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Theory and Formulas for Backpropagation in Hilbert Spaces Corrected (version 2)

 and note that all the present results apply without change to the case of Euclidean spaces (finite dimensional Hilbert spaces) hence to Cartesian spaces R n as well. In Numerical Calculus/Analysis there is the well known gradient descent method, a procedure much used to find or approach the minimum of real valued functions. Beyond the calculation of a gradient, backpropagation is the name given to gradient descent when applied to the particularities of neural networks. The topic has a very long history as revealed in [6] and [?]. Although categories are not formally used, there is a section with

Figures containing twelve diagrams that in the fashion of objects and morphisms illustrate neural networks, their values on inputs (forward propagation), their derivatives, transpose derivatives, backpropagated errors and lifted errors, these liftings being up to a numerical factor of 2 the components of the sought gradient of the quadratic error.

Notation used in this article is commented under Conventions, page 14. §1 Neural networks Neural networks defined 1. An n layer differentiable neural network is a sequence f = (f k ) n k=1 of C 1 maps, f k :

U k × W k → U k+1 . f ∈ C 1 (U 1 × W 1 , U 2 ) × • • • × C 1 (U n × W n , U n+1 )
See Figure 1. With terms as explained below in 5 this definition states that the k-th output domain U k+1 is also the input domain of the layer f k+1 next in the sequence. 3. For the record, the function space of the architecture A is the set N (A) of all the neural networks f having A as architecture

N (A) = C 1 (U 1 × W 1 , U 2 ) × • • • × C 1 (U n × W n , U n+1 )
4. Units and layers will not be given a detailed separate treatment in the present paper. We discuss multilayer networks as compositions of networks. This approach is extremely flexible and should prove useful in theory and practice for multilayer networks having sophisticated hidden layers. Compare with [START_REF] Crespin | Generalized Backpropagation[END_REF] where units and layers are functions with specific structures.

5.

Terminology:

1.-The k-th layer of f = (f k ) n k=1 is, of course, f k ; 2.
-the input layer is f 1 ; 3.-the output layer is f n ; 4.-the hidden layers or deep layers are f k with 2 ≤ k ≤ n -1.

5.-The k-th domain is U k × W k ; 6.-the k-th codomain is U k+1 .

7.-The initial input domain is U 1 ; 8.-the k-th input domain is U k ; 9.-the k-th weight domain is W k ; 10.-the k-th output codomain is U k+1 ; 11.-and the final output domain is U n+1 .

All these maps and domains appear as objects and arrows in Figure 1.

The multinput domain is

U = U 1 × • • • × U n and the multiweight domain is W = W 1 × • • • × W n .
7. By definition f is unilayer if n = 1, bilayer if n = 2 and trilayer if n = 3. The neural network is multilayer if n ≥ 2. Figures 2, 3 and 4 display diagrams for unilayer, bilayer and trilayer networks.

8. The architecture is a linear architecture if U k = E k and W k = G k for all k. If furthermore the maps f k are linear transformations then f is a linear network. The derivative networks to be defined in 14 are linear. §2 Forward pass and conditioning 9. Let f = (f k ) n k=1 and w ∈ W be given. The forward pass of an initial input x 1 ∈ U 1 , displayed as the lower row in Figure 5, is the multinput sequence with first term x 1 and remaining terms specified by the recursion formula x k = f k-1 (x k-1 , w k-1 ), k = 1, . . . , n, where for notational purposes we let f 0 (x 0 , w 0 ) = x 1 so that the forward pass is

(x k ) n k=1 = (f k-1 (x k-1 , w k-1 )) n k=1 ∈ U = U 1 × • • • × U n
10. Given f , w and x 1 by definition the final output is x n+1 = f n (x n , w n ) ∈ U n+1 .

11. A multinput x ∈ U is x 1 -conditioned under f and w if it is the forward pass of the initial input term

x 1 ∈ U 1 , that is, if the recursive formula x k = f k-1 (x k-1 , w k-1 ) is satisfied.
12. In an alternative but equivalent and sometimes more convenient notation the initial input will be a 1 ∈ U 1 which under the forward pass gives the a 1 -conditioned sequence

(a k ) n k=1 = (f k-1 (a k-1 , w k-1 )) n k=1 ∈ U = U 1 × • • • × U n §3 Derivatives
Textbooks discussing derivatives in normed spaces are [START_REF] Dieudonné | Foundations of Modern Analysis[END_REF] Ch. VIII; and [START_REF] Lang | Real and Functional Analysis[END_REF] Ch. XIII. A good introduction to derivatives in R n spaces can be found in [START_REF] Spivak | Calculus on Manifolds[END_REF].

Derivatives of a multilayer network 13. Consider a multilayer

C 1 neural network f = (f k ) n k=1 , a multinput x ∈ U and a multiweight w ∈ W from which pairs (x k , w k ) ∈ U k × W k can be formed.
14. The derivative of f at (x, w) ∈ U × W is the multilayer linear network Df (x, w), shown in Figure 9, having input domains

U k = E k , weight domains W k = G k , output domains U k+1 = E k+1 and layers equal to the derivatives Df k (x k , w k ) : E k × G k → E k+1 of the layers of f calculated at the pairs (x k , w k ) Df (x, w) = (Df k (x k , w k )) n k=1
15. The notions of §2 can be applied to derivative networks. Given:

1.-the derivative network calculated at (x, w)

∈ U × W , Df = (Df k (x k , w k )) n k=1 , which is a linear network; 2.-a multiweight ∆w = (∆w 1 , . . . , ∆w n ) ∈ G 1 × • • • × G n = G for Df (x, w); 3.
-and an initial input ∆x 1 ∈ E 1 for Df (x, w) the forward pass by the neural network Df (x, w) with multiweight ∆w and initial input ∆x

1 ∈ E 1 is the multinput (∆x k ) n k=1 = (Df k (x, w) • ∆x k-1 ) n k=1 ∈ E = E 1 × • • • × E n where we let Df 0 (x, w) • ∆x 0 = ∆x 1 . This can also be written ∆a 1 ∈ E 1 and (∆a k ) n k=1 = (Df k (x, w) • ∆a k-1 ) n k=1 ∈ E.
16. Above in 15 by construction the forward pass

(∆x k ) n k=1 is ∆x 1 -conditioned; or (∆a k ) n k=1 is ∆a 1 -conditioned. The original network f need not be x 1 -conditioned, that is, the relations x k = f k (x k-1 , w k-1
) are not necessarily imposed. Nevertheless and particularly with neural compositions, x 1 -conditioning is crucial. §4 Transpose derivatives, gradients and squared norm

Reference [START_REF] Berberian | Introduction to Hilbert Space[END_REF] explains transposes of linear transformations between complex Hilbert spaces but the reader can easily adapt that discussion to the real Hilbert spaces here needed.

17.

Consider an inner product space E and let a ∈ E. The linear form of a is the function ϕ a : E → R defined as ϕ a (∆x) = a, ∆x . A linear form ϕ : E → R is representable if there exists an a ∈ E such that ϕ = ϕ a , in which case a is unique.

18. Let [a] = {λa | λ ∈ R} be the line spanned by a. The parametrized line of a is the linear map a : R → E defined as a (t) = ta. Observe that a (1) = a.

19. In an inner product space the linear form and the parametrized line are transposes of each other 22. Let g : V → R have derivative at y = f (x) ∈ V equal to the linear form Dg(y) : F → R.

ϕ * a = a * a = ϕ a (1 
The gradient of f at y ∈ W is defined as a vector ∇g(y) ∈ F such that for all ∆y ∈ G Dg(y) • ∆y = ∇g(y), ∆y 23. Riesz theorem implies that the gradient vector ∇g(y) exists and is given by

∇g(y) = Dg * (y) • 1 (2)
24. Furthermore the chain rule and properties of transposition imply that the gradient pulls back by the transpose derivative

∇(g • f )(x) = D * f (x)(∇g(y))
25. The squared norm function Sq : 

E n+1 → R is defined as Sq(x n+1 ) = x n+1 , x n+1 = x n+1 2 .
D E k f k (x k , w k ) : E k → E k+1 D G k f k (x k , w k ) : G k → E k+1
27. Basic properties of partials imply that the derivative of the k-th layer is the direct sum of the partials

Df k (x k , w k ) = D E k f k (x k , w k ) ⊕ D G k f k (x k , w k )
28. The diagram of partials at (x, w) of the neural network f = (f k ) n k=1 by definition has nodes for the vector spaces E k and G k and arrows labeled by the partials of the layers,

D E f k = D E k f k (x k , w k ) and D G f k = D E k f k (x k , w k ),
all arranged as shown in Figure 10. Compare with the diagram of transpose partials in Figure 11. These diagrams of partials are not themselves neural networks. §6 Transpose partial derivatives 29. Assuming that the normed spaces are all Hilbert it follows, as already indicated in 20, that any linear transformation has a transpose. In particular there is for each layer of f = (f k ) n k=1 and at each (x k , w k ) ∈ U k × W k a transpose derivative, a transpose E k -partial derivative and a transpose G k -partial derivative

D * f k (x k , w k ) = (Df k (x k , w k )) * : E k+1 → E k × G k D * E k f k (x k , w k ) = (D E k f k (x k , w k )) * : E k+1 → E k D * G k f k (x k , w k ) = (D G k f k (x k , w k )) * : E k+1 → G k 30.
The transpose of a direct sum is the product of the transposes. Applying this property to 27 it follows that the transpose derivative of a layer f k is equal to the product of its transpose partials w) is defined as having nodes equal to the Hilbert spaces E k and G k , arrows labeled by the transpose partials of the layers,

D * f k (x k , w k ) = (D * E k f k (x k , w k ), D * G k f k (x k , w k )) : E k+1 → E k × G k 31. The diagram of transpose partials of f = (f k ) n k=1 at (x,
D * E f k = D * E k f k (x k , w k ) and D * G f k = D * E k f k (x k , w k )
, with these objects and morphisms displayed in the manner of Figure 11. The diagram in this figure, when x 1 -conditioned as detailed in 32 below, is the foundation of a thorough understanding of backpropagation. §7 Conditioning the derivatives 32. Consider the following sequences of linear transformations:

4.-the derivative network Df (x, w) = (Df k (x k , w k )) n k=1 , 5.-the E-partials D E f = (D E k f (x k , w k )) n k=1 , 6.-the G-partials D G f = (D G f (x k , w k )) n k=1 , 7.-the transpose derivative network D * f (x, w) = (D * f k (x k , w k )) n k=1 , 8.-the transpose E-partials D * E f = (D * E k f (x k , w k )) n k=1 and 9.-the transpose G-partials D * G f = (D * G k f (x k , w k )) n k=1
. These sequences are x 1 -conditioned by f and w, or conditioned for short, if the multinput

x = (x k ) n k=1 is conditioned by the initial input x 1 in the sense of 11, that is if x k = f k-1 (x k-1 , w k-1 ) for k = 1, . . . , n. And a 1 -conditioned means that a k = f k-1 (a k-1 , w k-1 ). §8 Neural compositions of bilayers 33. By definition the neural composition of a bilayer network f = (f 1 , f 2 ) is the function f = f 2 • f 1 that transforms (x 1 , w 1 , w 2 ) into the final output of the forward pass of f with multiweight w = (w 1 , w 2 ) and initial input x 1 f (x 1 , w 1 , w 2 ) = (f 2 • f 1 )(x 1 , w 1 , w 2 ) = f 2 (f 1 (x 1 , w 1 ), w 2 )
34. The neural composition f 2 • f 1 is a unilayer neural network with input, weight and output domains respectively equal to

U 1 , W = W 1 × W 2 and U 3 . f = f 2 • f 1 : U 1 × W → U 3
35. The natural projections of the bilayer network f are the maps π U 1 ×W 1 (x 1 , w 1 , w 2 ) = (x 1 , w 1 ) and π W 2 (x 1 , w 1 , w 2 ) = w 2 with domains and codomains as shown

π U 1 ×W 1 : U 1 × W 1 × W 1 → U 1 × W 1 π W 2 : U 1 × W 1 × W 2 → W 2 (4) 
36. The neural composition of a bilayer network considered as a function from its domain to its codomain can be written as a composition of layers, natural projections and products displayed in Figure 7 and expressed by the formula

f 2 • f 1 = f 2 • ((f 1 • π U 1 ×W 1 ), π W 2 ) (5) §9 Neural composition of multilayers 37. The neural composition of a multilayer neural network f = (f k ) n k=1 is defined as the function f = f n • • • • • f 1 that sends (x 1 , w 1 , . . . , w n ) into
the final output after and beyond the forward pass of f with multiweight w = (w 1 , . . . , w n ) and initial input 6, having input, weight and output domains equal to respectively

x 1 f (x 1 , w) = (f n • • • • • f 1 )(x 1 , w 1 , . . . , w n ) = x n+1 = f n (x n , w n ) 38. The neural composition f = f n • • • • • f 1 is a unilayer neural network, see Figure
U 1 , W = W 1 × • • • × W n and U n+1 f = f n • • • • • f 1 : U 1 × W → U n+1
39. The natural projections of the multilayer network f are the maps

π U 1 ×W 1 ו••×W n-1 (x 1 , w 1 , . . . , w n-1 , w n ) = (x 1 , w 1 , . . . , w n-1 ) π Wn (x 1 , w 1 , . . . , w n-1 , w n ) = w n (6) 
having the following domains and codomains

π U 1 ×W 1 ו••×W n-1 : U 1 × W 1 × • • • × W n-1 × W n → U 1 × W 1 × • • • × W n-1 π Wn : U 1 × W 1 × • • • × W n-1 × W n → W n (7) 
40. It follows that the neural composition of a neural network having n layers can be expressed as the neural composition of two unilayer networks, namely of the last layer and the neural composition of the first n -1 layers

f = f n • • • • • f 1 = f n • (f n-1 • • • • • f 1 ) §10 Derivatives of bilayer compositions 41.
The bilayer network derivative, the case n = 2 of 14 and of Figure 9, has linear architecture with layers Df 1 (x 1 , w 1 ) :

E 1 × G 1 → E 2 and Df 2 (x 2 , w 2 ) : E 2 × G 2 → E 3 . Since the domains are normed spaces, U k = E k , W k = G k ,
to apply equation (5) the following linear projections are needed

π E 1 ×G 1 : E 1 × G 1 × G 2 → E 1 × G 1 π G 2 : E 1 × G 1 × G 2 → G 2
42. These linear projections are the derivatives, for all x = (x 1 , w 1 , w 2 ) ∈ U 1 × W 1 × W 2 , of the natural projections given in equation (4), that is

Dπ U 1 ×W 1 (x 1 , w 1 , w 2 ) = π E 1 ×G 1 Dπ W 2 (x 1 , w 1 , w 2 ) = π G 2 (8)
43. Then the derivative of the neural composition of a bilayer network is equal to the neural composition of the x 1 -conditioned derivative

D(f 2 • f 1 ) = D(f 2 • ((f 1 • π U 1 ×W 1 ), π W 2 )) = Df 2 • ((Df 1 • π E 1 ×G 1 ), π G 2 ) = Df 2 • Df 1 (9)
The first equality is true by equation (5) applied to the bilayer network (f 1 , f 2 ); the second by the chain rule for derivatives together with the product rule for derivatives and (8); and the third again by [START_REF] Dieudonné | Foundations of Modern Analysis[END_REF] but this time applied to the x 1 -conditioned linear network Df = (Df 1 , Df 2 ). An alternative proof of (9) is described in the caption of Figure 8. §11 Derivatives of multilayer compositions 44. Define the linear projections π

E 1 ×G 1 ו••×G n-1 (x 1 , w) = (x 1 , w 1 , . . . , w n-1 ) and π Gn (x 1 , w) = w n hence π E 1 ×G 1 ו••×G n-1 : E 1 × G → E 1 × G 1 × • • • × G n-1 π Gn : E 1 × G → G n 45.
The above linear projections are the derivatives, for all x = (x 1 , w) ∈ U 1 × W , of the natural projections given in equation ( 6)

Dπ U 1 ×G 1 ו••×G n-1 (x 1 , w) = π E 1 ×G 1 ו••×G n-1 Dπ Wn (x 1 , w) = π Gn 46.
By induction in n (the case n = 2 being (9)) the neural chain rule follows: The derivative of a multilayer neural composition is equal to the composition of the x 1 -conditioned derivatives of the layers

D f (x 1 , w) = D(f n • f n-1 • • • • • f 1 )(x 1 , w (n-1) , w n ) = D(f n • (f n-1 • • • • • f 1 ))(x 1 , w (n-1) , w n ) = Df n (x n , w n ) • (Df n-1 (x n-1 , w n-1 ) • • • • Df 1 (x 1 , w 1 )) = Df n (x n , w n ) • Df n-1 (x n-1 , w n-1 ) • • • • Df 1 (x 1 , w 1 )
§12 Partials as direct sums and products 47. A basic property of derivatives having a product domain is that they are the direct sum of the partials taken with respect to the factors.

The

G-partial at (x 1 , w) ∈ U 1 × W = U 1 × W 1 × • • • × W n of the neural composition of a multilayer network is equal to the direct sum of its G k -partials D G f (x 1 , w) = D G 1 f (x 1 , w) ⊕ • • • ⊕ D Gn f (x 1 , w)
For this direct sum decomposition the G-partial as well as the G k -partials are all calculated at (x 1 , w) ∈ U 1 ×W . No forward pass is required to specify (x 1 , w) and no x 1 -conditioning of the partials is involved.

49.

In general the transpose of a direct sum is the product of the transposes. Therefore the transpose G-partial derivative of the neural composition at (x

1 , w) ∈ U 1 × W is equal to the product of transpose G k -partials of f D * G f (x 1 , w) = (D * G 1 f (x 1 , w), • • • , D * Gn f (x 1 , w)) (10) 
Again, all the partials are calculated at (x 1 , w). §13 Partials of multilayer compositions

Statements 50 and 52 are neural versions of the chain rule that follow from basic properties of partials and induction in n.

50.

The E 1 -partial of the neural composition at (x 1 , w) ∈ U 1 × W of a multilayer network is equal to the composition of the x 1 -conditioned E k -partials of the layers

D E 1 f (x 1 , w) = D En f n (x n , w n ) • • • • • D E 1 f 1 (x 1 , w 1 )
51. By definition an E i -partial

D E i f i (x i , w i ) is downstream from the G k -partial D G k f k (x k , w k ) if k < i.
See the direction of the arrows in Figure 10.

52. The G k -partial of f calculated at (x 1 , w) ∈ U 1 × W is equal to the x 1 -conditioned composition of the G k -partial of the k-th layer and its downstream E i -partials 

D G k f (x 1 , w) = D En f n (x n , w n ) • D E n-1 f n-1 (x n-1 , w n-1 ) • • • • • • • • D E k+1 f k+1 (x k+1 , w k+1 ) • D G k f k (x k , w k ) ( 

53.

The transpose E 1 -partial of f is the x 1 -conditioned composition, in the appropriated reverse order, of the transpose E k -partials of the layers 56. The transpose G k -partial of the neural composition at (x 1 , w) ∈ U 1 × W is equal to the x 1 -conditioned composition, in the appropriated reverse order, of the transpose G k -partial of the k-th layer and its upstream transpose E i -partials

D * E 1 f (x 1 , w) = D * E 1 f 1 (x 1 , w 1 ) • • • • • D * En f n (x n , w n ) 54. For a transpose G k -partial D * G k f k (x k , w k ) a transpose E i -partial D * E i f n (x i , w i ) is upstream if k < i.
D * G k f (x 1 , w) = D * G k f k (x k , w k ) • D * E k+1 f k+1 (x k+1 , w k+1 ) • • • • • • • • D * En f n (x n , w n ) (12) §15 Backpropagating and lifting 57. Let f = (f k ) n k=1
, f and w be as in previous sections. Consider any element ∆a n+1 ∈ E n+1 to be called (n + 1)-th backpropagated error or final error. Other errors in this section are obtained applying transpose derivatives to this rather final error. In later sections we will focus on the output error of the network, ∆a n+1 = f (a 1 , w) -b n+1 .

58

. By definition the k-th backpropagated error ∆a k ∈ E k is the image of the (k + 1)-th backpropagated error by the conditioned transpose E k -partial of the k-th layer, k = n, n -1, . . . , 2

∆a k = D * E k f k (a k , w k ) • ∆a k+1 (13) 
This recursive descent formula allows to define ∆a 1 ∈ E 1 , however only the backpropagated errors ∆a k ∈ E k with 2 ≤ k ≤ n + 1 will be needed.

59.

The k-th lifted error is by definition the image of the (k + 1)-th backpropagated error by the conditioned transposed G k -partial of the k-th layer, k = n, n -1, . . . , 2, 1

∆w k = D * G k f k (a k , w k ) • ∆a k+1 (14) 
60. The G-partial of the neural composition calculated at (a 1 , w) ∈ U 1 × W and evaluated on any given output error ∆a n+1 ∈ E n+1 is equal to the n-tuple of lifted errors

D * G f (a 1 , w) • ∆a n+1 = (D * G 1 f (a 1 , w), • • • , D * Gn f (a 1 , w)) • ∆a n+1 = (D * G 1 f 1 (a 1 , w 1 ) • ∆a 2 , . . . , D * G k f k (a k , w k ) • ∆a k+1 ) = (∆w k ) n k=1 (15)
Proof: The first equality is true by (10); the second by the chain rule for transpose partials (12) (with a 1 -conditioning) and the recursive descent definition of ∆a k given in (13); and the third by (14) (again with a 1 -conditioning). §16 Gradient of the quadratic error

61. Let f = (f k ) n k=1 be a multilayer network, f = f n • • • • • f 1 its neural composition, a 1 ∈ U 1 an initial input, b n+1 ∈ E n+1 a desired output and a n+1 = f n (a n , w n ) = f (a 1 , w) the final output. Define the output error e : W = W 1 × • • • W n → E n+1 as the function e(w) = f (a 1 , w) -b n+1 = a n+1 -b n+1 (16)
62. From the manner partial derivatives are defined it follows that the derivative of the output error function at w ∈ W is equal to the G-partial of f at (a 1 , w)

De(w) = D G f (a 1 , w) (17) 
63. Then the transpose derivative of the output error function e at w ∈ W is equal to the transpose G-partial of f at (a 1 , w)

D * e(w) = D * G f (a 1 , w) (18) 
64. The quadratic error function, Q : W → R is by definition the squared length of the error This formula is the central result of the present paper and will be repeated below in (21) where the hypotheses and each of the steps leading to the lifted errors are individually highlighted and listed.

Q(w) = f (a 1 , w) -b 2 = e(w) 2 = (Sq • e)(w) (19) 65. Given f = (f k ) n k=1 , an initial input a 1 ∈ U 1 , a multiweight w ∈ W = W 1 × • • • W n and
Proof: Equation (2) implies that ∇Q(w) = DQ * (w) • 1. Consider the output error ∆a n+1 = e(w) = f (a 1 , w) -b n+1 and the following equalities

D * Q(w) = D * (Sq • e)(w) = (D(Sq • e)(w)) * = (DSq(e(w)) • De(w)) * = (2ϕ e(w) • D G f (a 1 , w)) * = 2D * G f (a 1 , w) • ϕ * e(w) = 2D * G f (a 1 , w) • f (a 1 ,w)-b n+1 ( 20 
)
The first is true by the definition of quadratic error in (19); the second by the definition of transpose derivative; the third by the chain rule applied to Sq • e; the fourth because of (3) and (17); the fifth because the transpose of a composition is the composition of the transposes in reverse order; and the last by [START_REF] Berberian | Introduction to Hilbert Space[END_REF] and by the definition of e(w) given in equation (16). Then (15) implies that ∇Q(w) = 2(∆w k ) n k=1 . §17 Backpropagation for a single input data 66. The gradient formula given below in equation (21), and reflected in Figures 11 and12, requires data and calculations as now recapitulated

1.-a multilayer network f = (f k ) n k=1 2.-a multiweight w = (w 1 , . . . , w n ) ∈ W 3.
-an initial input a 1 ∈ U 1 , to be also symbolized

a 1 = f 0 (a 0 , w 0 ) 4.-a desired output b n+1 ∈ E n+1 the following is obtained 1.-the forward pass (a k ) n k=1 = (f k-1 (a k-1 , w k-1 )) n k=1 2.-the final output a n+1 = f n (a n , w n ) ∈ E n+1 3.-the output error ∆a n+1 = a n+1 -b n+1 ∈ E n+1 4.-the output error function e : W → E n+1 , e(w) = f (a 1 , w) -b n+1 5.-the transposed E k -partials D * E k f k (a k , w k ) 6.-the transposed G k -partials D * G k f k (a k , w k ) 7.-the backpropagated errors ∆a k = D * E k f k (a k , w k ) • ∆a k+1 ∈ E k , k = n, (n -1), . . . , 2 8.-the lifted errors ∆w k = D * G k f k (a k , w k ) • ∆a k+1 ∈ G k , k = n, (n -1), . . . , 2, 1
67. Under the hypotheses and with the steps listed above in 66, if there is a single initial input the substance of backpropagation for neural networks in Hilbert spaces is the following formula

The gradient of the quadratic error function of a multilayer neural network with a single initial input having a designated desired output is equal to twice the n-tuple of lifted errors

∇Q(w) = (2∆w k ) n k=1 (21)
which is just a repetition of the formula (20).

68. Formula (21) applies in particular to semilinear perceptron networks. See details in the Addendum.

69. Under a variety of formats and scenarios the gradient ∇Q(w) must be calculated whenever trying to minimize the quadratic error function of a differentiable multilayer neural network by stepwise modification of the weights applying the method of gradient descent. "Backpropagation" is the name given to the calculation of ∇Q(w), or to certain particular steps like obtaining the backpropagated errors ∆a k . Or may sometimes refer to the totality of the awesome forest surrounding the deep learning of neural networks by gradient descent, where concepts like "learning rate", "thresholds", "distances to decision hypersurfaces", "training epochs", "overfitting", "cutoff values" and many others thrive. §18 Backpropagation for multiple input data 70. Formula (21) has an extension to several initial inputs arranged in a finite set A = {a j 1 | j = 1, . . . , m} ⊆ U 1 , where each a j 1 ∈ U 1 has a corresponding desired output b j n+1 = d(a j 1 ) ∈ E n+1 specified by means of a usually empirical function d : A → E n+1 . Here the j-th quadratic error function is

Q j : W → R given by Q j (w) = a j n+1 -b j n+1 2 = f (a j 1 , w) -b j n+1
2 with corresponding j-th gradient ∇Q j (w).

71. Given:

1.-the multilayer neural network f = (f k ) n k=1 2.-the multiweight w ∈ W = W 1 × • • • × W n 3.-the finite set A ⊆ U 1 4.
-and the desired output function d : A → E n+1 , d(x j 1 ) = b j there is for each j:

1.-the forward pass (a j k ) n k=1 = (f k-1 (a j k-1 , w k-1 )) n k=1 2.-the final output a j n+1 = f n (a j n , w n ) ∈ E n+1 3.-the output error ∆a j n+1 = a j n+1 -b j n+1 ∈ E n+1 4.-the output error function, e j : W → E n+1 , e j (w) = a j n+1 (w) -b j n+1 5.-the transposed E k -partials D * E k f k (a j k , w k ) 6.-the transposed G k -partials D * G k f k (a j k , w k ) 7.-the backpropagated errors, ∆a j k = D * E k f k (a j k , w k ) • ∆a j k+1 ∈ E k , k = n, (n -1), . . . , 2 8.-the lifted errors, ∆w j k = D * G k f k (a j k , w k ) • ∆a j k+1
72. Define then:

1.-The total quadratic error function,

Q T : W → R, Q T (w) = m j=1 Q j (w) 2.-The backpropagated total errors, ∆ T a k = m j=1 ∆a j k 3.
-The lifted total errors, ∆ T w k = m j=1 ∆w j k 73. It then follows that the gradient of the total quadratic error function is equal to the sum of the gradients of the gradients of the j-th quadratic errors

∇Q T (w) = m j=1 ∇Q j (w)
74. If there are multiple initial inputs then backpropagation for neural networks in Hilbert spaces relies on the following result obtained from (21) by expressing the gradient of the total quadratic error as sum of the j-th gradients:

The gradient of the total quadratic error function of a multilayer neural network with multiple initial inputs and assigned desired outputs is equal to twice the n-tuple of the lifted total errors

∇Q T (w) = (2∆ T w k ) n k=1 (22) 
75. Summing up, backpropagation is required for the deep learning of (deep teaching to) neural networks. In a first instance learning means making smaller the quadratic error. And backpropagation is the attempt to reduce the error by small stepwise changes of the weights in directions opposite to the gradient.

Some conventions

First, beware that full notational consistency is difficult, perhaps impossible.

Sets have generic elements, say x ∈ X. Functions f : X → Y transform elements x ∈ X into y = f (x) ∈ Y . But often it will be convenient to indicate that instead of an "arbitrary" or "free" x, a specific fixed element is of interest and will then change to letters at the beginning of the alphabet and write a ∈ X, b = f (a) ∈ Y , and so on.

All the vector spaces, usually denoted E, F , G, E n , etc., are over the real number system. They are normed and whenever required they will also be Hilbert spaces.

All the linear transformations between normed spaces, T : E → F , in particular the derivatives, are assumed to be bounded (continuous) in the usual sense of Functional Analysis.

The value of a linear T on x ∈ E is T (x) but may also be denoted T • x. The variables on which derivative linear transformations and their transposes act will be denoted ∆x, ∆a, ∆w, etc., resulting in expressions like D f (a 1 , w)

• (∆x 1 , ∆w) or D * F k f k (a k , w) • ∆a k+1 . §19 Figures Figures W 1 × f 1 U 1 z W 2 × f 2 U 2 z U 3 • • • • • • • • • W n-1 × f n-1 f n U n-1 z z U n × W n U n+1 z Figure 1: A multilayer differentiable neural network is a sequence f = (f k ) n k=1
of C 1 functions called layers each having domain equal to a product U k ×W k (of open subsets of normed spaces) and codomain equal to the input domain U k+1 of the map f k+1 next in the sequence. The products U k × W k are displayed here with the factor W k atop the factor U k and the symbol × placed in between. Note that the codomain U k+1 is not a subset of U k+1 × W k+1 . This diagram is a general layout for neural networks and can be extended to domains that are sets and to layers that are arbitrary functions. Beyond sets it is possible to work with categories having products. The diagrams for unilayer, bilayer and trilayer neural networks are particular cases of the present diagram with n = 1, 2, 3, shown in Figures 2, 3 and 4. Another special case is Figure 10 that shows the diagram of a derivative network. The number n of layers varies from one to an arbitrarily large n but in practice trilayer seems sufficient for many applications. To have a well defined backpropagation procedure the normed spaces have to be Hilbert spaces, Euclidean if finite dimensional. In actual practice the spaces are Cartesian R n s with elements equal to row and column matrices, linear transformations given by rectangular matrices, derivatives specified by means of Jacobian matrices and transpose derivatives by transpose Jacobians; there are then semilinear differentiable perceptrons units which when fitted together provide perceptron layers. See references [START_REF] Crespin | Neural Network Formalism[END_REF], [START_REF] Crespin | Generalized Backpropagation[END_REF] and [START_REF] Crespin | A Primer on Perceptrons[END_REF]. 

W 1 × f 1 U 1 z U 2
W 1 × f 1 U 1 z W 2 × f 2 U 2 z U 3
1 × f 1 U 1 z W 2 × f 2 U 2 z U 3 W 3 × f 3 z U 4
W 1 × • • • × W n × f U 1 z U n+1
f = f n • • • • • f 1 : U 1 × W 1 × • • • × W n → U n+1 of the multilayer neural network f = (f k ) n
k=1 previously shown in Figure 1. The original network f and f share a common input domain U 1 and final output domain U n+1 . But one is multilayer and the other is unilayer. The weight spaces W k of the individual layers have been assembled together in the multiweight product W = W 1 ו • •×W n which is the weight space of the neural composition. The input domains U k , 2 ≤ k ≤ n, do not appear explicitly in this diagram and remain hidden from view but they are necessary to perform the forward pass stipulated in 9, this pass being involved in the definition of f given in 37. All the intermediate outputs x k = f k-1 (x k-1 , w k-1 ) ∈ U k are determined by x 1 , f and w. Therefore the notion of x 1 -conditioning defined in 11 is always present in neural compositions. 

U 3 U 2 × W 2 U 2 U 1 × W 1 W 2 U 1 × W 1 × W 2 U 1 × W 1 × W 2 f 1 f 2 [[f 1 ]] π U 1 ×W 1 π W 2 [f 1 ] c c c C C s ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡
f 2 • f 1 = f 2 • [[f 1 ]]
Figure 7: The commutative diagram at left simplifies to become the single arrow at right. This is an arrow theoretic or categorical version of formula (5) for the neural composition of a bilayer network. Here f 2 • f 1 : U 1 ×W 1 ×W 2 → U 3 is expressed using objects and arrows that represent f 1 , f 2 , various projections, their compositions and products. The projections reduce the number of variables as required by the layers. Consider

[f 1 ] = f 1 • π U 1 ×W 1 . The neural composition f 2 • f 1 (long red arrow at right) is equal to the (ordinary) composition of the product map [[f 1 ]] = ([f 1 ], π W 2 )
(red arrow at top left) and f 2 (red arrow at bottom left) as implied by the equalities 

f 2 • [[f 1 ]] = f 2 • ([f 1 ], π W 1 ) = f 2 • ((f 1 • π U 1 ×W 1 ), π W 2 ) = f 2 • f 1 . E 3 E 2 × G 2 E 2 E 1 × G 1 G 2 E 1 × G 1 × G 2 E 1 × G 1 × G 2 Df 1 Df 2 D [[f 1 ]] π E 1 ×G 1 π G 2 D[f 1 ] c c c C C s ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡
(f 2 • f 1 ) = Df 2 • Df 1 . G 1 G 2 × × E 1 E 2 E 3 q q Df 1 Df 2 • • • • • • • • • G n-1 G n × × E n-1 q E n E n+1 q q
Df n-2 Df n-1 Df n

Figure 9: For any (x, w) ∈ U ×W the derivative network was defined in 14 as the n-tuple of derivatives of the layers Df

k (x k , w k ) : E k × G k → E k+1 each calculated at the appropriate (x k , w k ) ∈ U k ×W k .
These constitute a linear multilayer network here displayed with Df k standing for Df k (x k , w k ). Compare with Figure 1. 

G 1 E 1 d d d d d d d d D G f 1 D E f 1 E E E G 2 E 2 D G f 2 D E f 2 D E f 3 E 3 • • • • • • • • • G n-1 E n-1 d d d d d d d d D G f n-1 D E f n-1 D E f n-2 E E E G n E n D G f n D E f n E n+1
E f k = D E k f k (x k , w k ) : E k → E k+1 and D G f k = D G k f k (x k , w k ) : G k → E k+1
. By inspection it is obvious that the diagram of partials is not a neural network. The relation of being downstream was defined in 51. Heuristically the arrows, either horizontal or slanted, all point from left to right and tell the "direction of the stream". Downstream of D G f 1 = D G 1 f 1 (x 1 , w 1 ) are the E k -partials to the right it, that is, D E f 2 , D E f 3 , . . . , D E f n . Downstream of D G f 2 are D E f 3 , . . . , D E f n , and so on. At the far right, downstream of D G f n-1 there is only D E f n and downstream of D G f n there are no E k -partials. According to 50 the composition of the x 1 -conditioned linear maps in the lower row is equal to the E 1 -partial of the neural composition,

D E 1 (f n • • • • • f 1 )(x 1 , w) = D En f n (x n , w n ) • • • • • D E 1 f 1 (x 1 , w 1 )
. From (11) the G kpartial of the neural composition is equal to the composition of the x 1 -conditioned G kpartial of the k-th layer with the downstream E j -partials, 

D G k (f n • • • • • f 1 )(x 1 , w) = D En f n (x n , w n ) • • • • • D E k+1 f k+1 (x k+1 , w k+1 ) • D G k f k (x k , w k ).
D * G f 1 D * E f 1 ' ' ' G 2 E 2 D * G f 2 D * E f 2 D * E f 3 E 3 • • • • • • • • • G n-1 E n-1 d d d d s d d d d s D * G f n-1 D * E f n-1 ' ' ' G n-1 E n-1 G n E n D * G f n D * E f n E n+1

2 .

 2 The architecture of f is the collection A of the n pairs of normed spaces E k , G k , k = 1, . . . , n, and the additional normed space E n+1 together with the open sets U k ⊆ E k and W k ⊆ G k for a total of 2n + 1 normed spaces and 2n + 1 open sets. It is then said that the network f defined in 1 has architecture A.

) 20 .

 20 The Riesz representation theorem states that if E is a Hilbert space then all linear forms are representable. Assuming that E, F are Hilbert spaces it follows that any continuous linear transformation T : E → F has a unique well defined transpose transformation T * : F → E characterized by the condition T (x), y = x, T * (y) for all x ∈ E and all y ∈ F . 21. Consider Hilbert spaces E, F with open subsets U ⊆ E, V ⊆ F and let f : U → V be a differentiable map with derivative at x ∈ U equal to the linear transformation Df (x) : E → F . Then as a particular case of 20 f has a transpose derivative at x defined as D * f (x) = (Df (x)) * : F → E.

  11) §14 Transpose partials of multilayer compositions Properties of transpose partials are consequence of applying transposition to the corresponding results about partials in section 13. The diagram to look at is Figure 11.

  Now the arrows have been reversed relative to the downstream definition given in 51. 55. The version to be given in equation (12) of the chain rule for the transpose partial derivatives of a neural composition is central for a general formulation of backpropagation in Hilbert spaces, and presumably also in Euclidean and Cartesian spaces since finite dimensionality and matrices seems to provide little conceptual simplification. The whole article has been elaborated around this equation, including the diagram of Figure 11 and equations (21) and (22).

  a desired output b n+1 ∈ U n+1 the quadratic error function has gradient at w equal to twice the n-tuple of lifted errors ∇Q(w) = 2(∆w k ) n k=1

Figure 2 :

 2 Figure 2: A unilayer differentiable neural network with input domain U 1 , weight domain W 1 and output domain U 2 is a map f 1 of class C 1 with domain the product of open sets U 1 × W 1 and codomain U 2 . The product U 1 × W 1 is displayed with the factor W 1 atop U 1 . The domains are open subsets of normed spaces:U 1 ⊆ E 1 , W 1 ⊆ G 1 and U 2 ⊆ E 2 .Reversing the order of the product replacesU 1 × W 1 with W 1 × U 1 andthen the roles of input and weight are interchanged. Examples of unilayer neural networks are the differentiable semilinear perceptron units and the semilinear perceptron layers often used in relation with deep learning. Derivatives of differentiable maps f : U → V (with U ⊆ E and V ⊆ F ) are maps (x, ∆x) → Df (x) • ∆x ∈ F and therefore can be considered as unilayer neural networks with initial input domain U 1 = U , weight domain W 1 = E and output domain U 2 = F . The neural compositions of multilayer perceptron networks f n • • • • • f 1 (see 37, 38 and 40) are also examples of unilayer networks.

Figure 3 :

 3 Figure 3: A bilayer neural network consists of two layers which are the functions shown in the diagram. The functions f 1 and f 2 are not composable as usually understood but they do have a neural composition in the sense of the definition given in 33 or as expressed in 36. See also Figure 7.

W

  

Figure 4 :

 4 Figure 4: A trilayer neural network has the three layers shown above. This is the result of setting n = 3 in the diagram of Figure 1. The architecture is specified by seven open subsets of respective normed spaces. Customarily f 1 is the input layer, f 2 is the hidden layer and f 3 is the output layer.

w 1 (a 1 , w 1 )Figure 5 :

 1115 Figure 5: The nodes of this diagram are elements of the various domains of a multilayer network. The upper row has the components w k of a given multiweight w. At the far left: the lower row has the initial input a 1 , the upper row has the first weight component w 1 and the middle row has the pair (a 1 , w 1 ). The terms a k = f k-1 (a k-1 , w k-1 ) are calculated by iteration and constitute the forward pass defined in 9. The final output a n+1 is at the extreme right. All the entries in the middle row are pairs (a k , w k ) obtained by pairing corresponding elements in the lower and upper rows. The arrows join the pairs to their images under the layer maps. Compare with Figure 1.

Figure 6 :

 6 Figure 6: The diagram is the neural compositionf = f n • • • • • f 1 : U 1 × W 1 × • • • × W n → U n+1 of the multilayer neural network f = (f k ) nk=1 previously shown in Figure1. The original network f and f share a common input domain U 1 and final output domain U n+1 . But one is multilayer and the other is unilayer. The weight spaces W k of the individual layers have been assembled together in the multiweight product W = W 1 ו • •×W n which is the weight space of the neural composition. The input domains U k , 2 ≤ k ≤ n, do not appear explicitly in this diagram and remain hidden from view but they are necessary to perform the forward pass stipulated in 9, this pass being involved in the definition of f given in 37. All the intermediate outputsx k = f k-1 (x k-1 , w k-1) ∈ U k are determined by x 1 , f and w. Therefore the notion of x 1 -conditioning defined in 11 is always present in neural compositions.

3 c 2 •Figure 8 :

 328 Figure 8: This is the derivative of the diagram of Figure 7. For a diagram theoretic demonstration of the bilayer neural chain rule given in equation (9) modify Figure 7 as follows: 1.-take the derivatives of all the maps noting that the natural projections have derivatives equal to the linear projections; 2.-substitute the open sets by their normed spaces; 3.-and invoke the chain rule with x 2 = f 1 (x 1 , w 1 ) to maintain commutativity. The result is this x 1 -conditioned diagram which, being commutative, proves that D(f 2 • f 1 ) = Df 2 • Df 1 .

Figure 10 :

 10 Figure 10: The diagram of partials of the neural network f = (f k ) n k=1 at (x, w) has objects E k and G k with arrows labeled by the the partials which are linear transformations here denoted asD E f k = D E k f k (x k , w k ) : E k → E k+1 and D G f k = D G k f k (x k , w k ) : G k → E k+1. By inspection it is obvious that the diagram of partials is not a neural network. The relation of being downstream was defined in 51. Heuristically the arrows, either horizontal or slanted, all point from left to right and tell the "direction of the stream". Downstream ofD G f 1 = D G 1 f 1 (x 1 , w 1 ) are the E k -partials to the right it, that is, D E f 2 , D E f 3 , . . . , D E f n . Downstream of D G f 2 are D E f 3 , . . . , D E f n ,and so on. At the far right, downstream of D G f n-1 there is only D E f n and downstream of D G f n there are no E k -partials. According to 50 the composition of the x 1 -conditioned linear maps in the lower row is equal to the E 1 -partial of the neural composition,D E 1 (f n • • • • • f 1 )(x 1 , w) = D En f n (x n , w n ) • • • • • D E 1 f 1 (x 1 , w 1 ). From (11) the G kpartial of the neural composition is equal to the composition of the x 1 -conditioned G kpartial of the k-th layer with the downstream E j -partials,D G k (f n • • • • • f 1 )(x 1 , w) = D En f n (x n , w n ) • • • • • D E k+1 f k+1 (x k+1 , w k+1 ) • D G k f k (x k , w k ).

Figure 11 :Figure 12 :

 1112 Figure 11: This is the diagram of transpose partials of f = (f k ) n k=1 at (x, w), clearly not a neural network. Compare with Figure 10. The reader will benefit by becoming familiar with this diagram and the next one. At the nodes it has the Hilbert spaces E k and G k and the arrows are labeled with D* E f k = D * E k f k (x k , w k ) and D * G f k = D * G k f k (x k , w k ).Being upstream was defined in 54. Since transposition reverses the original arrows they now point from right to left. Upstream of the transpose partialD * G f n no transpose E k -partials exist. Upstream of D * G f n-1 only D * E f n is found. At thefar left, upstream of D * G f 2 the partials D * E f 3 , . . . , D * E f n are located and upstream of D * G f 1 appear D * G f 2 , D E f 3 , . . . , D * E f n .

  The derivative of Sq at any a n+1 ∈ E n+1 is twice the linear form of a n+1 and the transpose derivative is twice the parametrized line of a n+1 Given (x, w) ∈ U ×W the layer f k has an E k -partial derivative and a G k -partial derivative at (x k , w k )
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