
HAL Id: hal-02867527
https://hal.science/hal-02867527v3

Preprint submitted on 2 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Iterated sumsets and Hilbert functions
Shalom Eliahou, Eshita Mazumdar

To cite this version:

Shalom Eliahou, Eshita Mazumdar. Iterated sumsets and Hilbert functions. 2020. �hal-02867527v3�

https://hal.science/hal-02867527v3
https://hal.archives-ouvertes.fr


Iterated sumsets and Hilbert functions

Shalom Eliahou∗ and Eshita Mazumdar†

Abstract
Let A be a finite subset of an abelian group (G,+). For h ∈ N, let

hA = A+ · · ·+ A denote the h-fold iterated sumset of A. If |A| ≥ 2,
understanding the behavior of the sequence of cardinalities |hA| is a
fundamental problem in additive combinatorics. For instance, if |hA|
is known, what can one say about |(h − 1)A| and |(h + 1)A|? The
current classical answer is given by

|(h− 1)A| ≥ |hA|(h−1)/h,

a consequence of Plünnecke’s inequality based on graph theory. We
tackle here this problem with a completely new approach, namely by
invoking Macaulay’s classical 1927 theorem on the growth of Hilbert
functions of standard graded algebras. With it, we first obtain demon-
strably strong bounds on |hA| as h grows. Then, using a recent con-
densed version of Macaulay’s theorem, we derive the above Plünnecke-
based estimate and significantly improve it in the form

|(h− 1)A| ≥ θ(x, h) |hA|(h−1)/h

for h ≥ 2 and some explicit factor θ(x, h) > 1, where x ∈ R satisfies
x ≥ h and |hA| =

(
x
h

)
. Equivalently and more simply,

|(h− 1)A| ≥ h

x
|hA|.

We show that θ(x, h) often exceeds 1.5 and even 2, and asymptotically
tends to e ≈ 2.718 as x grows and h lies in a suitable range depending
on x.
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1 Introduction
Let A be a nonempty finite subset of an abelian group (G,+). For any
h ∈ N+ = {1, 2, . . . }, we denote by hA the h-fold iterated sumset of A, i.e.

hA = A+ · · ·+ A = {x1 + · · ·+ xh | xi ∈ A for all 1 ≤ i ≤ h}.

As usual, we set 0A = {0}. A central problem in additive combinatorics is
to understand the behavior of |hA| as h grows. Asymptotically, it is known
that |hA| is eventually polynomial in h. See e.g. [6, 7, 11]. But not much
is known about this polynomial and, for h small, the behavior of |hA| may
wildly depend on the structure, or lack thereof, of A. For instance, if A is a
subset of Z such that |A| = n, then

h(n− 1) + 1 ≤ |hA| ≤
(
n− 1 + h

h

)
,

both bounds being attained in suitable cases: arithmetic progressions for the
lower bound, and so-called Bh-sets for the upper bound. The latter is best
understood by noting that this binomial coefficient counts the number of
monomials of degree h in |A| commuting variables. See e.g. [18, Sections 2.1
and 4.5] or [4, Section 3.2].

Here we address the following question. If h ≥ 2 and |hA| is known, what
estimates on |(h− 1)A| and |(h+1)A| can one derive? The classical answer,
given by Plünnecke’s inequality and based on graph theory [13], is as follows:

|(h− 1)A| ≥ |hA|(h−1)/h. (1)

See also [16, 11, 18]. In this paper, we derive this bound with a completely
new approach, and we significantly improve it along the way. Our approach
relies on Macaulay’s classical 1927 theorem characterizing the Hilbert func-
tions of standard graded algebras [9]. We apply that theorem to a suitable
standard graded K-algebra R = R(A) = ⊕h≥0Rh having the property

dimK Rh = |hA|

for all h ≥ 0. Using a recent condensed version of Macaulay’s theorem [3],
we improve (1) as follows. Denote

θ(x, h) =
h

x

(
x

h

)1/h
2



for x ∈ R and h ∈ N. If |A| ≥ 2, our improved bound implies

|(h− 1)A| ≥ θ(x, h)|hA|(h−1)/h, (2)

where x is the unique real number larger than h such that |hA| =
(
x
h

)
. This

ensures θ(x, h) > 1. In fact, the factor θ(x, h) often exceeds 1.5 and even
2, as shown in Sections 5.2 and 5.3. For instance, for h = 12 we have
θ(x, 12)) > 2.013 for all x ≥ 50. This implies in turn that if A satisfies
|12A| ≥ 121,400,000,000, then

|11A| ≥ 2 |12A|11/12.

The wide occurrence of the case θ(x, h) ≥ 2 is described in more detail
in Section 5.3. Remarkably, for x large enough and suitable values of h
depending on x, the factor θ(x, h) approaches e ≈ 2.718, the basis of the
natural logarithm. For instance, this occurs for all x ≥ 106 at h = 3000. See
also Section 5.4, where strong evidence suggests that limx→∞ θ(x, bx1/2c) = e.
Three general remarks are in order here.

Remark 1.1. Our results are stated for finite subsets of an abelian group
G, but they hold more generally if G is a commutative semigroup, as in [12]
for instance.

Remark 1.2. Commutative algebra has already been applied to estimate
the growth of iterated sumsets. In particular, the Hilbert polynomial of
graded modules has been used to determine the asymptotic behavior of
the function h 7→ |hA|, and more generally of the function (h1, . . . , hr) 7→
|B + h1A1 + · · · + hrAr|. See [6, 7, 12, 11]. However, to the best of our
knowledge, the only previous application of Macaulay’s theorem to additive
combinatorics is in [3], where the above-mentioned condensed version is es-
tablished and applied to yield an asymptotic solution of Wilf’s conjecture on
numerical semigroups.

Remark 1.3. Another way of comparing |hA| with |(h−1)A| has been made,
at least for A ⊂ Z, by seeking to bound the difference |hA| − |(h− 1)A| from
below rather than the quotient |hA|/|(h−1)A| from above [8]. In the study of
the difference |hA|− |(h−1)A|, a main tool is Kneser’s theorem, whereas for
the quotient |hA|/|(h− 1)A|, the classical one is Plünnecke’s inequality, and
an additional one is now Macaulay’s theorem as made plain in this paper.
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There is a vast literature on Plünnecke’s inequality, its rich applications to
additive combinatorics and its successive refinements, such as the Plünnecke-
Ruzsa inequality for instance [17]. Besides dedicated chapters in [16, 11, 18],
see also the nice survey [14] and its many references.

The contents of this paper are as follows. In Section 2, we construct a
graded algebra R(A) whose Hilbert function exactly models the sequence
|hA|h≥0. In Section 3, we recall Macaulay’s theorem on Hilbert functions
and the recent condensed version that we shall use. We prove our main
results in Section 4. The first ones, Theorems 4.3 and 4.4, are obtained
by applying Macaulay’s theorem and its condensed version to the algebra
R(A). The strength of these results is then illustrated with the specific case
|5A| = 100. Here, Plünnecke’s inequality implies |4A| ≥ 40 and |6A| ≤ 251,
whereas our method yields much sharper and almost optimal bounds, namely
|4A| ≥ 61 and |6A| ≤ 152. As our next main result, Theorem 4.9, we derive
the Plünnecke-based estimate (1) from Theorem 4.4 and improve it by some
multiplicative factor θ(x, h) > 1. The numerical behavior of that factor is
studied in Section 5 and shown to often exceed 1.5 and even 2. In Section 6,
we give a presentation of R(A) by generators and relations. We conclude the
paper in Section 7 with related questions and remarks.

2 The graded algebra R(A)

Let A be a finite subset of an abelian group. Here we associate to A a
standard graded algebra R(A) whose Hilbert function models the sequence
|hA|. We start by recalling some basic terminology.

Definition 2.1. A standard graded algebra is a commutative algebra R over
a field K endowed with a vector space decomposition R = ⊕i≥0Ri such that
R0 = K, RiRj ⊆ Ri+j for all i, j ≥ 0, and which is generated as a K-algebra
by finitely many elements in R1.

It follows from the definition that each Ri is a finite-dimensional vector
space over K. Moreover, as R is generated by R1, we have RiRj = Ri+j for
all i, j ≥ 0, whence Ri = Ri

1, the i-fold iterated productset of R1.

Definition 2.2. Let R = ⊕i≥0Ri be a standard graded algebra. The Hilbert
function of R is the map i 7→ di associating to each i ∈ N the dimension

di = dimK Ri
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of Ri as a vector space over K.

Thus d0 = 1, and R is generated as a K-algebra by any d1 linearly
independent elements of R1.

Let now (G,+) be an abelian group. Consider the group algebra K[G] of
G. Its canonical K-basis is the set of symbols {tg | g ∈ G}, and its product
is induced by the formula

tg1tg2 = tg1+g2

for all g1, g2 ∈ G. Consider now S = K[G][Y ], the one-variable polynomial
algebra over K[G]. Then S has for K-basis the set

B = {tgY n | g ∈ G, n ∈ N},

and the product of any two basis elements is given by

tg1Y n1 · tg2Y n2 = tg1+g2Y n1+n2

for all g1, g2 ∈ G and all n1, n2 ∈ N. The degree of a basis element is defined
as

deg(tgY n) = n

for all g ∈ G and all n ∈ N. This endows S with the structure of a graded
algebra. Thus S = ⊕h≥0Sh, where Sh is the K-vector space with basis the
set {tgY h | g ∈ G}.

Definition 2.3. Let A = {a1, . . . , an} be a nonempty finite subset of G. We
define R(A) to be the K-subalgebra of S spanned by the set

{ta1Y, . . . , tanY }.

Thus R(A), being finitely generated over K by elements of degree 1, is
a standard graded algebra. We then have R = ⊕h≥0Rh, where Rh is the
K-vector space with basis the set {tbY h | b ∈ hA}. It follows that

dimRh = |hA| (3)

for all h ≥ 0, as desired.
For future work on R(A), it is algebraically important to determine the

relations between its given generators taiY . This is done in Section 6.
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3 Macaulay’s theorem
We now turn to Macaulay’s theorem [9] and a recent condensed version of
it [3]. Macaulay’s theorem gives a necessary and sufficient condition for a
numerical function N→ N to be the Hilbert function of some standard graded
algebra. It rests on the so-called binomial representations of integers. Here
is some background information.

Proposition 3.1. Let a ≥ i ≥ 1 be positive integers. There are unique
integers ai > ai−1 > · · · > a1 ≥ 0 such that

a =
i∑

j=1

(
aj
j

)
.

Proof. See e.g. [1, 13].

This expression is called the ith binomial representation of a. Producing
it is computationally straightforward: take for ai the largest integer such
that

(
ai
i

)
≤ a, and complete

(
ai
i

)
by adding to it the (i − 1)th binomial

representation of a −
(
ai
i

)
. We omit trails of 0’s, if any. For instance, for

a = 10 and i = 3, we abbreviate 10 =
(
5
3

)
+
(
1
2

)
+
(
0
1

)
as simply 10 =

(
5
3

)
.

Notation 3.2. Let a ≥ i ≥ 1 be positive integers. Let a =
i∑

j=1

(
aj
j

)
be its

ith binomial representation. We denote a〈i〉 =
i∑

j=1

(
aj + 1

j + 1

)
and 0〈i〉 = 0.

Note that the defining formula of a〈i〉 yields the (i+ 1)th binomial repre-
sentation of the integer it sums to.

Here is one half of Macaulay’s classical result, constraining the possible
Hilbert functions of standard graded algebras [9].

Theorem 3.3. Let R = ⊕i≥0Ri be a standard graded algebra over a field K,
with Hilbert function di = dimK Ri. Then for all i ≥ 1, we have

di+1 ≤ d
〈i〉
i . (4)

Remarkably, the converse also holds in Macaulay’s theorem, but we shall
not need it here. That is, satisfying (4) for all i ≥ 1 characterizes the Hilbert
functions of standard graded algebras. See e.g. [1, 10, 13].
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Example 3.4. Consider the sequence

(m0,m1,m2,m3,m4,m5,m6) = (1, 5, 15, 33, 61, 100, 152).

Then mi+1 ≤ m
〈i〉
i for all i = 1, . . . , 5 as readily checked. Hence there exists a

standard graded algebra R = ⊕j≥0Rj whose values of dimRi for i = 0, . . . , 6
are exactly modeled by the sequence (m0, . . . ,m6). For instance, one may
take R = S/J , where S = K[X1, . . . , X5] and J = (X3

5 , X4X
2
5 , X

3
3X

2
5 ).

3.1 A condensed version

For our new derivation of the Plünnecke-based estimate (1), we shall need
the following condensed version of Macaulay’s theorem established in [3]. For
m ∈ N and x ∈ R, denote as usual(

x

m

)
=
x(x− 1) · · · (x−m+ 1)

m!
=

m−1∏
i=0

x− i
m− i

.

In particular,
(
x

0

)
= 1. We shall constantly need the following observations.

Lemma 3.5. Let i ≥ 1 be an integer. Then the map y 7→
(
y
i

)
is an increasing

continuous bijection (in fact, a homeomorphism) from [i − 1,∞) to [0,∞).
In particular, for any real numbers y1, y2 ≥ i− 1, we have

y1 ≤ y2 ⇐⇒
(
y1
i

)
≤
(
y2
i

)
. (5)

Proof. A direct consequence of Rolle’s theorem. See e.g. [3, Lemma 5.6].

Lemma 3.6. Let h, d ≥ 1 be positive integers. Then there exists a unique

real number x ≥ h such that d =

(
x

h

)
.

Proof. By the above lemma, there is a unique real number x ≥ h − 1 such

that d =

(
x

h

)
. Since d ≥ 1, we have

(
x

h

)
≥
(
h

h

)
. Hence x ≥ h by (5).

Here is the condensed version of Macaulay’s theorem that we shall use in
the next section.
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Theorem 3.7. Let R = ⊕i≥0Ri be a standard graded algebra over the field
K, with Hilbert function di = dimKRi for i ≥ 0. Let h ≥ 1 be an integer. Let

x ≥ h− 1 be the unique real number such that dh =
(
x

h

)
. Then

dh−1 ≥
(
x− 1

h− 1

)
and dh+1 ≤

(
x+ 1

h+ 1

)
.

Proof. See [3].

4 Main results
Let A be a finite subset of an abelian group with |A| ≥ 2. If |hA| is known
for some h ≥ 2, what bounds can one derive on |iA| for i 6= h?

We first recall the classical known answer, a direct consequence of Plün-
necke’s inequality. See e.g. [11, Theorem 7.5, p. 217] or [16, Theorem 1.2.3
with m = 1, p. 96].

Theorem 4.1 (Plünnecke). Let A be a nonempty finite subset of an abelian
group. Let h ≥ 2 be an integer. Then |iA| ≥ |hA|i/h for all 1 ≤ i ≤ h.

Remark 4.2. Theorem 4.1 is equivalent to its main case i = h− 1, namely:

|(h− 1)A| ≥ |hA|(h−1)/h. (6)

Indeed, the general case is implied by (6), as shown by induction on h:

|iA|
(6)
≥ (|(i+ 1)A|i/(i+1)

ind.hyp.
≥ (|hA|(i+1)/h)i/(i+1) = |hA|i/h.

Consequently, in the sequel, we mainly focus on comparing |hA| with
|(h− 1)A| and/or |(h+ 1)A|. In this spirit, a particular case of Plünnecke’s
Theorem 4.1 is the estimate

|(h+ 1)A| ≤ |hA|(h+1)/h (7)

for all h ≥ 1.

In comparison, here is our first main result, obtained by applying Macaulay’s
Theorem 3.3 to the standard graded algebra R(A) defined in Section 2.
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Theorem 4.3. Let A be a nonempty finite subset of an abelian group G. Let
h ≥ 1 be an integer. Then

|(h+ 1)A| ≤ |hA|〈h〉. (8)

The strength of Theorem 4.3 is illustrated in Section 4.1, with a con-
crete example showing that (8) may be much sharper than (7). In fact, the
improvement of the former over the latter is systematic, as shown by Theo-
rem 4.9, Corollary 4.10 and Remark 4.11. See also a comment in Section 7.

Proof. Let R = R(A) be the standard graded algebra associated to A as de-
fined in Section 2. We have R = ⊕h≥0Rh, where Rh denotes the homogeneous
subspace of R of degree h. By (3) we have

dimRh = |hA|

for all h ≥ 0. Hence, for h ≥ 1, a direct application of Theorem 3.3 yields
the claimed upper bound (8).

Let us now apply Theorem 3.7, the condensed version of Macaulay’s the-
orem. We obtain the following more flexible bounds from which we shall
derive and improve (6).

Theorem 4.4. Let A be a nonempty finite subset of an abelian group G. Let

h ≥ 2 be an integer and x ≥ h the unique real number such that |hA| =
(
x

h

)
.

Then
|(h− 1)A| ≥

(
x− 1

h− 1

)
and |(h+ 1)A| ≤

(
x+ 1

h+ 1

)
.

Proof. As above, let R = R(A) be the standard graded algebra associated to
A with its decomposition R = ⊕h≥0Rh into the direct sum of its homogeneous
subspaces of given degree, where dimRh = |hA| for all h ≥ 0. The claimed
bounds follow from Theorem 3.7 applied to R(A).

Remark 4.5. While more handy, the upper bound in Theorem 4.4 is slightly
weaker than in Theorem 4.3. Indeed, still with x ≥ h such that |hA| =

(
x
h

)
,

we have
|hA|〈h〉 ≤

(
x+ 1

h+ 1

)
.

This follows from [3, Theorem 5.9].
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Given |hA|, the lower bound on |(h− 1)A| provided by Theorem 4.4 may
be up to 2.71 times better, in suitable circumstances, than the one provided
in (6) by Plünnecke’s inequality. This will be shown in Sections 4.2 and 5. We
start with a concrete example demonstrating the strength of Theorems 4.3
and 4.4.

4.1 An example: the case |5A| = 100

Let A be a subset of an abelian group such that |5A| = 100. The Plünnecke-
based bounds given by (6), namely |4A| ≥ 1004/5 and |6A| ≤ 1006/5, yield

|4A| ≥ 40, |6A| ≤ 251.

In comparison, based on the condensed version of Macaulay’s theorem, The-
orem 4.4 yields the much sharper bounds

|4A| ≥ 58, |6A| ≤ 161. (9)

Indeed, let x ≥ 5 be the unique real number such that
(
x
5

)
= 100. Then

8.69 < x < 8.7, as follows from
(
8.69
5

)
≈ 99.42 and

(
8.7
5

)
≈ 100.2. Hence

|4A| ≥
(
x− 1

4

)
>

(
7.69

4

)
≈ 57.2,

|6A| ≤
(
x+ 1

6

)
<

(
9.7

6

)
≈ 161.99.

This proves (9). Theorem 4.3, based on the full version of Macaulay’s theo-
rem, yields even better bounds.

Proposition 4.6. Let A be a subset of an abelian group such that |5A| = 100.
Then

|4A| ≥ 61, |6A| ≤ 152. (10)

Proof. The 5th binomial representation of 100 is given by

100 =

(
8

5

)
+

(
7

4

)
+

(
4

3

)
+

(
3

2

)
+

(
2

1

)
.
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The inequality |(h + 1)A| ≤ |hA|〈h〉 of Theorem 4.3 then yields (10). More
precisely, we have

|4A| ≥
(
7

4

)
+

(
6

3

)
+

(
4

2

)
= 61, (11)

|6A| ≤
(
9

6

)
+

(
8

5

)
+

(
5

4

)
+

(
4

3

)
+

(
3

2

)
= 152. (12)

Thus inequality (12) directly follows from Theorem 4.3. As for (11), if we had

|4A| ≤ 60 =

(
7

4

)
+

(
6

3

)
+

(
3

2

)
+

(
2

1

)
, then that same theorem would imply

|5A| ≤
(
8

5

)
+

(
7

4

)
+

(
4

3

)
+

(
3

2

)
= 100− 2, contrary to the hypothesis.

Is Proposition 4.6 best possible for sets satisfying |5A| = 100? Strong ev-
idence shows that it is not far from it. For instance, let A = {0, 1, 5, 8, 49} ⊂
Z. Then |5A| = 100 as required, and

|4A| = 63, |6A| = 145.

We conjecture that these bounds are optimal for sets of integers.

Conjecture 4.7. Let A ⊂ Z be any subset satisfying |5A| = 100. Then
|4A| ≥ 63 and |6A| ≤ 145.

As seen here, the improvement provided by Theorem 4.4 is already quite
good. How good is it in general? We investigate this question in the sequel.

4.2 Macaulay vs Plünnecke

As our next main result, we show that Plünnecke’s Theorem 4.1 also follows
from our Macaulay-based Theorem 4.4, and we significantly strengthen it by
a multiplicative factor which may exceed 2.71 in suitable circumstances.

Notation 4.8. For a positive integer h and a real number x ≥ h, we set

θ(x, h) =
h

x

(
x

h

)1/h
.

11



Theorem 4.9. Let A be a nonempty finite subset of an abelian group G. Let
h ≥ 2 be an integer. Then

|(h− 1)A| ≥ θ(x, h) |hA|(h−1)/h,

where x ∈ R satisfies x ≥ h and |hA| =
(
x

h

)
.

Proof. Theorem 4.4 yields

|(h− 1)A| ≥
(
x− 1

h− 1

)
. (13)

Now (
x− 1

h− 1

)
=
h

x

(
x

h

)
(14)

since (
x

h

)
=

h−1∏
i=0

x− i
h− i

=
x

h

h−1∏
i=1

x− i
h− i

=
x

h

(
x− 1

h− 1

)
.

Hence

|(h− 1)A|h ≥
(
x− 1

h− 1

)h
=

(
h

x

)h(
x

h

)h
=

(
h

x

)h(
x

h

)(
x

h

)h−1
=

(
h

x

)h(
x

h

)
|hA|h−1.

Therefore |(h− 1)A|h ≥ θ(x, h)h|hA|h−1, as desired.

Corollary 4.10. Theorem 4.4 implies Plünnecke’s Theorem 4.1.

Proof. By Theorem 4.9, we only need to show θ(x, h) ≥ 1, or equivalently,
θ(x, h)h ≥ 1. Now

θ(x, h)h =

(
h

x

)h(
x

h

)
=

h−1∏
i=0

h(x− i)
x(h− i)

, (15)

and h(x− i) ≥ x(h− i) for all 0 ≤ i ≤ h− 1 since h ≤ x.

12



Remark 4.11. In fact, we have θ(x, h) > 1 whenever h ≥ 2 and |hA| ≥ 2.
Inded, since |hA| =

(
x
h

)
with x ≥ h, it follows that x > h, whence h(x− 1) >

x(h− 1), implying in turn θ(x, h)h > 1 by (15).

We close this section with an equivalent formulation of Theorem 4.9. It
provides a nice inequality between |(h − 1)A| and |hA|, yet less suited to
comparison purposes with Plünnecke’s inequality.

Theorem 4.12. Let A be a nonempty finite subset of an abelian group G.
Let h ≥ 2 be an integer. Then

|(h− 1)A| ≥ h

x
|hA|,

where x ∈ R satisfies x ≥ h and |hA| =
(
x

h

)
.

Proof. Directly follows from Theorem 4.9 and the formulas

θ(x, h) =
h

x

(
x

h

)1/h
=

h

x
|hA|(h−1)/h.

Alternatively, directly follows from Theorem 4.4 and formula (14).

Corollary 4.13. Let A be a nonempty finite subset of an abelian group G.
For all i ≥ 1, let xi ∈ R satisfy xi ≥ i and

(
xi
i

)
= |iA|. Let h ≥ 2 be an

integer. For all 1 ≤ i ≤ h− 1, we have

|hA| ≤

(
h∏

j=i+1

xj/j

)
|iA|.

Proof. Straightforward consequence of the above theorem.

5 Behavior of θ(x, h)
We now study the numerical behavior of the function θ(x, h). Denote e ≈
2.718, the basis of the natural logarithm. We show that 1 < θ(x, h) < e
whenever x > h ≥ 2, and that θ(x, h) asymptotically tends to e in suitable
circumstances. This section is slightly more informal in nature. Numerical
computations and graphics were done with Mathematica 10 [20].
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Proposition 5.1. For all h ∈ N, x ∈ R such that x > h ≥ 2, we have

1 < θ(x, h) < e.

Proof. The lower bound follows from (15) and Remark 4.11. As for the upper
bound, we have (

x

h

)
≤ xh

h!
=
xh

hh
hh

h!
<
xh

hh
eh

since
hh

h!
<
∑
k∈N

hk

k!
= eh. It follows that

θ(x, h) =
h

x

(
x

h

)1/h

<
h

x

x

h
e = e.

We shall also need to invoke the monotonicity of θ(x, h) in x.

Proposition 5.2. For a fixed integer h ≥ 2, the map x 7→ θ(x, h) from
[h,∞) to [1,∞) is strictly increasing.

Proof. It is equivalent to show that the map x 7→ θ(x, h)h is strictly increas-
ing. This easily follows from the positivity of its derivative. Details are left
to the reader.

5.1 Asymptotics

We provide here, somewhat informally, a good approximation of θ(x, h) to-
gether with its asymptotic behavior as x grows. Recall Stirling’s approxima-
tion of n! for large n:

n! ∼
√
2πn

(n
e

)n
.

On the other hand, the bounds below are valid for all n ≥ 1:
√
2π nn+1/2 e−n ≤ n! ≤ e nn+1/2 e−n.

This yields the following well known approximation of
(
n

k

)
for n much larger

than k, see e.g. [19]: (
n

k

)
∼ (n/k − 1/2)k ek√

2πk
.

As a consequence, here is the asymptotic behavior of θ(x, h) when x grows.

14



Proposition 5.3. Let h ≥ 2 be an integer. Then

θ(x, h) ∼ (1− h/(2x)) e
(2πh)1/(2h)

=
(2x− h) e

2x(2πh)1/(2h)
.

In particular,
lim
x→∞

θ(x, h) = (2πh)−1/(2h) e.

Proof. Directly follows from the above approximation of the binomial coeffi-
cients.

5.2 When θ(x, h) ≥ 1.5

Our multiplicative improvement factor θ(x, h) over the Plünnecke-based es-
timate

|(h− 1)A| ≥ |hA|(h−1)/h (16)

exceeds 1.5 quite early in terms of x or h. Indeed, one observes that the
smallest integer x for which θ(x, h) ≥ 1.5 for some integer h is x = 10,
specifically at h = 4 and 5. Even starting at h = 3, we have

θ(x, 3) ≥ 1.509 (17)

for all x ≥ 12. As an example of application, these observations, together
with Theorem 4.9, yield the following improvements of (16) for h = 3, 4, 5.

Corollary 5.4. Let A be a finite subset of an abelian group G. Then

|3A| ≥ 220 =⇒ |2A| ≥ 3

2
|3A|2/3,

|4A| ≥ 210 =⇒ |3A| ≥ 3

2
|4A|3/4,

|5A| ≥ 252 =⇒ |4A| ≥ 3

2
|5A|4/5.

Proof. For h = 3, let x be the unique real number greater than 3 such that
|3A| =

(
x
3

)
. Since |3A| ≥ 220 =

(
12
3

)
, we have x ≥ 12, whence θ(x, 3) ≥ 1.5

by (17). The conclusion follows from Theorem 4.9. For h = 4 and 5, we
have

(
10
4

)
= 210 and

(
10
5

)
= 252. The rest of the proof is similar, using the

above-mentioned estimates θ(x, 4), θ(x, 5) ≥ 1.5 for all x ≥ 10.
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5.3 When θ(x, h) ≥ 2

We now examine circumstances guaranteeing θ(x, h) ≥ 2, a case of interest
where our bound in Theorem 4.9 is at least twice better than (16). As it
turns out, for x large, one has θ(x, h) ≥ 2 for almost all integers h between 6
and bx/2c. We also describe cases where θ(x, h) gets very close to its upper
bound e.

So, under what minimal circumstances, in terms of h or of x, do we have
θ(x, h) ≥ 2? First note that if y ≥ h − 1 then θ(y, h) < limx→∞ θ(x, h), as
follows from Proposition 5.2. Moreover, limx→∞ θ(x, h1) ≤ limx→∞ θ(x, h2)
whenever h1 ≤ h2, as follows from Proposition 5.3.

That being said, consider the case h = 5. Since limx→∞ θ(x, 5) < 1.926
by Proposition 5.3, the values 1 ≤ h ≤ 5 are excluded for the occurrence of
θ(x, h) ≥ 2. However, already h = 6 qualifies, as limx→∞ θ(x, 6) > 2.007.
More precisely, we have

θ(x, 6) ≥ 2 (18)

for all x ≥ 1210, the least integer with that property.
If now h is allowed to grow, then θ(x, h) ≥ 2 may occur for much smaller

values of x. Indeed, the smallest x ∈ N for which θ(x, h) ≥ 2 for some h is
x = 48, namely at h = 11 and 12. More precisely, we have

θ(48, 11) > 2.001, θ(48, 12) > 2.002,
θ(48, 10) < 1.997, θ(48, 13) < 1.999.

See Figure 1.
In fact, when x goes to infinity, then θ(x, h) ≥ 2 holds for almost all

positive integers h ≤ x/2. Indeed, as observed in (18), we have θ(x, 6) ≥ 2
for all x ≥ x0 = 1210. Now, numerical computations at x0 yield

θ(x0, h) ≥ 2 ∀h ∈ [6, x0/2− 10] ∩ N. (19)

Together with Theorem 4.9, this yields the following factor 2 improvement
over the Plünnecke-based estimate (16).

Corollary 5.5. Let h be an integer such that 6 ≤ h ≤ 595. Let A be a subset
of an abelian group G such that |hA| ≥

(
2h+20
h

)
. Then

|(h− 1)A| ≥ 2|hA|(h−1)/h.
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Figure 1: Values of θ(48, h) for h = 1, . . . , 48

Proof. Let x ≥ h satisfy |hA| =
(
x
h

)
. Since |hA| ≥

(
2h+20
h

)
, it follows that

x ≥ 2h + 20 ≥ 1210 = x0. Hence h ∈ [6, x0/2− 10] ∩ N, whence θ(x, h) ≥ 2
by (19) and Proposition 5.2. The conclusion follows from Theorem 4.9.

As yet another instance, for x1 = 106 now, one has an almost identical
statement as in (19) for x0 = 1210, namely

θ(x1, h) ≥ 2 ∀h ∈ [6, x1/2− 19] ∩ N. (20)

Statements (19) and (20) are no accident, as hinted by the following
result.

Proposition 5.6. One has limx→∞ θ(x, bx/2c) = 2.

Proof. Using Stirling’s approximation formula of n!, one readily sees that

θ(n, bn/2c) ≈ 2

(
2

πn

)1/n

,

which proves the claim since limn→∞(cn)
−1/n = 1 for any constant c > 0.

5.4 The highest point

For fixed x, the general shape of θ(x, h) when h runs from 1 to bxc is well
illustrated by Figure 1 for x = 48. Figure 2 displays the case x = 1000.
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Figure 2: Values of θ(1000, h) for h = 1, . . . , 1000

It would be desirable to determine the highest point of that curve, and in
particular the integer 1 ≤ h ≤ x maximizing θ(x, h). We do not have yet a
precise answer. Nevertheless, by computing derivatives of the approximation
of θ(x, h) provided by Proposition 5.3, one sees that for fixed x,

∂

∂h

(
2x− h

(2πh)1/(2h)

)
> 0 ⇐⇒ 2h2 < (2x− h)(ln(2πh)− 1). (21)

Thus, for x fixed, the sought-for integer h maximizing θ(x, h) occurs when

2h2 ≈ (2x− h)(ln(2πh)− 1). (22)

For instance, for x0 = 100, the maximum of θ(x0, h) is reached at h = 18, for
which θ(100, 18) ≈ 2.177. Hence

θ(x, 18) ≥ 2.177

for all x ≥ 100, as follows from Proposition 5.2.

5.5 For h fixed

In the opposite direction, for h fixed, it is easy to locate the real number
x1 ≥ h maximizing θ(x, h). Indeed, using (21), we find

x1 ≈
1

2

(
2h2

ln(2πh)− 1
+ h

)
.
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This suggests that
lim
x→∞

θ(x, bx1/2c) = e,

as is fully confirmed by numerical experiments. As a concrete illustration,
here are instances where θ(x, h) gets very close to e:

• For all x ≥ 200000 and all 1200 ≤ h ≤ 1300, one has θ(x, h) ≥ 2.70.
• Similarly, for all x ≥ 1100000 and all 2600 ≤ h ≤ 3700, one has
θ(x, h) ≥ 2.71.

6 A presentation of R(A)
Reusing the notation of Section 2, let A = {a1, . . . , an} be a nonempty finite
subset of an abelian group (G,+). For future use, it is algebraically necessary
to determine the relations between the given generators taiY of the associated
algebra R(A). Our aim here is thus to identify R(A) as the quotient of the
polynomial algebra K[X1, . . . , Xn] by a suitable homogeneous ideal I.

Notation 6.1. For α = (α1, . . . , αn) ∈ Nn, let Xα = Xα1
1 · · ·Xαn

n denote
the corresponding monomial in K[X1, . . . , Xn]. We denote the set of these
monomials by M = {Xα | α ∈ Nn} .

Let ϕ : K[X1, . . . , Xn] → R(A) be the surjective morphism induced by
ϕ(Xi) = taiY for all i. On the set M , we define the equivalence relation

u ∼ v ⇐⇒ ϕ(u) = ϕ(v)

for all u, v ∈ M . Equivalently, let us write u = Xα, v = Xβ with α =
(α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn. Then

Xα ∼ Xβ ⇐⇒
{ ∑

i αi =
∑

i βi,∑
i αiai =

∑
i βiai.

In particular, equivalent monomials have the same degree, where as usual
deg(Xα) =

∑
i αi.

We shall need the notion of simple polynomial relative to ∼.

Definition 6.2. Let f ∈ K[X1, . . . , Xn]. We say that f is simple if f 6= 0
and all monomials occurring in f are equivalent under ∼.
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Observe that a simple polynomial is homogeneous. Indeed, equivalent
monomials under ∼ have the same degree as observed above. Moreover, every
nonzero polynomial g ∈ K[X1, . . . , Xn] may be decomposed, in a unique way
up to order, as the sum g = f1 + · · · + fr of maximal simple polynomials
fi, in the sense that for all i 6= j, the monomials occurring in fi are non-
equivalent under ∼ to those of fj. The fi are obtained by simply regrouping
the monomials of f into maximal equivalence classes. We shall refer to the
fi as the simple components of f . See e.g. [2, p. 232] and [5, p. 346], where
similar notions were used.

Lemma 6.3. Let g ∈ ker(ϕ)\{0}. Then every simple component of g belongs
to ker(ϕ).

Proof. Let f be a simple component of g. We must show ϕ(f) = 0. Since
f is simple, it is homogeneous of some degree h. Write f =

∑
i λiui, where

λi ∈ K \ {0} for all i and where the ui are pairwise distinct monomials.
Since the ui are pairwise equivalent under ∼, we have ϕ(ui) = tbY h for some
b ∈ hA independent of i. Hence

ϕ(f) = (
∑
i

λi)t
bY h.

Now, for any monomial v occurring in g but not in f , we have ϕ(v) 6= tbY h

as v is non-equivalent to the ui. Since ϕ(g) = 0, it follows that
∑

i λi = 0.
Hence ϕ(f) = 0, as desired.

Proposition 6.4. Let I ⊂ K[X1, . . . , Xn] be the ideal generated by the set
{u− v | u, v ∈M,u ∼ v}. Then ker(ϕ) = I.

Proof. We have I ⊂ ker(ϕ) by construction. Conversely, let 0 6= f ∈ ker(ϕ).
By Lemma 6.3, we may further assume that f is simple. Write f =

∑r
i=1 λiui,

where λi ∈ K \{0} for all i and where the ui are pairwise distinct monomials.
Since ϕ(f) = 0 and ϕ(ui) = ϕ(uj) for all i 6= j, it follows that

∑r
i=1 λi = 0.

Therefore λr = −
∑r−1

i=1 λi, and so

f =
r−1∑
i=1

λi(ui − ur).

Since ui ∼ ur for all i, it follows that ui−ur ∈ I. Hence f ∈ I, as desired.

Corollary 6.5. We have R(A) ' K[X1, . . . , Xn]/I.

Proof. By Noether’s isomorphism theorem.
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7 Concluding comments
We end this paper with a few related questions and remarks.

A first natural question is, how far from optimal are our new bounds?
More precisely, let (G,+) be an abelian group, and let h, i,m be positive
integers such that m ≤ |G|. Among all subsets A ⊆ G such that |hA| = m,
what is

• (inverse problem) the best possible lower bound on |iA| for i ≤ h?
• (direct problem) the best possible upper bound on |iA| for i ≥ h?

Accordingly, let us denote

ωG(h, i,m) =

{
minA⊆G |iA| if i ≤ h,
maxA⊆G |iA| if i ≥ h,

where in both cases, the extremum is taken over all subsets A of G satisfying
|hA| = m.

Focusing here on the direct problem with i = h + 1, how large can
ωG(h, h + 1,m) be? The upper bounds given successively by Plünnecke’s
inequality (7), Theorem 4.4 based on the condensed version of Macaulay’s
theorem, and Theorem 4.3 based on Macaulay’s theorem proper, are

ωG(h, h+ 1,m) ≤ m(h+1)/h, (23)

ωG(h, h+ 1,m) ≤
(
x+ 1

h+ 1

)
=
x+ 1

h+ 1
m, (24)

ωG(h, h+ 1,m) ≤ m〈h〉, (25)

respectively, where x ≥ h satisfies
(
x
h

)
= m. Applied to the case (h,m) =

(5, 100) in Section 4.1, these bounds yield successively

ωG(5, 6, 100) ≤


251 by (23),
161 by (24),
152 by (25).

The last one is probably close to optimal. Indeed, for G = Z, we gave
an example with |5A| = 100 and |6A| = 145, yielding ωZ(5, 6, 100) ≥ 145.
Conjecture 4.7 implies that this is best possible, i.e. that ωZ(5, 6, 100) = 145.
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As another natural question, can one specialize Macaulay’s theorem by
characterizing the Hilbert functions of all algebras of the form R(A) for finite
subsets A of a given abelian group G? A positive answer would help tackle
the former question.

Finally, in a sequel to this paper, we will show two more aspects of the
strength of Theorem 4.3. The proof methods are quite different from the
present ones, except that Macaulay’s theorem remains central. First, we
will show that Theorem 4.3 is asymptotically optimal : the upper bound it
provides, namely

|(h+ 1)A| ≤ |hA|〈h〉

for all h ≥ 1, is in fact an equality for h large enough. Second, we will show
that Theorem 4.3 is best possible in the sense that, given any sequence of
positive integers (di)i≥0 such that d0 = 1 and

1 ≤ di+1 ≤ d
〈i〉
i

for all i ≥ 1, there exists a finite subset A of a commutative semigroup (G,+)
such that

dh = |hA|

for all h ≥ 0.

Together, the present paper and its forthcoming sequel raise the prospect
that Macaulay’s theorem, an almost century-old classical result from commu-
tative algebra, may emerge as a powerful new tool in additive combinatorics.
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