
HAL Id: hal-02867311
https://hal.science/hal-02867311

Submitted on 1 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient mapping of runnables to tasks for embedded
AUTOSAR applications

Fouad Khenfri, Khaled Chaaban, Maryline Chetto

To cite this version:
Fouad Khenfri, Khaled Chaaban, Maryline Chetto. Efficient mapping of runnables to tasks
for embedded AUTOSAR applications. Journal of Systems Architecture, 2020, 110, pp.101800.
�10.1016/j.sysarc.2020.101800�. �hal-02867311�

https://hal.science/hal-02867311
https://hal.archives-ouvertes.fr

Efficient mapping of runnables to tasks for
embedded AUTOSAR applications

Fouad Khenfri, Khaled Chaaban and Maryline Chetto

Abstract—An AUTOSAR-based embedded software consists of
a set of inter-connected Software Components (SWCs). Each SWC
contains a set of runnables which are small code-fragments that
should be mapped to Operating System (OS) tasks. This process
of mapping runnables to tasks may affect both the system real-time
schedulability and performance. This paper proposes fast and efficient
algorithms for mapping runnables to tasks. For a given embedded
software containing a defined set of runnables, proposed algorithms
define the number of required tasks to schedule the set of runnables,
tasks priority assignment, and execution order of runnables inside
each task. Experimental studies have been carried out to assess the
proposed solutions. They outline both the computational efficiency,
and the performance of proposed algorithms in comparison with other
existing methods.

Keywords—Real-time models, Scheduling, Proofs of real-time
guarantees, AUTOSAR, Automotive Electronics, Embedded Comput-
ing.

I. INTRODUCTION

Automotive manufacturers, suppliers, and tools developers
have created AUTOSAR (AUTomotive Open System AR-
chitecture) as a worldwide industry standard for automo-
tive Electrical/Electronic (E/E) architectures [1]. AUTOSAR
provides a set of concepts and defines a methodology for
automotive software development. Key features of this stan-
dard are modularity and reconfigurability. AUTOSAR permits
the functional reuse of software components (SWCs) from
different suppliers. It guarantees interoperability of SWCs
through standardized interfaces.

An AUTOSAR-based embedded software consists of a set
of inter-connected SWCs. A SWC contains one or more
runnables that should be mapped to tasks. In industrial prac-
tices, most of runnables are triggered periodically and a pre-
emptive fixed-priority scheduler is used to schedule tasks. This
process of mapping runnables to tasks is thus a crucial step of
AUTOSAR software design methodology, since it may affect
both system performance and real-time behavior. At this stage,
system designer needs to determine tasks number required
to schedule runnables, tasks priority assignment, execution
order of runnables inside a given task, and runnables offsets
assignments (Figure 1).

A simple solution will be to assign each runnable to a sep-
arate task. However, this solution becomes quickly infeasible

Fouad Khenfri is with Embedded Systems and Energy for Transportation
(S2ET) department, ESTACA Engineering school, Paris, France, e-mail:
fouad.khenfri@estaca.fr.

Khaled Chaaban is with computer science and information systems col-
lege, Umm Al-QURA University, Makkah, Saudi Arabia. e-mail: aochaa-
ban@uqu.edu.sa

Maryline Chetto is with IRCCyN research laboratory of Nantes University,
Nantes, France e-mail: maryline.chetto@univ-nantes.fr

Assigning

runnables to tasks

Sequencing

runnables

Application Description

(SW architecture)

Task 1

ISR 1

Task1

r1(1,10,0) r2(1,15,0) r3(1,15,0) r4(1,30,5)

T

Task y

ISR z

SWC1 SWC2

Fig. 1. Runnable mapping process in AUTOSAR.

given the huge number of runnables to be scheduled against a
limited number of tasks that can be supported by an embedded
OS.

According to AUTOSAR standard, task period could be
determined using greatest common divisor (GCD) of all
periods and offsets of its runnables [2]. Accordingly, we
can apply three methods to map runnables to tasks, namely:
Periodic Solution (PS), Multiple Periodic Solution (MPS), and
Arbitrary Periodic Solution (APS).

According to PS method, runnables having same period
are mapped to same task, and runnables offsets are set to
zero (Figure 2). In this case, task period is equal to its
runnables periods and the solution produces a number of tasks
equal at least to number of distinct periods of runnables.
According to MPS method, runnables with periods that are
multiple of the shortest period, are mapped to same task, and
runnables offsets are set to zero. Task period in this case is the
least common multiple (LCM) period of task runnables. This
methods produces lower number of tasks in comparison to PS
method. In APS method, runnables with different periods may
be mapped to same task. Task period in this case corresponds
to GCD of runnables periods mapped to same task. Runnable
offset may vary between 0 and runnable period. According to
AUTOSAR, a runnable offset must be a multiple of its task
period. This solution provides lower tasks number compared
to PS and MPS methods.

Today, this step of embedded OS configuration and run-
ables to task mapping is performed manually using system
designer’s empirical knowledge. This is usually error-prone
and cost-consuming. Further, system architectural complexity
leads to a large design decision space which is difficult to be
explored without using an analytical method or a design tool.

This paper is an extension work from a previous paper [7].
The objective of that paper was purely focused on the APS

xx
xx
xx
xx

x
x

x
x

xx
xx
xx

xx
xx

x

x
x
x

x
x

x
x

xx
xx

x
x

x
x

xx
xx

x
x

x
x

xx
xx

xx x

xx x
xx

xx
xx

x

xx

N5 sásrár N6 sáswár N7 sátrár N8 sáurár

First solution: Periodic Solution (PS)

Second solution: Multiple Periodic Solution (MPS)

Third solution: Arbitrary Periodic Solution (APS)

65

66

67

68

65

66

65

NÜ S?APá LANEK@á KBBOAP ã

Fig. 2. Different methods to map runnables to tasks.

algorithm. From the weak points discovered in the previous
algorithm, mainly the slow execution time, the high buffering
of a task, which leads to a great amount of memory consump-
tion. The current paper deals with the three algorithms “APS,
MPS, PS” all together, in a way that the said disadvantages
are treated.This paper proposes fast and efficient algorithms
permitting to map runnables to tasks while preserving real-
time system schedulability. The proposed solution determines
tasks number, task priorities assignment, execution order of
runnables inside a task, and runnable offsets assignment.

The rest of paper is organized as follows: Section II presents
some related works. Section III describes the system model.
Section IV details the developed algorithms. Section V re-
ports and discusses obtained experiments results. Section VI
concludes work and identifies potential perspectives.

II. RELATED WORKS

Several recent and relevant research works addressing task
mapping process for AUTOSAR embedded software have
been considered by this paper [13], [15], [10], [3], [5], [6],
[14],[16], [12] [8]. In [13] and [15], none of the three proposed
methods (PS, MPS, and APS) is considered. In [13], authors
define several runnable to task mapping rules based on inter-
SWCs communication pattern. This mapping does not rely on
the optimization theory, and the timing schedulability is not
considered. In [15], authors consider that the runnable to task
mapping and the task priority assignment are given a priori. A
mixed integer linear programming (MILP) is used to formalize
the problem of execution order of runnables inside a task, and
the problem of guaranteeing data consistency (choose between
several protection mechanisms) to minimize the stack memory
space.

A PS method is considered in [10], [3], and [5]. In [10], a
genetic algorithm guarantees the data consistency in each ECU
while minimizing memory usage. Runnables are supposed to
have deadlines equal to periods, and Rate-Monotonic (RM)
scheduling algorithm is used for task priority assignment. An
exact schedulability test is used as a constraint inequality of

the optimization algorithm. In [3], a greedy algorithm aims
to gather the largest number of runnables into same task. The
algorithm uses either exact or sufficient schedulability tests
for each clustering step. Authors consider that deadlines of
runnables are lower than or equal to periods. In [5], authors
address the problem of migrating the AUTOSAR applications
from single core to multi-core using RM scheduling algorithm.

An MPS method with exact schedulability tests is con-
sidered in [6], [14] and [16]. In [6], a simulated annealing
algorithm permits to optimize stack memory usage while
the sequencing and preemption ”threshold” of runnables are
calculated heuristically. In [14], authors propose an opti-
mization approach for AUTOSAR architecture synthesis, in-
cluding runnables to tasks mapping process. It uses genetic
algorithms and mixed integer linear programming techniques.
Optimization criteria consider end-to-end timing responses and
memory consumption. In [16], authors address the problems of
mapping runnables to tasks to minimize stack usage for mixed-
criticality systems with preemption threshold scheduling.

To our best knowledge, [12] is the unique research work
addressed APS method for a multi-core architecture with a
limitation (hypothesis) of only one task per core. The authors
in [8] use least-loaded (LL) algorithm proposed by [12] to
scheduling a mixed harmonic runnable set to one task per
core.

III. SYSTEM MODEL

This section presents system model and defines terminolo-
gies used throughout the paper.

A. Runnable model

We consider a set of independent periodic runnables that
should be assigned to fully preemptable fixed-priority tasks. A
runnable, say ri, is the smallest code fragment to be executed
in the context of a task, say τj . A runnable ri is characterized
by a worst-case execution time (WCET) ϵi, an activation
period pi between two consecutive releases, and a relative
deadline di with di ≤ pi. After mapping ri to τj , ri will
be characterized by an offset oi and an execution order ki
inside the task τj . The value of oi and ki must be tuned by
the designer to satisfy real-time schedulability constraints.

B. Task model

In order to model an AUTOSAR task, we adapt multiframe
task model which is introduced by Monk and Chen [11], as a
generalization of the well-known periodic task model of Liu
and Layland (or simply L&L task) [9]. A multiframe task τj
consists of a sequence of Nj frames characterized by a 3-
tuple (E⃗j , Tj , Dj), where E⃗j = [C0, C1, ..., Cs, ..., CNj−1] is
a vector of Nj execution times (Nj ≥ 1), Tj is task period,
and Dj is relative deadline of each frame. An execution time
Cs of the sth frame must be less than or equal to task period; if
this condition is not verified, the behavior becomes undefined
[2], [11].

To determine the three timing parameters (E⃗j , Tj , Dj) of
task τj , we consider a set of runnables Λj = {r1, ..., ri, ..., rn}

mapped to the same task τj . Task period Tj is calculated by
the Greatest Common Divisor (GCD) of all runnable periods
and offsets [2] mapped to this task. We assume that relative
deadline (or simply deadline) of a task is the shortest deadline
of runnables mapped to this task. The Nj frames of task
τj repeat cyclically with major cycle πj , which is equal to
the least common multiple (LCM) of runnable periods. Thus,
number of frames Nj can be determined by dividing the major
cycle by task period (Nj = πj/Tj). Therefore, each execution
time Cs of sth frame (s = 0, 1, ..., Nj − 1) is given by the
following equation:

Cs =

n∑
i=1

xi(s) ∗ ϵi (1)

function xi(s) indicates whether the ith runnable is present or
not in the sth frame as follows:

xi(s) =

{
1 if ai(s) = s

0 if ai(s) ̸= s
(2)

with

ai(s) =

⌊
s

γi

⌋
γi + δi (3)

ai(s) returns a frame location of the ith runnable with refer-
ence to the sth frame (ai(s) ≤ s). δi = oi/Tj and γi = pi/Tj

are respectively the first position and the repetition factor of
the ith runnable in the task τj , where ((nγi + δi) mod N) is
the position of ith runnable in the frames of this task, with
(n = 0, 1, 2, ...).

We note that the maximum execution time Ej =
maxN−1

s=0 {Cs} in the multiframe task corresponds to the
WCET in the L&L task. Thus, any multiframe task
(E⃗j , Tj , Dj) can be written as an L&L task (Ej , Tj , Dj).

Example. Let us consider a motivating example with
four periodic runnables ri(oi, ϵi, pi, di, ki) having the
following parameters: r1(0, 1, 10, 8, 1), r2(5, 1, 15, 10, 2),
r3(0, 1, 15, 12, 3) and r4(25, 1, 30, 19, 4). All runnables are
mapped to one task τ1. Task period T1 is 5 ms since
gcd(10, 15, 15, 30, 0, 5, 0, 25) = 5. The major cycle π1 is
30 ms since lcm(10, 15, 15, 30) = 30. Thus, the num-
ber of frames is 6. Task deadline D1 is 8 ms since
min{8, 10, 12, 19} = 8. Table I depicts numerical values to
illustrate the computation of execution time Cs of the sth frame
using Equation (1).

TABLE I
COMPUTING WCET FOR THE sth FRAME.

sth frame
ai(s) xi(s) Csr1 r2 r3 r4 r1 r2 r3 r4

0 0 1 0 5 1 0 1 0 2
1 0 1 0 5 0 1 0 0 1
2 2 1 0 5 1 0 0 0 1
3 2 4 3 5 0 0 1 0 1
4 4 4 3 5 1 1 0 0 2
5 4 4 3 5 0 0 0 1 1

Figure 3 shows the multiframe task created by 4 runnables
τ1 = ((2, 1, 1, 1, 2, 1), 5, 8). This task contains 6 frames which
repeat periodically every 30 ms. In each frame, the task τ1
executes several runnables which are defined a priori.

Fig. 3. Mapping runnables to tasks under AUTOSAR standard.

The following section describes a new efficient and fast
heuristic algorithm inspired by Audsley’s algorithm. It maps
runnables to tasks while preserving real-time system schedu-
lability and determines simultaneously the number of tasks
required to schedule a set of runnables, tasks priorities assign-
ment, as well as the sequencing of runnables inside a task.

IV. MAPPING RUNNABLES TO TASKS

Let us consider a system composed of a set of runnables
∆ = {r1, ..., ri, ..., rn}. The problem consists of finding a
mapping function that guarantees the system schedulability of
∆ while using a minimum number of tasks. The following
definition explains this function.

Definition 1. A mapping function f from a set of runnables
∆ to a set of tasks Γ, denoted by f : ∆ → Γ, is a rule that
associates each runnable ri in ∆ to a unique task τj in Γ. We
denote the mapping of the subset of runnables Λj ⊆ ∆ to task
τj by f(Λj) = τj . The inverse mapping function of tasks to
runnables is denoted by f−1(τj) = Λj . we say that f exists
if these conditions are verified:

1) ∩m
j=1Λj = ∅

2) ∪m
j=1Λj = ∆

3) ∀τj ∈ Γ : τj is timely feasible (τj must complete before
its deadline)

Conditions 1 and 2 reflects the surjective nature of function
f , i.e., each runnable in ∆ can be mapped to only one task of
Γ. The function f may map multiple runnables of ∆ to one
task of Γ. The third condition signifies that ∆ is schedulable
if, and only if any task τj of Γ is feasible (or schedulable).

The mapping problem tries to determine function f that
guarantees the schedulability of ∆ with a minimal number
of tasks. The following theorem helps in solving the mapping
problem. We assume that runnables can have virtual priorities.

Theorem 1 (Mapping feasibility). Let ∆ be a set of runnables
with all their offsets set to zero, and τj be a task. We say that
there is a set of runnables Πj ⊆ ∆ that can be mapped in
the same task τj if and only if each runnable ri ∈ Πj is
feasible (schedulable) by assigning ri to a lower priority level
1, where the remaining runnables (∆−{ri}) are assigned to
higher priorities in any order.

Proof of runnables mapping theorem: We consider two
runnables r1 and r2 with deadlines d1 and d2 respectively.

Let us assume that under the lowest priority level 1, the two
runnables are feasible. Hence, there exist two distinct feasible
priority assignment functions φ1 and φ2:
• case 1: runnable r1 receives a priority which is higher

than the priority of r2, i.e., φ1(r1) = 2 and φ1(r2) = 1.
• case 2: runnable r2 receives a priority which is higher

than the priority of r1, i.e., φ2(r1) = 1 and φ2(r2) = 2.
The response time of runnable r1 with the lowest priority

(φ1(r1) = 1) is equal to that of r2 with the same priority
(φ2(r2) = 1). Thus, r1, and r2 must complete execution
before the shortest deadline in the two cases. Hence, the two
runnables can be mapped into one task with a deadline equal
to min{d1, d2}. Therefore, if a set of runnables is feasible
when all are receiving the lowest priority, then this set can be
mapped to only one task.

Let us consider that two runnables are not schedulable when
receiving the lowest priority. Clearly, no priority assignment
rule permits to schedule these runnables. Moreover, there is no
task for mapping them. We conclude that if a set of runnables
Πj ⊆ ∆ can be mapped in one task, then each runnable in Πj

is feasible when assigned to the lowest priority level.
The following algorithm implements Definition 1 and The-

orem 1 by mapping n runnables of ∆ into m tasks of Γ
with a time complexity (TC) of O

(
mn+ n2/m

)
. Knowing

that MappingFeasibility and TaskCreation algorithms run
with a TC of O (n) and O

(
n2

)
respectively.

ALGORITHM 1: Mapping runnables to tasks
Input: runnables set ∆
Output: tasks set Γ

1 Γ← ∅; Schedulable← True ;
2 j ← 1 ; /* Lowest task priority level */
3 while ∆ ̸= ∅ and Schedulable do
4 Πj ←MappingFeasibility(∆) ; /* Algorithm 2 */
5 if Πj ̸= ∅ then
6 [Λj , τj]← TaskCreation(Πj) ; /* PS,MPS, or APS */
7 Γ← τj ; ; /* Adding τj to task set Γ */
8 ∆← ∆\Λj ; ; /* Update ∆ by eliminating

mapped runnabes set Λj */
9 j ← j + 1; ; /* Incerement priority level j */

10 else
11 Schedulable← False ; /* Unschedulable system */
12 end
13 end

First, the algorithm determines a set of runnables Π1 which
is feasible at the lowest priority level using algorithm 2 (Line
4). If such a set is found, one task, say τ1 with a lower priority
j = 1 is created. A set of runnables Λ1 ⊆ Π1 is mapped
to task τ1 using PS, MPS or APS task creation algorithms
detailed afterwards (Line 6).

Second, if ∆\Λ1 is not empty, the algorithm determines the
second set of runnables Π2 which is feasible at the next lowest
priority level. If Π2 exists (amongst the |∆\Λ1| runnables that
have not yet been mapped into task (Line 8)), a task τ2 with
priority j = 2 is created. The set of runnables Λ2 ⊆ Π2

is mapped into task τ2. Successively, the set of tasks Γ =
{τ1, ..., τj , ..., τm} is set up until obtaining an empty set ∆,
where Λ1∩Λ2, ...,∩Λm is empty, and Λ1∪Λ2, ...,∪Λm = ∆.
If at any mapping level j, no set of runnables Πj can be found
(Πj = ∅), then the whole system is declared as not schedulable
(Line 11).

The following subsections details MappingFeasibility
and TaskCreation algorithms which are called by the main
algorithm 1.

A. Mapping feasibility

This section describes how to implement the mapping
feasibility theorem 1. The goal is to find, for each priority
level j, a set of runnables Πj ⊆ ∆ that can be mapped to one
task, say τj . According to theorem 1, the set of runnables Πj

exists if the following feasibility condition is satisfied for all
runnables in Πj :

Ri = ϵi +
∑

k∈∆−{ri}

⌈
Ri

pk

⌉
ϵk ≤ di (4)

Ri is the WCRT (Worst-case Response Time) of runnable ri
when assigned to lowest priority and all runnables release
simultaneously. Such release time is known as the critical
instant for ri since it leads to longest response time [9]. Fur-
thermore, all runnables are feasible at the lowest priority level;
they have the same WCRT. To reduce algorithm complexity,
feasibility test given by inequality (5), efficiently defines the
set of runnables to be mapped in one task.

∀ri ∈ ∆ : R =
∑
k∈∆

⌈
R

pk

⌉
ϵk ≤ di (5)

The WCRT R in inequality (5) can be solved by the following
recurrence relation:

Rt+1 =
∑
k∈∆

⌈
Rt

pk

⌉
ϵk (6)

where R0 =
∑

k∈∆ ϵk. Equation (6) surely converges if
processor utilization factor does not exceed 100%. Unschedu-
lability condition is given by the following condition:

Rt+1 > max
k∈∆

{dk} (7)

Algorithm 2 implements Theorem 1 and includes feasibility
test (5) and unschedulability test (7). This algorithm finds a set
of runnables feasible to map in the same task from n runnables
with a time complexity of O ((max(pi)/min(pi))n).

B. Task creation

This section presents the second algorithm, namely
TaskCreation, to create a task τj for any set of runnables
Πj given by the MappingFeasibility algorithm. The
TaskCreation algorithm selects a set of runnables Λj ⊆ Πj

using one of the mapping methods PS, MPS, or APS. The
algorithm assigns offset oi and execution order ki for each
runnable ri ∈ Λj ; and simultaneously computes three timing
parameters of the task: vector of execution times E⃗j , period
Tj , and deadline Dj .

In this work, it is assumed that execution order of runnables
corresponds to the increasing order of their deadlines, i.e., a
runnable with a shortest deadline runs first.

ALGORITHM 2: Mapping feasibility test
Input: runnable sets ∆
Output: Πj

1 Πj ← ∅; R←
∑

k∈∆ ϵk; Dmax ← maxk∈∆{dk};
2 schedulability = continue← True ;
3 while continue do
4 Rt =

∑
i∈∆

⌈
R
pi

⌉
ϵi;

5 if R = Rt then
6 continue ← False;
7 end
8 if Rt > Dmax then
9 continue ← False ; /* ∆ is unschedulable */

10 schedulability ← False;
11 end
12 R← Rt ;
13 end
14 if schedulability then
15 for ri = 1 to |∆| do
16 if (R ≤ di) then
17 Πj ← Πj ∪ {ri}
18 end
19 end
20 end

1) Task creation using PS method: The runnables having
same periods are mapped to the same task, and all runnable
offsets are set equal to zero. In this case, task period Tj is
equal to period of its runnables, and WCET Ej is the sum of
WCET of all runnables. We say that there is a set of runnables
Λj ⊆ Πj mapped to the same task using PS method, if, and
only if:
Condition 1: ∀i ∈ Λj , pi = Tj

Condition 2: Ej =
∑|Λj |

i=1 ϵi ≤ Tj

Condition 3: R ≤ min
|Λj |
i=1 di

By using mapping feasibility theorem, second and third
conditions are verified since that feasibility test ensure that
R is less than or equal to the shortest deadline of runnables.
Now, the following algorithm implements the first condition
to select a set of runnables Λj . In this case, it is sufficient
to choose an arbitrary runnable of the set Πj to find the task
period Tj . Here, we consider the last runnable of Πj sorted
in ascending deadline order. Thus, the period of task j is the
period of this runnable. Algorithm 3 creates a task from n
runnables with a time complexity of O(n2) using insertion
sort algorithm.

ALGORITHM 3: Task creation using PS method
Input: runnable set Πj

Output: Λj and τj
(
(Ej), Tj , Dj

)
1 Sort Πj in ascending deadline order;
2 Λj ← ∅; Ej ← 0; Tj ← p|Πj |; Dj ← d|Πj |; k ← 0;
3 for i← 1 to |Πj | do
4 if Tj = pi then
5 Λj ← Λj ∪ {ri};
6 k ← k + 1;
7 ki ← k ; /* Execution order of ith runnable */
8 oi ← 0 ; /* Offset of ith runnable */
9 Dj ← min(Dj , di) ; /* Deadline of jth task */

10 Ej ← Ej + ϵi ; /* WCET of jth task */
11 end
12 end

2) Task creation using MPS method: Runnables having
multiple periods are mapped to the same task, and all runnable
offsets are set equal to zero. In this case, task period Tj is the

shortest period of its runnables, and WCET E is the sum of
WCET of all runnables. We say that there is a set of runnables
Λj ⊆ Πj mapped to the same task using MPS method, if, and
only if:
Condition 1: ∀i ∈ Λj : mod(pi, Tj) = 0

Condition 2: E =
∑|Λj |

i=1 ϵi ≤ Tj

Condition 3: R ≤ min
|Λj |
i=1 di

Second and third conditions are verified since that feasibility
test ensure R is less than or equal to the shortest deadline
of runnables. Algorithm 4 implements only first condition to
select a set of runnables Λj . Task period is the shortest period
of runnables, which are multiple of a runnable period T (refers
to first loop in Algorithm 4). This period T can be arbitrarily
chosen from runnable set Πj . Algorithm 4 chooses the period
T as the period of runnable with longest deadline. Algorithm
4 creates a task from n runnables with a time complexity of
O(n2).

ALGORITHM 4: Task creation using MPS method
Input: runnable set Πj

Output: ∧j and τj
(
E⃗j , Tj , Dj

)
1 Sort Πj in ascending deadline order;
2 Λj ← ∅; Cτj

← 0; Dj ← d|Πj |; T ← p|Πj |;Tj ← T ; k ← 0;
3 for i← 1 to |Πj | do
4 if mod (T, pi) = 0 then
5 Tj ← min {Tj , pi} ; /* Period of jth task */
6 end
7 end
8 for i← 1 to |Πj | do
9 if mod (Tj , pi) = 0 then

10 Λj ← Λj ∪ {ri};
11 k ← k + 1;
12 ki ← k ; /* Execution order of ith runnable */
13 πj ← max(πj , pi) ; /* Major cycle of jth task */
14 oi ← 0 ; /* Offset of ith runnable */
15 Dj ← min(Dj , di) ; /* Deadline of jth task */
16 Ej ← Ej + ϵi ; /* WCET of jth task */
17 end
18 end
19 Compute the Nj execution times of E⃗j by using the Eq. 1 with

Nj = πj/Tj ;

3) Task creation using APS method: Runnables with
different periods are mapped to the same task. Runnable
offsets are not forced to set to zero. In this case, task period
Tj is the GCD of runnable periods. We say that there is a set
of runnables Λj ⊆ Πj mapped in the same task for APS if,
and only if:
Condition 1: ∀i ∈ Λj : Tj = gcd

|Λj |
i=1pi > 1

Condition 2: E =
∑N−1

s=0 Cs ≤ Tj

Condition 3: R ≤ min
|Λj |
i=1 di

Third condition is verified given that feasibility test en-
sures that R is less than or equal to shortest deadline of
runnables. We note that task deadline using APS method
can be greater than task period. Thus, first condition al-
lows avoiding highest buffering of a task instance. Consid-
ering a realistic case of five runnables r1(0, 0.5, 15, 15, 1),
r2(1, 0.5, 18, 18, 2), r3(2, 0.5, 25, 25, 3), r4(3, 0.5, 35, 35, 4),
r5(4, 0.5, 55, 55, 5) mapped in the same task τ2. Figure 4
shows that higher priority task τ1 delays several executions
of τ2. After τ1 completes, τ2, with its input buffers filled, runs
in burst mode.

Fig. 4. Example of buffering case.

The number of instances of any task τj that needs to be
buffered is bounded by

⌈
Rτj/Tj

⌉
, where Rτj and Tj are

respectively WCRT and period of τj . In a larger response
time with Tj = 1, there may be hundreds or thousands of
task instances. To avoid this, first condition allows creating
subsets of a set of runnable periods, where one of these subsets
must be mapped to the same task. To do this, we propose the
following algorithm named Bucket Select Algorithm (BSA).

ALGORITHM 5: Bucket Select Algorithm
Input: runnable set Πj and list of k first primes number L
Output: a new runnable set ∧j and task period Tj

1 create k buckets B;
2 create three lists Tb, and Pb of k length initialized to 0;
3 for i← 1 to |Πj | do
4 for j ← 1 to k do
5 if mod(pi, L[j]) = 0 then
6 Insert pi into bucket B[j];
7 Tb[j]← gcd(Tb[j], pi);
8 Pb[j] is the first prime number, where Tb[j] is divisible by it;
9 end

10 end
11 end
12 Tj ← 0 ; /* Period of task */
13 for j ← 1 to k do
14 if L[j] = Pb[j] and Tj < Tb[j] then
15 Tj ← Tb[j];
16 ∧j ← B[j] ; /* Select the bucket that has a

great period value */
17 end
18 end

Bucket Select Algorithm (BSA) works by partitioning a set
of runnable periods of a cardinality n into a number of buckets
using a divisibility test by k prime numbers. Therefore, each
bucket contains a subset of runnable periods characterized by
two timing parameters: Tb is the GCD of runnable periods, and
Pb is the minimum prime number, where Tb is divisible by it.
The Bucket Select given by the Algorithm 5 and described in
Figure 5 selects one subset with a time complexity of O(kn).

Fig. 5. Example of Bucket Select Algorithm (BSA).

To verify second condition, which is the overload constraint
of task, we need to find for each runnable an offset. This last

must be a multiple of task period and should be less than
runnable period. Each runnable has γi = pi/Tj possibilities
for mapping in task. Consequently, we need to search an
optimal solution between

∏n
i=1(γi) solutions for n runnables.

To find an acceptable solution, authors in [12] developed
two algorithms, which are Least Loaded (LL) for harmonic
periods and Lowest Peak (LP) for non-harmonic periods.
These algorithms assume that WCETs of runnables are small
compared to the period of task that is fixed at 5ms. We
are interested in non-harmonic cases, and we will adapt LP
algorithm. LP algorithm, described from line 4 to 15, chooses
the runnable offset through a larger window of frames Tw,
which is equal to the LCM of runnables periods already
scheduled at the current state of the algorithm. Runnable offset
oi = δi ∗ Tj is selected from the first γi frames, and gives the
lowest peak (LP) over Tw (or Tw/Tj frames), knowing that
the schedule repeats the runnable in cycle afterward. The peak
execution time Ej = max

Tw/Tj

s=0 Cs must be less than or equal
to task period Tj (line 9). The following algorithm uses BSA
algorithm and adapts LP algorithm to create a task from n
runnables using APS method with a TC of O((k+N)n+n2),
where Nj is the frame number of a multiframe task , and k
is the first prime numbers.

ALGORITHM 6: Task creation using APS method
Input: runnable set Πj

Output: Λj and τj(E⃗j , Tj , Dj)
1 Λj ← ∅; Dj ←∞;
2 let L be the list of k first prime numbers;
3 [∧j , Tj]← BucketSelectAlgorithm(Πj , L);
4 Sort ∧j by increased period order ;
5 Tw ← p1; πj ← p1;
6 for i in ∧j do
7 Tw ← lcm(πj , pi);
8 In the first γi frames, find the first position δi of the runnable ri which

minimize the highest load in the Tw/Tj first frames;
9 if Ej ≤ Tj then

10 Λj ← Λj ∪ {ri};
11 oi ← δi ∗ Tj ; /* Offset of ith runnable */
12 Dj ← min{Dj , di} ; /* Deadline of jth task */
13 πj ← Tw ; /* Major cycle of jth task */
14 end
15 end
16 Sort Λj in ascending deadline order to define the execution order of runnables;
17 Compute the Nj execution times of E⃗j by using Eq.1 with Nj = πj/Tj ;

We note that the TC of all algorithms described above can be
reduced by using the merge sort algorithm with a logarithmic
time complexity.

V. EXPERIMENTATION

Several experimentations have been carried out to evaluate
Algorithm 1 with the application of PS, MPS, and APS
methods. To well assess proposed solutions, two other heuristic
algorithms using PS are implemented.

First algorithm is named RMS (Rate Monotonic Scheduling)
which tries to map n runnables to m tasks, where m is the
number of different periods of runnables set, in two stages:
• in the first stage, runnables with same periods are grouped

into same task with a time complexity of O(mn);
• in the second stage, an insertion sort algorithm is used to

determine task priorities by assigning highest priorities to

the shortest deadline of runnables mapped to a task, with
a time complexity of O(m2).

Time complexity of this RMS-based mapping algorithm is
of O(m2 + mn) without considering the schedulability test.
In this experimentation, an exact schedulability test (i.e., each
task’s WCRT is less than its relative deadline) is used to check
system schedulability.

Second algorithm is named GBFS and is developed by [3].
It has a polynomial complexity of O(n4).

To assess the proposed solutions under different execution
scenarios, a set of runnables is randomly generated using
UUnifast algorithm developed by [4]. This distributes a total
utilization factor U to smaller utilization factors ui for n
runnables. For each runnable ri, deadline di is determined
by the following equation:

di = (pi − ϵi)rand(a, b) + ϵi (8)

where rand(a, b) generates values from a uniform distribution
on the interval [a, b] with 0 ≤ a ≤ b. In the case of a =
b = 1, deadline is equal to period. WCET ϵi is equal to the
product of smaller utilization factor ui by the period pi, which
is randomly chosen from a set of periods.

All algorithms have been compared based on four evaluation
criteria: scheduling success rate, execution time, number of
tasks, and the average response time.

A. Scheduling success rate

In this section, scheduling success rate is compared for all
algorithms. Following definition clarifies this criteria:

Definition 2 (Success rate). Let us consider a set Σ =
{∆1,∆2, ...,∆i, ...,∆N} composed of N subsets of runnables
∆i, and A a scheduling algorithm. We say that ∆i is schedula-
ble by scheduling algorithm A, if all runnables from ∆i meet
their deadlines, denoted by A(∆i) = 1, and if not we denote
it by A(∆i) = 0. As a result, success rate SR of scheduling
algorithm A on Σ is defined by:

SR = 100 ∗
∑N

i=1 A(∆i)

N
(9)

Figure 6 shows success rate of all algorithms depending on
deadline interval. For each interval [a, b], we run all algorithms
on 1000 runnables sets with a cardinality of 100 and a
utilization factor of 90%. Periods used to randomly generate
each set of runnables are choosen from following set T = {5,
10, 15, 20, 25, 30, 40, 45, 50, 60, 75, 80, 90, 100, 125}.

For all deadline intervals, algorithms PS, MPS, and APS
have obtained the same success rate. However, our proposed
algorithms outperform RMS and GBFS in terms of scheduling
success rate.

B. Run-time analysis

This subsection provides run-time analysis of algorithms by
executing each algorithm on different sets of runnables with a
cardinality that varies from 10 to 10000. For each cardinality
value, ten sets of runnables are randomly generated with a
deadline on request (i.e., deadline equals period), a utilization

Fig. 6. Success rate of scheduling algorithms depending on deadline.

factor of 60%, and an identical periods set used in the previous
subsection. All algorithms are successively run on all sets of
runnables, and the average execution time is computed for
each one.

Figure 7 shows obtained experimental results. We note that
execution time of algorithm GBFS explodes very quickly.
However, other algorithms have a reasonable execution time.
Time complexity of our three algorithms obtained by this test
is similar to the one obtained in section IV O

(
mn+ n2/m

)
.

For a small number of tasks m, we get an important time
complexity. As a result, time complexity of APS method is
more important than MPS and PS.

Fig. 7. Execution time for different algorithms.

C. Number of tasks

In this section, we compare numbers of tasks obtained by
all algorithms (RMS, GBFS, PS, MPS, and APS) and for two
different configurations. The first configuration presents the
evolution of task number depending on the number of periods.
The second configuration shows the influence of stringent

deadlines on the number of tasks. For all configurations, a
utilization factor of 60% is used with a set of 100 runnables.

For the first configuration, we generate randomly 10 sets of
runnables with a deadline on request for each set of periods
given in the Table II. We then successively run five algorithms

TABLE II
FIVE SETS OF PERIODS USED.

period set of periods
5 {10, 20, 40, 80, 160}
10 {10, 20, 40, 80, 160, 15, 30, 45, 60, 90}
15 {10, 20, 40, 80, 160, 15, 30, 45, 60, 90, 25, 50, 75, 100, 125}
20 {10, 20, 40, 80, 160, 15, 30, 45, 60, 90, 25, 50, 75, 100,

125, 35, 70, 105, 140, 175}
25 {10, 20, 40, 80, 160, 15, 30, 45, 60, 90, 25, 50, 75, 100,

125, 35, 70, 105, 140, 175, 55, 110, 165, 220, 275}

on all runnables sets and then we determine the maximum
number of tasks among the 10 sets of runnables (Figure 8). As
expected, algorithms based on the PS solution (RMS, GBFS,
and PS) deliver a number of task equals to number of different
periods. For MPS and APS solutions, obtained number of tasks
is much smaller than the number of periods.

Fig. 8. Number of tasks depending on the number of periods.

In the second configuration, we run algorithms on 10 sets
of runnables randomly generated for a set of periods of
cardinality 20 (see table II). For each deadline interval [a, b]
and each algorithm, we take the maximum number of tasks
among the 10 sets of runnables.

Figure 9 shows the influence of deadline on the number
of tasks. Note that our algorithms find the required number
of tasks while guaranteeing system schedulability even in
very stringent deadlines situations. In particular, APS solution
delivers a minimum number of tasks and has a very low
variance by tightening the deadline. As a result, the maximum
number of tasks does not exceed the cardinality of the set of
periods. On the other hand, in the solution PS, the variance
is higher, and the number of tasks may be twice the number
of periods. This has a major influence on the system stack
memory. For example, suppose that all runnables consume the
same size of stack memory of 512 bytes. The stack of task is

the maximum size of all runnables mapped to this task. Thus,
stack memory used to implement PS solution for a deadline
interval [0, 0.5] is 47 tasks ∗ 512 bytes ≈ 24 kb. However, in
APS solution, it is 8 tasks ∗ 512 bytes ≈ 4 kb.

Fig. 9. Number of tasks depending on the deadline.

D. Average response time

This section evaluates average response time of algorithms
depending on deadline. We use the following equation to
calculate rate of average response time TRm for each set of
runnables with a cardinality n:

TRm = 100 ∗
∑n

i=1
Ri

di

n
(10)

where Ri and Di are respectively worst response time and rel-
ative deadline of runnable ri. We consider 10 sets of runnables.
Each set contains 100 runnables generated randomly with a
utilization factor of 60% and a set of periods T = {10, 15,
25, 35, 20, 30, 50, 70, 40, 45, 75, 105, 80, 60, 100, 140, 160,
90, 125, 175}.

For each deadline interval [a, b], we run all algorithms on 10
sets of runnables and we determine the maximum of average
response time. Obtained results are shown in Figure 10.

We note that algorithm APS finds a mapping of runnables
to tasks that give better response times than those found by
other heuristics. This is due to the tuning of runnables offsets.
Nevertheless, MPS algorithm gives highest response times
although it uses fewer tasks compared to PS, RMS, and GBFS
algorithms due to the lack of use of runnables offsets. Further,
we note that deadlines start to be tightened after the interval
[0.2, 1], where our algorithms continue to be schedulable with
a gradual increase in response time up to interval [0, 0.5].

VI. CONCLUSION

For AUTOSAR software design methodology, mapping of
runnables to tasks represents a crucial design decision. This
may affect both system performance and real-time execution.
Several research works have addressed this problem ranging

Fig. 10. Average execution rate of runnables depending on deadline.

from a simplest solution of mapping runnables having same
periods (PS) or multiple periods (MPS) to same task, up
to more advanced solution with mapping runnables having
arbitrary periods (APS) to same task. Three different algo-
rithms have been developed in this work whose main goal
is construction of a minimum set of tasks on which a set of
runnables is mapped. Task creation process goes through two
stages: First, a feasibility test of mapping is applied to search
a set of runnables that is feasible to map in the same task. If
this set is empty, the system is declared as not schedulable.
Second, a task is created by selection of a set of runnables
given by the first step, using one of three main methods: PS,
MPS, or APS.

Developped algorithms increase system schedulability by
23.81% when compared to conventional RMS algorithm, and
by 14.28% when compared to GBFS algorithm. APS-based
algorithm reduces significantly the number of tasks and the
average response time in comparison to other algorithms. Fur-
ther, in case of tight deadlines situation, task number increases
up to three times the number of tasks where deadlines are
relaxed.

REFERENCES

[1] Autosar consortium web page. http://www.autosar.org. accessed:
03/12/2015.

[2] Specification of rte autosar release 4.2.2. http://www.autosar.
org/fileadmin/files/releases/4-2/software-architecture/rte/standard/
AUTOSAR/ SWS/ RTE.pdf. accessed: 03/12/2015.

[3] Antoine Bertout, Julien Forget, and Richard Olejnik. A heuristic to
minimize the cardinality of a real-time task set by automated task
clustering. In Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC ’14, pages 1431–1436, New York, NY, USA,
2014. ACM.

[4] Enrico Bini and Giorgio C Buttazzo. Measuring the performance of
schedulability tests. Real-Time Systems, 30(1-2):129–154, 2005.

[5] Priyanshi Gupta, N. P. Singh, and Geetha Srinivasan. An efficient
approach for mapping autosar runnables in multi-core automotive sys-
tems to minimize communication cost. 2019 Innovations in Power and
Advanced Computing Technologies (i-PACT), 1:1–4, 2019.

[6] Zeng Haibo, M. Di Natale, and Zhu Qi. Optimizing stack memory
requirements for real-time embedded applications. In Emerging Tech-
nologies and Factory Automation (ETFA), 2012 IEEE 17th Conference
on, pages 1–8, 2012.

[7] F. Khenfri, K. Chaaban, and C. Maryline. A novel heuristic algorithm for
mapping autosar runnables to tasks. In Pervasive and Embedded Com-
puting and Communication Systems (PECCS), 2015 5th International
Conference on, pages 239–246, 2015.

[8] Kyung-Jung Lee, Jae-Woo Kim, H. Chang, and Hyun-Sik Ahn. Mixed
harmonic runnable scheduling for automotive software on multi-core
processors. International Journal of Automotive Technology, 19:323–
330, 04 2018.

[9] C. L. Liu and James W. Layland. Scheduling algorithms for multipro-
gramming in a hard-real-time environment. J. ACM, 20(1):46–61, jan
1973.

[10] Zhang Ming and Gu Zonghua. Optimization issues in mapping autosar
components to distributed multithreaded implementations. In Rapid
System Prototyping (RSP), 2011 22nd IEEE International Symposium
on, pages 23–29, 2011.

[11] A. K. Mok and D. Chen. A multiframe model for real-time tasks. IEEE
Transactions on Software Engineering, 23(10):635–645, Oct 1997.

[12] A. Monot, N. Navet, B. Bavoux, and F. Simonot-Lion. Multisource
software on multicore automotive ecus combining runnable sequencing
with task scheduling. Industrial Electronics, IEEE Transactions on,
59(10):3934–3942, 2012.

[13] Long Rongshen, Li Hong, Peng Wei, Zhang Yi, and Zhao Minde. An
approach to optimize intra-ecu communication based on mapping of
autosar runnable entities. In Embedded Software and Systems, 2009
ICESS ’09 International Conference on, pages 138–143, 2009.

[14] E. Wozniak, A. Mehiaoui, C. Mraidha, S. Tucci-Piergiovanni, and
S. Gerard. An optimization approach for the synthesis of autosar ar-
chitectures. In Emerging Technologies and Factory Automation (ETFA),
2013 IEEE 18th Conference on, pages 1–10, 2013.

[15] Haibo Zeng and M. Di Natale. Efficient implementation of autosar
components with minimal memory usage. In Industrial Embedded
Systems (SIES), 2012 7th IEEE International Symposium on, pages 130–
137, June 2012.

[16] Qingling Zhao, Zonghua Gu, and Haibo Zeng. Design optimization
for autosar models with preemption thresholds and mixed-criticality
scheduling. Journal of Systems Architecture, 72:61 – 68, 2017. Design
Automation for Embedded Ubiquitous Computing Systems.

Fouad Khenfri received an engineering degree from
the University of Biskra, Biskra, Algeria, in 2008,
and a M.Sc. degree in electrical and computer en-
gineering from the Polytechnic School of Algiers,
Algeria, in 2011, and a Ph.D. degree in computer
science and automation from Nantes Central School
(Ecole Centrale de Nantes), France, in 2016. He
is currently an Assistant Professor at ESTACA
(Ecole Supérieure des Techniques Aéronautiques et
de Construction Automobile), France, since 2016.
His current research interests include system control,

embedded software design, and embedded system performance analysis and
optimization.

Khaled Chaaban received an engineering degree in
computer engineering/telecommunication from the
Lebanese University, Lebanon (2001), a master’s
degree in “Information and Systems Technology”
in 2002 followed by a PhD degree in 2006 from
UTC University, Compiegne (France). He worked
at ESTACA engineering school (2007-2015) as an
associate professor before joining UMM AL-QURA
University since 2015. His main research interests
include scheduling for real-time applications and
design space exploration. He has published more

than 30 journal articles and conference papers in the area of embedded and
real-time systems.

Maryline Chetto received the degree of PhD in con-
trol engineering and the degree of HDR (Habilitée
à Diriger des Recherches) in Computer Science
from the University of Nantes, France, in 1984 and
1993, respectively. From 1984 to 1985, she held the
position of Assistant professor of Computer Science
at the University of Rennes, while her research was
with the (Institut de Recherche en Informatique et
Systèmes Aléatoires), Rennes. In 1986, she returned
to Nantes and is currently a professor with the
Institute of Technology of the University of Nantes.

She is conducting her research at IRCCyN. Her main research interests
include scheduling and energy management for real-time applications. She
has published more than 100 journal articles and conference papers in the
area of real-time operating systems.

