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Introduction

Scene text detection in natural images is an active topic in the image processing and pattern recognition fields. Recent contributions are discussed in surveys [START_REF] Ye | Text detection and recognition in imagery: a survey[END_REF][START_REF] Long | Scene text detection and recognition: the deep learning era[END_REF], and the international contest dedicated to this topic is detailed in [START_REF] Nayef | ICDAR2017 robust reading challenge on multi-lingual scene text detection and script identification-RRC-MLT[END_REF]. The fundamental and earliest problem investigated in the literature is to make text detection methods robust against variabilities and deformations of text entities in images, which covers different aspects, such as texture and illumination changes, the different scales of characters, the background/ foreground transitions, as shown in Fig. 1. However, another core problem is to adapt the methods to be time-efficient and real-time, which involves an almost complete reformulation of the methods [START_REF] Neumann | Real-time lexicon-free scene text localization and recognition[END_REF]. The design of real-time methods and systems is a well-known topic in the literature [START_REF] Buttazzo | Hard real-time computing systems: predictable scheduling algorithms and applications[END_REF]. There are two points, that distinguish the realtime systems from another kind of systems, that are timeliness and predictability.

Predictability is related to the design of methods with sharp upper and lower bounds on the execution times. The execution times of methods are guaranteed to prevent from the trashing cases and missed deadlines within the system. To be time-efficient, most of the image processing algorithms apply a pruning strategy that is not suitable with the predictability [START_REF] Rey-Otero | An analysis of scale-space sampling in SIFT[END_REF]. Hence, predictability requires to create specific methods with a trade-off between the optimization and the variation of the execution times.

The timeliness property looks for the respect of a deadline which describes the maximum time among the execution times. The results of the system have to be accurate not only in their values but also in the time domain. For the camera-based applications, the deadline depends on the kind of applications and expected frame rate per second (FPS), the image resolution and coding, the hardware architecture and the complexity of the given algorithm. 1 3 To be time-efficient, a two-stage strategy is applied in the literature: localization followed by text verification [START_REF] Ye | Text detection and recognition in imagery: a survey[END_REF][START_REF] Neumann | Real-time lexicon-free scene text localization and recognition[END_REF]. Localization determines the positions of the candidate text elements in the image at a low complexity level. The main goal is to process with strong recall to not miss text elements. Then, text verification specifies which candidate is text or not. It filters out the false positives using verification procedures and/or machine learning methods.

A core component of the two-stage strategy is the local operator. The local operator extracts candidate keypoints at the locations of text elements in an image. Different timeefficient operators have been proposed in the literature for scene text detection, such as the FASText [7], the Canny Text [START_REF] Cho | Canny text detector: Fast and robust scene text localization algorithm[END_REF], the Stroke Width Transform (SWT) [START_REF] Epshtein | Detecting text in natural scenes with stroke width transform[END_REF], and the BSV [START_REF] Girones | Real-time text localization in natural scene images using a linear spatial filter[END_REF]. However, most of time-efficient methods are dominated by the Maximally Stable Extremal Regions (MSER) operator [START_REF] Gomez | MSER-based real-time text detection and tracking[END_REF][START_REF] Turki | Text detection based on MSER and CNN features[END_REF]. All these operators can fit with the time-efficient and real-time requirements. However, they are sensitive to noise and/or scale-dependent. They are little accurate as an average.

The recent trend in the literature is to process with endto-end deep architectures and systems [START_REF] Long | Scene text detection and recognition: the deep learning era[END_REF]. However, these systems are time-consuming and minimally compatible with a low-level energy consumption requirement on the lowcost hardware architectures [START_REF] Zhao | Optimizing CNNbased object detection algorithms on embedded FPGA platforms[END_REF]. In addition, GPU-based processing is not compatible with real-time constraints due to the highly parallel computation and memory transfer [START_REF] Maceina | Assessment of general purpose GPU systems in real-time control[END_REF]. The GPU/CNN-based systems are more dedicated to offline recognition processing on a workstation and/or a server [START_REF] Kim | Performance analysis of CNN frameworks for GPUs[END_REF][START_REF] Wang | Geometry-aware scene text detection with instance transformation network[END_REF].

Thus, finding an accurate method and system, fitting with the time-efficient and real-time constraints, is still an open problem in the literature. We address this issue in this paper. To design an accurate, time-efficient and real-time system we have considered a two-stage strategy while designing a new real-time operator. Recently, the Laplacian of Gaussian (LoG) operator with a time-efficient and predictable implementation has received attention [START_REF] Fragoso | Cascade of box (CABOX) filters for optimal scale space approximation[END_REF]. We call this operator RT-LoG for short. Adaptation of this operator to scene text detection, to make it scale-invariant, has been investigated in [START_REF] Liu | Real-time scene text detection based on stroke model[END_REF][START_REF] Nguyen | Performance evaluation of real-time and scale-invariant LoG operators for text detection[END_REF]. In this paper, a novel RT-LoG operator is proposed. Our contributions are follows.

• A state-of-the-art RT-LoG operator for scene text detection is discussed. Fast spatial filtering is obtained with a difference of Gaussian (DoG) function approximation and box filtering for Gaussian convolution. Following the way, an estimator cascade methodology for optimization is deployed. No pruning is applied and the processing is achieved with sharp upper and lower bounds on the execution times for predictability. Adaptation to text detection is given by a scale-space representation with the stroke model. • A novel RT-LoG operator is proposed. This operator applies a two-step process for box selection within the spatial and spatial/scale-space domains. The overall approach results in a main optimization of the RT-LoG operator for scene text detection. • A performance evaluation is performed on the ICDAR 2017 RRC -MLT dataset in terms of robustness and time processing. The results are compared with the state-ofthe-art time-efficient and real-time operators for scene text detection. The proposed operator appears to have the performance with the best trade-off between accuracy and speed.

• Additional experiments are performed to evaluate the frame per second (FPS) rates supported by the operator using a multithread/multicore support. These experiments are performed on a regular CPU architecture with standard resolution videos. The proposed RT-LoG operator is able to process at nearly 30 FPS up to the Quad-HD resolution on a regular CPU architecture with a low-level latency. • Our operator is embedded into a full pipeline for scene text detection. Compared to other operators in the literature, the proposed RT-LoG operator provides a meaningful scale-space and contrast information that can drive the full pipeline for detection. The system performs as one of the strongest detection accuracies of the literature with the support of the operator. It requires in addition less than two orders of magnitude for the processing resources compared to the competitors of the literature.

The remainder of this paper is organized as follows. In Sect. 2, the state-of-the-art is presented. Section 3 details our method. The performance evaluation is discussed in Sect. 4. Finally, conclusions are presented and some perspectives are proposed in Sect. 5. For convenience, Table 1 gives the meaning of the main symbols used in this paper.

State-of-the-art

In this section, we briefly cover the family of the LoG operator. Section 2.1 introduces the mathematical formulation of the operator and presents method for adaptation with text 

Introduction

The LoG operator is defined as the Laplacian of Gaussian function and is derived from the Gaussian function. The Gaussian function is given in Eq. ( 1) in a multivariate form with a vectorial notation.

In the two-dimensional case, p is a point, and is the mean. Σ is the diagonal covariance matrix with Σ -1 the inverse and |Σ| is the determinant, where the x and y parameters inside Σ are the standard deviations for dimensions x and y, respectively. = 2 is a weighting parameter, considering

x = y = , = 0 and a scalar notation, the Gaussian func- tion Eq. (1) becomes Eq. ( 2), where x and y are the spatial coordinates.

(1)

g(p� , Σ) = 1 (2 ) 2 √ �Σ� e -1 2 (p-) T Σ -1 (p-) (2) g(x, y| ) = 1 2 2 e -x 2 +y 2 2 2
The LoG operator is a compound operator resulting from the Laplacian ∇ 2 of g(x, y| ) , as noted Eq. ( 3), where g xx (x, y| ) and g yy (x, y| ) are the second order deriva- tive of Gaussian functions based on the dimensions x, y.

The LoG-filtered image h(x, y) Eq. ( 4) is obtained from the global convolution ⊗ between the initial image f(x, y) and the LoG operator ∇ 2 g(x, y| ).

As shown in Fig. 2, LoG filtering must be embedded in a full pipeline to design an end-to-end operator. The response of the LoG filtering Eq. ( 3) is highly dependent on the parameter. To deal with this problem, the standard approach is to handle the operator in the scale-space domain with a filter bank [ 0 , … , m ] with 0 ⋯ m as the scale parameters. The maximum response is then selected from the LoG-filtering images at the different scales (step C). After that, the final keypoints are obtained with a non-maximum suppression (NMS) and a thresholding step (steps D, E). The final (3) keypoints are expressed as the centroid coordinates and a radius with a normal value r = √ 2 for a circular blob. The operator shown Fig. 2 can be made real-time with optimization in the spatial and scale-space domains (steps A, B of Fig. 2). This process requires specific approaches for the fast spatial filtering and an efficient scale-space representation. We detail these issues in the following sections.

∇ 2 g(x, y| ) = g xx (x, y| ) + g yy (x, y| ) = 1 2 4 x 2 + y 2 2 -2 e -x 2 +y 2 2 2 (4) h(x, y) = ∇ 2 g(x, y|𝜎) ⊗ f (x, y)

Fast LoG filtering

The strategy for fast LoG filtering is to apply an estimator cascade methodology, such as LoG ≈ DoG ≈ DoG where DoG and DoG are two operators to approximate the LoG operator. LoG filtering is not separable; it is therefore timeconsuming at complexity O(N 2 ) with N and 2 , which are the image and mask sizes, respectively. The first level of approximation is acquired via reformulation of the LoG function into the DoG function.

The DoG function is inspired from the heat Eq. [START_REF] Lindeberg | Scale-space theory: a basic tool for analysing structures at different scales[END_REF]. In Eq. ( 5), normalization of the LoG function Eq. (3) with a scale parameter gives the derivative of the Gaussian function in the scale-space domain. The left term of Eq. ( 5) can be reformulated as a local derivative of Gaussian function g(x,y| ) with k as a parameter and a step offset (k -1) . The approximation of the derivative in this equation improves as (k -1) goes to 0 when k comes to 1.

With the reformulation of Eq. ( 5), the LoG function can be approximated by means of the DoG function, as noted Eq. ( 6), with a normalization factor (k -1) 2 . The parameters within the LoG and DoG functions in Eq. ( 6) are equal when k goes to 1. Otherwise, if k > 1 , a slightly gap appears between the parameters. We obtain ≈ ̃ , where ̃ is the parameter used in the DoG function.

(5)

∇ 2 g(x, y| ) = g(x, y| ) ≈ g(x, y|k ) -g(x, y| ) (k -1) (6) g(x, y|k ) -g(x, y| ) ≈ (k -1) 2 ∇ 2 g(x, y| ) = 1 2 1 (k ) 2 e -x 2 +y 2 2(k ) 2 - 1 2 e -x 2 +y 2 2 2
The relation between , ̃ is given in Eq. ( 7). For the sake of notation, in the remainder of the paper, we define the scale parameters of the DoG operator as k̃ and ̃ .

The DoG function is computed with two Gaussian filters.

With convolution, Gaussian filtering can be implemented in a separable manner at a complexity O(N ) with N and 2 as the image and mask sizes, respectively. When is large, it is still a time-consuming task. Several methods have been proposed in the literature to accelerate Gaussian filtering and make it independent of the filter size at a complexity O(N). These methods attempt to improve computational efficiency in the expense of accuracy. These methods referred to as fast Gaussian filtering methods and support the design of a difference of Gaussian estimator DoG.

A survey with a performance evaluation can be found in [START_REF] Charalampidis | Recursive implementation of the Gaussian filter using truncated cosine functions[END_REF][START_REF] Elboher | Efficient and accurate Gaussian image filtering using running sums[END_REF]. Two main categories are investigated including the box and recursive-based filters. Selection of a suitable method depends on the application use-case, which is supposed to be solved in terms of a good trade-off between speed and accuracy. Table 2 provides a global comparison of the methods.

In this paper, we prefer to employ the box filtering method Eq. [START_REF] Girones | Real-time text localization in natural scene images using a linear spatial filter[END_REF], which is considered one of the most accurate methods for stroke detection [START_REF] Nguyen | Performance evaluation of real-time and scale-invariant LoG operators for text detection[END_REF] and is competitive with recursive filters [START_REF] Charalampidis | Recursive implementation of the Gaussian filter using truncated cosine functions[END_REF][START_REF] Elboher | Efficient and accurate Gaussian image filtering using running sums[END_REF]. The box filtering method sums up the averaging filtering to approximate a Gaussian filter ĝ(x, y| ) , as noted in Eq. ( 8) with a desired standard deviation, where Π i (x, y) is a box filter function with a predefined size and a value 1 if (x, y) are located inside the box or 0 otherwise. The i parameters weight the box filters Π i (x, y) . n + 1 is the number of box filters. From Eq. ( 8), it is possible to approximate the DoG operator by the DoG operator in Eq. ( 9) with two sets of box filter function. As the k parameter in Eq. ( 5) is supposed to be low,1 a similar number of filters can be applied to estimate the two Gaussian kernels, where i , j are the weighting parameters, n + 1 is the num- ber of boxes. k̃ , ̃ are the scale parameters.

(7) 2 = 2 k 2 k 2 -1 ln k ̃ 2 (8) ĝ(x, y| ) = n ∑ i=0 i Π i (x, y)
The DoG-filtered image is approximately achieved by global convolution Eq. ( 10) between the input image f(x, y) and the DoG operator, where ⊗ is the global convolution product.

Obviously, the Π i (x, y) ⊗ f (x, y) and Π j (x, y) ⊗ f (x, y) products of Eq. ( 10) can be obtained with the integral image at a complexity O(N) with N the image size. As a result, approximation of the DoG operator can be achieved with 2(n + 1) accesses to the integral image where n + 1 is the number of box filters.

A core problem with Gaussian kernel approximation is to fix the n, Π i (x, y) , and i parameters of Eq. ( 8). The approach used in the literature [START_REF] Fragoso | Cascade of box (CABOX) filters for optimal scale space approximation[END_REF] is the minimization of the Mean Square Error (MSE) of Eq. ( 11), which can be achieved by any appropriate numerical method for regression. In [START_REF] Fragoso | Cascade of box (CABOX) filters for optimal scale space approximation[END_REF], the LASSO algorithm is used to solve this problem, where 2 is a size of Gaussian operator.

Scale-space representation

As discussed in Sect. 2.1 and Fig. 2, detection using the LoG operator relies on the scale parameter . The operator must be controlled with a filter bank at different scales [ 0 , … , m ] for optimum detection. The design of a time-efficient and well-adapted filter bank is referred to as a scale-space representation problem in the literature. The traditional and baseline approach is to control the scale-space with an exponential model as the SIFT descriptor. For stroke detection, ( 9)

DoG = ĝ(x, y|k̃ ) -ĝ(x, y|̃ ) = n ∑ i=0 i Π i (x, y) - n ∑ j=0 j Π j (x, y) (10) (� g(x, y|k� 𝜎 ) -� g(x, y|� 𝜎 )) ⊗ f (x, y) = � g(x, y|k� 𝜎 ) ⊗ f (x, y) -� g(x, y|� 𝜎 ) ⊗ f (x, y) = n ∑ i=0 𝜆 i Π i (x, y) ⊗ f (x, y) - n ∑ j=0 𝜆 j Π j (x, y) ⊗ f (x, y) (11) MSE = ∑ (x,y)∈[0, ] (g(x, y| ) -ĝ(x, y| )) 2
the literature reports a linear model in which parameter is derived from the stroke with parameter w. This method is introduced and defined as the stroke model [START_REF] Liu | Real-time scene text detection based on stroke model[END_REF], and optimization of the model for stroke detection is investigated at the experimental level in [START_REF] Nguyen | Performance evaluation of real-time and scale-invariant LoG operators for text detection[END_REF].

Figure 3 illustrates the model. The general idea is to assess for the convolution response between a LoG-based operator and a stroke signal modeled as a unit step function. We can then express the null cases with the derivatives to obtain the minimum/maximum of the convolution product. Assuming that these minimums/maximums are located at the center of the stroke w/2, we can present the standard deviation as a function = (w).

Assuming the image signal is a function 2 a ⊗ Π(x) , where Π(x) is the step function Eq. ( 12) and a as the signal ampli- tude, the convolution product with the LoG operator ∇ 2 g(x) is given in Eq. ( 13).

As Π(x 0x) is located at x 0 , the convolution product

Π(x 0 -x) ⊗ ∇ 2 g(x) over x equals the summation ∇ 2 g(x) centered at x 0 .
With normalization and approximation of ∇ 2 g(x) , as given in Eq. ( 6), Eq. ( 13) is reformulated into Eq. ( 14), where a is the signal amplitude approximates the step offset, and ̃ is the scale parameter of the DoG function. From the derivative of Eq. ( 14), the local extremal optimum is obtained as Eq. ( 15) with the k parameter at locations x 1,2 .

, h(x 0 ) is the convolu- tion product of a(Π ⊗ ∇ 2 g)(x 0 ) , k is the parameter that (12) Π(x 0 -x) = 0 x < x 0 1 otherwise. ( 13 
) h(x 0 ) = a(Π ⊗ ∇ 2 g)(x 0 ) = a ∫ +∞ -∞ Π(x 0 -x)∇ 2 g(x)dx (14) (k -1) 2 h(x 0 ) ≈ ∫ +∞ -∞ a(g(x 0 -x|k̃ ) -g(x 0 -x|̃ ))dx
As given in Eq. ( 15) and illustrated in Fig. 3a, it is noted that the x 1,2 locations depend on the parameter. While bringing x 2 = x 0 + w∕2 to the center of the stroke with w the stroke width parameter and using Eq. ( 15), we can obtain the optimum scale s Eq. ( 16), where (w) is a linear function that has a slope controlled by Φ(k) derived from the step offset k.

As illustrated in Fig. 3b, two responses, h e and h s appear within the model at the x 1,2 locations with s .

The response h e characterizes the edge of the stroke and is obtained with Eq. ( 17) while bringing s in Eq. ( 16) back to Eq. ( 14) and approximating the Gaussian integral at any location in Eq. ( 14) with the erf(x) Gaussian error function

erf (x) = 2 √ ∫ x 0 e -t 2 dt.
For simplification of notation, Eq. ( 17) is given by considering x 0 = 0 . In this equation, a is the signal amplitude and k is the offset parameter.

A peak response h s appears at the middle of the stroke w/2 with w the stroke width. This response decreases while shifting the scaling parameter around the s optimum Fig. 3b. It is worth noting that no mathematical formulation for h s is proposed in [START_REF] Liu | Real-time scene text detection based on stroke model[END_REF]. The results from the proposed

(15) x 1,2 = ±k̃ √ 2 ln k k 2 -1 (16) s = (w) = 1 2k √ k 2 -1 2 ln k w = Φ(k)w (17) h e = a 2 erf k √ ln k k 2 -1 -erf √ ln k k 2 -1
proof interpolate the stroke response from a step function. Simulation reveals a value h s that is independent of the scale parameter and proportional to the signal amplitude a, as illustrated in Fig. 4.

The optimization within the scale-space considering the stroke model is attained while applying quantifying to s = (w) in Eq. ( 16) with w ∈ [w min , w max ] as a discrete value. The size of the filter bank is then correlated to the stroke width gap of the considered detection problem, thereby yielding m = w maxw min . With a DoG formulation, this requires 2(m + 1) Gaussian kernels for detection.

Proposed method

As discussed in Sect. 2, the RT-LoG operator for scene text detection relies on box filtering and the stroke model. In this paper, we propose a new method that takes advantages of the Gaussian kernel distribution and decomposition with box filtering to achieve the strongest optimization. Section 3.1 provides the problem statement. Then, Sects. 3.2 and 3.3 detail the two main optimization stages offered by our method.

Problem statement

Box filtering results in application of Eq. ( 10) for a filter bank [ 0 , … , m ], with 0 , … , m the scale parameters, obtained with the stroke model Eq. ( 16). This process can be formalized as a global product Eq. ( 18) achieving an element-wise multiplication • between two matrices f ⊗ B, C of scalar values. Then, row summing is attained through multiplication with a column vector of 1.

In Eq. ( 18), A, B and C have the same form as, B is a matrix of box filter functions Π ij in which f ⊗ B results in a matrix of scalar values corresponding to the spatial products f ⊗ Π ij . C represents the weight param- eters ij . Within the matrices B, C, the columns refer to the scale-space and filter bank, respectively, whereas the rows are related to the spatial convolution and the boxes used within the DoG operator Eq. (10). The matrices B, C have a size ( m + 1, n + 1 ) of i ∈ [0, m] and j ∈ [0, n] , where m + 1 and n + 1 are the size of the filter bank, and number of box filters, respectively.

The global convolution of Eq. (10) using the above matrix notation can be reformulated as Eq. [START_REF] Nguyen | Performance evaluation of real-time and scale-invariant LoG operators for text detection[END_REF]. For simplification of notation, we note l = n+1 2 is the middle index for the rows.

( In addition, the subtraction operation in Eq. ( 10) is embedded in range the [l, n] of the ij weights in C.

) A = ((f ⊗ B)•C) A = ⎡ ⎢ ⎢ ⎣ L 0 L i L m ⎤ ⎥ ⎥ ⎦ B = ⎡ ⎢ ⎢ ⎣ Π 00 … Π 0n ⋮ Π ij ⋮ Π m0 … Π mn ⎤ ⎥ ⎥ ⎦ C = ⎡ ⎢ ⎢ ⎣ 00 … 0n ⋮ ij ⋮ m0 … mn ⎤ ⎥ ⎥ ⎦ . 18 
The left j ∈ [0, l[ and right j ∈ [l, n] parts of matrices B, C are related to the g k̃ and g ̃ distributions within the DoG operator Eq. ( 9), respectively. The global product Eq. ( 18) results in a vector A of size ( m + 1 ) containing the global convolutions L i at the different scale i ∈ [0, … , m]. The global product of Eq. ( 18) requires P = (m + 1) × (n + 1) operations for element-wise multipli- cation • plus P operations for row summing. Considering a 128-bit CPU architecture with a 32 bits of Integer coding, 4 elements are processed at a time with vectorization. Vectorization can be applied to the • product and the row summing with accumulation, which can be attained in P/2 operations.

The global product of Eq. ( 18) also requires establishment of matrices f ⊗ B, C . Matrix C is obtained offline with regression and MSE minimization of Eq. [START_REF] Gomez | MSER-based real-time text detection and tracking[END_REF]. Matrix f ⊗ B must be computed online from the integral image to obtain the different averaging products f ⊗ Π ij . These products are acquired while summing the integral image values. The integral image can be obtained by O(2N) operations with recurrence [START_REF] Viola | Robust real-time face detection[END_REF] where N is the image size. Then, the averaging products f ⊗ Π ij are collected with Eq. ( 20) as illustrated in Fig. 5. The summing operations can be supported by vectorization, resulting in ≈ P operations. However, as shown in Fig. 5, the integral image values cannot be accessed in a continuous fashion in memory. This process requires 4P accesses to constitute the vectors s 0 , … , s 3 used in Eq. ( 20), ( 19)

L 𝜎 i = l-1 ∑ j=0 f ⊗ Π ij 𝜆 ij + n ∑ j=l f ⊗ Π ij 𝜆 ij (20) f ⊗ ⎡ ⎢ ⎢ ⎣ Π 0j ⋮ Π mj ⎤ ⎥ ⎥ ⎦ = ⎛ ⎜ ⎜ ⎝ ⎡ ⎢ ⎢ ⎣ s 0 0 ⋮ s 0 m ⎤ ⎥ ⎥ ⎦ - ⎡ ⎢ ⎢ ⎣ s 3 0 ⋮ s 3 m ⎤ ⎥ ⎥ ⎦ ⎞ ⎟ ⎟ ⎠ + ⎛ ⎜ ⎜ ⎝ ⎡ ⎢ ⎢ ⎣ s 2 0 ⋮ s 2 m ⎤ ⎥ ⎥ ⎦ - ⎡ ⎢ ⎢ ⎣ s 1 0 ⋮ s 1 m ⎤ ⎥ ⎥ ⎦ ⎞ ⎟ ⎟ ⎠
where s 0 , … , s 3 are the vertexes of integral boxes, and m + 1 is the number of scales.

Figure 6 presents the overall pipeline, which is composed of fours steps, (I) to (IV). The first (I) step is the box selection step, which is performed offline to constitute the B, C matrices. The next steps are done online with (II, III) access to the integral image to obtain the vectors and averaging products Eq. ( 20) and (IV) the global product Eq. ( 18). Table 3 recapitulates the total amount of online operations (steps II, III, and IV). It can be seen that the complexity of the pipeline is mainly dominated by steps (II) and (III) to attain the averaging products f ⊗ Π ij . These products depend on the number of used boxes Π ij and the size P of matrices B and C, which are obtained by the box selection method (I).

In this paper, we propose a new approach for box selection as illustrated in Fig. 7. Our approach applies a two-step process for optimization within the spatial domain (I1) and spatial/scale-space domains (I2). The first step (I1) takes 

Optimization within the spatial domain

As we presented in Sect. 2.2 and Eq. ( 8), we can approximate a Gaussian filter using a set of box functions. These box functions are then convolved and summed to get a DoG product Eq. ( 9). The standard approach discussed in [START_REF] Fragoso | Cascade of box (CABOX) filters for optimal scale space approximation[END_REF] is to apply two separate approximation processes to the Gaussian kernels k̃ and ̃ where ̃ is the scale parameter and k is the parameter to approximate the step offset. However, given that the k parameter is supposed to be low for the local derivative Eq. ( 5), the two Gaussian distributions are close, as shown in Fig. 8. Thus, a common set of boxes could be used to approximate the two kernels. We develop these aspects here. We can assume in Eq. ( 19) that we have Π ij = Π ij+l with l = n+1 2 with n + 1 the number of box filter function. Then, we can reformulate Eq. ( 19) into Eq. ( 21), where ij = ( ij + ij+l ) are new coefficients obtained with a numer- ical method for regression and minimization of the MSE Eq. [START_REF] Gomez | MSER-based real-time text detection and tracking[END_REF].

To mutualize boxes, such as Π ij = Π ij+l ∀j ∈ [0, l[ , a new pipeline for box selection must be fixed. We propose a new strategy in Fig. 9. This strategy applies local mutualization with a close-loop methodology, which relies on the general observation that matrix B is composed of pairs of boxes. A pair of boxes is a group of the closest boxes in B, such as

‖Π ij ‖ ≈ ‖Π ij+l ‖ ∀j ∈ [0, l[ , with ‖Π ij ‖ representing the radius of the box function Π ij . The pairs of boxes still fit within the constraint (‖(Π ij ‖ ≈ ‖Π ij+l ‖) < ‖(Π ij+1 ‖ ≈ ‖Π ij+1+l ‖).
The local mutualization combines the pair of boxes while minimizing the MSE for the DoG function. Figure 10 shows the process by which three pairs of boxes (green, cyan, and brown) are merged. We detail that process here.

• Initialization: apply the method for regression to the ̃ and k̃ Gaussian kernel distributions to obtain the B, C matrices. 

L 𝜎 i = l-1 ∑ j=0 f ⊗ Π ij 𝜆 ij + n ∑ j=l f ⊗ Π ij 𝜆 ij = l-1 ∑ j=0 f ⊗ Π ij (𝜆 ij + 𝜆 ij+l ) = l-1 ∑ j=0 f ⊗ Π ij 𝛿 ij
Fig. 8 The box functions to approximate two Gaussian kernels k̃ and ̃ with ̃ = 3.2 and k = √ 2

Fig. 9 Box selection with mutualization for the DoG Fig. 10 The a standard approach b proposed approach 1 3

-Sub-step 2: apply the method for regression to refine the ij coefficients for the ̃ and k̃ Gaussian kernel distributions. -Sub-step 3: compute the MSE between the DoG and DoG functions, as noted in Eq. 11.

• Step 2: the lowest MSE from sub-step 3 is used to fix the Π uv solution. Then, repeat step 1 for the next pair of boxes.

This procedure is repeated to approximate all the kernels of the bank filter [ 0 , … ., m ] with 0 , … , m the scale param- eters, as shown in Fig. 9. The output coefficients ij of the selection are processed via matrix addition to get C 0 while applying Eq. ( 21). Matrices B 0 , C 0 have size P/2 compared to the brute-force strategy developed in Sect. 3.1, which requires P elements. Matrix B 0 is used in the second step of selection to optimize in the spatial/scale-space domains, as shown in Fig. 7. We detail these aspects in next Sect. 3.3.

Optimization within the spatial/scale-space domains

In Sect. 3.2, optimization in the spatial domain was discussed. Optimization can also be extended in the scalespace domain. Therefore, we indicate these aspects here. The scale-space domain and filter bank used in the global product Eq. ( 18) are based on the stroke model Eq. ( 16).

As the stroke model is a linear function, the Gaussian kernels in the scale-space domain have a compact distribution, as shown in Fig. 11a. Approximation of the Gaussian kernels with a box filter Eq. ( 8) can result in a large number of duplicate boxes at the different scales. Redundant and close averaging products will appear when computing the f ⊗ B components in the global product in Eq. ( 18).

To address this problem, we propose a mixed spatial and scale-space method for box selection. This method is shown in Fig. 11b,c. This method takes advantage of the linear distribution of Gaussian kernels in the scale-space domain to drive the box selection. The linear distribution results in a large number of overlapping boxes among the Gaussian kernels. A compact set of boxes could then be generated to obtain the global product of Eq. ( 18).

Figure 12 details our overall approach. Our spatial/scalespace model is interpolated with the set of boxes B 0 obtained with mutualization, as shown in Fig. 9. A normalization of radius is performed on the B 0 matrix. The selection output is reprocessed with regression to refine the coefficients ij to obtain the C 1 matrix. These different aspects are clarified in next paragraphs.

Radius normalization: We define R as a matrix of scalar values provided by the radius ‖Π ij ‖ of the Π ij functions in the B 0 matrix. The radius can be expressed as Eq. ( 22) with the application of normalization parameters a ij to the scale parameters i , Φ(k) derived from the step offset k from Eq. ( 16).

As the Gaussian distributions have a regular range of [ -, ], the scale parameters i can be weighted with the value to bound the normalization parameters a ij ∈ [0, 1] . A final reformulation can be obtained with the stroke model Eq. ( 16). In the normalized form of the stroke model, the R matrix is given in Eq. ( 23), where r() is a replicate function of a column vector, n + 1 is the number of boxes at each scales, m + 1 is the number of scale parameters. Spatial/scale-space model: We fix R as the spatial/scale- space model for a radius that will approximate the R matrix. To fit the box selection approach shown in Fig. 11b,c, constraints are applied to the R matrix Eq. [START_REF] Strang | Introduction to Linear Algebra[END_REF]. We first nor- malize the spatial distribution of the box functions in the kernels over all the scales with a single set of normalization ( 22) parameters (â 0 , … , ân ) . The âi coefficients in the R matrix are the approximation of the a ij coefficients in the R matrix. Therefore, we constrain the spatial/scale-space distributions within the stroke model while establishing equality between the diagonal elements in the matrix. We achieve the relation âj+Δ w i = âj w i+Δ with Δ as the offset between the elements of the R matrix. In this relation, we have w i+Δ = w i + Δ with quantization of the stroke model described in Sect. This function Eq. ( 25) is illustrated in Fig. 13 and determines the spatial/scale-space distributions of the boxes. Here, f (x| , ) returns an estimation âi for the normalized parameters a ij with x as the index/offset of the box function in R . This function is controlled with two parameters , .

‖Π ij ‖ = a ij i = a ij Φ(k)w i (23) R = Φ(k) ⎡ ⎢ ⎢ ⎣ a 00 … a 0n ⋮ a ij ⋮ a m0 … a mn ⎤ ⎥ ⎥ ⎦ •r ⎛ ⎜ ⎜ ⎝ ⎡ ⎢ ⎢ ⎣ w 0 ⋮ w m ⎤ ⎥ ⎥ ⎦ , n + 1 ⎞ ⎟ ⎟ ⎠
Interpolation and selection: Our model of Eq. ( 24) requires the , parameters to be fixed. These parameters control the distribution over the spatial and scale-space domains for optimizing the box selection. However, box selection must also guarantee the accuracy of the approximation of the Gaussian kernels. To address this problem, we

R = S)(k)             â0 w 0 â1 w 0 â2 w 0 ... ân w 0 â0 w 1 â1 w 1 â2 w 1 ... . . . â0 w 2 â1 w 2 â2 w 2 ... . . . ... ... ... ... ân w m             (24) 
(25) f (x| , ) = + x interpolate the , parameters from the B 0 matrix. Indeed, this matrix provides a box selection for the accurate approximation of the DoG products, as detailed in Sect. 3.2. The B 0 matrix is first processed with normalization Eq. ( 23). Then, a quantization process is applied, such as Lloyd's algorithm, to get the prominent coefficients a ij in the R matrix. The a ij coefficients are normalized over the scales for the kernel distributions, and we obtain a vector of (n + 1) coefficients (a 0 , … , a n ) with the corresponding offsets (0, … , n) . With the reformulation of Eq. ( 25) and changing the variable -1 = 1∕ , we obtain a system of a linear equation Eq. ( 26). This system can be solved using any linear solver [START_REF] Strang | Introduction to Linear Algebra[END_REF].

The application of the function Eq. ( 26) to a discrete interval (0, 1, 2,...) results in a set of estimation of normalized coefficients (â 0 , â1 , â2 , … ) . These coefficients control the spatial/scale-space selection of the boxes where the radius is obtained with Eq. ( 27). Due to the equality of diagonal elements in R , the number of box functions to gener- ate with the approach is (m + n + 1) . This corresponds to

P = 1 2 (m + n + 1) elements that is ≪ (m + 1)(n + 1),
where ‖Π i ‖ is the box radius, Φ(k) is derived from the step offset k from Eq. ( 16), âi is the estimation of the normalized coefficients a i .

Regression and global product:

As shown in Fig. 12, the set of boxes (Π 0 , … , Π m+n ) is reprocessed with regres- sion while shifting to any subset Π i , Π i+n to refine the ij coefficients and approximate the k̃ and ̃ distributions. The ij coefficients are processed with matrix addition to obtain C 1 while applying Eq. ( 21). The B 1 and C 1 matrices are pushed in the pipeline shown in Fig. 6 requiring ( m + n + 1 ) spatial products f ⊗ Π i . The global product of step (IV) is processed with shifting while applying B 1 to get A with Eq. ( 18).

Performance evaluation

In this section, we present the performance evaluation and results of our method. Section 4.1 characterizes the DoG operators with optimization in the spatial and scale-space domains. Section 4.2 characterizes the operators for scene text detection, whereas, Sect. 4.3 addresses the processing time aspects. Finally, Sect. 4.4 highlights how the operator can support the full pipeline for scene text detection and gives a comparison with the top systems of the literature. ( 26) [START_REF] Zhao | Optimizing CNNbased object detection algorithms on embedded FPGA platforms[END_REF] The function f (x| , ) for spatial/scale-space selection 1 3

-1 ⎡ ⎢ ⎢ ⎣ a 0 ⋮ a n ⎤ ⎥ ⎥ ⎦ - ⎡ ⎢ ⎢ ⎣ 0 ⋮ n ⎤ ⎥ ⎥ ⎦ = ⎡ ⎢ ⎢ ⎣ 1 ⋮ 1 ⎤ ⎥ ⎥ ⎦ (27) ‖Π i ‖ = 𝜋Φ(k)â i w 0 Fig.

Characterization of the DoG operators with optimization

We characterize how the DoG operators discussed in this paper approximate the DoG operator. The DoG operators are given with and without optimization in the spatial and scale-space domains, which results in two operators, the brute-force RT-LoG operator detailed in Sect. 3.1 and the proposed operator with spatial/scale-space optimization detailed in Sects. 3.2, 3.3 and Fig. 7. Figure 14 shows our results. Comparisons with the DoG operator are reported from the MSE Eq. [START_REF] Gomez | MSER-based real-time text detection and tracking[END_REF]. To consider the scale-space aspect, the MSE was computed at every scale over the range [ 0 , … , m ] and then averaged to obtain the MSE . In the experiments, we bounded m = 40 with ∈ [2.1, 19.1] . We compare the MSE obtained at every P value. For the sake of graphical representation, the P values shown in Fig. 14 are normalized with the scaling parameter (m + 1) and are displayed in the logarithm domain. The overall protocol characterizes the robustness of the methods against P values. All the experiments are driven with the LASSO algorithm for the box selection with regression, as done in [START_REF] Fragoso | Cascade of box (CABOX) filters for optimal scale space approximation[END_REF].

As illustrated in Fig. 14, our approach results in one to two orders of magnitude in terms of P differences between the operators. The largest differences are obtained with a low MSE and then for a high accuracy of the operators, which is achieved when a deeper spatial filtering is applied with a large value for n ∈ [5, ∞[.

In addition, Fig. 15 details the MSE obtained at every scale [ 0 , … , m ] by the two operators. For comparison, we fixed the P parameter within the two operators to achieve an equal MSE . As shown in Fig. 15, the proposed opera- tor results in a more stable response over all the scales due to the mutualization process applied in the operator. With mutualization, the DoG approximation becomes less sensitive to quantization at the low level scales. This gap is reduced when P is increased in the operators to get a lower MSE.

Characterization of operators for scene text detection

In this section, we the evaluation for scene text detection. Section 4.2.1 introduces the datasets. Section discusses the characterization metrics and Sect. 4.2.3 explains the protocol. The competitive operators are introduced in Sect. 4.2.4. Finally, the scene text localization results are discussed in Sect. 4.2.5.

Datasets

Several public datasets have been proposed for evaluating the performance of text detection methods. We selected the recent dataset of the international contest ICDAR2017 RRC-MLT [START_REF] Nayef | ICDAR2017 robust reading challenge on multi-lingual scene text detection and script identification-RRC-MLT[END_REF]. This dataset includes 7200 training images, 1800 validation images, and 9000 test images. The images are given at different resolutions (VGA, HD, Full-HD, Quad-HD, 4K). The groundtruth is given in term of bounding boxes. Bounding boxes are represented by four corner points for each text word. Figure 16 shows examples of images.

Compared to other datasets in the literature, this dataset has a particular focus on the multi-lingual text and offers a deeper challenge in terms of scalability.

For the special purpose for the evaluation of processing time, we used the Challenge 4 of ICDAR2015 dataset that is more common in the literature [START_REF] Karatzas | ICDAR 2015 competition on robust reading[END_REF]. This dataset contains 1000 training images and 500 test images at the HD resolution (1280 × 720).

Characterization metrics

For the characterization metrics, we followed the recommendations of the international contest [START_REF] Nayef | ICDAR2017 robust reading challenge on multi-lingual scene text detection and script identification-RRC-MLT[END_REF]. Characterization is achieved at two levels while applying the Intersection over Union (IoU) criterion and computing the F-measure. The output of the text detection system is provided with bounding boxes. Detection is obtained if a detected bounding box has more than 50% overlap (the IoU criterion given in Fig. 17a) with a bounding box in the groundtruth, which plays a rule as true positivities (TP). The unmatched boxes in the detection and groundtruth are false positives (FP) and negatives (FN), respectively. The detection cases serve to compute the regular metrics precision (P), recall (R) and F-measure (F), as noted in Eq. ( 28). ( 28)

P = TP TP + FP R = TP TP + FN F = 2 PR P + R
The recall R measures the ability to detect the text of operator while the precision P evaluates the ability not to invent text. Moreover, one of the popular metrics of the method assessment is the Area Under a Curve (AUC), as shown in Fig. 17b. This metric is independent on any particular threshold. We estimates the AUC scores under the precisionrecall curves.

It is worth noting that some degraded texts in the dataset are marked as "don't care" boxes and are ignored in the evaluation process.

Characterization protocol

The groundtruth and metrics discussed in Sects. 4.2.1 and 4.2.2 are not adapted for the characterization of operators. Indeed, the operators provide detection results at the keypoint level. To evaluate and compare operators for scene text detection, their outputs must be processed to obtain the text regions. For performance evaluation, a relevant method must be established. This method has to be common to all the operators and be used with the same conditions for training and testing. To do that, a standard approach in the literature is the character grouping which is achieved with different algorithms, such as clustering, adaptive thresholding or the minimum-area encasing rectangle [START_REF] Ye | Text detection and recognition in imagery: a survey[END_REF].

To meet the needs of our performance evaluation, we processed the outputs of the operators with a standard grouping method using fast K-means clustering [START_REF] Siddhesh | Faster K-Means Cluster Estimation[END_REF]. K-means clustering was applied to the operator and image features. These features include the localization (x, y) of keypoints and the color information of pixels f(x, y) as used in [START_REF] Medioni | Text segmentation in color images using tensor voting[END_REF].

Comparative operators

We compare the proposed RT-LoG operator against LoGbased operators introduced in Table 4. These operators include the SWT, BSV and brute-force RT-LoG operators. In addition, we apply SIFT operator used as a baseline LoGbased operator for scene text detection [START_REF] Mao | Scale based region growing for scene text detection[END_REF]. Several alternative time-efficient and real-time operators can be used for scene text detection [START_REF] Ye | Text detection and recognition in imagery: a survey[END_REF]. Recent works tend to use Connected-Component (CC) analysis, which is mainly dominated by the MSER (Maximally Stable Extremal Regions) operator [START_REF] Turki | Text detection based on MSER and CNN features[END_REF]. This operator, thus, represents a good competitor. Different improvements of the MSER operator have been proposed [START_REF] Zhu | Scene text detection via extremal region based double threshold convolutional network classification[END_REF][START_REF] Yin | Multi-orientation scene text detection with adaptive clustering[END_REF]. We selected a general implementation of the MSER operator [START_REF] Dai | Scene text detection based on enhanced multi-channels MSER and a fast text grouping process[END_REF] along with the FASText operator [7], which provides adaptation to scene text detection.

Performance evaluation for text localization

The results of the performance evaluation for text localization are given in Fig. 18a in terms of precision (P) and recall (R). The P/R scores are obtained while relaxing the thresholding on the operator responses and their parameters, as detailed in Table 4. These results highlight the close performance of the MSER, SIFT, brute-force RT-LoG and proposed RT-LoG operators for in balance P/R scores. At low precision, the brute-force RT-LoG operator attains the strongest recall performance among all the operators, which can be characterized by AUC scores.

Figure 18b provides the F-measure scores controlled with the normalized thresholds, which are first applied to the responses of and then the parameters. The peaks within the curve correspond to the maximum F-measure score attained by the different methods. The MSER, SIFT and RT-LoG operators present a close performance with a F ≈ 0.15 . The brute-force RT-LoG operator achieves the strongest score, with a slight gap compared with the proposed RT-LoG operator. In both cases, the brute-force and proposed RT-LoG operators are set as n + 1 = 5 (the number of box filters for spatial filtering), as shown Table 4. 

Processing time

This section investigates the processing time, which depends on the complexity of the algorithms. For the FASText, RT-LoG and MSER operators, the complexity is linear O(N) with N the image size. The complexity is O(N ) with a small mask size ( × ) for the SWT and BSV operators. The filter bank for the SIFT operator is set as suggested in [START_REF] Nguyen | Performance evaluation of real-time and scale-invariant LoG operators for text detection[END_REF] and detailed in Table 4.

The parallelism support has a strong impact on the final results, which includes the use of a vectorization/SIMD architecture and intrinsic instructions, the multithread/multicore or the GPU architectures. The different parallelism levels can offer an increase of one to two orders of magnitude, depending the quality of the implementation.

For an objective comparison, we aligned the operators at the same level of parallelism. The implementations are given with a single thread with the vectorization/SIMD architecture and intrinsic instructions. The goal is to exclusively evaluate the complexity side of the operators, while comparing the processing times. Table 5 presents the processing times for different image resolutions. The proposed RT-LoG operator performs better than the SIFT and MSER operators. The proposed operator is almost five times faster than the MSER operator and up to nine times compared to the SIFT operator. The proposed operator has a near equal performance compared to the those of the SWT and BSV operators, with a slight gap. The FASText operator is the fastest operator; it is one to threefold faster compared to the proposed RT-LoG operator. Among all the operators, our experiments report minimal computational overhead with K-means clustering compatibility with a real-time strategy.

For a global comparison, Fig. 20a provides the average processing time of the operators, obtained from the ICDAR 2017 RRC-MLT dataset against the maximum F-measure scores derived as shown in Fig. 18b. As shown in Fig. 20a, the FASText, brute-force and proposed operators fix the top performance curve among all the operators. The proposed RT-LoG operator appears as the top operator with a balanced performance between accuracy and time processing.

In addition, in Table 6, we provide the frame rates of the RT-LoG operator using a multithread/multicore support. Experiments are performed on a regular hardware architecture using the Intel Core i7-4770HQ CPU, 2.2 GHz with approximately a 32 GFLOPS SP3 performance. Our computer is set with a time-sharing operating system Mac OS.

The frames are processed with gridding and each thread takes in charge of a particular area. This is a standard strategy for camera-based processing. The threads are synchronized/waked-up at any new frame. The number of threads has been set to 16 to reach the optimum performance while reducing the context switch in the system. With such a strategy, there is no guaranty to respect a deadline. The operating system is not provided specific kernel mechanisms for time management and for handling tasks with explicit time constraints. However, our operator and approach are supposed to be deployed on mobile systems where the time-sharing is the common model. Thus, our approach enters in a soft real-time methodology.

The FPS presented in Table 6 for standard video resolutions. These FPS are derived from the distribution of the response times obtained with the different threads. Experiments have been obtained for long video sequences. As shown in Table 6, the average FPS = 1∕RT is computed with RT the average response time. This average FPS can be applied where a low-level latency is tolerated while processing consecutive frames. The minimum FPS = 1∕RT max is collected from the maximum response time. This FPS guarantees that there is null latency in the system. It can be seen that there is a small gap between the average and minimum FPS (15-20%). This can be explained by the predictability of our operator. We have a sharp upper bound appearing on the execution times. The constraints RT, RT max expressed above can be used as deadlines to target a null or a low-level latency with our operator for processing. As highlighted in Table 6, while applying these constraints the proposed RT-LoG operator can support approximately 30 FPS up to the Quad-HD resolution on a regular CPU architecture with a low-level latency.

Performance evaluation for scene text detection

The RT-LoG operator can support the full pipeline for scene text detection. For the need of the comparison, the metrics, protocol, and experiments, as detailed in Sects. 4.2.2 and 4.2.3, have considered the common outputs for the operators. They are the spatial coordinates (x, y) and the color information f(x, y) of pixels. However, compared to the other operators, the RT-LoG operator provides additional meaningful spatial, scale-space and contrast information Table 4. This information includes the stroke width w, scale-space s (x, y)

and the operator response h(x, y). As discussed in [START_REF] Nguyen | Fast scene text detection with RT-LoG operator and CNN[END_REF], these features can drive a grouping method. They can serve in addition for the scale prediction, the background/foreground normalization, and contrast correction of characters before a text verification stage. Figure 21 presents the general architecture of the system proposed in [START_REF] Nguyen | Fast scene text detection with RT-LoG operator and CNN[END_REF] where the RT-LoG operator is embedded. As highlighted from that, this system can achieve a strong detection accuracy and is competitive with the top systems of the literature performing with end-to-end CNN models and GPU architectures. However, results reported in [START_REF] Nguyen | Fast scene text detection with RT-LoG operator and CNN[END_REF] are obtained while using the brute-force RT-LoG operator.

As discussed in Sects. 4.2 and 4.3, the proposed RT-LoG operator is two to three time faster for an approximately equal performance for detection. Table 7 reports the results from system in [START_REF] Nguyen | Fast scene text detection with RT-LoG operator and CNN[END_REF] while embedding our proposed RT-LoG operator. The results are compared against the state-of-the-art methods on ICDAR 2017 RRC-MLT dataset. Similar to [START_REF] Nguyen | Fast scene text detection with RT-LoG operator and CNN[END_REF], our system appears in the top results of the literature for F-measure score. It introduces a slight gap of less than 1.5 % error compared to the brute-force RT-LoG operator. Moreover, the RT-LoG based systems achieve the strongest recall score of the literature. These results are ensured that the use of the RT-LoG operator can allow a quite high detection of the text elements.

Most of recent works reported the FPS on the ICDAR 2015 dataset. Table 8 presents the results including our system using the proposed RT-LoG operator. The evaluation is performed with a full parallelism support on the CPU while applying multicore/multithreading. For a fair comparison, Table 8 details the test architecture of different systems (either GPU or CPU) with their relative performances in TFLOPS SP. As emphasized in Table 8, our system has the second highest FPS while processing with a difference of two orders of magnitude in term of processing resources. All the top systems perform with the end-to-end CNN models requiring a GPU architecture.

As given in Table 9, the implementation with the fast RT-LoG operator attains a near 25% to 65% acceleration factors for the FPS compared to the brute-force implementation corresponding to the HD and Full-HD resolutions, respectively, whereas the operator is two to three time faster. This can be explained that the overall processing time required by the full pipeline are significantly dominated by the grouping and verification steps with the CNN, as illustrated in Table 10.

Finally, Fig. 22 shows a general comparison of the performances considering the F-measure scores, FPS and test architectures. The overall pipeline embedded the proposed RT-LoG operator has a close performance of the top performances of literature for the F-measure scores and FPS while requiring a difference of two orders of magnitude in term of processing resources. 

Conclusions and perspectives

This paper presents a novel RT-LoG operator for scene text detection. The proposed method achieves two levels of optimization. The first level takes advantage of box selection with mutualization within the DoG product. The second level is a mixed spatial/scale-space method for box selection based on the linear distribution of Gaussian kernels in the scale-space domain.

Our results show that the proposed RT-LoG operator exhibits the best performance with a trade-off between speed and accuracy among all the operators in the literature. The processing is achieved with sharp upper and lower bounds on the execution times for predictability. The operator processes at approximately 30 FPS at the Quad-HD resolution on a regular CPU architecture with a low-level latency. A 25 FPS can be reached with a null latency.

In addition, our operator provides meaningful spatial, scale-space and contrast information compared to the other operators in the literature. This results in a strong optimization and support of a full system for scene text detection. With a proper system, our operator is competitive in comparison with contributions of the literature using the endto-end CNN/GPU-based systems, while processing with a difference of two orders of magnitude in term of processing resources. The proposed approach is able to process on a low-cost hardware architecture with a high frame rate while keeping a strong and competitive accuracy for detection. Some perspectives can be further explored. The given operator is not robust to illumination changes, which is a key problem for scene text detection. Thus, a contrast invariant operator with real-time implementation should be considered. This type of implementation would optimize the precision of the operator for detection, which remains as a challenge in the literature [START_REF] Miao | Contrast invariant interest point detection by zero-norm log filter[END_REF]. The sampling in the spatial/scale-space domains could be further optimized. This information needs to be elaborated in a sampling strategy related to detection problems [START_REF] Rey-Otero | An analysis of scale-space sampling in SIFT[END_REF]. This strategy could result in a strong time optimization of the operator but will relax the predictability of processing. It will be more dedicated to scene text detection in embedded systems with weak constraints for the soft real-time processing.
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Fig. 14 Fig. 15 Fig. 16
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  For further experiments, shown in Fig.20bthe relation between the maximum F-measure score against the number of box filters is determined. It can be seen that the number of box filters could be fixed between 4 and 6 to reach a close maximum for the F-measure score. This value ensures the robustness of the operators while maintaining a low complexity level for the processing time. Some visual examples of detection with the proposed operator are shown in Fig.19.
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Table 1

 1 The main symbols used in the paper

	Symbols	Meaning	Symbols		Meaning
	Continuous/discrete domain		Φ(k)		A function to control the slope in the stroke
						model
	f(x, y)	An image function/raster	f(x)		The function for spatial/scale-space selection
	g(x, y)	A Gaussian function/operator	Discrete domain	
	Π , ‖Π‖	Π a step function/box filter , ‖Π‖ the radius of	O			Complexity
		the box				
	w	Stroke width parameter with w ∈ [w min , w max ] N			The image size
	a	Signal amplitude	2			The operator size (width × height)
	, ,	Some parameters	i, j, l		i, j Matrix/vector indexes, l predefined indexes
	⊗	The global convolution product	[ 0 , … , m ]	A filter bank including ( m + 1 ) discrete filters
	Continuous domain		̂Estimator
		The scale of the Gaussian and LoG functions n			Number of box filters
	g xx (either y)	Second partial derivative of the g function	,			Weighting parameters
	∇ 2	Laplacian	A, B, C		The matrices for the global products
	r	Radius of a region	P			The matrix size
	k	Parameter to control approximation between	B 0 , C 0 , B 1 , C 1	The subsets of the A, B, C matrices
		LoG, DoG				
	̃ , k̃	The scales of the DoG operator	[L	0 , … , L	] m	The global convolutions obtaining on [ 0 , … , m ]
	s	The optimum scale of the LoG operator for	•			Element-wise multiplication
		the stroke model				
	h, h s , h e	Response with the stroke model, h s /h e the	s 0 , s 1 , s 2 , s 3		Vertices of an arbitrary rectangle within integral
		stroke/edge optimums				image
		The stroke model function s = (w)	MSE		Average of mean square error

Table 2

 2 Time optimization and accuracy of fast Gaussian methods: (SII) Stacked Integral Image, (VYV) Vliet Young Verbeek, (KII) Kernel Integral Image, (TCF) Truncated Cosine Functions, (+++) best case, (+) medium case

	Category	Method	Time optimiza-	Accuracy
			tion	
	Box filter	Box	++	+++
		SII	+++	++
		KII	+	+
	Recursive filter	Deriche	++	++
		TCF	+++	+++
		VYV	+	++

•

  Step 1: for a pair of boxes Π ij , Π ij+l ∀j ∈ [0, l[ to fix a set of solutions for mutualization‖Π uv ‖ ∈ [‖Π ij+l ‖, ‖Π ij ‖] .

∀ Π uv , apply sub-steps 1 to 3.

-Sub-step 1: substitute the Π ij , Π ij+l functions with Π uv in B.

Table 5

 5 Processing time of detectors in (ms) performing with the C++ on a Mac-OS and an Intel(R) Core(TM) i7-4770HQ CPU 2.2 GHz with approximately a 32 GFLOPS SP performance on ICDAR2017 RRC-MLT dataset

	Operators	Resolutions			
		SD	HD Full-HD Quad HD 4K
	SIFT	150 890 3254	5909	8917
	MSER	90 450 1660	2496	5357
	Brute-force RT-LoG	75 288	784	1750	2706
	Proposed RT-LoG	65 150	320	700	990
	BSV	61 136	226	541	835
	SWT	40 120	170	457	756
	FASText	24	75	121	312	525

Table 6

 6 Frames per second (FPS) with the proposed RT-LoG operator with multithreading/multicore, performing with the C++ on a Mac-OS and an Intel(R) Core(TM) i7-4770HQ CPU, 2.2 GHz with approximately a 32 GFLOPS SP performance

	Resolutions	Average FPS	Minimum FPS
	Full-HD	57	46.5
	Quad-HD	29.6	25.75
	4K	13.6	11

Fig.

[START_REF] Charalampidis | Recursive implementation of the Gaussian filter using truncated cosine functions[END_REF] 

The general architecture of the system of

[START_REF] Nguyen | Fast scene text detection with RT-LoG operator and CNN[END_REF] 

Table 7

 7 Comparison

	Rank	Methods	P (%)	R (%)	F (%)
	1	PMTD [33]	85.15	72.77	78.48
	2	FCN-MOML [34]	82.66	72.53	77.26
	3	R-CNN-PAN [35]	80	69.8	74.3
	4	LOMO MS [36]	80.2	67.2	73.1
	5	Brute-force RT-LoG [32]	65.2	82.1	72.6
	6	MOSTD [37]	74.3	70.6	72.4
	7	Proposed RT-LoG	64.5	80	71.4
	8	Fots [38]	81.86	62.30	70.75
	9	AF-RPN [39]	75	66	70
	10	Attention Model [40]	72	63.5	67.48
	11	SCUT DLVClab1 [3]	80.3	54.5	
	Bold indicates the best score			

of methods (P) precision (R) recall and (F) F-Measure on ICDAR2017 RRC-MLT

Table 8

 8 Frame rate per second (FPS) among methods on the Challenge 4 of ICDAR2015 dataset Bold indicates the best score

	Methods	Processing types	
		FPS Architecture	Perfor-
				mances
				TFLOPS SP
	FOTs-RT [38]	22.6 TITAN-Xp GPU	12.15
	Proposed RT-LoG	20.2 CPU 2.2 GHz	0.032
	Brute-force RT-LoG [32] 15.6 CPU 2.2 GHz	0.032
	SSTD [43]	7.7	TITAN X GPUs	6.691
	EAST [42]	6.52 TITAN-Xp GPU	12.15
	MTS [41]	4.8	Titan Xp GPU	12.15
	MOSTD [37]	3.6	Tesla K40m GPU 5.046

Table 9

 9 Frame rate per second (FPS) between the brute-force and proposed RT-LoG

	Resolutions Methods		
		Proposed RT-LoG Brute-force RT-LoG Accel-
				eration
				factors
	HD	20.2 FPS	15.6 FPS	25%
	Full-HD	13 FPS	8.4 FPS	65%

Table 10

 10 Average processing time in milliseconds (ms)/amounts of pixels, keypoints and RoIs of each step of the proposed method

	Methods	Types	
		HD	Data	Full-HD Data
	Proposed RT-	180 ms 1.2 Mpixel	370 ms 2.2 Mpixel
	LoG		
	Grouping	200 ms 5.2 Kkeypoints 360 ms 9.3 KKeypoints
	Verification	336 ms 90 RoIs	420 ms 130 RoIs

In practice, k ∈]1, √

2].[START_REF] Long | Scene text detection and recognition: the deep learning era[END_REF] For simplification, considering the 1D case.
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