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Iterated sumsets and Hilbert functions

Shalom Eliahou∗ and Eshita Mazumdar†

Abstract

Let A be a finite subset of an abelian group (G,+). Let h ≥ 2 be
an integer. If |A| ≥ 2 and the cardinality |hA| of the h-fold iterated
sumset hA = A+ · · ·+A is known, what can one say about |(h− 1)A|
and |(h+ 1)A|? It is known that

|(h− 1)A| ≥ |hA|(h−1)/h,

a consequence of Plünnecke’s inequality. Here we improve this bound
with a new approach. Namely, we model the sequence |hA|h≥0 with
the Hilbert function of a standard graded algebra. We then apply
Macaulay’s 1927 theorem on the growth of Hilbert functions, and more
specifically a recent condensed version of it. Our bound implies

|(h− 1)A| ≥ θ(x, h) |hA|(h−1)/h

for some factor θ(x, h) > 1, where x is the unique real number larger
than h such that |hA| =

(
x
h

)
. Moreover, we show that θ(x, h) asymp-

totically tends to e ≈ 2.718 as |A| grows and h lies in a suitable range
varying with |A|.

Keywords: Plünnecke’s inequality; Standard Graded Algebra;
Macaulay’s Theorem; Stirling’s formula.

MSC2020: 05E40, 11P70, 13P25

1 Introduction
Let A be a nonempty finite subset of an abelian group (G,+). For any
h ∈ N+ = {1, 2, . . . }, we denote by hA the h-fold iterated sumset of A, i.e.

hA = A+ · · ·+ A = {x1 + · · ·+ xh | xi ∈ A for all 1 ≤ i ≤ h}.

As usual, for h = 0 we set hA = {0}. A classical problem in additive
combinatorics is to determine the sequence of cardinalities |hA| as h grows.
∗LMPA-ULCO, Calais, France. Email: eliahou(at)univ-littoral.fr
†Stat-Math Unit, ISI Bengaluru. Email: eshita_vs(at)isibang.ac.in
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Asymptotically, it is known that |hA| is eventually polynomial in h. See
e.g. [7, 8, 12]. But the behavior of |hA| for small h may wildly depend on
the structure, or lack thereof, of A. For instance, if A is a subset of Z such
that |A| = n, then

hn− h+ 1 ≤ |hA| ≤
(
n+ h− 1

h

)
,

with both bounds attained in suitable cases: arithmetic progressions for the
lower bound, and so-called Bh-sets for the upper bound. The latter is best
understood by noting that this binomial coefficient counts the number of
monomials of degree h in |A| commuting variables. See e.g. [17, Sections 2.1
and 4.5] or [4, Section 3.2].

Here we address the following question. If h ≥ 2 and |hA| is known,
what estimates of |(h − 1)A| and |(h + 1)A| can one derive? One available
estimate, given by Plünnecke’s inequality and based on graph theory [14], is
as follows:

|(h− 1)A| ≥ |hA|(h−1)/h. (1)

See also [6, 12, 17]. In this paper, we derive this bound from a completely
different approach, and actually obtain a sharper one. We do so by modeling
the sequence |hA|h≥0 with the Hilbert function of a suitable graded algebra
R = R(A). That is, we construct a graded algebra R = ⊕h≥0Rh over a field
R0 = K with the property

dimKRh = |hA|

for all h ≥ 0. Remarkably, Hilbert functions of standard graded algebras were
completely characterized in 1927 in a classical theorem due to Macaulay [10].
Using a recent condensed version of it [3], we shall improve (1) as follows.
Denote

θ(x, h) =
h

x

(
x

h

)1/h
for x ∈ R and h ∈ N. If |A| ≥ 2, our improved bound implies

|(h− 1)A| ≥ θ(x, h)|hA|(h−1)/h (2)

for the unique real number x > h such that |hA| =
(
x
h

)
, thereby ensuring

θ(x, h) > 1. In fact, for x large enough and suitable values of h, the improve-
ment factor θ(x, h) approaches e ≈ 2.718, the basis of the natural logarithm.
This occurs, for instance, for x ≥ 106 and h = 3000. See also Section 6.4,
where strong evidence suggests that limx→∞ θ(x, bx1/2c) = e.

More modestly, the factor θ(x, h) exceeds 2 already for x ≥ 50 and
h = 12, in which case θ(x, 12) > 2.013. In practice, this means that if A is a
set of integers such that |12A| ≥ 121,400,000,000, then

|11A| ≥ 2.013 |12A|11/12 ≥ 29,130,000,000.
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See Section 6.3 for more details on the wide occurrence of the case θ(x, h) ≥ 2.
Three general remarks are in order here.

Remark 1.1. Our results are stated for finite subsets of an abelian group
G, but they hold more generally if G is a commutative semigroup, as in [13]
for instance.

Remark 1.2. Commutative algebra has already been applied to estimate
the growth of iterated sumsets. In particular, the Hilbert polynomial of
graded modules has been used to determine the asymptotic behavior of
the function h 7→ |hA|, and more generally of the function (h1, . . . , hr) 7→
|B + h1A1 + · · · + hrAr|. See [7, 8, 13, 12]. However, to the best of our
knowledge, the only previous application of Macaulay’s theorem to additive
combinatorics is in [3], where the above-mentioned condensed version is es-
tablished and applied to yield an asymptotic solution of Wilf’s conjecture on
numerical semigroups.

Remark 1.3. Another way of comparing |hA| with |(h−1)A| has been made,
at least for A ⊂ Z, by seeking to bound the difference |hA| − |(h− 1)A| from
below rather than the quotient |hA|/|(h− 1)A| from above [9]. In the study
of the difference |hA| − |(h− 1)A|, a main tool is Kneser’s theorem, whereas
for the quotient |hA|/|(h − 1)A|, it is Plünnecke’s inequality as mentioned
above, and now Macaulay’s theorem as argued here.

There is a vast literature on Plünnecke’s inequality, its applications to ad-
ditive combinatorics and its successive refinements. Besides dedicated chap-
ters in [6, 12, 17], see also for instance the nice survey [15] and its many
references.

The contents of this paper are as follows. In Section 2, we construct
a graded algebra R(A) whose Hilbert function exactly models the sequence
|hA|h≥0. We also give a presentation of R(A) by generators and relations.
In Section 3, we recall Macaulay’s theorem on Hilbert functions and the
recent condensed version that we shall use. We prove our main result in
Section 4 and apply it to the specific example |5A| = 100. In that example,
Plünnecke’s inequality implies |4A| ≥ 40 and |6A| ≤ 251. Our method yields
much sharper and almost optimal bounds, namely |4A| ≥ 61 and |6A| ≤ 152.
In Section 5, we derive the bound given by Plünnecke’s inequality from our
result and improve it by some factor θ(x, h) > 1. The numerical behavior of
that factor is studied in Section 6. We conclude the paper in Section 7 with
two related questions.

2 The graded algebra R(A)

Let us start by recalling some basic terminology.
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Definition 2.1. A standard graded algebra is a commutative algebra R over
a field K endowed with a vector space decomposition R = ⊕i≥0Ri such that
R0 = K, RiRj ⊆ Ri+j for all i, j ≥ 0, and which is generated as a K-algebra
by finitely many elements in R1.

It follows from the definition that each Ri is a finite-dimensional vector
space over K. Moreover, the fact that R is generated by R1 implies that
RiRj = Ri+j for all i, j ≥ 0.

Definition 2.2. Let R = ⊕i≥0Ri be a standard graded algebra. The Hilbert
function of R is the map i 7→ di associating to each i ∈ N the dimension

di = dimKRi

of Ri as a vector space over K.

In particular, we have d0 = 1, and R is generated as a K-algebra by any
d1 linearly independent elements of R1.

2.1 Construction of R(A)

Here we associate a standard graded algebra to a given finite subset A of
an abelian group (G,+). Let K be a commutative field. Consider the group
algebra K[G] of G. Its canonical K-basis is the set of symbols {tg | g ∈ G},
and its product is induced by the formula

tg1tg2 = tg1+g2

for all g1, g2 ∈ G. Consider now S = K[G][Y ], the one-variable polynomial
algebra over K[G]. Then S has for K-basis the set

B = {tgY n | g ∈ G, n ∈ N},

and the product of any two basis elements is given by

tg1Y n1 · tg2Y n2 = tg1+g2Y n1+n2

for all g1, g2 ∈ G and all n1, n2 ∈ N. The degree of a basis element is defined
as

deg(tgY n) = n

for all g ∈ G and all n ∈ N. This endows S with the structure of a graded
algebra. Thus S = ⊕h≥0Sh, where Sh is the K-vector space with basis the
set {tgY h | g ∈ G}.

Definition 2.3. Let A = {a1, . . . , an} be a nonempty finite subset of the
abelian group (G,+). We define R(A) to be the K-subalgebra of S spanned
by the set

{ta1Y, . . . , tanY }.
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Thus R(A), being finitely generated over K by elements of degree 1, is
a standard graded algebra. We then have R = ⊕h≥0Rh, where Rh is the
K-vector space with basis the set {tbY h | b ∈ hA}. It follows that

dimRh = |hA| (3)

for all h ≥ 0.

2.2 Relators

It is of algebraic interest to determine the relations between the given gen-
erators of R(A). We do so here, even though the result will not be used in
the remainder of the paper.

Our present aim is thus to identify R(A) as the quotient of the polyno-
mial algebra K[X1, . . . , Xn] by a suitable homogeneous ideal I, the ideal of
relations between the generators taiY .

Notation 2.4. For α = (α1, . . . , αn) ∈ Nn, we denote by Xα = Xα1
1 · · ·Xαn

n

the corresponding monomial in K[X1, . . . , Xn]. We denote the set of all those
monomials by M = {Xα | α ∈ Nn}.

Let ϕ : K[X1, . . . , Xn] → R(A) be the surjective morphism induced by
ϕ(Xi) = taiY for all i. On the set M , we define the equivalence relation

u ∼ v ⇐⇒ ϕ(u) = ϕ(v)

for all u, v ∈ M . Equivalently, let us write u = Xα, v = Xβ with α =
(α1, . . . , αn), β = (β1, . . . , βn) ∈ Nn. Then

Xα ∼ Xβ ⇐⇒
{ ∑

i αi =
∑

i βi,∑
i αiai =

∑
i βiai.

In particular, equivalent monomials have the same degree, where as usual
deg(Xα) =

∑
i αi.

We shall need the notion of simple polynomial relative to ∼.

Definition 2.5. Let f ∈ K[X1, . . . , Xn]. We say that f is simple if f 6= 0
and all monomials occurring in f are equivalent under ∼.

Observe that a simple polynomial is homogeneous. Indeed, equivalent
monomials under ∼ have the same degree as observed above.

Moreover, every nonzero polynomial g ∈ K[X1, . . . , Xn] may be decom-
posed, in a unique way up to order, as the sum g = f1 + · · ·+ fr of maximal
simple polynomials fi, in the sense that for all i 6= j, the monomials occur-
ring in fi are non-equivalent under ∼ to those of fj. The fi are obtained by
simply regrouping the monomials of f into maximal equivalence classes. We
shall refer to the fi as the simple components of f . See e.g. [2, p. 232] and
[5, p. 346], where similar notions were used.
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Lemma 2.6. Let g ∈ ker(ϕ)\{0}. Then every simple component of g belongs
to ker(ϕ).

Proof. Let f be a simple component of g. We must show ϕ(f) = 0. Since
f is simple, it is homogeneous of some degree h. Write f =

∑
i λiui, where

λi ∈ K \ {0} for all i and where the ui are pairwise distinct monomials.
Since the ui are pairwise equivalent under ∼, we have ϕ(ui) = tbY h for some
b ∈ hA independent of i. Hence

ϕ(f) = (
∑
i

λi)t
bY h.

Now, for any monomial v occurring in g but not in f , we have ϕ(v) 6= tbY h

as v is non-equivalent to the ui. Since ϕ(g) = 0, it follows that
∑

i λi = 0.
Hence ϕ(f) = 0, as desired.

Proposition 2.7. Let I ⊂ K[X1, . . . , Xn] be the ideal generated by the set
{u− v | u, v ∈M,u ∼ v}. Then ker(ϕ) = I.

Proof. We have I ⊂ ker(ϕ) by construction. Conversely, let 0 6= f ∈ ker(ϕ).
By Lemma 2.6, we may further assume that f is simple. Write f =

∑r
i=1 λiui,

where λi ∈ K\{0} for all i and where the ui are pairwise distinct monomials.
Since ϕ(f) = 0 and ϕ(ui) = ϕ(uj) for all i 6= j, it follows that

∑r
i=1 λi = 0.

Therefore λr = −
∑r−1

i=1 λi, and so

f =
r−1∑
i=1

λi(ui − ur).

Since ui ∼ ur for all i, it follows that ui−ur ∈ I. Hence f ∈ I, as desired.

Corollary 2.8. We have R(A) ' K[X1, . . . , Xn]/I.

Proof. By Noether’s isomorphism theorem.

3 Macaulay’s theorem
We now turn to Macaulay’s theorem [10] and a recent condensed version
of it [3]. Macaulay’s theorem gives a necessary and sufficient condition for
a numerical function N → N to be the Hilbert function of some standard
graded algebra. It rests on the so-called binomial representations of integers.
Here is some background information.

Proposition 3.1. Let a ≥ i ≥ 1 be positive integers. There are unique
integers ai > ai−1 > · · · > a1 ≥ 0 such that

a =
i∑

j=1

(
aj
j

)
.
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Proof. See e.g. [1, 14].

This expression is called the ith binomial representation of a. Producing
it is computationally straightforward: take for ai the largest integer such
that

(
ai
i

)
≤ a, and complete

(
ai
i

)
by adding to it the (i − 1)th binomial

representation of a −
(
ai
i

)
. We omit trails of 0’s, if any. For instance, for

a = 10 and i = 3, we abbreviate 10 =
(
5
3

)
+
(
1
2

)
+
(
0
1

)
as simply 10 =

(
5
3

)
.

Notation 3.2. Let a ≥ i ≥ 1 be positive integers. Let a =
i∑

j=1

(
aj
j

)
be its

ith binomial representation. We denote a〈i〉 =
i∑

j=1

(
aj + 1

j + 1

)
and 0〈i〉 = 0.

Note that the defining formula of a〈i〉 is a valid (i+1)th binomial repre-
sentation of some positive integer, namely of the integer it sums to.

Here is one half of Macaulay’s classical result, constraining the possible
Hilbert functions of standard graded algebras [10].

Theorem 3.3. Let R = ⊕i≥0Ri be a standard graded algebra over a field K,
with Hilbert function di = dimKRi for all i ≥ 0. Then

di+1 ≤ d
〈i〉
i . (4)

Remarkably, the converse also holds in Macaulay’s theorem, but we shall
not need it here. That is, satisfying (4) for all i ≥ 0 characterizes the Hilbert
functions of standard graded algebras. See e.g. [1, 11, 14].

Example 3.4. Consider the sequence

(m0,m1,m2,m3,m4,m5,m6) = (1, 5, 15, 33, 61, 100, 152).

Then mi+1 ≤ m
〈i〉
i for all i = 1, . . . , 5 as readily checked. Hence there exists a

standard graded algebra R = ⊕j≥0Rj whose values of dimRi for i = 0, . . . , 6
are exactly modeled by the sequence (m0, . . . ,m6). For instance, one may
take R = S/J , where S = K[X1, . . . , X5] and J = (X3

5 , X4X
2
5 , X

3
3X

2
5 ).

3.1 A condensed version

We shall need the following condensed version of Macaulay’s theorem, as
established in [3]. For m ∈ N and x ∈ R, denote as usual(

x

m

)
=
x(x− 1) · · · (x−m+ 1)

m!
=

m−1∏
i=0

x− i
m− i

.

In particular,
(
x

0

)
= 1. We shall constantly need the following observations.
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Lemma 3.5. Let i ≥ 1 be an integer. Then the map y 7→
(
y
i

)
is an increasing

continuous bijection (in fact, a homeomorphism) from [i − 1,∞) to [0,∞).
In particular, for any real numbers y1, y2 ≥ i− 1, we have

y1 ≤ y2 ⇐⇒
(
y1
i

)
≤
(
y2
i

)
. (5)

Proof. A direct consequence of Rolle’s theorem. See e.g. [3, Lemma 5.6].

Lemma 3.6. Let h, d ≥ 1 be positive integers. Then there exists a unique

real number x ≥ h such that d =

(
x

h

)
.

Proof. By the above lemma, there is a unique real number x ≥ h − 1 such

that d =

(
x

h

)
. Since d ≥ 1, we have

(
x

h

)
≥
(
h

h

)
. Hence x ≥ h by (5).

Here is the condensed version of Macaulay’s theorem that we shall use
in the next section.

Theorem 3.7. Let R = ⊕i≥0Ri be a standard graded algebra over the field
K, with Hilbert function di = dimKRi for i ≥ 0. Let h ≥ 1 be an integer. Let

x ≥ h− 1 be a unique real number such that dh =
(
x

h

)
. Then

dh−1 ≥
(
x− 1

h− 1

)
and dh+1 ≤

(
x+ 1

h+ 1

)
.

Proof. See [3].

4 Main result
Let A be a finite subset of an abelian group with |A| ≥ 2. If |hA| is known
for some h ≥ 2, what bounds can one derive on |iA| for i 6= h?

We start with the following known answer, a direct consequence of Plün-
necke’s inequality. See e.g. [12, Theorem 7.5, p. 217] or [6, Theorem 1.2.3
with m = 1, p. 96].

Theorem 4.1. Let A be a nonempty finite subset of an abelian group. Let
h ≥ 2 be an integer. Then |iA| ≥ |hA|i/h for all 1 ≤ i ≤ h.

Remark 4.2. Theorem 4.1 is equivalent to its main case i = h− 1, namely:

|(h− 1)A| ≥ |hA|(h−1)/h. (6)

Indeed, the general case is implied by (6), as shown by induction on h:

|iA|
(6)
≥ (|(i+ 1)A|i/(i+1)

ind.hyp.
≥ (|hA|(i+1)/h)i/(i+1) = |hA|i/h.
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Here is our main result, obtained by applying Macaulay’s theorem and its
condensed version to the standard graded algebra R(A) defined in Section 2.

Theorem 4.3. Let A be a nonempty finite subset of an abelian group G. Let

h ≥ 2 be an integer and x ≥ h the unique real number such that |hA| =
(
x

h

)
.

Then

|(h− 1)A| ≥
(
x− 1

h− 1

)
and |(h+ 1)A| ≤ |hA|〈h〉 ≤

(
x+ 1

h+ 1

)
.

Proof. Let R = R(A) be the standard graded algebra associated to A as de-
fined in Section 2. We have R = ⊕h≥0Rh, where Rh denotes the homogeneous
subspace of R of degree h. By (3), we have

|hA| = dimRh

for all h ≥ 0. With h, x as in the hypotheses, a direct application of Theo-
rem 3.7 yields the bounds

|(h− 1)A| ≥
(
x− 1

h− 1

)
and |(h+ 1)A| ≤

(
x+ 1

h+ 1

)
,

while Theorem 3.3 yields the upper bound

|(h+ 1)A| ≤ |hA|〈h〉.

For the last inequality |hA|〈h〉 ≤
(
x+ 1

h+ 1

)
, see [3, Theorem 5.9].

Given |hA|, the lower bound on |(h−1)A| that can be derived from The-
orem 4.3 may be up to 2.71 times better, in suitable circumstances, than the
one provided in (6) by Theorem 4.1. This will be shown in Sections 5 and 6.
Here is a first small example demonstrating the effectiveness of Theorem 4.3.

4.1 An example

Let A be a finite set of integers such that |5A| = 100. The bounds given by
Theorem 4.1 and derived from Plünnecke’s inequality yield

|4A| ≥ 1004/5 ≈ 39.8, |6A| ≤ 1006/5 ≈ 251.18.

In comparison, Theorem 4.3 yields the much sharper bounds

|4A| ≥ 58, |6A| ≤ 161. (7)

Indeed, let x ≥ 5 be the unique real number such that
(
x
5

)
= 100. Then

8.69 < x < 8.7, as follows from
(
8.69
5

)
≈ 99.42 and

(
8.7
5

)
≈ 100.2. Hence

|4A| ≥
(
x− 1

4

)
>

(
7.69

4

)
≈ 57.2,

|6A| ≤
(
x+ 1

6

)
<

(
9.7

6

)
≈ 161.99.
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This proves (7), using the condensed version of Macaulay’s theorem. But
using its original version, one gets still better bounds. Indeed, for the 5th
binomial representation of 100, we have

100 =

(
8

5

)
+

(
7

4

)
+

(
4

3

)
+

(
3

2

)
+

(
2

1

)
.

The inequality |(h+ 1)A| ≤ |hA|〈h〉 of Theorem 4.3 then yields the following
improvement of (7):

|4A| ≥
(
7

4

)
+

(
6

3

)
+

(
4

2

)
= 61, (8)

|6A| ≤
(
9

6

)
+

(
8

5

)
+

(
5

4

)
+

(
4

3

)
+

(
3

2

)
= 152. (9)

While (9) directly follows from the inequality |(h+1)A| ≤ |hA|〈h〉, note that

for (8), if we had |4A| ≤ 60 =

(
7

4

)
+

(
6

3

)
+

(
3

2

)
+

(
2

1

)
, that same inequality

would imply |5A| ≤
(
8

5

)
+

(
7

4

)
+

(
4

3

)
+

(
3

2

)
= 100− 2.

Are the bounds (8), (9) optimal under the assumption |5A| = 100? We
don’t know, but they are not far from it. For instance, let A = {0, 1, 5, 8, 49}.
Then |5A| = 100 as required, and

|4A| = 63, |6A| = 145.

This example may well be optimal. That is, we conjecture that if A ⊂ Z is
any subset satisfying |5A| = 100, then |4A| ≥ 63 and |6A| ≤ 145.

As seen here, the improvement provided by Theorem 4.3 is already quite
good. How good is it in general? We investigate this question in the sequel.

5 Macaulay vs Plünnecke
We first show that Theorem 4.1 based on Plünnecke’s inequality, also follows
from our Theorem 4.3 based on Macaulay’s theorem.

Notation 5.1. For a positive integer h and a real number x ≥ h, we set

θ(x, h) =
h

x

(
x

h

)1/h
.

Theorem 5.2. Let A be a nonempty finite subset of an abelian group G. Let

h ∈ N, h ≥ 2. Let x ≥ h be the unique real number such that |hA| =
(
x

h

)
.

Then
|(h− 1)A| ≥ θ(x, h) |hA|(h−1)/h.
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Proof. Let x ≥ h− 1 be the unique real number such that

|hA| =
(
x

h

)
. (10)

Since |hA| ≥ 1, we have x ≥ h by Lemma 3.6. Theorem 4.3 yields

|(h− 1)A| ≥
(
x− 1

h− 1

)
. (11)

Now (
x− 1

h− 1

)
=
h

x

(
x

h

)
since (

x

h

)
=

h−1∏
i=0

x− i
h− i

=
x

h

h−1∏
i=1

x− i
h− i

=
x

h

(
x− 1

h− 1

)
.

Hence

|(h− 1)A|h ≥
(
x− 1

h− 1

)h
=

(
h

x

)h(
x

h

)h
=

(
h

x

)h(
x

h

)(
x

h

)h−1
=

(
h

x

)h(
x

h

)
|hA|h−1.

Therefore |(h− 1)A|h ≥ θ(x, h)h|hA|h−1, as desired.

Corollary 5.3. Theorem 4.3 implies Theorem 4.1.

Proof. By Theorem 5.2, we only need to show θ(x, h) ≥ 1, or equivalently,
θ(x, h)h ≥ 1. Now

θ(x, h)h =

(
h

x

)h(
x

h

)
=

h−1∏
i=0

h(x− i)
x(h− i)

, (12)

and h(x− i) ≥ x(h− i) for all 0 ≤ i ≤ h− 1 since h ≤ x.

Remark 5.4. In fact, we have θ(x, h) > 1 whenever |A| ≥ 2, h ≥ 2. For
then |hA| ≥ 2, and since |hA| =

(
x
h

)
with x ≥ h, it follows that x > h,

whence h(x− 1) > x(h− 1), implying in turn θ(x, h)h > 1 by (12).
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6 Behavior of θ(x, h)
We now study the numerical behavior of the function θ(x, h). Denote e ≈
2.718, the basis of the natural logarithm. We show that 1 < θ(x, h) < e
whenever x > h ≥ 2, and that θ(x, h) asymptotically goes to e in suitable
circumstances. This section is more informal in nature. Numerical compu-
tations and graphics were done with Mathematica 10 [19].

Proposition 6.1. For all h ∈ N, x ∈ R such that x > h ≥ 2, we have

1 < θ(x, h) < e.

Proof. The lower bound follows from (12) and Remark 5.4. As for the upper
bound, we have (

x

h

)
≤ xh

h!
=
xh

hh
hh

h!
<
xh

hh
eh

since
hh

h!
<
∑
k∈N

hk

k!
= eh. It follows that

θ(x, h) =
h

x

(
x

h

)1/h

<
h

x

x

h
e = e.

We shall also need to invoke the monotonicity of θ(x, h) in x.

Proposition 6.2. For a fixed integer h ≥ 2, the map x 7→ θ(x, h) from
[h,∞) to [1,∞) is strictly increasing.

Proof. It is equivalent to show that the map x 7→ θ(x, h)h is strictly increas-
ing. This easily follows from the positivity of its derivative. Details are left
to the reader.

6.1 Asymptotics

We provide here, somewhat informally, a good approximation of θ(x, h) to-
gether with its asymptotic behavior as x grows. Recall Stirling’s approxima-
tion of n! for large n:

n! ∼
√
2πn

(n
e

)n
.

On the other hand, the bounds below are valid for all n ≥ 1:
√
2π nn+1/2 e−n ≤ n! ≤ e nn+1/2 e−n.

This yields the following well known approximation of
(
n

k

)
for n much larger

than k, see e.g. [18]: (
n

k

)
∼ (n/k − 1/2)k ek√

2πk
.

As a consequence, here is the asymptotic behavior of θ(x, h) when x
grows.

12



Proposition 6.3. Let h ≥ 2 be an integer. Then

θ(x, h) ∼ (1− h/(2x)) e
(2πh)1/(2h)

=
(2x− h) e

2x(2πh)1/(2h)
.

In particular,
lim
x→∞

θ(x, h) = (2πh)−1/(2h) e.

Proof. Directly follows from the above approximation of the binomial coeffi-
cients.

6.2 When θ(x, h) ≥ 1.5

Our improvement factor θ(x, h) exceeds 1.5 quite early in terms of x or h.
Indeed, the smallest integer x for which θ(x, h) ≥ 1.5 for some integer h is
x = 10, specifically at h = 4 and 5. Even starting at h = 3, we have

θ(x, 3) ≥ 1.509

for all x ≥ 12.
As a quick application, let A be a subset of an abelian group G such

that |4A| ≥
(
10
4

)
= 210. By Theorem 4.1 with Plünnecke’s inequality, and

the estimate 2103/4 ≈ 55.165, we get the lower bound

|3A| ≥ 56.

Now, θ(x, 4) ≥ 1.52 for all x ≥ 10. It then follows from Theorem 5.2 and the
estimate 55.165 · 1.52 ≈ 83.9 that, in fact,

|3A| ≥ 84.

Alternatively, Theorem 4.3 directly yields |3A| ≥
(
9
3

)
= 84.

6.3 When θ(x, h) ≥ 2

We now examine circumstances guaranteeing θ(x, h) ≥ 2, a case of interest
since this is when our bound is at least twice better than (1). As it turns out,
for x large, one has θ(x, h) ≥ 2 for almost all integers h between 6 and bx/2c.
We also describe cases where θ(x, h) gets very close to its upper bound e.

So, under what minimal circumstances, in terms of h or of x, do we have
θ(x, h) ≥ 2? First note that if y ≥ h − 1 then θ(y, h) < limx→∞ θ(x, h), as
follows from Proposition 6.2. Moreover, limx→∞ θ(x, h1) ≤ limx→∞ θ(x, h2)
whenever h1 ≤ h2, as follows from Proposition 6.3.

That being said, consider the case h = 5. Since limx→∞ θ(x, 5) < 1.926
by Proposition 6.3, the values 1 ≤ h ≤ 5 are excluded for the occurrence of
θ(x, h) ≥ 2. However, already h = 6 qualifies, as limx→∞ θ(x, 6) > 2.007.
More precisely, we have

θ(x, 6) ≥ 2 (13)
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for all x ≥ 1210, the least integer with that property.
If now h is allowed to grow, then θ(x, h) ≥ 2 may occur for much smaller

values of x. Indeed, the smallest x ∈ N for which θ(x, h) ≥ 2 for some h is
x = 48, namely at h = 11 and 12. More precisely, we have

θ(48, 11) > 2.001, θ(48, 12) > 2.002,
θ(48, 10) < 1.997, θ(48, 13) < 1.999.

See Figure 1.

Figure 1: Values of θ(48, h) for h = 1, . . . , 48

In fact, when x goes to infinity, then θ(x, h) ≥ 2 holds for almost all
positive integers h ≤ x/2. Indeed, as observed in (13), we have θ(x, 6) ≥ 2
for all x ≥ x0 = 1210. Now, numerical computations at x0 yield

θ(x0, h) ≥ 2 ∀h ∈ [6, x0/2− 10] ∩ N.

As a further illustration, for x1 = 106, one has

θ(x1, h) ≥ 2 ∀h ∈ [6, x1/2− 19] ∩ N.

This is no accident, as shown by the following result.

Proposition 6.4. One has limx→∞ θ(x, bx/2c) = 2.

Proof. Using Stirling’s approximation formula of n!, one readily sees that

θ(n, bn/2c) ≈ 2

(
2

πn

)1/n

,

which proves the claim since limn→∞(cn)
−1/n = 1 for any constant c > 0.
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Figure 2: Values of θ(1000, h) for h = 1, . . . , 1000

6.4 The highest point

For fixed x, the general shape of θ(x, h) when h runs from 1 to bxc is well
illustrated by Figure 1 for x = 48. Figure 2 displays the case x = 1000.

It would be desirable to determine the highest point of that curve, and
in particular the integer 1 ≤ h ≤ x maximizing θ(x, h). We do not have yet a
precise answer. Nevertheless, by computing derivatives of the approximation
of θ(x, h) provided by Proposition 6.3, one sees that for fixed x,

∂

∂h

(
2x− h

(2πh)1/(2h)

)
> 0 ⇐⇒ 2h2 < (2x− h)(ln(2πh)− 1). (14)

Thus, for x fixed, the sought-for integer h maximizing θ(x, h) occurs when

2h2 ≈ (2x− h)(ln(2πh)− 1). (15)

For instance, for x0 = 100, the maximum of θ(x0, h) is reached at h = 18, for
which θ(100, 18) ≈ 2.177. Hence

θ(x, 18) ≥ 2.177

for all x ≥ 100, as follows from Proposition 6.2.

6.5 For h fixed

In the opposite direction, for h fixed, it is easy to locate the real number
x1 ≥ h maximizing θ(x, h). Indeed, using (14), we find

x1 ≈
1

2

(
2h2

ln(2πh)− 1
+ h

)
.

This suggests that
lim
x→∞

θ(x, bx1/2c) = e,
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as is fully confirmed by numerical experiments. As a concrete illustration,
here are instances where θ(x, h) gets very close to e:

• For all x ≥ 200000 and all 1200 ≤ h ≤ 1300, one has θ(x, h) ≥ 2.70.
• Similarly, for all x ≥ 1100000 and all 2600 ≤ h ≤ 3700, one has
θ(x, h) ≥ 2.71.

7 Concluding questions
We end this paper with two related questions.
. How far from optimal are our new bounds? More precisely, let h,m be
positive integers. Among all subsets A of Z such that |hA| = m, what is the
least possible value of |(h− 1)A|? That is, let us denote

µ(h,m) = min
A⊂Z
|(h− 1)A|,

where A runs through all subsets subject to |hA| = m. How small can

µ(h,m) be? We have seen that if we express m =

(
x

h

)
with x ≥ h, then

µ(h,m) ≥
(
x− 1

h− 1

)
.

This is not quite optimal in general, as it follows from the condensed version
of Macaulay’s theorem which, while handy, comes with a little loss of informa-
tion. But what about the bound given by the original Macaulay’s theorem?
For instance, using that bound, we have seen that µ(5, 100) ≥ 61, and we
gave an example with |5A| = 100 and |4A| = 63, namely A = {0, 1, 5, 8, 49}.
Is there an improved example A reaching |5A| = 100 and |4A| = 61?
. Can one specialize Macaulay’s theorem by characterizing the Hilbert func-
tions of all algebras of the form R(A), at least for finite subsets A of Z? A
positive answer would help tackle the former question.
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