg‖∞.

To sum up, if we have

Hd−1({g = 0} ∩ D) ≥ ad−1

c
p,

then for at least one of the vertices vj of the cube,

|g(vj)| ≤ Cap
∑

|α|=p

‖∂αg‖∞.

In [4, Thm. 5.2] the authors proved the finiteness of moments of nodal volume under the
requirement of joint bounded density of k first derivatives. This hypothesis is too strong for
our purpose, since our process under PX depends only on the randomness of X and we cannot
expect a joint bounded density of the first derivatives.

Theorem 3.11. Pa-almost surely, the family of random variables (Zλ)λ>0 is uniformly
integrable. More precisely, for all γ > 0,

sup
λ>0

EX [Z1+γ
λ ] ≤ Cγ(ω).

Conjointly with the convergence in distribution of the nodal volume, it implies the conver-
gence of all moments of Zλ to those of Z∞.

Proof of Theorem 3.11. For all A > 0 (to be fixed later),

EX [Z1+γ
λ ] = (1 + γ)

∫ +∞

0
tγ
PX(Zλ > t)dt

≤ CA + (1 + γ)
∫ +∞

A
tγ
PX(Zλ > t)dt, (31)

hence we need to estimate the quantity PX(Zλ > t) for all t greater than some constant A. Up
to embedding the ball B in a cube we will consider that the vector v lives in a hypercube (of
size 1 for simplicity).

24



1
⌊tθ⌋

0 1

1
D1 D2 D3

. . .

Figure 3: The grid defined on [0, 1]d.

Consider a rectangular grid on [0, 1]d of size 1
⌊tθ⌋ with θ = 1 − ε. The hypercube [0, 1]d is

split into ⌊tθ⌋d smaller cubes, which we number by (Di)1≤i≤⌊tθ⌋d (see Figure 3).
Let (vj)1≤j≤⌈tθ⌉d be the vertices of the grid. For all i ∈ {1, . . . , ⌊tθ⌋d), let (vij)1≤j≤2d be the
vertices of the i-th cube, and

Z
(i)
λ := Hd−1({gX

λ = 0}) ∩ Di),

be the volume of zeros contained in the i-th cube. By the pigeonhole principle,

{Zλ > t} ⊂
⌊tθ⌋d⋃

i=1

{
Z

(i)
λ >

t

⌊tθ⌋d

}
. (32)

Let p be an integer to be fixed later. We use Lemma 3.9 and then Remark 3.10, keeping the
same notations, to deduce that if t ≥ A, with

A :=
(

p

c

)1/(1−θ)

.

and a = ⌊tθ⌋−1, then

{
Z

(i)
λ >

t

⌊tθ⌋d

}
⊂
{

Z
(i)
λ >

p

c⌊tθ⌋d−1

}
⊂

2d⋃

j=1



|gX

λ (vij)| ≤ C

⌊tθ⌋p

∑

|α|=p

‖∂αgX
λ ‖∞



 .

Fix k ≥ 1. Taking the expectation with respect to PX we obtain

PX

(
Z

(i)
λ >

t

⌊tθ⌋d

)
≤

2d∑

j=1

PX


|gλ(vij)| ≤ C

⌊tθ⌋p

∑

|α|=p

‖∂αgX
λ ‖∞




≤
2d∑

j=1

PX

(
|gX

λ (vij)| ≤ tε

⌊tθ⌋p

)
+ 2d

PX


C

∑

|α|=p

‖∂αgX
λ ‖∞ > tε




≤
(

tε

⌊tθ⌋p

)ν 2d∑

j=1

EX [|gX
λ (vij)|−ν ] + C

EX

[∑
|α|=p ‖∂αgX

λ ‖k
∞
]

tkε
(33)

≤
(

tε

⌊tθ⌋p

)ν 2d∑

j=1

EX [|gX
λ (vij)|−ν ] +

Ck(ω)
tkε

.
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In the last line we used the Sobolev injection and estimate of Lemma 2.7 to bound the right
hand side. Taking the expectation in expression (32) and using the union bound we obtain

PX(Zλ > t) ≤ Ck(ω)
⌊tθ⌋d

tkε
+
(

tε

⌊tθ⌋p

)ν

2d
⌈tθ⌉d∑

i=1

EX [|gX
λ (vi)|−ν ].

Recalling expression (31) we obtain

EX [Z1+γ
λ ] ≤ C + Ck(ω)

∫ +∞

A
tγ ⌊tθ⌋d

tkε
dt + C

∫ +∞

A
tγ
(

tε

⌊tθ⌋p

)ν ⌈tθ⌉d∑

j=1

EX [|gX
λ (vi)|−ν ]dt.

Choosing k and p such that

k >
γ + θd + 1

ε
and ν(pθ − ε) − (dθ + γ) > 1,

we can apply the second part of Lemma 3.4 to deduce the existence of a constant C(ω) such
that

EX [Z1+γ
λ ] ≤ C(ω).

Remark 3.12. If we were in an analytic setting, we could use the same argument as the one in
[3, Thm. 9], which roughly relies on the convergence of Taylor expansion of eigenfunctions. In
the C∞ setting we can only apply the generalized Rolle lemma with a fixed p, and it explains
why we used the partitioning of the cube [0, 1]d. A careful analysis of the proof shows that it
requires a manifold of finite regularity Ck for k = 81d (the constant is far from optimal and a
few improvements could have been made throughout the proof).

Corollary 3.13. For all p ≥ 1 :

lim
λ→+∞

Ea

[(
Hd−1({fλ = 0})

)p]

λp
=


 1√

π

1√
d + 2

Γ
(

d+1
2

)

Γ
(

d
2

)




p

,

and

lim
λ→+∞

Ea

[(
Hd−1({f̃λ = 0})

)p]

λp
=


 1√

π

1√
d

Γ
(

d+1
2

)

Γ
(

d
2

)




p

.

Proof. Passing from almost-sure convergence to convergence in expectation is a consequence of
the dominated convergence. It suffices to show that

sup
λ>0

Ea [(EX[Zλ])p] < +∞,

which can bee seen by raising to the power p and taking the expectation under Pa in Equation
(33). In more direct way, all the almost-sure estimates are deduced from Borel-Cantelli lemma
and Markov inequality applied to the power function with arbitrary large exponent, and thus
remain true under expectation. A similar argument holds for higher moments.

To conclude this paper, we emphasize that all our arguments are encoded into the local Weyl
law in C∞ topology, and decaying properties of the limit kernel Bd (or Sd). There is no doubt
that the approach taken here could be applied to similar settings.
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A Proof of decorrelation estimates

In this first part of the Appendix, we give the proof of Lemma 2.3 and Theorem 2.5 stated in
Section 2.

A.1 Proof of Lemma 2.3

Let X1, . . . , X2q be independents copies of X. The expectation with respect to the random
variables X1, . . . , X2q will be noted EX. To enhance the dependence with respect to Xk, we set
for all k ∈ {1, . . . , q},

N
(k)
λ =

p∑

j=1

tjg
Xk

λ (vj),

and for all k ∈ {q + 1, . . . , 2q},

N
(k)
λ = −

p∑

j=1

tjg
Xk

λ (vj).

Then, for k 6= l, applying Lemma 2.4 with X = Xk and Y = Xl, we have uniformly in Xl

EXk

[∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣
]

= ‖t‖2O

(
η(λ)

λ

)
. (34)

The following lemma, based on an explicit computation of Gaussian characteristic functions and
integral Taylor formula, gives an explicit expression of ∆̃(q)

λ , which is the object of Lemma 2.3.
For s ∈ [0, 1]2q , let

f(s) :=
2q∑

k=1

Ea

[(
N

(k)
λ

)2
]

+
2q∑

k,l=1
k 6=l

skslEa

[
N

(k)
λ N

(l)
λ

]

= Ea







2q∑

k=1

skN
(k)
λ




2

+

2q∑

k=1

(
1 − s2

k

)
Ea

[(
N

(k)
λ

)2
]

.

Lemma A.1. We have

∆̃(q)
λ = EX

[∫

[0,1]2q
∂1 . . . ∂2q

(
exp

(
−1

2
f

))
(s)ds

]
.

Proof of Lemma A.1. From mutual independence of the family (X1, . . . , X2q),

∆̃(q)
λ = EXEa




2q∏

k=1

(
eiN

(k)
λ − Ea

[
eiN

(k)
λ

)
])
 .

We define

∆̃(q)
λ (s) := EXEa






2q∏

k=1

Ea

[
ei

√
1−s2

k
N

(k)
λ

]




2q∏

k=1

(
eiskN

(k)
λ − Ea

[
eiskN

(k)
λ

)
])


 . (35)
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Developing the product, and using the characteristic function of a Gaussian random variable, a
direct computation shows that

∆̃(q)
λ (s) := EX


exp


−1

2

2q∑

k=1

Ea

[(
N

(k)
λ

)2
]
 ∑

A⊂{1,...,2q}
(−1)|A| exp


−1

2

∑

k,l∈A
k 6=l

skslEa

[
N

(k)
λ N

(l)
λ

]




 .

(36)
If sk = 0 for some k ∈ {1, . . . , 2q}, then from expression (35),

∆̃(q)
λ (s) = 0.

In other words, the function s 7→ ∆(q)
λ (s) cancels if one of its coordinates is zero. By integral

Taylor formula,

∆̃(q)
λ = ∆̃(q)

λ (1, . . . , 1) =
∫

[0,1]2q
∂1 . . . ∂2q∆(q)

λ (s)ds.

But from expression (36), the only term that depends on all coordinates (and thus won’t be
canceled after differentiation) is the term corresponding to A = {1, . . . , 2q}, which is

EX


exp


−1

2

2q∑

k=1

Ea

[(
N

(k)
λ

)2
]
 exp


−1

2

2q∑

k,l=1
k 6=l

skslEa

[
N

(k)
λ N

(l)
λ

]




 = EX

[
exp

(
−1

2
f(s)

)]
.

Now, for a set A, denote Π(A) the collection of partitions of A into groups of two elements.
A direct computation shows that

∂1 . . . ∂2q

(
exp

(
−1

2
f

))
= exp

(
−1

2
f

) ∑

A⊂{1,...,2q}
|A| even

(−1)
|A|

2




∑

B∈Π(A)

∏

(k,l)∈B

Ea

[
N

(k)
λ N

(l)
λ

]



×
∏

k∈Ac




2q∑

l=1
k 6=l

slEa

[
N

(k)
λ N

(l)
λ

]

 .

We deduce, using the mutual independence of the family X1, . . . , X2q and the estimate 34,

∆̃(q)
λ ≤ CEX




∑

A⊂{1,...,2q}
|A| even


 ∑

B∈Π(A)

∏

(k,l)∈B

∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣


 ∏

k∈Ac




2q∑

l=1
k 6=l

∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣







≤ C
∑

A⊂{1,...,2q}
|A| even


 ∑

B∈Π(A)

∏

(k,l)∈B

EX

[∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣
]

EX



∏

k∈Ac




2q∑

l=1
k 6=l

∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣







≤ C
∑

A⊂{1,...,2q}
|A| even

(
‖t‖2 η(λ)

λ

) |A|
2

EX



∏

k∈Ac




2q∑

l=1
k 6=l

∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣





 . (37)

To give a bound on the right-hand term and thus establish Lemma 2.3, we use the following
lemma whose proof again relies on the decorrelation estimates of Lemma 2.4.
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Lemma A.2. There is a constant C depending only on M, K and q such that

EX



∏

k∈Ac




2q∑

l=1
l 6=k

∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣





 ≤ C(1 + ‖t‖4)q− |A|

2

(
η(λ)

λ

)q− |A|
2

.

Proof of Lemma A.2. Assume without loss of generality that Ac = {1, . . . , 2m}. We compute

EX




2m∏

k=1




2q∑

l=1
k 6=l

∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣





 =

2q∑

l1,...,l2m=1
lk 6=k

EX

[
2m∏

k=1

∣∣∣Ea

[
N

(k)
λ N

(lk)
λ

]∣∣∣
]

︸ ︷︷ ︸
∆ℓ

.

Now fix ℓ = (l1, . . . , l2m). Consider the following graph Gℓ with vertices in {1, . . . , 2q}: two
vertices k and l are connected if the term

∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣ appears into the expression ∆ℓ. If the
graph Gℓ is disconnected, we can use independence of the random variables X1, . . . X2q, and we
are left to show the aforementioned bound for connected graphs. Thanks to Weyl law, there is
a constant C such that ∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣ ≤ C‖t‖2,

and we can assume (up to bounding a one of the terms in the product) that Gℓ is a tree (with
2m−1 edges). Suppose without loss of generality that 1 is a leaf of the tree attached to 2. Then

∆ℓ ≤ C‖t‖2
EX2,...,X2q


EX1

[∣∣∣Ea

[
N

(1)
λ N

(2)
λ

]∣∣∣
] ∏

(k,l)∈Gℓ

(k,l)6=(1,2)

∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣




≤ C‖t‖4O

(
η(λ)

λ

)
EX2,...,X2q




∏

(k,l)∈Gℓ

(k,l)6=(1,2)

∣∣∣Ea

[
N

(k)
λ N

(l)
λ

]∣∣∣


 ,

after the estimate 34. Repeating the procedure leaf by leaf we obtain the bound

EX

[
2m∏

k=1

∣∣∣Ea

[
N

(k)
λ N

(lk)
λ

]∣∣∣
]

= ‖t‖4mO

((
η(λ)

λ

)2m−1
)

= ‖t‖4mO

((
η(λ)

λ

)m)
.

We used the fact that 2m−1 ≥ m, with equality when m = 1. That is, the worst case is attained
for graphs Gl with m connected components, for instance when Gℓ = {(1, 2), (3, 4) . . . , (2m −
1, 2m)}.

A.2 Proof of Theorem 2.5

The proof of Theorem 2.5 is rather technical, and relies on the following Sobolev injection for a
smooth domain Ω:

W d+1,1(Ω) ⊂ L∞(Ω).

It allows us to bound the supremum norm by the W d+1,1 Sobolev norm, which is interchangeable
with the expectation under Pa. We only detail the proof of the first assertion for simplicity. The
second assertion is the generalization to the case t ∈ R

p, and its proof follows the same lines.
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Proof of Theorem 2.5. Let BK be a ball containing the compact K. Let t 7→ h(t) be a non-
negative symmetric function, and non-increasing on R+. For any smooth function f : BK ×R →
R with f(v, 0) = 0,

sup
v∈K

sup
t∈R

h(t)|f(v, t)| ≤ sup
t∈R

h(t)
∫

[0,t]
sup

v∈BK

|∂tf(v, s)|ds

≤ sup
t∈R

∫

[0,t]
h(s) sup

v∈BK

|∂tf(v, s)|ds

≤ C

∫ +∞

−∞
h(t)‖∂tf(v, t)‖W d+1,1(BK)dt. (38)

We set

f(v, t) =
∣∣∣∣EX

[
eitgX

λ
(v)
]

− e− t2

2

∣∣∣∣
2q

and h(t) =
1

(1 + |t|2+ε)2q .

in (38). By Fubini theorem,

Ea

[
sup
v∈K

sup
t∈R

h(t)f(v, t)

]
≤ C

∑

|α|≤d+1

∫ +∞

−∞
h(t)

∫

BK

Ea [|∂α∂tf(v, t)|] dvdt. (39)

It remains to estimate the integrand. Using the derivative of the power function, we have

∂α∂tf(v, t) = g(v, t)
∣∣∣∣EX

[
eitgX

λ
(v)
]

− e− t2

2

∣∣∣∣
2(q−d−2)

,

for some function g to be explicited. Using Cauchy–Schwarz inequality

Ea [|∂α∂tf(v, t)|] ≤
√
Ea[g(v, t)2] .

√√√√Ea

[∣∣∣∣EX

[
eitgX

λ
(v)
]

− e− t2

2

∣∣∣∣
4(q−d−2)

]
.

According to Theorem 2.2, there is a constant C independent of t and λ such that
√√√√Ea

[∣∣∣∣EX

[
eitgX

λ
(v)
]

− e− t2

2

∣∣∣∣
4(q−d−2)

]
≤ C(1 + |t|4(q−d−2))

(
η(λ)

λ

)q−d−2

.

We will show that for some polynomial P of degree m independent of q,

Ea[g(v, t)2] ≤ P (t). (40)

We will establish this fact in the end of the proof. Injecting this into the expression (39), we
obtain

Ea

[
sup
v∈K

sup
t∈R

h(t)f(v, t)

]
≤ C

(
η(λ)

λ

)q−d−2 ∫ +∞

−∞

(1 + |t|m
2 )(1 + |t|4(q−d−2))

(1 + |t|2+ε)2q dt,

and for q large enough, the integral is bounded. The end of the proof is the same as in the
remark following Theorem 2.2. We have by Markov inequality and q large enough,

Pa


sup

t∈R

sup
v∈K

∣∣∣∣EX

[
eitgX

λ
(v)
]

− e− t2

2

∣∣∣∣
1 + |t|2+ε

> λε
(

η(λ)
λ

)1/2


 ≤

(
λ

η(λ)λ2ε

)q

Ea

[
sup
v∈K

sup
t∈R

h(t)f(v, t)

]

≤ C
1

λ2qε

(
η(λ)

λ

)d+2

.
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For q large enough the right-hand term is summable, and Borel–Cantelli lemma implies the
existence a constant C(ω) depending only on K and ε such that

∣∣∣∣EX

[
eitgX

λ
(v)
]

− e− t2

2

∣∣∣∣ ≤ C(ω)(1 + |t|2+ε)

√
η(λ)

λ
1
2

−ε
.

It remains to show the estimate (40). We have

∣∣∣∣EX

[
eitgX

λ
(v)
]

− e− t2

2

∣∣∣∣
2q

= EX




2q∏

k=1

(
e±itg

Xk
λ

(v) − e− t2

2

)
 .

From this expression we deduce that

g(v, t) = EX

[
F

(
t,
(
∂αgXk

λ

)
|α|≤d′

1≤k≤2q

)]
,

with F a function bounded by a polynomial of degree 2(d + 2) in its arguments. But the partial
derivatives of gλ are still Gaussian under Pa, and the local Weyl law (see also the expression
(41)) implies the existence of a universal constant C such that

Ea

[(
∂αgXk

λ

)2p
]

=
(2p)!
2pp!

Ea

[(
∂αgXk

λ

)2
]p

≤ (2p)!
2pp!

C,

It implies that
Ea

[
g(v, t)2

]
≤ P (t),

for some polynomial in t whose degree is independent of q.

B Proof of tightness estimates

Proof of Lemma 2.7. Let x, y ∈ M. We have

Ea
[
∂αgx

λ(u) ∂αgy
λ(v)

]
=

1
K(λ)λ2|α|

∑

λn≤λ

(
∂α (ϕn ◦ Φx)

(
u

λ

))(
∂α (ϕn ◦ Φy)

(
v

λ

))
.

Setting

xu = Φx

(
u

λ

)
and yv = Φy

(
v

λ

)
,

and using the fact that d expx = Id, we obtain

Ea
[
∂αgx

λ(u) ∂αgy
λ(v)

]
=

1
K(λ)λ2|α| (∂α,αKλ(xu, yv)) + lower order terms.

Recalling that the kernel Bd (resp. Sd) is the C∞ scaling limit of the spectral projector we have

Ea

[
∂αgX

λ (u) ∂αgY
λ (v)

]
= ∂α,α [Bd(λ. dist(xu, yv))] + O

(
1
λ

)
.

We briefly describe the C∞ extension of decorrelation estimates given by Lemma 2.4. The proof
is very similar and we refer to the proof of Lemma 2.4 for more details. Firstly, by the local
Weyl law in the C∞ topology, we have uniformly on x ∈ M and u ∈ B,

Ea

[(
∂αgX

λ (u)
)2
]

= Cα + O

(
1
λ

)
and Cα = ∂α,αBd(‖u − v‖)|u=v=0 . (41)
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Secondly, take X and Y two independent uniform random variables on M, and k ≥ 1. As in
Lemma 2.4, we write

EX

[
Ea[∂αgX

λ (u) ∂αgY
λ (v)]2k

]
= I1 + I2,

with

I1 =
∫

dist(x,Y )>ε
Ea[∂αgX

λ (u) ∂αgY
λ (v)]2kdx and I2 =

∫

dist(x,Y )<ε
Ea[∂αgX

λ (u) ∂αgY
λ (v)]2kdx.

Using a similar argument as in Lemma 2.4, we deduce that uniformly on u, v ∈ B,

EX

[
Ea[∂αgX

λ (u) ∂αgY
λ (v)]2k

]
= O

(
η(λ)

λ

)
. (42)

Define
WX : u 7→ ∂αgX

λ (u) and WY : u 7→ ∂αgY
λ (u).

The joint process (WX , WY ) is Gaussian under Pa. We fix u, v ∈ B and set

ρ(u, v) =
Ea[WX(u)WY (v)]2

Ea[WX(u)2]Ea[WY (v)2]
.

A direct Gaussian computation shows that

E[WX(u)2p] =
(2p)!
2pp!

E

[
WX(u)2

]p
and E[WY (v)2p] =

(2p)!
2pp!

E

[
WY (v)2

]p
,

and

E[(WX(u)WY (v))2p]
Ea [WX(u)2p]Ea [WY (v)2p]

=
p∑

k=0

(
2p + 2k

2p

)(
2p

p + k

)

(
2p
p

) ρ(u, v)k(1 − ρ(u, v))p−k := Qp(ρ(u, v)).

(43)
From identity (43) we compute

Ea

[(
EX

[∫

B
WX(u)2pdu

]
− (2p)!

2pp!
(Cα)p

)2
]

=
(

(2p)!
2pp!

)2

(∆1 + ∆2), (44)

with

∆1 :=
(
EX

[∫

B
Ea

[
WX(u)2

]p
du

]
− (Cα)p

)2

,

and
∆2 :=

∫

B

∫

B
EX,Y

[
Ea

[
WX(u)2

]p
Ea

[
WY (v)2

]p
(Qp(ρ(u, v)) − 1)

]
dudv.

From Equation (41) we have

∆1 = O

(
1
λ2

)
.

As for the term ∆2, we use the fact that Ea
[
WX(u)2

]
is bounded above and below by positive

constants for λ large enough, from equation (41). We develop the polynomial Qp and we use
equation (42) to obtain

EX,Y

[
Ea

[
WX(u)2

]p
Ea

[
WY (v)2

]p
(Qp(ρ(u, v)) − 1)

]
≤ C EX,Y [|Qp(ρ(u, v)) − 1|]

≤ CEX,Y

[ p∑

k=1

|pk|ρ(u, v)k

]

= O

(
η(λ)

λ

)
.
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Since the estimate is uniform on u, v we deduce

∆2 = O

(
η(λ)

λ

)
.

Injecting this estimate into identity (44) we obtain

Ea

[(
EX

[∫

B
WX(u)2pdu

]
− (2p)!

2pp!
(Cα)p

)2
]

= O

(
η(λ)

λ

)
,

The quantity inside the square is a polynomial of degree at most 2p in the Gaussian random
variables (an)n≥0, and hence belongs to a finite fixed sum of Wiener chaos. The hypercontrac-
tivity property asserts that for such a polynomial, all the Lq norms for q ≥ 2 are equivalents,
which in our case implies that for every q ≥ 2,

Ea

[(
EX

[∫

B
WX(u)2pdu

]
− (2p)!

2pp!
(Cα)p

)q]
= O

((
η(λ)

λ

)q/2
)

.

For more details on Wiener chaos and hypercontractivity we refer the reader to the book [28].
Borel–Cantelli lemma implies the existence for every ε > 0 of a constant C(ω) independent of λ
such that ∣∣∣∣EX

[∫

B
WX(u)2pdu

]
− (2p)!

2pp!
(Cα)p

∣∣∣∣ ≤ C(ω)

√
η(λ)

λ
1
2

−ε
,

which in turn implies the existence of a constant C̃(ω) such that

sup
λ>0

EX

[∫

B
|∂αgX

λ (u)|2pdu

]
≤ C̃(ω).
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