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Abstract

In this paper, we prove some convexity results associated to orbit projection of
non-compact real reductive Lie groups.
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1 Introduction

This paper is concerned with convexity properties associated to orbit projection.
Let us consider two Lie groups G ⊂ G̃ with Lie algebras g ⊂ g̃ and corresponding

projection πg,g̃ : g̃
∗ → g∗. A longstanding problem has been to understand how a coadjoint

orbit Õ ⊂ g̃∗ decomposes under the projection πg,g̃. For this purpose, we may define

∆G(Õ) = {O ∈ g∗/G ; O ⊂ πg,g̃(Õ)}.

When the Lie group G is compact and connected, the set g∗/G admits a natural
identification with a Weyl chamber t∗≥0. In this context, we have the well-known convexity
theorem [12, 1, 10, 16, 13, 34, 22].

Theorem 1.1 Suppose that G is compact connected and that the projection πg,g̃ is proper
when restricted to Õ. Then ∆G(Õ) = {ξ ∈ t∗≥0 ; Gξ ⊂ πg,g̃(Õ)} is a closed convex locally
polyhedral subset of t∗.

When the Lie group G̃ is also compact and connected, we may consider

(1) Π(G̃,G) :=
{
(ξ̃, ξ) ∈ t̃∗≥0 × t∗≥0; Gξ ⊂ πg,g̃

(
G̃ξ̃

)}
.

Here is another convexity theorem [14, 17, 4, 2, 3, 25, 20, 35].

Theorem 1.2 Suppose that G ⊂ G̃ are compact connected Lie groups. Then Π(G̃,G) is
a closed convex polyhedral cone and we can parametrize its facets by cohomological means
(i.e. Schubert calculus).

In this article we obtain an extension of Theorems 1.1 and 1.2 in the case where the
two groups G and G̃ are not compact.

Let us explain in which framework we work. We suppose that G̃/K̃ is a Hermitian
symmetric space of a non-compact type. Among the elliptic coadjoint orbits of G̃, some of
them are naturally Kähler K̃-manifolds. These orbits are called the holomorphic coadjoint
orbits of G̃. They are the strongly elliptic coadjoint orbits closely related to the holomor-
phic discrete series of Harish-Chandra. These orbits intersect the Weyl chamber t̃∗≥0 of K̃
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into a sub-chamber C̃hol called the holomorphic chamber. The basic fact here is that the
union

C0
G̃/K̃

:=
⋃

ã∈C̃hol

G̃ã

is an open invariant convex cone of g̃∗. See §2.1 for more details.
Let G/K ⊂ G̃/K̃ be a sub-Hermitian symmetric space of a non-compact type. As the

projection πg,g̃ : g̃∗ → g∗ sends the convex cone C0
G̃/K̃

inside the convex cone C0
G/K , it is

natural to study the following object reminiscent of (1) :

(2) Πhol(G̃,G) :=
{
(ξ̃, ξ) ∈ C̃hol × Chol; Gξ ⊂ πg,g̃

(
G̃ξ̃

)}
.

Let µ̃ ∈ C̃hol. We will also give a particular attention to the intersection of Πhol(G̃,G)
with the hyperplane ξ̃ = µ̃, that is to say

(3) ∆G(G̃µ̃) :=
{
ξ ∈ Chol; Gξ ⊂ πg,g̃

(
G̃µ̃

)}
.

Consider the case where G is embedded diagonally in G̃ := Gs for s ≥ 2. The corre-
sponding set Πhol(G

s, G) is called the holomorphic Horn cone, and it is defined as follows

Hornshol(G) :=
{
(ξ1, · · · , ξs+1) ∈ Cs+1

hol ; Gξs+1 ⊂
s∑

j=1

Gξj

}
.

The first result of this article is the following Theorem.

Theorem A.

• Πhol(G̃,G) is a closed convex cone of C̃hol × Chol.

• Hornshol(G) is a closed convex cone of Cs+1
hol for any s ≥ 2.

We obtain the following corollary which corresponds to a result of Weinstein [37].

Corollary. For any µ̃ ∈ C̃hol, ∆G(G̃µ̃) is a closed and convex subset of Chol.

A first description of the closed convex cone Πhol(G̃,G) goes as follows. The quotient
q of the tangent spaces TeG/K and TeG̃/K̃ has a natural structure of a Hermitian K-
vector space. The symmetric algebra Sym(q) of q defines an admissible K-module. The
irreducible representations of K (resp. K̃) are parametrized by a semi-group ∧∗

+ : (resp.

∧̃∗
+). For any λ ∈ ∧∗

+ (resp. λ̃ ∈ ∧̃∗
+), we denote by V K

λ (resp. V K̃
λ̃
) the irreducible

representation of K (resp. K̃) with highest weight λ (resp. λ̃). If E is a representation of
K, we denote by

[
V K
λ : E

]
the multiplicity of V K

λ in E.

Definition 1.3 1. ΠZ(G̃,G) is the semigroup of ∧̃∗
+ × ∧∗

+ defined by the conditions:

(λ̃, λ) ∈ ΠZ(G̃,G) ⇐⇒
[
V K
λ : V K̃

λ̃
⊗ Sym(q)

]
6= 0.
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2. Π(G̃,G) is the convex cone defined as the closure of Q>0 · ΠZ(G̃,G).

The second result of this article is the following Theorem.

Theorem B. We have the equality

(4) Πhol(G̃,G) = Π(G̃,G)
⋂

C̃hol×Chol.

A natural question is the description of the facets of the convex cone Πhol(G̃,G). In
order to do that, we consider the group K̃ endowed with the following K̃ × K-action :
(k̃, k) · ã = k̃ãk−1. The cotangent space T∗K̃ is then a symplectic manifold equipped
with a Hamiltonian action of K̃ ×K. We consider now the Hamiltonian K̃ ×K-manifold
T∗K̃ × q, and we denote by ∆(T∗K̃ × q) the corresponding Kirwan polyhedron.

Let W = N(T )/T be the Weyl group of (K,T ) and let w0 be the longest Weyl group
element. Define an involution ∗ : t∗ → t∗ by ξ∗ = −w0ξ. A standard result permits to
affirm that (ξ̃, ξ) ∈ Π(G̃,G) is an only if (ξ̃, ξ∗) ∈ ∆(T∗K̃ × q) (see §4.2).

We obtain then another version of Theorem B.

Theorem B, second version. An element (ξ̃, ξ) belongs to Πhol(G̃,G) if and only if

(ξ̃, ξ) ∈ C̃hol × Chol and (ξ̃, ξ∗) ∈ ∆(T∗K̃ × q).

Thanks to the second version of Theorem B, a natural way to describe the facets of
the cone Πhol(G̃,G) is to exhibit those of the Kirwan polyhedron ∆(T∗K̃ × q). In this
later case, it can be done using Ressayre’s data (see §5).

The second version of Theorem B permits also the following description of the convex
subsets ∆G(G̃µ̃), µ̃ ∈ C̃hol. Let ∆K(K̃µ̃ × q) be the Kirwan polyhedron associated to
the Hamiltonian action of K on K̃µ̃ × q. Here q denotes the K-module q with opposite
complex structure.

Theorem C. For any µ̃ ∈ C̃hol, we have ∆G(G̃µ̃) = ∆K(K̃µ̃× q).

Let us detail Theorem C in the case where G is embedded in G̃ = G×G diagonally. We
denote by p the K-Hermitian space TeG/K. Let κ be the Killing form of the Lie algebra
g. The vector space p is equipped with the symplectic 2-form Ωp̄(X,Y ) = −κ(z, [X,Y ])
and the compatible complex structure −ad(z).

Let us denote by ∆K(Kµ1 ×Kµ2 × p) and by ∆K(p) the Kirwan polyhedrons relative
to the Hamiltonian actions of K on Kµ1 × Kµ2 × p and on p. Theorem C says that
for any µ1, µ2 ∈ Chol, the convex set ∆G(Gµ1 × Gµ2) is equal to the Kirwan polyhedron
∆K(Kµ1 ×Kµ2 × p).
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To any non-empty subset C of a real vector space E, we may associate its asymptotic
cone As(C) ⊂ E which is the set formed by the limits y = limk→∞ tkyk, where (tk) is a
sequence of non-negative reals converging to 0 and yk ∈ C.

We finally get the following description of the asymptotic cone of ∆G(Gµ1 ×Gµ2).

Corollary D. For any µ1, µ2 ∈ Chol, the asymptotic cone of ∆G(Gµ1 × Gµ2) is equal to
∆K(p).

In [28] §5, we explained how to describe the cone ∆K(p) in terms of strongly orthogonal
roots.

Let us finish this introduction with few remarks on related works:

− When G is compact, equal to the maximal compact subgroup K̃ of G̃, the results of
Theorems B and C were already obtained by G. Deltour in his thesis [6, 7].

− In [9], A. Eshmatov and P. Foth proposed a description of the set ∆G(Gµ1 ×Gµ2).
But their computations give not the same result as ours. From their main
result (Theorem 3.2) it follows that the asymptotic cone of ∆G(Gµ1 ×Gµ2) is equal
to the intersection of the Kirwan polyhedron ∆T (p) with the Weyl chamber t∗≥0. But
since ∆K(p) 6= ∆T (p) ∩ t∗≥0 in general, it is in contradiction with Corollary D.

Notations

In this paper, G denotes a connected real reductive Lie group : we take here the convention
of Knapp [18]. We have a Cartan involution Θ on G, such that the fixed point set K := GΘ

is a connected maximal compact subgroup. We have Cartan decompositions at the level
of Lie algebras g = k⊕ p and at the level of the group G ≃ K × exp(p). We denote by b a
G-invariant non-degenerate bilinear form on g that is equal to the Killing form on [g, g],
and that defines a K-invariant scalar product (X,Y ) := −b(X,Θ(Y )). We will use the
K-equivariant identification ξ 7→ ξ̃, g∗ ≃ g defined by (ξ̃, X) := 〈ξ,X〉 for ξ ∈ g∗ and
X ∈ g.

When a Lie group H acts on a manifold N , the stabilizer subgroup of n ∈ N is denoted
by Hn = {g ∈ G, gn = n}, and its Lie algebra by hn. Let us define

(5) dimH(X ) = min
n∈X

dim(hn)

for any subset X ⊂ N .

2 The cone Πhol(G̃, G): first properties

We assume here that G/K is a Hermitian symmetric space, that is to say, there exists
a G-invariant complex structure on the manifold G/K, or equivalently there exists a K-
invariant element z ∈ k such that ad(z)|p defines a complex structure on p : (ad(z)|p)

2 =
−Idp. This condition imposes that the ranks of G and K are equal.
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We are interested in the following closed invariant convex cone of g∗:

CG/K = {ξ ∈ g∗, 〈ξ, gz〉 ≥ 0, ∀g ∈ G} .

2.1 The holomorphic chamber

Let T be a maximal torus of K, with Lie algebra t. Its dual t∗ can be seen as the subspace
of g∗ fixed by T . Let us denote by g∗e the set formed by the elliptic elements: in other
words g∗e := Ad∗(G) · t∗.

Following [37], we consider the invariant open subset g∗se = {ξ ∈ g∗ |Gξ is compact} of
strongly elliptic elements. It is non-empty since the groups G and K have the same rank.

We start with the following basic facts.

Lemma 2.1 • g∗se is contained in g∗e.

• The interior C0
G/K of the cone CG/K is contained in g∗se.

Proof : The first point is due to the fact that every compact subgroup of G is conjugate
to a subgroup of K.

Let ξ ∈ C0
G/K . There exists ǫ > 0 so that

〈ξ + η, gz〉 ≥ 0, ∀g ∈ G, ∀‖η‖ ≤ ǫ.

It implies that |〈η, gz〉| ≤ 〈ξ, z〉, ∀g ∈ Gξ and ∀‖η‖ ≤ ǫ. In other words, the adjoint orbit
Gξ · z ⊂ g is bounded. For any g = eXk, with (X, k) ∈ p×K, a direct computation shows
that ‖gz‖ = ‖eXz‖ ≥ ‖[z,X]‖ = ‖X‖. Then, there exists ρ > 0 such that ‖X‖ ≤ ρ if
eXk ∈ Gξ for some k ∈ K. It follows that the stabilizer subgroup Gξ is compact. ✷

Let ∧∗ ⊂ t∗ be the weight lattice : α ∈ ∧∗ if iα is the differential of a character of T .
Let R ⊂ ∧∗ be the set of roots for the action of T on g⊗C. We have R = Rc ∪Rn where
Rc and Rn are respectively the set of roots for the action of T on k ⊗ C and p ⊗ C. We
fix a system of positive roots R+

c in Rc, and we denote by t∗≥0 the corresponding Weyl
chamber.

We have p⊗C = p+ ⊕ p− where the K-module p± is equal to ker(ad(z)∓ i). Let R±,z
n

be the set of roots for the action of T on p±. The union

(6) R+ = R+
c ∪R+,z

n

defines then a system of positive roots in R. We notice that R+,z
n is the set of roots β ∈ R

satisfying 〈β, z〉 = 1. Hence R
+,z
n is invariant relatively to the action of the Weyl group

W = N(T )/T .
Let us recall the following classical fact concerning the parametrization of the G-orbits

in C0
G/K via the holomorphic chamber

Chol := {ξ ∈ t∗≥0, (ξ, β) > 0, ∀β ∈ R+,z
n }.
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Proposition 2.2 • The set C0
G/K ∩ t∗≥0 is contained in Chol.

• For any compact subset K of Chol, there exists cK > 0 such that 〈ξ, gz〉 ≥ cK‖gz‖,
∀g ∈ G, ∀ξ ∈ K.

• The map O 7→ O ∩ t∗≥0 defines a bijective map between the set of G-orbits in C0
G/K

and the holomorphic chamber Chol.

Proof : Let ξ ∈ t∗≥0 ∩ C0
G/K . The first point is proved if we check that (ξ, β) > 0 for

any β ∈ R
+,z
n . Let Xβ, Yβ ∈ p such that Xβ + iYβ ∈ (p ⊗ C)β . We choose the following

normalization : the vector hβ := [Xβ, Yβ ] satisfies 〈β, hβ〉 = 1. We see then that (ξ, β) =
1

‖hβ‖2
〈ξ, hβ〉 for any ξ ∈ g∗. Standard computation [27] gives

et ad(Xβ)z = z + (cosh(t)− 1)hβ + sinh(t)Yβ , ∀t ∈ R.

By definition, we must have 〈ξ + η, et ad(Xβ)z〉 ≥ 0,∀t ∈ R, for any η ∈ t∗ small enough. It
imposes that 〈ξ, hβ〉 > 0. The first point is settled.

Now choose some maximal strongly orthogonal system Σ ⊂ R
+,z
n . The real span a

of the Xβ , β ∈ Σ is a maximal abelian subspace of p. Hence any element g ∈ G can be
written g = keX(t)k′ with X(t) =

∑
β∈Σ tβXβ and k, k′ ∈ K. We get

(7) gz = k


z +

∑

β∈Σ

(cosh(tβ)− 1)hβ +
∑

β∈Σ

sinh(tβ)Yβ




and
〈ξ, gz〉 = 〈k−1ξ, z〉+

∑

β∈Σ

(cosh(tβ)− 1)〈k−1ξ, hβ〉.

For any ξ ∈ Chol, we define cξ := minβ∈R+,z
n

〈ξ, hβ〉 > 0. Let π : k∗ → t∗ be the pro-

jection. We have 〈k−1ξ, z〉 = 〈π(k−1ξ), z〉 and 〈k−1ξ, hβ〉 = 〈π(k−1ξ), hβ〉. The convexity
theorem of Kostant tell us that π(k−1ξ) belongs to the convex hull of {wξ,w ∈ W}. It
follows that 〈k−1ξ, z〉 ≥ 〈ξ, z〉 > 0 and 〈k−1ξ, hβ〉 ≥ cξ > 0. We obtain then that
〈ξ, gz〉 ≥ 1

2 min(〈ξ, z〉, cξ)e
‖X(t)‖ for any ξ ∈ Chol, where ‖X(t)‖ = sup |tβ|. From (7), it is

not difficult to see that there exists C > 0 such that ‖gz‖ ≤ Ce‖X(t)‖ for any g = keX(t)k′.
Let K be a compact subset of Chol. Take cK = 1

2C min(minξ∈K〈ξ, z〉,minξ∈K cξ) > 0.
The previous computations show that 〈ξ, gz〉 ≥ cK‖gz‖, ∀g ∈ G, ∀ξ ∈ K. The second
point is proved.

The first two points show that t∗≥0 ∩ C0
G/K = Chol. The third point follows then from

the fact that C0
G/K is contained in g∗e (see Lemma 2.1). ✷

We have a canonical map p : C0
G/K → Chol defined by the relations Gξ ∩ t∗≥0 = {p(ξ)},

∀ξ ∈ C0
G/K . The following result is needed in §4.1.
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Lemma 2.3 The map p is continuous.

Proof : Let (ξn) be a sequence of C0
G/K converging to ξ∞ ∈ C0

G/K . Let ξ′n = p(ξn) and

ξ′∞ = p(ξ∞): we have to prove that the sequence (ξ′n) converges to ξ
′
∞. We choose elements

gn, g∞ ∈ G such that ξn = gnξ
′
n,∀n, and ξ∞ = g∞ξ′∞.

First we notice that −b(ξn, ξn) = ‖ξ′n‖
2, hence the sequence (ξ′n) is bounded. We will

now prove that the sequence (gn) is bounded.
Let ǫ > 0 such that 〈ξ∞ + η, gz〉 ≥ 0, ∀g ∈ G, ∀‖η‖ ≤ ǫ. If ‖ξ − ξ∞‖ ≤ ǫ/2, we write

ξ = 1
2(ξ∞ + 2(ξ − ξ∞)) + 1

2ξ∞, and then

〈ξ, gz〉 =
1

2
〈ξ∞ + 2(ξ − ξ∞), gz〉 +

1

2
〈ξ∞, gz〉 ≥

1

2
〈ξ∞, gz〉, ∀g ∈ G.

Now we have 〈ξ′n, z〉 = 〈ξn, gnz〉 ≥ 1
2〈ξ∞, gnz〉 if n is large enough. This shows that the

sequence 〈ξ∞, gnz〉 is bounded. If we use the second point of Proposition 2.2, we can
conclude that the sequence (gn) is bounded.

Let (ξ′φ(n)) be a subsequence converging to ℓ ∈ t∗≥0. Since (gφ(n)) is bounded, there

exists a subsequence (gφ◦ψ(n)) converging to h ∈ G. From the relations ξφ◦ψ(n) =
gφ◦ψ(n)ξ

′
φ◦ψ(n),∀n ∈ N, we obtain ξ∞ = hℓ. Then ℓ = p(ξ∞) = ξ′∞. Since every sub-

sequence of (ξ′n) has a subsequential limit to ξ′∞, then the sequence (ξ′n) converges to ξ′∞.
✷

2.2 The cone Πhol(G̃, G) is closed

We suppose that G/K is a complex submanifold of a Hermitian symmetric space G̃/K̃. In
other words, G̃ is a reductive real Lie group such that G ⊂ G̃ is a closed subgroup preserved
by the Cartan involution, and K̃ is a maximal compact subgroup of G̃ containing K. We
denote by g̃ and k̃ the Lie algebras of G̃ and K̃ respectively. We suppose that there
exists a K̃-invariant element z ∈ k such that ad(z)|p̃ defines a complex structure on p̃ :
(ad(z)|p̃)

2 = −Idp̃.
Let CG̃/K̃ ⊂ g̃∗ be the closed invariant cone associated to the Hermitian symmetric

space G̃/K̃ . We start with the following key fact.

Lemma 2.4 The projection πg,g̃ : g̃
∗ → g∗ sends C0

G̃/K̃
into C0

G/K .

Proof : Let ξ̃ ∈ C0
G̃/K̃

and ξ = πg,g̃(ξ̃). Then 〈ξ̃ + η̃, g̃z〉 ≥ 0, ∀g̃ ∈ G̃ if η̃ ∈ g̃∗ is small

enough. It follows that 〈ξ + πg,g̃(η̃), gz〉 = 〈ξ̃ + η̃, gz〉 ≥ 0, ∀g ∈ G if η̃ is small enough.
Since πg,g̃ is an open map, we can conclude that ξ ∈ C0

G/K . ✷

Let T̃ be a maximal torus of K̃, with Lie algebra t̃. The G̃-orbits in the interior of
CG̃/K̃ are parametrized by the holomorphic chamber C̃hol ⊂ t̃∗. The previous Lemma says

that the projection πg,g̃(Õ) of any G̃-orbit Õ ⊂ C0
G̃/K̃

is the union of G-orbits O ⊂ C0
G/K .
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So it is natural to study the following object

(8) Πhol(G̃,G) :=
{
(ξ̃, ξ) ∈ C̃hol × Chol; Gξ ⊂ πg,g̃

(
G̃ξ̃

)}
.

Here is a first result.

Proposition 2.5 Πhol(G̃,G) is a closed cone of C̃hol × Chol.

Proof : Suppose that a sequence (ξ̃n, ξn) ∈ Πhol(G̃,G) converge to (ξ̃∞, ξ∞) ∈ C̃hol×Chol.
By definition, there exists a sequence (g̃n, gn) ∈ G̃ ×G such that gnξn = πg,g̃(g̃nξ̃n). Let

h̃n := g−1
n g̃n, so that ξn = πg,g̃(h̃nξ̃n) and 〈h̃nξ̃n, z〉 = 〈ξn, z〉. We use now that the

sequence 〈ξn, z〉 is bounded, and that the sequence ξ̃n belongs to a compact subset of C̃hol.
Thanks to the second point of Proposition 2.2, these facts imply that ‖h̃−1

n z‖ is a bounded
sequence. Hence h̃n admits a subsequence converging to h̃∞. So we get ξ∞ = πg,g̃(h̃∞ξ̃∞),

and that proves that (ξ̃∞, ξ∞) ∈ Πhol(G̃,G). ✷

2.3 Rational and weakly regular points

Let (M,Ω) be a symplectic manifold. We suppose that there exists a line bundle L with
connection ∇ that prequantizes the 2-form Ω: in other words, ∇2 = −iΩ. Let K be a
compact connected Lie group acting on L → M , and leaving the connection invariant. Let
ΦK : M → k∗ be the moment map defined by Kostant’s relations

(9) LX −∇X = i〈ΦK ,X〉, ∀X ∈ k.

Here LX is the Lie derivative acting on the sections of L → M .
Remark that relations (9) imply, via the equivariant Bianchi formula, the relations

(10) ι(XM )Ω = −d〈ΦK ,X〉, ∀X ∈ k,

where XM (m) := d
dt |t=0e

−tXm is the vector field on M generated by X ∈ k.

Definition 2.6 Let dimK(M) := minm∈M dim km. An element ξ ∈ k∗ is a weakly-regular
value of ΦK if for all m ∈ Φ−1

K (ξ) we have dim km = dimK(M).

When ξ ∈ k∗ is a weakly-regular value of ΦK , the constant rank theorem tells us that
Φ−1
K (ξ) is a submanifold of M stable under the action of the stabilizer subgroup Kξ. We

see then that the reduced space

(11) Mξ := Φ−1
K (ξ)/Kξ

is a symplectic orbifold.
Let T ⊂ K be a maximal torus with Lie algebra t. We consider the lattice ∧ :=

1
2π ker(exp : t → T ) and the dual lattice ∧∗ ⊂ t∗ defined by ∧∗ = hom(∧,Z). We remark
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that iη is a differential of a character of T if and only if η ∈ ∧∗. The Q-vector space
generated by the lattice ∧∗ is denoted by t∗Q: the vectors belonging to t∗Q are designed
as rational. An affine subspace V ⊂ t∗ is called rational if it is affinely generated by its
rational points.

We also fix a closed positive Weyl chamber t∗≥0. For each relatively open face σ ⊂ t∗≥0,
the stabilizer Kξ of points ξ ∈ σ under the coadjoint action, does not depend on ξ, and
will be denoted Kσ. The Lie algebra gσ decomposes into its semi-simple and central parts
kσ = [kσ , kσ ]⊕zσ. The subspace z

∗
σ is defined to be the annihilator of [kσ , kσ], or equivalently

the fixed point set of the coadjoint Kσ action. Notice that z∗σ is a rational subspace of t∗,
and that the face σ is an open cone of z∗σ,

We suppose that the moment map ΦK is proper. The Convexity Theorem [1, 10, 16,
34, 22] tells us that ∆K(M) := Image(ΦK)

⋂
t∗≥0 is a closed, convex, locally polyhedral

set.

Definition 2.7 We denote by ∆K(M)0 the subset of ∆K(M) formed by the weakly-
regular values of the moment map ΦK contained in ∆K(M).

We will use the following remark in the next sections.

Lemma 2.8 The subset ∆K(M)0 ∩ t∗Q is dense in ∆K(M).

Proof : Let us first explain why ∆K(M)0 is a dense open subset of ∆K(M). There exists
a unique open face τ of the Weyl chamber t∗≥0 such as ∆K(M)∩ τ is dense in ∆K(M) : τ
is called the principal face in [22]. The Principal-cross-section Theorem [22] tells us that
Yτ := Φ−1(τ) is a symplectic Kτ -manifold, with a trivial action of [Kτ ,Kτ ]. The line
bundle Lτ := L|Yτ prequantizes the symplectic structure on Yτ , and relations (10) show
that [Kτ ,Kτ ] acts trivially on Lτ . Moreover the restriction of ΦK on Yτ is the moment
map Φτ : Yτ → z∗τ associated to the action of the torus Zτ = exp(zτ ) on Lτ .

Let I ⊂ z∗τ be the smallest affine subspace containing ∆K(M). Let zI ⊂ zτ be the anni-
hilator of the subspace parallel to I : relations (10) show that zI is the generic infinitesimal
stabilizer of the zτ -action on Yτ . Hence zI is the Lie algebra of the torus ZI := exp(zI).

We see then that any regular value of Φτ : Yτ → I, viewed as a map with codomain
I, is a weakly-regular value of the moment map ΦK . It explains why ∆K(M)0 is a dense
open subset of ∆K(M).

The convex set ∆K(M) ∩ τ is equal to ∆Zτ (Yτ ) := Image(Φτ ), it is sufficient to check
that ∆Zτ (Yτ )

0 ∩ t∗Q is dense in ∆Zτ (Yτ ). The subtorus ZI ⊂ Zτ acts trivially on Yτ , and it
acts on the line bundle Lτ through a character χ. Let η ∈ ∧∗∩t∗τ such that dχ = iη|zI . The
affine subspace I which is equal to η + (zI)

⊥ is rational. Since the open subset ∆Zτ (Yτ )
0

generates the rational affine subspace I, we can conclude that ∆Zτ (Yτ )
0 ∩ t∗Q is dense in

∆Zτ (Yτ ). ✷
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2.4 Weinstein’s theorem

Let ã ∈ C̃hol. Consider the Hamiltonian action of the group G on the coadjoint orbit G̃ã.
The moment map ΦãG : G̃ã → g∗ corresponds to the restriction of the projection πg,g̃ to
G̃ã. In this setting, the following conditions holds :

1. The action of G on G̃ã is proper.

2. The moment map ΦãG is a proper map since the map 〈ΦãG, z〉 is proper (see the second
point of Proposition 2.2).

Conditions 1. and 2. imposes that the image of ΦãG is contained in the open subset
g∗se of strongly elliptic elements [30]. Thus, the G-orbits contained in the image of ΦãG are
parametrized by the following subset of the holomorphic chamber Chol :

∆G(G̃ã) := Image(ΦãG)
⋂

t∗≥0.

We notice that Πhol(G̃,G) =
⋃
ã∈C̃hol

{ã} ×∆G(G̃ã).

Like in Definition 2.6, an element ξ ∈ g∗ is a weakly-regular value of ΦãG if for all
m ∈ (ΦãG)

−1(ξ) we have dim gm = minx∈G̃ã dim(gx). We denote by ∆G(G̃ã)0 the set of

elements ξ ∈ ∆G(G̃ã) that are weakly-regular for ΦãG.

Theorem 2.9 (Weinstein) For any ã ∈ C̃hol, ∆G(G̃ã) is a closed convex subset con-
tained in Chol.

Proof : We recall briefly the arguments of the proof (see [37] or [30][§2]). Under Conditions
1. and 2., one checks easily that Yã := (ΦãG)

−1(k∗) is a smooth K-invariant symplectic
submanifold of G̃ã such that

(12) G̃ã ≃ G×K Yã.

The moment map ΦãK : Yã → k∗, which corresponds to the restriction of the map ΦãG to Yã,
is a proper map. Hence the Convexity Theorem tells us that ∆K(Yã) := Image(ΦãK)

⋂
t∗≥0

is a closed, convex, locally polyhedral set. Thanks to the isomorphism (12) we see that
∆G(G̃ã) coincides with the closed convex subset ∆K(Yã). The proof is completed. ✷

The next Lemma is used in §4.1.

Lemma 2.10 Let ã ∈ C̃hol be a rational element. Then ∆G(G̃ã)0∩t∗Q is dense in ∆G(G̃ã).

Proof : Thanks to (12), we know that ∆G(G̃ã) = ∆K(Yã). Relation (12) shows also that
∆G(G̃ã)0 = ∆K(Yã)

0. Let N ≥ 1 such that µ̃ = Nã ∈ ∧∗ ∩ Chol. The stabilizer subgroup
G̃µ̃ is compact, equal to K̃µ̃. Let us denote by Cµ̃ the one-dimensional representation of
K̃µ̃ associated to µ̃. The convex set ∆G(G̃ã) is equal to 1

N∆G(G̃µ̃), so it is sufficient to

check that ∆G(G̃µ̃)0 ∩ t∗Q = ∆K(Yµ̃)
0 ∩ t∗Q is dense in ∆G(G̃µ̃) = ∆K(Yµ̃). The coadjoint

orbit G̃µ̃ is prequantized by the line bundle G̃ ×Kµ̃
Cµ̃ and the symplectic slice Yµ̃ is

prequantized by the line bundle Lµ̃ := G̃×Kµ̃
Cµ̃|Yµ̃ . Thanks to Lemma 2.8, we know that

∆K(Yµ̃)
0 ∩ t∗Q is dense in ∆K(Yµ̃) : the proof is complete. ✷

11



3 Holomorphic discrete series

3.1 Definition

We return to the framework of §2.1. We recall the notion of holomorphic discrete series
representations associated to a Hermitian symmetric spaces G/K. Let us introduce

Cρhol :=
{
ξ ∈ t∗≥0| (ξ, β) ≥ (2ρn, β), ∀β ∈ R+,z

n

}

where 2ρn =
∑

β∈R+,z
n

β is W -invariant.

Lemma 3.1 1. We have Cρhol ⊂ Chol.

2. For any ξ ∈ Chol there exists N ≥ 1 such that Nξ ∈ Cρhol.

Proof : The first point is due to the fact that (β0, β1) ≥ 0 for any β0, β1 ∈ R
+,z
n . The

second point is obvious. ✷
We will be interested in the following subset of dominants weights :

Ĝhol := ∧∗
+

⋂
Cρhol.

Let Sym(p) be the symmetric algebra of the complex K-module (p, ad(z)).

Theorem 3.2 (Harish-Chandra) For any λ ∈ Ĝhol, there exists an irreducible unitary
representation of G, denoted V G

λ , such that the vector space of K-finite vectors is V G
λ |K :=

V K
λ ⊗ Sym(p).

The set V G
λ , λ ∈ Ĝhol corresponds to the holomorphic discrete series representations

associated to the complex structure ad(z).

3.2 Restriction

We come back to the framework of §2.2. We consider two compatible Hermitian symmetric
spaces G/K ⊂ G̃/K̃, and we look after the restriction of holomorphic discrete series
representations of G̃ to the subgroup G.

Let λ̃ ∈ ̂̃Ghol. Since the representation V G̃
λ̃

is discretely admissible relatively the circle
group exp(Rz), it is also discretely admissible relatively to G. We can be more precise
[15, 24, 21] :

Proposition 3.3 We have an Hilbertian direct sum

V G̃
λ̃
|G =

⊕

λ∈Ĝhol

mλ
λ̃
V G
λ ,

where the multiplicity mλ
λ̃
:= [V G

λ : V G̃
λ̃
] is finite for any λ.
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The Hermitian K̃-vector space p̃, when restricted to the K-action, admits an orthogo-
nal decomposition p̃ = p⊕ q. Notice that the symmetric algebra Sym(q) is an admissible
K-module.

In [15], H.P. Jakobsen and M. Vergne obtained the following nice characterization of

the multiplicities [V G
λ : V G̃

λ̃
]. Another proof is given in [30], §4.4.

Theorem 3.4 (Jakobsen-Vergne) Let (λ̃, λ) ∈ ̂̃Ghol× Ĝhol. The multiplicity [V G
λ : V G̃

λ̃
]

is equal to the multiplicity of the representation V K
λ in Sym(q)⊗ V K̃

λ̃
|K .

3.3 Discrete analogues of Πhol(G̃, G)

We define the following discrete analogues of the cone Πhol(G̃,G):

(13) ΠZ
hol(G̃,G) :=

{
(λ̃, λ) ∈ ̂̃Ghol × Ĝhol ; [V G

λ : V G̃
λ̃
] 6= 0

}
.

and

(14) ΠQ
hol(G̃,G) :=

{
(ξ̃, ξ) ∈ C̃hol × Chol ; ∃N ≥ 1, (Nξ,Nξ̃) ∈ ΠZ

hol(G̃,G)
}
.

We have the following key fact.

Proposition 3.5

• ΠZ
hol(G̃,G) is a subset of ∧̃∗ × ∧∗ stable under the addition.

• ΠQ
hol(G̃,G) is a Q-convex cone of the Q-vector space t̃∗Q × t∗Q.

Proof : Suppose that a1 := (λ̃1, λ1) and a2 := (λ̃2, λ2) belongs to ΠZ
hol(G̃,G). Thanks to

Theorem 3.4, we know that the K-modules Sym(q) ⊗ (V K
λj
)∗ ⊗ V K̃

λ̃j
|K possess a non-zero

invariant vector φj, for j = 1, 2.

Let X := K/T × K̃/T̃ be the product of flag manifolds. The complex structure is
normalized so that T([e],[ẽ])X ≃ n− ⊕ ñ+, where n− =

∑
α<0(kC)α and ñ+ =

∑
α̃>0(k̃C)α̃.

We associate to each data aj , the holomorphic line bundle Lj := K×T C−λj ⊠ K̃×T̃ C−λ̃j

on X. Let H0(X,Lj) be the space of holomorphic sections of the line bundle Lj. The

Borel-Weil Theorem tell us that H0(X,Lj) ≃ (V K
λj
)∗ ⊗ V K̃

λ̃j
|K , ∀j ∈ {1, 2}.

We have φj ∈
[
Sym(q)⊗H0(X,Lj)

]K
, ∀j, and then φ1φ2 ∈ Sym(q)⊗H0(X,L1 ⊗L2)

is a non-zero invariant vector. Hence [Sym(q) ⊗ (V K
λ1+λ2

)∗ ⊗ V K̃
λ̃1+λ̃2

|K ]
K 6= 0. Thanks to

Theorem 3.4, we can conclude that a1 + a2 = (λ̃1 + λ̃2, λ1 + λ2) belongs to ΠZ
hol(G̃,G).

The first point is proved. From the first point, one checks easily that

- ΠQ
hol(G̃,G) is stable under addition,

- ΠQ
hol(G̃,G) is stable by expansion by a non-negative rational number.

The second point is settled. ✷
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3.4 Riemann-Roch numbers

We come back to the framework of §2.3.
We associate to a dominant weight µ ∈ ∧∗

+ the (possibly singular) symplectic reduced
space Mµ := Φ−1

K (µ)/Kµ, and the (possibly singular) line bundle over Mµ :

Lµ :=
(
L|Φ−1

K
(µ) ⊗ C−µ

)
/Kµ.

Suppose first that µ is a weakly-regular value of ΦK . Then Mµ is an orbifold equipped
with a symplectic structure Ωµ, and Lµ is a line orbi-bundle over Mµ that prequantizes
the symplectic structure. By choosing an almost complex structure on Mµ compatible
with Ωµ, we get a decomposition ∧T∗Mµ⊗C = ⊕i,j∧

i,jT∗Mµ of the bundle of differential
forms. Using Hermitian structure in the tangent bundle TMµ of Mµ, and in the fibers of
Lµ, we define a Dolbeaut-Dirac operator

D+
µ : A0,+(Mµ,Lµ) −→ A0,−(Mµ,Lµ)

where Ai,j(Mµ,Lµ) = Γ(Mµ,∧
i,jT∗Mµ ⊗ Lµ).

Definition 3.6 Let µ ∈ ∧∗
+ be a weakly-regular value of the moment map ΦK . The

Riemann-Roch number RR(Mµ,Lµ) ∈ Z is defined as the index of the elliptic operator
D+
µ : RR(Mµ,Lµ) = dim(ker(D+

µ ))− dim(coker(D+
µ )).

Suppose that µ /∈ ∆K(M). Then Mµ = ∅ and we take RR(Mµ,Lµ) = 0.

Suppose now that µ ∈ ∆K(M) is not (necessarily) a weakly-regular value of ΦK . Take
a small element ǫ ∈ t∗ such that µ+ǫ is a weakly-regular value of ΦK belonging to ∆K(M).
We consider the symplectic orbifold Mµ+ǫ: if ǫ is small enough,

Lµ,ǫ :=
(
L|Φ−1

K
(µ+ǫ) ⊗ C−µ

)
/Kµ+ǫ.

is a line orbi-bundle over Mµ+ǫ .
We have the following important result (see §3.4.3 in [33]).

Proposition 3.7 Let µ ∈ ∆K(M) ∩ ∧∗. The Riemann-Roch number RR(Mµ+ǫ,Lµ,ǫ) do
not depend on the choice of ǫ small enough so that µ + ǫ ∈ ∆K(M) is a weakly-regular
value of ΦK .

We can now introduce the following definition.

Definition 3.8 Let µ ∈ ∧∗
+. We define

Q(Mµ,Ωµ) =

{
0 if µ /∈ ∆K(M),

RR(Mµ+ǫ,Lµ,ǫ) if µ ∈ ∆K(M).

Above, ǫ is chosen small enough so that µ+ ǫ ∈ ∆K(M) is a weakly-regular value of ΦK .
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Let n ≥ 1. The manifold M , equipped with the symplectic structure nΩ, is pre-
quantized by the line bundle L⊗n: the corresponding moment map is nΦK . For any
dominant weight µ ∈ ∧∗

+, the symplectic reduction of (M,nΩ) relatively to the weight nµ
is (Mµ, nΩµ). Like in definition 3.8, we consider the following Riemann-Roch numbers

Q(Mµ, nΩµ) =

{
0 if µ /∈ ∆K(M),

RR(Mµ+ǫ, (Lµ,ǫ)
⊗n) if µ ∈ ∆K(M) and ‖ǫ‖ << 1.

Kawasaki-Riemann-Roch formula shows that n ≥ 1 7→ Q(Mµ, nΩµ) is a quasi-polynomial
map [36, 23]. When µ is a weakly-regular value of ΦK , we denote by vol(Mµ) :=
1
dµ

∫
Mµ

(
Ωµ

2π )
dimMµ

2 the symplectic volume of the symplectic orbifold (Mµ,Ωµ). Here dµ

is the generic value of the map m ∈ Φ−1
K (µ) 7→ cardinal(Km/K

0
m).

The following proposition is a direct consequence of Kawasaki-Riemann-Roch formula
(see [23] or §1.3.4 in [29]).

Proposition 3.9 Let µ ∈ ∆K(M) ∩ ∧∗
+ be a weakly-regular value of ΦK . Then we

have Q(Mµ, nΩµ) ∼ vol(Mµ)n
dimMµ

2 , when n → ∞. In particular the map n ≥ 1 7→
Q(Mµ, nΩµ) is non-zero.

3.5 Quantization commutes with reduction

Let us explain the “Quantization commutes with Reduction” Theorem proved in [30].

We fix λ̃ ∈ ̂̃Ghol. The coadjoint orbit G̃λ̃ is prequantized by the line bundle G̃×K
λ̃
Cλ̃,

and the moment map Φλ̃G : G̃λ̃ → g∗ corresponding to the G-action on G̃×K
λ̃
Cλ̃ is equal

to the restriction of the map πg,g̃ to G̃λ̃.

The symplectic slice Yλ̃ = (Φλ̃G)
−1(k∗) is prequantized by the line bundle Lλ̃ := G̃×K

λ̃

Cλ̃|Yλ̃ . The moment map Φλ̃K : Yλ̃ → k∗ corresponding to the K-action is equal to the

restriction of Φλ̃G to Yλ̃.

For any λ ∈ Ĝhol, we consider the (possibly singular) symplectic reduced space

Xλ̃,λ := (Φλ̃K)
−1(λ)/Kλ,

equipped with the reduced symplectic form Ωλ̃,λ, and the (possibly singular) line bundle

Lλ̃,λ :=
(
Lλ̃|(Φλ̃

K
)−1(λ)

⊗ C−λ

)
/Kλ.

Thanks to Definition 3.8, the geometric quantization Q(Xλ̃,λ,Ωλ̃,λ) ∈ Z of those com-
pact symplectic spaces (Xλ̃,λ,Ωλ̃,λ) are well-defined even if they are singular. In particular
Q(Xλ̃,λ,Ωλ̃,λ) = 0 when Xλ̃,λ := ∅.

The following Theorem is proved in [30].
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Theorem 3.10 Let λ̃ ∈ ̂̃Ghol. We have an Hilbertian direct sum

V G̃
λ̃
|G =

⊕

λ∈Ĝhol

Q(Xλ̃,λ,Ωλ̃,λ) V
G
λ ,

It means that for any λ ∈ Ĝhol, the multiplicity of the representation V G
λ in the restriction

V G̃
λ̃
|G is equal to the geometric quantization Q(Xλ̃,λ,Ωλ̃,λ) of the (compact) reduced space

Xλ̃,λ.

Remark 3.11 Let (λ̃, λ) ∈ ̂̃Ghol × Ĝhol. Theorem 3.10. shows that
[
V G
nλ : V G̃

nλ̃

]
= Q(Xλ̃,λ, nΩλ̃,λ)

for any n ≥ 1.

4 Proofs of the main results

We come back to the setting of §2.2: G/K is a complex submanifold of a Hermitian
symmetric space G̃/K̃ . It means that there exits a K̃-invariant element z ∈ k such that
ad(z) defines complex structures on p̃ and p. We consider the orthogonal decomposition
p̃ = p ⊕ q, and we denote by Sym(q) the symmetric algebra of the complex K-module
(q, ad(z)).

4.1 Proof of Theorem A

The set Πhol(G̃,G) is equal to
⋃
ã∈C̃hol

{ã} ×∆G(G̃ã). We define

Πhol(G̃,G)0 :=
⋃

ã∈C̃hol

{ã} ×∆G(G̃ã)0.

We start with the following result.

Lemma 4.1 The set Πhol(G̃,G)0
⋂

t̃∗Q × t∗Q is dense in Πhol(G̃,G).

Proof : Let (ξ̃, ξ) ∈ Πhol(G̃,G): take g̃ ∈ G̃ such that ξ = πg,g̃(g̃ξ̃). We consider a sequence

ξ̃n ∈ C̃hol ∩ t̃∗Q converging to ξ̃. Then ξn := πg,g̃(g̃ξ̃n) is a sequence of C0
G/K converging

to ξ ∈ Chol. Since the map p : C0
G/K → Chol is continuous (se Lemma 2.3), the sequence

ηn := p(ξn) converges to p(ξ) = ξ. By definition, we have ηn ∈ ∆G(G̃ ξ̃n) for any n ∈ N.
Since ξ̃n are rational, each subset ∆G(G̃ξ̃n)

0 ∩ t∗Q is dense in ∆G(G̃ξ̃n) (see Lemma 2.10).

Hence, ∀n ∈ N, there exists ζn ∈ ∆G(G̃ ξ̃n)
0 ∩ t∗Q such that ‖ζn − ηn‖ ≤ 2−n. Finally, we

see that (ξ̃n, ζn) is a sequence of rational elements of Πhol(G̃,G)0 converging to (ξ, ξ̃). ✷

The main purpose of this section is the proof of the following theorem.
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Theorem 4.2 The following inclusions hold

Πhol(G̃,G)0
⋂

t̃∗Q × t∗Q ⊂
(1)

ΠQ
hol(G̃,G) ⊂

(2)
Πhol(G̃,G).

Lemma 4.1 and Theorem 4.2 gives the important Corollary.

Corollary 4.3 ΠQ
hol(G̃,G) is dense in Πhol(G̃,G).

Proof of Theorem 4.2 : Let (µ̃, µ) ∈ ΠQ
hol(G̃,G): there exists N ≥ 1 such that

(Nµ̃,Nµ) ∈ ΠZ
hol(G̃,G). The multiplicity [V G

Nµ : V G̃
Nµ̃] is non-zero, and thanks to The-

orem 3.10, it implies that the reduced space XNµ̃,Nµ is non-empty. In other words
(Nµ̃,Nµ) ∈ Πhol(G̃,G). The inclusion (2) is proven.

Let (µ̃, µ) ∈ Πhol(G̃,G)0
⋂
t∗Q × t̃∗Q. There exists No ≥ 1 such that λ := Noµ ∈ Ĝhol,

λ̃ := Noµ̃ ∈ ̂̃Ghol and λ ∈ ∆G(G̃λ̃)0: the element λ is a weakly-regular value of the moment

map G̃λ̃ → g∗. Theorem 3.10 tell us that, for any n ≥ 1, the multiplicity [V G
nλ : V G̃

nλ̃
] is equal

to Riemann-Roch number Q(Xλ̃,λ, nΩλ̃,λ). Since the map n 7→ Q(Xλ̃,λ, nΩλ̃,λ) is non-zero

(see Proposition 3.9), we can conclude that there exists no ≥ 1 such that [V G
noλ

: V G̃
noλ̃

] 6= 0.

In other words, we obtain noNo(µ̃, µ) ∈ ΠZ
hol(G̃,G) and so (µ̃, µ) ∈ ΠQ

hol(G̃,G). The
inclusion (1) is settled. ✷

Now we can terminate the proof of Theorem A.

Thanks to Proposition 3.5, we know that ΠQ
hol(G̃,G) is a Q-convex cone. Since

Πhol(G̃,G) is a closed subset of C̃hol × Chol (see Proposition 2.5), we can conclude, by
a density argument, that Πhol(G̃,G) is a closed convex cone of C̃hol × Chol.

4.2 The affine variety K̃C × q

Let κ̃ be the Killing form on the Lie algebra g̃. We consider the K̃-invariant symplectic
structures Ωp̃ on p̃, defined by the relation

Ωp̃(Ỹ , Ỹ ′) = κ̃(z, [Ỹ , Ỹ ′]), ∀Ỹ , Ỹ ′ ∈ p̃.

We notice that the complex structure ad(z) is adapted to Ωp̃ : Ωp̃(Ỹ , ad(z)Ỹ ) > 0 if Ỹ 6= 0.
We denote by Ωq the restriction of Ωp̃ on the symplectic subspace q. The moment

map Φq associated to the K-action on (q,Ωq) is defined by the relations 〈Φq(Y ),X〉 =
−1
2 κ̃([X,Y ], [z, Y ]), ∀(X,Y ) ∈ p × q. In particular, 〈Φq(Y ), z〉 = −1

2 ‖Y ‖2, ∀Y ∈ q, so the
map 〈Φq, z〉 is proper.

The complex reductive group K̃C is equipped with the following action of K̃ × K :
(k̃, k) · a = k̃ak−1. It has a canonical structure of a smooth affine variety. There is a
diffeomorphism of the cotangent bundle T∗K̃ with K̃C defined as follows. We identify
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T∗K̃ with K̃ × k̃∗ by means of left-translation and then with K̃ × k̃ by means of an
invariant inner product on k̃. The map ϕ : K̃ × k̃ → K̃C given by ϕ(a,X) = aeiX is a
diffeomorphism. If we use ϕ to transport the complex structure of K̃C to T∗K̃, then the
resulting complex structure on T∗K̃ is compatible with the symplectic structure on T∗K̃,
so that T∗K̃ becomes a Kähler Hamiltonian K̃ ×K-manifold (see [11], §3). The moment
map relative to the K̃×K-action is the proper map ΦK̃ ⊕ΦK : T∗K̃ → k̃∗⊕ k∗ defined by

ΦK̃(ã, η̃) = −ãη̃ and ΦK(ã, η̃) = πk,̃k(η̃). Here πk,̃k : k̃
∗ → k∗ is the projection dual to the

inclusion k →֒ k̃ of Lie algebras.
Finally we consider the Kähler Hamiltonian K̃ × K-manifold T∗K̃ × q, where q is

equipped with the symplectic structure Ωq. Let us denote by Φ : T∗K̃ × q → k̃∗ ⊕ k∗ the
moment map relative to the K̃ ×K-action :

(15) Φ(ã, η̃, Y ) =
(
−ãη̃, πk,̃k(η̃) + Φq(Y )

)
.

Since Φ is proper map, the Convexity Theorem tell us that

∆(T∗K̃ × q) := Image(Φ)
⋂

t̃∗≥0 × t∗≥0

is a closed convex locally polyhedral set.
We consider now the action of K̃ ×K on the affine variety K̃C × q. The set of highest

weights of K̃C × q is the semigroup

∆Z(K̃C × q) ⊂ ∧̃∗
+ × ∧∗

+

consisting of all dominant weights (λ̃, λ) such that the irreducible K̃ ×K-representation

V K̃
λ̃

⊗V K
λ occurs in the coordinate ring C[K̃C× q]. A direct application of the Peter-Weyl

Theorem gives the following characterization :

(16) (λ̃, λ) ∈ ∆Z(K̃C × q) ⇐⇒
[
V K̃
λ̃
|K ⊗ V K

λ ⊗ Sym(q)
]K

6= 0.

We denote by ∆Q(K̃C × q) the Q-convex cone generated by the semigroup
∆Z(K̃C × q): (ξ̃, ξ) ∈ ∆Q(K̃C × q) if and only if ∃N ≥ 1, N(ξ̃, ξ) ∈ ∆Z(K̃C × q).

The following important fact is classical (see Theorem 4.9 in [34]).

Proposition 4.4 The Kirwan polyhedron ∆(T∗K̃ × q) is equal to the closure of the Q-
convex cone ∆Q(K̃C × q).

4.3 Proof of Theorem B

Consider the semigroup ΠZ(G̃,G) of ∧̃∗
+ ×∧∗

+ (see Definition 1.3) and the Q-convex cone

ΠQ(G̃,G) := {(ξ̃, ξ) ∈ t̃∗≥0 × t∗≥0 ; ∃N ≥ 1, N(ξ̃, ξ) ∈ ΠZ(G̃,G)}.
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The Jakobsen-Vergne theorem says that ΠZ
hol(G̃,G) = ΠZ(G̃,G)

⋂ ̂̃Ghol×Ĝhol. Hence,

the convex cone ΠQ
hol(G̃,G) is equal to ΠQ(G̃,G) ∩ C̃hol × Chol. Thanks to (16), we know

that (ξ̃, ξ) ∈ ΠQ(G̃,G) if and only if (ξ̃, ξ∗) ∈ ∆Q(K̃C × q). The density results obtained
in Proposition 4.4 and Corollary 4.3 gives finally Theorem B.

Theorem 4.5 1. We have Πhol(G̃,G) = Π(G̃,G)
⋂

C̃hol × Chol.

2. An element (ξ̃, ξ) belongs to Πhol(G̃,G) if and only if

(ξ̃, ξ) ∈ C̃hol × Chol and (ξ̃, ξ∗) ∈ ∆(T∗K̃ × q).

4.4 Proof of Theorem C

We denote by q̄ the K-vector space q equipped with the opposite symplectic form −Ωq

and opposite complex structure −ad(z). The moment map relative to the K-action on q̄

is denoted by Φq̄ = −Φq.

Lemma 4.6 Any element (ξ̃, ξ) ∈ t̃∗≥0 × t∗≥0 satisfies the equivalence :

(ξ̃, ξ∗) ∈ ∆(T∗K̃ × q) ⇐⇒ ξ ∈ ∆K(K̃ξ̃ × q).

Proof : Thanks to (15), we see immediatly that ∃(ã, η̃, Y ) ∈ T∗K̃ × q such that (ξ̃, ξ∗) =
Φ(ã, η̃, Y ) if and only if ∃(b̃, Z) ∈ K̃ × q such that ξ = π

k,̃k(b̃ξ̃) + Φq̄(Z). ✷

At this stage we know that ∆G(G̃µ̃) = ∆K(K̃µ̃ × q) ∩ Chol. Hence, Theorem C will
follows from the next result.

Proposition 4.7 For any µ̃ ∈ C̃hol, the Kirwan polyhedron ∆K(K̃µ̃ × q) is contained in
Chol.

Proof : By definition Chol = C0
G/K ∩ t∗≥0, so we have to prove that π

k,̃k(K̃µ̃)+Image(Φq̄)

is contained in C0
G/K . By definition K̃µ̃ ⊂ C0

G̃/K̃
, and then π

k,̃k(K̃µ̃) ⊂ C0
G/K . Since

C0
G/K + CG/K ⊂ C0

G/K , it is sufficient to check that Image(Φq̄) ⊂ CG/K . Let Φp̃ be the

moment map relative to the action of K̃ on (p̃,Ωp̃). As Image(Φq̄) ⊂ πk,̃k
(
Image(−Φp̃)

)
,

the following lemma will terminate the proof of Proposition 4.7. ✷

Lemma 4.8 The image of the moment map −Φp̃ is contained in CG̃/K̃ .

Proof : Let z∗ ∈ t̃∗ such that 〈z∗, X̃〉 = −κ̃(z, X̃), ∀X̃ ∈ g̃. Consider the coadjoint orbit
Õ = G̃z∗ equipped with its canonical symplectic structure ΩÕ: the symplectic vector

space Tz∗Õ is canonically isomorphic to (p̃,−Ωp̃). In [26], McDuff proved that (Õ,ΩÕ)

is diffeomorphic, as a K̃-symplectic manifold, to the symplectic vector space (p̃,−Ωp̃)
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(see [6, 8] for a generalization of this fact). McDuff’s results shows in particular that
Image(−Φp̃) = π

g̃,̃k(Õ). Our proof is completed if we check that π
g̃,̃k(Õ) ⊂ CG̃/K̃ : in other

words, if 〈π
g̃,̃k(g̃0 z

∗), g̃1z〉 ≥ 0, ∀g̃0, g̃1 ∈ G̃. But

2〈π
g̃,̃k(g̃0 z

∗), g̃1 z〉 = 〈g̃0 z
∗, g̃1z +Θ(g̃1)z〉

= −κ̃(z, g̃−1
0 g̃1 z)− κ̃(z, g̃−1

0 Θ(g̃1)z).

With (7) in hand, it is not difficult to see that −κ̃(z, g̃ z) ≥ 0 for every g̃ ∈ G̃. We thus
verified that π

g̃,̃k(Õ) ⊂ CG̃/K̃ . ✷

5 Facets of the cone Πhol(G̃, G)

We come back to the framework of §4.2. We consider the Kähler Hamiltonian K̃ × K-
manifold T∗K̃×q. The moment map, Φ : T∗K̃×q → k̃∗⊕ k∗, relative to the K̃×K-action
is defined by (15).

In this section, we adapt to our case the result of §6 of [31] concerning the parametriza-
tion of the facets of Kirwan polyhedrons in terms of Ressayre’s data.

5.1 Admissible elements

We choose maximal torus T̃ ⊂ K̃ and T ⊂ K such that T ⊂ T̃ . Let Ro and R be
respectively the set of roots for the action of T on (g̃/g)⊗C and g⊗C. Let R̃ be the set
of roots for the action of T̃ on g̃⊗C. Let R+ ⊂ R and R̃+ ⊂ R̃ be the systems of positive
roots defined in (6). Let W, W̃ be the Weyl groups of (T,K) and (T̃ , K̃). Let wo ∈ W be
the longest element.

We start by introducing the notion of admissible elements. The group hom(U(1), T )
admits a natural identification with the lattice ∧ := 1

2π ker(exp : t → T ). A vector γ ∈ t is
called rational if it belongs to the Q-vector space tQ generated by ∧.

We consider the K̃ ×K-action on N := T∗K̃ × q. We associate to any subset X ⊂ N ,
the integer dimK̃×K(X ) (see (5)).

Definition 5.1 A non-zero element (γ̃, γ) ∈ t̃ × t is called admissible if the elements γ̃
and γ are rational and if dimK̃×K(N (γ̃,γ))− dimK̃×K(N) ∈ {0, 1}.

If γ ∈ t, we denote by Ro ∩ γ⊥ the subsets of weight vanishing against γ. We start
with the following lemma whose proof is left to the reader (see §6.1.1 of [31]).

Lemma 5.2 1. N (γ̃,γ) 6= ∅ if and only if γ̃ ∈ W̃γ.

2. dimK̃×K(N) = dimT (g̃/g) = dim(t)− dim(Vect(Ro)).

3. For any w̃ ∈ W̃ , dimK̃×K(N
(w̃γ,γ)) = dimT (g̃

γ/gγ) = dim(t)− dim(Vect(Ro ∩ γ⊥)).
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The next result is a direct consequence of the previous lemma.

Lemma 5.3 The admissible elements relative to the K̃×K-action on T∗K̃× q are of the
form (w̃γ, γ) where w̃ ∈ W̃ and γ is a non-zero rational element satisfying Vect(Ro)∩γ

⊥ =
Vect(Ro ∩ γ⊥).

5.2 Ressayre’s data

Definition 5.4 1. Consider the linear action ρ : G → GLC(V ) of a compact Lie group
on a complex vector space V . For any (η, a) ∈ g× R, we define the vector subspace
V η=a = {v ∈ V, dρ(η)v = iav}. Thus, for any η ∈ g, we have the decomposition
V = V η>0 ⊕ V η=0 ⊕ V η<0 where V η>0 =

∑
a>0 V

η=a, and V η<0 =
∑

a<0 V
η=a.

2. The real number Trη(V
η>0) is defined as the sum

∑
a>0 a dim(V η=a).

We consider an admissible element (w̃γ, γ). The submanifold of N ≃ K̃C × q fixed of
by (w̃γ, γ) is N (w̃γ,γ) = w̃K̃γ

C×qγ . There is a canonical isomorphism between the manifold
N (w̃γ,γ) equipped with the action of w̃K̃γw̃−1 ×Kγ with the manifold K̃γ

C × qγ equipped
with the action of K̃γ × Kγ . The tangent bundle (TN |N(w̃γ,γ))(w̃γ,γ)>0 is isomorphic to
Nγw × k̃

γ>0
C × qγ>0.

The choice of positive roots R+ (resp. R̃+) induces a decomposition kC = n ⊕ tC ⊕ n

(resp. k̃C = ñ ⊕ t̃C ⊕ ñ), where n =
∑

α∈R+(k ⊗ C)α (resp. ñ =
∑

α̃∈R̃+(k̃ ⊗ C)α̃). We
consider the map

ρw̃,γ : K̃γ
C × qγ −→ hom

(
ñw̃γ>0 × nγ>0 , k̃γ>0

C × qγ>0
)

defined by the relation

ρw̃,γ(x̃, v) : (X̃,X) 7−→ ((w̃x̃)−1X̃ −X ; X · v),

for any (x̃, v) ∈ K̃γ
C × qγ .

Definition 5.5 (γ, w̃) ∈ t× W̃ is a Ressayre’s data if

1. (w̃γ, γ) is admissible,

2. ∃(x̃, v) such that ρw̃,γ(x̃, v) is bijective.

Remark 5.6 In [31], the Ressayre’s data were called regular infinitesimal B-Ressayre’s
pairs.

Since the linear map ρw̃,γ(x̃, v) commutes with the γ-actions, we obtain the following
necessary conditions.

Lemma 5.7 If (γ, w̃) ∈ t× W̃ is a Ressayre’s data, then
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• Relation (A) : dim(ñw̃γ>0) + dim(nγ>0) = dim(k̃γ>0
C ) + dim(qγ>0).

• Relation (B) : Trw̃γ(ñ
w̃γ>0) + Trγ(n

γ>0) = Trγ(k̃
γ>0
C ) + Trγ(q

γ>0).

Lemma 5.8 Relation (B) is equivalent to

(17)
∑

α∈R+

〈α,γ〉>0

〈α, γ〉 =
∑

α̃∈R̃+

〈α̃,w̃0w̃γ〉>0

〈α̃, w̃0w̃γ〉.

Proof : First one sees that Trγ(q
γ>0) = Trγ(p̃

γ>0) − Trγ(p
γ>0) =

∑
α̃∈R̃

+
n

〈α̃,γ〉>0

〈α̃, γ〉 −

∑
α∈R

+
n

〈α,γ〉>0

〈α, γ〉, and Trγ(k̃
γ>0
C ) = Trw̃γ(k̃

w̃γ>0
C ) = Trw̃γ(ñ

w̃γ>0) +
∑

α̃∈R̃
+
c

〈α̃,w̃0w̃γ〉>0

〈α̃, w̃0w̃γ〉.

Relation (B) is equivalent to

(18) Trγ(n
γ>0) +

∑

α∈R
+
n

〈α,γ〉>0

〈α, γ〉 =
∑

α̃∈R̃
+
n

〈α̃,γ〉>0

〈α̃, γ〉+
∑

α̃∈R̃
+
c

〈α̃,w̃0w̃γ〉>0

〈α̃, w̃0w̃γ〉.

Since R̃+
n is invariant under the action of the Weyl group W̃ , the right hand side of (18) is

equal to
∑

α̃∈R̃+

〈α̃,w̃0w̃γ〉>0

〈α̃, w̃0w̃γ〉. Since the left hand side of (18) is equal to
∑

α∈R+

〈α,γ〉>0

〈α, γ〉,

the proof of the Lemma is complete. ✷

5.3 Cohomological characterization of Ressayre’s data

Let γ ∈ t be a non-zero rational element. We denote by B ⊂ KC and by B̃ ⊂ K̃C the Borel
subgroups with Lie algebra b = tC ⊕ n and b̃ = t̃C ⊕ ñ. Consider the parabolic subgroup
Pγ ⊂ KC defined by

(19) Pγ = {g ∈ KC, lim
t→∞

exp(−itγ)g exp(itγ) exists}.

Similarly, one defines a parabolic subgroup P̃γ ⊂ K̃C.
We work with the projective varieties Fγ := KC/Pγ , F̃γ := K̃C/P̃γ , and the canonical

embedding ι : Fγ → F̃γ . We associate to any w̃ ∈ W̃ , the Schubert cell

X̃ow̃,γ := B̃[w̃] ⊂ F̃γ .

and the Schubert variety X̃w̃,γ := X̃ow̃,γ . If W̃
γ denotes the subgroup of W̃ that fixes γ, we

see that the Schubert cell X̃ow̃,γ and the Schubert variety X̃w̃,γ depends only of the class of

w̃ in W̃/W̃ γ .
On the variety Fγ , we consider the Schubert cell Xoγ := B[e] and the Schubert variety

Xγ := Xoγ .

22



We consider the cohomology1 ring H∗(F̃γ ,Z) of F̃γ . If Y is an irreducible closed
subvariety of F̃γ , we denote by [Y ] ∈ H2nY (F̃γ ,Z) its cycle class in cohomology : here
nY = codimC(Y ). Let ι∗ : H∗(F̃γ ,Z) → H∗(Fγ ,Z) be the pull-back map in cohomology.
Recall that the cohomology class [pt] associated to a singleton Y = {pt} ⊂ Fγ is a basis
of Hmax(Fγ ,Z).

To an oriented real vector bundle E → N of rank r, we can associate its Euler class
Eul(E) ∈ H2r(N,Z). When V → N is a complex vector bundle, then Eul(VR) corresponds
to the top Chern class cp(V), where p is the complex rank of V, and VR means V viewed
as a real vector bundle oriented by its complex structure (see [5], §21).

The isomorphism qγ>0 ≃ q/qγ≤0 shows that qγ>0 can be viewed as a Pγ-module. Let
[qγ>0] = KC ×Pγ qγ>0 be the corresponding complex vector bundle on Fγ . We denote
simply by Eul(qγ>0) the Euler class Eul([qγ>0]R) ∈ H∗(Fγ ,Z).

The following characterization of Ressayre’s data was obtained in [31], §6. Recall that
Ro denotes the set of weights relative to the T -action on (g̃/g)⊗C.

Proposition 5.9 An element (γ, w̃) ∈ t × W̃ is a Ressayre’s data if and only if the
following conditions hold :

• γ is non-zero and rational.

• Vect(Ro ∩ γ⊥) = Vect(Ro) ∩ γ⊥.

• [Xγ ] · ι
∗([X̃w̃,γ ]) · Eul(q

γ>0) = k[pt], k ≥ 1 in H∗(Fγ ,Z).

•
∑

α∈R+

〈α,γ〉>0

〈α, γ〉 =
∑

α̃∈R̃+

〈α̃,w̃0w̃γ〉>0

〈α̃, w̃0w̃γ〉.

5.4 Parametrization of the facets

We can finally describe the Kirwan polyhedron ∆(T∗K̃ × q) (see [31], §6).

Theorem 5.10 An element (ξ̃, ξ) ∈ t̃∗≥0 × t∗≥0 belongs to ∆(T∗K̃ × q) if and only if

〈ξ̃, w̃γ〉+ 〈ξ, γ〉 ≥ 0

for any Ressayre’s data (γ, w̃) ∈ t× W̃ .

Theorem 5.10 and Theorem 4.5 permit us to give the following description of the
convex cone Πhol(G̃,G).

Theorem 5.11 An element (ξ̃, ξ) belongs to Πhol(G̃,G) if and only if (ξ̃, ξ) ∈ C̃hol × Chol
and

〈ξ̃, w̃γ〉 ≥ 〈ξ, w0γ〉

for any (γ, w̃) ∈ t× W̃ satisfying the following conditions:

1Here, we use singular cohomology with integer coefficients.
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• γ is non-zero and rational.

• Vect(Ro ∩ γ⊥) = Vect(Ro) ∩ γ⊥.

• [Xγ ] · ι
∗([X̃w̃,γ ]) · Eul(q

γ>0) = k[pt], k ≥ 1 in H∗(Fγ ,Z).

•
∑

α∈R+

〈α,γ〉>0

〈α, γ〉 =
∑

α̃∈R̃+

〈α̃,w̃0w̃γ〉>0

〈α̃, w̃0w̃γ〉.

6 Example: the holomorphic Horn cone Hornhol(p, q)

Let p ≥ q ≥ 1. We consider the pseudo-unitary group G = U(p, q) ⊂ GLp+q(C) defined by
the relation : g ∈ U(p, q) if and only if gIdp,qg

∗ = Idp,q where Idp,q is the diagonal matrice
Diag(Idp,−Idq).

We work with the maximal compact subgroup K = U(p) × U(q) ⊂ G. We have the
Cartan decomposition g = k⊕ p, where p is identified with the vector space Mp,q of p× q
matrices through the map

X ∈ Mp,q 7−→

(
0 X
X∗ 0

)
.

We work with the element zp,q = i
2Idp,q which belongs to the center of k. The adjoint

action of zp,q on p corresponds to the standard complex structure on Mp,q.
The trace on glp+q(C) defines an identification g ≃ g∗ = hom(g,R): to X ∈ g we

associate ξX ∈ g∗ defined by 〈ξX , Y 〉 = −Tr(XY ). Thus, the G-invariant cone CG/K
defined by zp,q can be viewed as the following cone of g:

C(p, q) =
{
X ∈ g, Im

(
Tr(gXg−1Idp,q)

)
≥ 0, ∀g ∈ U(p, q)

}
.

Let T ⊂ U(p) × U(q) be the maximal torus formed by the diagonal matrices. The
Lie algebra t is identified with Rp × Rq through the map d : Rp × Rq → u(p) × u(q) :
dx = Diag(ix1, · · · , ixp, ixp+1, · · · , ixp+q). The Weyl chamber is

t≥0 = {x ∈ Rp × Rq, x1 ≥ · · · ≥ xp and xp+1 ≥ · · · ≥ xp+q} .

Proposition 2.2 tells us that the U(p, q) adjoint orbits in the interior of C(p, q) are parametrized
by the holomorphic chamber

Cp,q = {x ∈ Rp × Rq, x1 ≥ · · · ≥ xp > xp+1 ≥ · · · ≥ xp+q} ⊂ t≥0.

Definition 6.1 The holomorphic Horn cone Hornhol(p, q) := Horn2hol(U(p, q)) is defined
by the relations

Hornhol(p, q) =
{
(A,B,C) ∈ (Cp,q)

3, U(p, q)dC ⊂ U(p, q)dA + U(p, q)dB
}
,
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Let us detail the description given of Hornhol(p, q) by Theorem B. For any n ≥ 1, we
consider the semigroup ∧+

n = {(λ1 ≥ · · · ≥ λn)} ⊂ Zn. If λ = (λ′, λ′′) ∈ ∧+
p × ∧+

q , then

Vλ := V
U(p)
λ′ ⊗ V

U(q)
λ′′ denotes the irreducible representation of U(p) × U(q) with highest

weight λ. We denote by Sym(Mp,q) the symmetric algebra of Mp,q.

Definition 6.2 1. HornZ(p, q) is the semigroup of (∧+
p ×∧+

q )
3 defined by the conditions:

(λ, µ, ν) ∈ HornZ(p, q) ⇐⇒ [Vν : Vλ ⊗ Vµ ⊗ Sym(Mp,q)] 6= 0.

2. Horn(p, q) is the convex cone of (t≥0)
3 defined as the closure of Q>0 ·HornZ(p, q).

Theorem B asserts that

(20) Hornhol(p, q) = Horn(p, q)
⋂

(Cp,q)
3.

In another article [32], we obtained a recursive description of the cones Horn(p, q). This
allows us to give the following description of the holomorphic Horn cone Hornhol(2, 2).

Example 6.3 An element (A,B,C) ∈ (R4)3 belongs to Hornhol(2, 2) if and only if the
following conditions holds:

a1 ≥ a2 > a3 ≥ a4
b1 ≥ b2 > b3 ≥ b4
c1 ≥ c2 > c3 ≥ c4

a1 + a2 + a3 + a4 + b1 + b2 + b3 + b4 = c1 + c2 + c3 + c4

a1 + a2 + b1 + b2 ≤ c1 + c2

a2 + b2 ≤ c2
a2 + b1 ≤ c1
a1 + b2 ≤ c1

a3 + b3 ≥ c3
a3 + b4 ≥ c4
a4 + b3 ≥ c4

a2 + a4 + b2 + b4 ≤ c1 + c4
a2 + a4 + b2 + b4 ≤ c2 + c3
a2 + a4 + b1 + b4 ≤ c1 + c3
a1 + a4 + b2 + b4 ≤ c1 + c3
a2 + a4 + b2 + b3 ≤ c1 + c3
a2 + a3 + b2 + b4 ≤ c1 + c3
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