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Abstract

In this article, we obtain a recursive description of the Horn cone
Horn(p, q) with respect to the integers p and ¢, as in the classical Horn’s
conjecture.
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When G is Lie group, a natural problem is to understand how the sum of
two adjoint orbits decomposes into a union of adjoint orbits. Let g be the
the Lie algebra of G and let g/G be the set of adjoint orbits. The Horn cone
is defined as follows

Horn(G) = {(0,0',0") € (3/G)3, O" < O + O'}.

Consider the case where G is a compact connected Lie group. Let T' < G
be a maximal torus with Lie algebra t. The set g/G admits a canonical
identification with a Weyl chamber t-g < t. In this setting, the Horn cone
Horn(G) < (t=0)® has been at the center of numerous studies [13, 15, 16,
4, 2, 3, 14, 27] that we summarize by the following theorem. We refer the
reader to the survey articles [5, 18] for details.



Theorem 1.1 If G is a compact connected Lie group, Horn(G) is a poly-
hedral convexr cone and one can parametrize the equation of its facets by
cohomological means.

1.1 Horn’s conjecture

When G is the unitary group U(n), the convex polyhedral cone! Horn(n)
has a nice feature which was predicted by A. Horn in the 60s : it admits a
recursive description relative to the integer n > 1 [13].

Denote the set of cardinality r subsets I = {iy < ia < -+ < i} of
[n] = {1,...,n} by P". To each I € P we associate a weakly decreasing
sequence of non-negative integers

(1) AI) =M= X2 A) € ZL,

where \y, = n —r + a — i, for a € [r].

Let d : R" — u(n) be the map that sends X = (z1,...,2,) to the
diagonal matrix dx = Diag(ix1,...,ix,). The map d induces a one to
one correspondence between C, = {(z1 = --- = z,)} < R" and the set
of U(n)-adjoint orbits. If X = (z1,...,z,) € R™ and I < [n], we define
| X |1 = 2ierwi and | X | = 200, ;.

Definition 1.2 Letn > 1.

Horn(n) = {(A4,B,C) € (C,)3, U(n)dc < U(n)ds + U(n)dp}.

The following Horn’s conjecture [13] was settled in the affirmative by
combining the work of A. Klyachko [15] with the work of A. Knutson and
T. Tao [16] on the “saturation” problem. We refer the reader to Fulton’s
survey article [10] for details.

Theorem 1.3 (Horn’s conjecture) An element (A, B,C) € (Cy,)? belongs
to Horn(n) if and only if the following conditions holds

o |[Al+|B|=|C|,
o Vre[n—1],VI,J, K € P}, we have

|Alr+|Bl;<|Clxg if (MI),A(J),A(K)) e Horn(r).
We note Horn(U(n)) simply by Horn(n).




1.2 Holomorphic Horn cone Horny,(p, q)

Let p = g = 1. We begin by recalling the definition of the holomorphic Horn
cone Hornye(p, ) associated with the pseudo-unitary group U (p, q).

The Lie group U(p, q) < GLp44(C) is defined by the relations gId, ,¢* =
Id, 4, where Id, ; is the diagonal matrice Diag(Id,, —Id,). The Lie algebra
u(p,q) of U(p,q) admits the following invariant convex cone

C(p,q) = {X € u(p,q), Im(Tr(gXg 'Idp4)) =0, Yge U(p,q)} .
Let us consider
Copg={zeRP xRYx; = Za,>Tpy1 =+ = Tpig € Cp xCy

and the map d : RP x R? — u(p,q). A well-know result says that for any
U(p, q)-orbit O contained in the interior of C(p,q), there exists a unique
X € Cpq such that O = U(p,q)dx (see [28, 21]). In other words, the map
d realizes a one to one map between C, , and the set of U(p, g)-orbits in the
interior of the invariant convex cone C(p, q). The holomorphic Horn cone is
then defined as follows :

Hornyel(p, ¢) = {(A, B,C) € (Cp)°, U(p,q)dc = U(p,q)da + U(p,q)dB} .

In a companion paper [23], we have proved that Hornpe(p, q) is a closed
convex cone of (Cp7q)3, and we have explained a way to compute it. In
order to detail this result, we need some additional notations. For any
n > 1, we consider the semigroup A} = {(A\y = -+ = \,)} < Z". If
A= (N, \") e Af x Af, then V) := V/® @ VY@ denotes the irreducible
representation of U(p) x U(q) with highest weight \. We denote by M, , the
vector space of p x ¢ complex matrices, and by Sym(M,,,) the symmetric
algebra of M, ,.

If H is a representation of U(p) x U(q), we denote by [V, : H] the
multiplicity of V,, in H.

Definition 1.4 1. Horn%(p,q) is the semigroup of (Ay X /\;)3 defined
by the conditions:

(A p,v) € Hornz(p7 q) = [V, :  ®V, ® Sym(M,4)] # 0.

2. Horn(p, q) is the convex cone of (C, x Cq)? defined as the closure of
Q= Horn®(p, q).

The following result is proved in [23].
Theorem 1.5 We have
Hornyol(p, g) = Horn(p, ) [](Cpg)®.
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1.3

Statement of the main result

We now explain the main purpose of this paper that concerns a recursive
description of the convex polyhedral cones Horn(p, ¢) as in Horn’s conjecture.
We need another notations.

1.

2.

3.

If A= (A,A") e RP xRYand [ = I' x I" < [p] x [¢], we define
|Al;=|A"|p+|A" |ppand |A|=|A"|+]A"|.

If I =1 x1"c[n] x[m] then AN(I) = (A(I"),A\(I")) € A x A

Let 1, = (1,...,1) € Z".

The main result of this paper is the following theorem.

Theorem 1.6 Letp > q = 1. An element (A, B,C) € (C, x Cy)® belongs to
Horn(p, q) if and only if the following conditions holds:

1Al +|B|=1C]|

A+ 1B <[]}

For any r € [p—1], for any I', J', K' € P, we have :

| Al + [ By < ||k | i (M), A("), A(K")) € Horn(r).

|A |y + | B |y = |C g | if NI, A(J),\N(K') + (¢g+p—7)1,) € Horn(r).

For any s € [q—1], for any I",J", K" € P, we have :

| A" g + | B" |jn = | C" |gn | if NI"),NJ"), \(K") + (¢—5)15) € Horn(s).

| A” |[// + | B” |J// < | C” |K” lf ()\(I”), )\(J”), )\(K”) — p]-s) € HOI‘D(S).

For any (r,s) € [p—1] x [¢q—1] with r = s, for any I, J, K € P¥ x P,
we have

Al +[Bls<|Cl| if (\I),\(J), A(F)+(0, (r—p)1)) € Hor(r, ).




1.4 Examples
The convex cones Horn(1,1), Horn(2,1) and Horn(2,2) admit the following

descriptions.

Proposition 1.7 An element (A, B,C) € (R x R)3 belongs to Horn(1, 1) if
and only if the following conditions holds:

‘a1+a2+bl+b2261+62‘

a1 +b1 <

Proposition 1.8 An element (A, B,C) € (C2 x R)3 belongs to Horn(2, 1) if
and only if the following conditions holds:

‘a1~|—a2+a3+b1+b2—|—b3=01+62+63‘

‘a1+a2+bl+62<61+62‘

as+by < o
as+b;1 < ¢
a1 +by < ¢
art+bi1 = o

Proposition 1.9 An element (A, B,C) € (Co x C2)? belongs to Horn(2,2)
if and only if the following conditions holds:

‘a1+a2+a3+a4+bl+b2+b3+b4:cl+02+63+04‘

la1+ay+bi+by<cito

ag+by < ¢
as+b < ¢
a1 +by <
az+bs = c3
agt+by = ¢y
ag+bs3 = ¢y




as+ag+by+by < 1ty
as +ag+bs+by < c9+cs
as+ag+b1+by < 1 +ecg
a1 +ag+bs+by < ¢ +cs
as+ags+bs+b3 < c1+cs
as+az+bs+by < ¢ +c

1.5 Outline of the article

The recursive description of Horn(p, ¢) is obtained by studying the Hamil-
tonian action of (U(p) x U(g))? on the manifold? (GL, x GL,)? x CP ® C1.
Let S(p,q) < (Cp % Cq)3 be the corresponding Kirwan polyhedron.

In §2, we study the general framework of a Hamiltonian action of a
compact Lie group K2 on (K¢ x Kc)? x E : here E is a K-module such
that the coordinate ring C[E] does not admit non-constant invariant vec-
tors. We explain how to parameterize the facets of the Kirwan polyhedron
A((K¢ x K¢)? x E) in terms of Ressayre’s data [22]. This parametrization
requires two steps : determination of the admissible elements which are the
potential vectors orthogonal to the facets, and computation of cohomological
conditions on flag varieties.

In §3, we check that the semigroup HornZ(p, q) is saturated. It is a direct
consequence of the Darksen-Weyman saturation theorem [7].

In §4, we determine the admissible elements relative to the action of
(U(p)xU(q))? on (GLyx GL,)?*x CPQCY, and we detailed the cohomological
conditions in this particular case. The formulas need the computation of
certain Euler classes which we carry over to §5.

In §6, we calculate (recursively) the facets of the Kirwan polyhedron
S(p,q). In the last subsection, we complete the proof of our main result.

Acknowledgements
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2 The K?-manifold K¢ x K¢ x E

In this section, we briefly recall the result of §6 of [22] concerning the
parametrization of the facets of Kirwan polyhedrons in terms of Ressayre’s

*We use the notation GL,, for the Lie group GL(C™).



data.

Let K be a compact connected Lie group with complexification K¢. Let
T < K be a maximal torus with Lie algebra t. We consider the lattice A :=
+ ker(exp : t > T) and the dual lattice A* < t* defined by A* = hom(A,Z).
We remark that in is a differential of a character of T" if and only if n € A™*.
The Q-vector space generated by the lattice A* is denoted by ta: the vectors
belonging to t(a are designed as rational. Let t£, be a Weyl chamber. The set
A% = AT 0ty parametrizes the irreducible representations of K: for any
p € A%, we denote by V), the irreducible representation of K with highest
weight .

When K acts linearly on a vector space H, we denote by H¥ the sub-
space of invariant vectors under the K-action.

Let E be a K-module such that C[E]¥ = C : hence the coordinate
ring C[E] has finite K-multiplicities. We consider the following K x K x K
action on the affine variety K¢ x K¢ x E :

(kla k27k3) ’ (x,y,v) = (klxk?,_lakayk‘?)_17k3v)'

The coordinate ring C[K¢ x K¢ x E], viewed as a K3-module, admits the
following decomposition

C[Kc x K¢ x E] = Z mg(\, p,v) Vi ®VMQ®VV3,
Ap,ven®
where mpg (A, p,v) = dim[Vy, ® V, ® V,, ® Sym(E)]¥.
Definition 2.1 We define the following sets :

o The semigroup AZ(Kc x Kc x E) < (A%)3 is defined as follows:
(A p,v) € AZ(Ke x Kc x E) <= mg(\, u,v) # 0.

e The conver cone A(Kc x K¢ x E) < (t,)® is the closure of
Q7Y A%?(Kc x K¢ x E).

Let us explain why the complex K3-manifold N = K¢ x K¢ x E admits
a symplectic structure €2y compatible with the complex structure, and a
moment map ® : N — (£¥)3 associated to the action of K2 on (N, Qy).

Let hg be a K-invariant hermitian structure on E. We equip E with
the 2-form Qp = —Im(hg). The moment map ® g relative to the action of
K on the symplectic vector space (E,g) is defined by

(Pp(v),X) =L10p(Xv,v), YveV, VX et



The hypothesis C[E]® = C implies that ®g is a proper map.

There is a diffeomorphism of the cotangent bundle T* K with K¢ defined
as follows. We identify T*K with K x €* by means of left-translation and
then with K x ¢ by means of an invariant inner product on . The map
¢ : K xt — K¢ given by ¢(k, X) = ke'¥ is a diffeomorphism. If we use
¢ to transport the canonical symplectic 2-form of T*K to K¢, then the
resulting 2-form Qg on K¢ is compatible with the complex structure (see
[12], §3).

Finally, the K3-manifold K¢ x K¢ x E ~ T*K x T*K x E carries the
symplectic 2-form Qn := Q. x Qg. x Qg which is compatible with the
complex structure. The moment map relative to the K3-action on (N, Q)
is the proper map ® = ®; @ P, D P53 : T*K x T*K x E — * Qt* D ¢*
defined by

(2) ®(91,&1,92,62,v) = (9161, — 9282, &1 + &2 + Pp(v)).

By definition, the Kirwan polyhedron A(T*K x T*K x E) is the inter-
section of the image of ® with (t%,)®. The following result is classical (see
Theorem 4.9 in [25]).

Proposition 2.2 The Kirwan polyhedron A(T*K x T*K x E) is equal to
A(K@ X K(C X E)

2.1 Admissible elements

Definition 2.3 When a Lie group G acts on a manifold N, the stabilizer
subgroup of n € N is denoted by G, = {g € G,gn = n}, and its Lie algebra
by gn. Let us define dimg(X') = min,ey dim(g,,) for any subset X < N.

We start by introducing the notion of admissible elements. The group
hom(U (1), T) admits a natural identification with the lattice A := 5= ker(exp :
t > T'). A vector v € t is called rational if it belongs to the Q-vector space
tg generated by A.

We consider the K3-action on N := T*K x T*K x E.

Definition 2.4 A non-zero element (v1,72,73) € t is called admissible if
the elements ~; are rational and if dimgs(NO172:78)) — dim s (N) € {0, 1}.

Let R be the set of roots for (K, T), and let W = N(T')/T be the Weyl
group. The set of weights for the T-action on E is denoted Rg. If v € t, we
denote by (R U RE) n y' the subsets of weight vanishing against .

If w= (w1, ws,ws3) € W3 and v € t, we write v, = (w17, way, wsy). We
start with the following lemma whose proof is left to the reader.



Lemma 2.5 1. NO2%) = &5 if and only if 41,72 € WHs.
2. dimgs(N) = dimz (¢ x E) = dim(t) — dim(Vect(R U Rg)).
3. dimgs(N?™) = dimp (8 x E7) = dim(t) — dim(Vect((% U Rg) nyh)).
The following result is a direct consequence of the previous lemma.

Lemma 2.6 The admissible elements relative to the K3-action on T*K x
T*K x E are of the form 7, where w € W3 and ~ is a non-zero rational
element satisfying Vect(R U Rg) Nyt = Vect((R U RE) nyh).

2.2 Ressayre’s data

Definition 2.7 1. Consider the linear action p : G — GLc(V) of a
compact Lie group on a complex vector space V. For any (n,a) € gx R,
we define the vector subspace V=% = {v € V,dp(n)v = iav}. Thus, for
any 1 € g, we have the decomposition V.= V10 V=0 V1<0 where
V=0 = D=0 VY, and yn<0 = D<o VT

2. The real number Tr,(V1>0) is defined as the sum Y., ,a dim(V7=%).

We consider an admissible element 7, = (wiy, w2y, wsy). The sub-
manifold fixed by 7, is N7 = wiKlw;' x woKJwy ' x E¥37. There is
a canonical isomorphism of the manifold N7 equipped with the action of
w1 Kwit xwe KYwy t x w3 KYwy ! with the manifold K2 x K x E7 equipped
with the action of K7 x K7 x K7. The tangent bundle (TN |yvw)?*>Y is
isomorphic to N7 x {%>0 X E%>0 x E7>0,

The choice of positive roots R* induces a decomposition ¢c = n@tcPn,
where n = >, o (E®C),. We consider the map

p" : K{xK{xEY — hom (nw17>0 x nw27>0 nw37>0,{%>0 X ngo X E7>0)
defined by the relation

P,y 0) (XY, Z) = ((wnx) 7 X —wg Z5 (way) ™Y —wy 25 (wyt Z) ),
for any (z,y,v) € K. x Kl x E7.

Definition 2.8 (v,w) € t x W3 is a Ressayre’s data if

1. vy is admissible,

10



2. I(z,y,v) such that p¥*(x,y,v) is bijective.

Remark 2.9 In [22], the Ressayre’s data were called regular infinitesimal
B-Ressayre’s pairs.

Since the linear map p?* (x, y,v) commutes with the y-actions, we obtain
the following necessary conditions.

Lemma 2.10 If (y,w) € t x W3 is a Ressayre’s data, then
e Relation (A) : ¥)2_, dim(n®">0) = 2dim(?%>0) + dim(E7>0).

o Relation (B) : 32 Try,,(n*7>%) = 2 Tr (£27°) + Tr, (E7>0).

2.3 Cohomological characterization of Ressayre’s data

Let v € t be a rational element. We denote by B < K¢ the Borel subgroup
with Lie algebra b = tc @ n. Consider the parabolic subgroup P, < K¢
defined by

(3) P, ={ge K¢, tlim exp(—ity)gexp(ity) exists}.
—00

We work with the projective variety F, := Kc/P,. We associate to any
w € W, the Schubert cell

Xy, = Blw] < F,,

and the Schubert variety X, := ﬁv If W7 denotes the subgroup of W
that fixes v, we see that the Schubert cell X7, , and the Schubert variety
X,y depends only of the class of w in W /W7,

We consider the cohomology® ring H*(F,, Z) of F,,. If Y is an irreducible
closed subvariety of F.,, we denote by [Y] € H*" (F,,Z) its cycle class in
cohomology : here ny = codim(Y’). Recall that the cohomology class [pt]
associated to a singleton {pt} < F, is a basis of H™(F,,Z).

To an oriented real vector bundle £ — N of rank r, we can associate its
Euler class Eul(£) € H"(N,Z). When £ — N is a complex vector bundle,
then Eul(&r) corresponds to the top Chern class ¢, (). Here p is the complex
rank of £, and &g means £ viewed as a real vector bundle oriented by its
complex structure (see [6], §21).

The isomorphism E7>0 ~ E/E7<? shows that E7>0 can be viewed as a
P,-module. Let 770 = K¢ x P, E7>9 be the corresponding complex vector

3Here, we use singular cohomology with integer coefficients.
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bundle on F,. In the following proposition, we denote simply by Eul(E7>?)
the Euler class Eul(§17°%) € H*(F,,Z).

The following characterization of Ressayre’s data was obtained in [22],
§6.

Proposition 2.11 (y,w) € t x W3 is a Ressayre’s data if and only if
1. 7y is admissible,
2. Relation (B) holds,
3. The following relation holds in H*(F,,Z) :

(4) [:{whv] ) [:{wzﬁ] ’ [:{wzsﬁ] 'EUI(E'PO) = klpt], k=1

Remark 2.12 Notice that relation (A) is equivalent to Z?:l codim (X, )+
dim(E7>°) = dim(F,), hence relation (A) follows from (4).

2.4 Convex cone A(K¢ x K¢ x E) : equations of the facets

The following result is proved in [22], §6.

Theorem 2.13 Let E be a K-module such that C[E]X = C. An element
(&1,62,83) € ( ;0)3 belongs to A(Kc x K¢ x E) if and only

(5) &1, wry) + o, way) + (&3, w3y) =0

for any (v, w) € t x W3 that is a Ressayre’s data, that is to say satisfying
the following properties:

a) v is a non-zero rational element.
b) Vect(R U REp) Nyt = Vect((R U RE) nyh).
¢) [Xuwi ] [Xwory] - [Xuwsy] - Bul(EY0) = k[pt], k > 1 in H*(F,,Z).

d) Relation (B) holds : 3°_| Try,(n®7>0) = 2Tr7(8%>0) + Tr, (E7>0).

12



2.5 Remark on the saturation property

The semigroup AZ(K¢ x K¢ x E) < (A%)3 is called saturated if for any
0 € (A%)3 and any N > 1 we have N0 € AZ(K¢c x K¢ x E) only if 0 €
A?(Kc x K¢ x E).

Proposition 2.14 1. We have

Q7Y AZ(K¢ x Ke x E) = A(Ke x Ke x E) n (t))°

2. The semigroup A”(Kc x K¢ x E) is saturated if and only if
AZ(K@ X K(C X E) = A(K(C X K(C X E) M (/\i)g.

Proof. Let us prove the first point. The inclusion Q™% - AZ(K¢ x K¢ x
E)c A(Kc x K¢ x E)n (t{'@)S follows from the definitions. Let us explain
why the opposite inclusion is a consequence of the [@, R] = 0 theorem.

We consider the proper moment map ® : K¢ x K¢ x E — (£)3. For
any p1 = (u1, pa, u3) € (A%)3, we denote by mpg(u) the multiplicity of V, =
Vu}f a ®Vf§’2 ®VHI§’3 in the coordinate ring C[K¢ x K¢ x E], and we consider
the reduced space

My =@ N (K x Kpg x Kuo)/K x K x K.
that is equipped with the line bundle
Ly =0 (K x Kpg X Kpig) XK, x Ky x Ky (Copy ® C_py @C_ i) .

Suppose that M, is non-empty. Then M, is a complex-projective va-
riety, a projective embedding being given by the Kodaira map M, —
P(HO(M,, Ef?k )) for all sufficiently large k (see Theorem 2.17 in [24]). More-
over, the [@, R] theorem says that for all k& > 1, we have mp(ku) =
dim H°(M,,, Cf?k): hence mg(ku) # 0 for k sufficiently large.

Let £ € A(Kc x K¢ x E) 0 (t)*: let N > 1 such that p, := N¢ € (n%)°.
By definition, the reduced space M, is non-empty. So there exists, k, > 1
such that mp(kojto) # 0, ie. kopto € A?(K¢ x K¢ x E). We have proved
that & = ykou e Q70 - A%(Ke x K¢ x E).

The first point is settled and the second one is an immediate consequence
of the first one. []
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3 Saturated semigroups

For any n > 1, we consider the semigroup A}t = {(A\; = --- = \,)} < Z"
that parametrizes the irreducible representations of the unitary group U(n).
When X € A", the notation A > 0 (resp. A < 0) means that A\, > 0
(resp. A1 < 0), and length(\) is the number of non-zero coordinates A;. To
A= (A ==\, € AL, we associate \* = (=N, = - = —\) € A}
the representation V/\[i(n) is then the dual of V)\U(n).

Let start by recalling the properties of the semigroup HornZ(n) of (A;)3
defined by the relations

(A, 1, v) € HornZ(n) «— [VVU(H) . V/\U(n) ® VﬂU(n)] 2 0.

First, the convex cone of (C,)? defined as the closure of Q>° - Horn?(n)
corresponds to Horn(n) (see Definition 1.2). Moreover, thanks to the sat-
uration Theorem of A. Knutson and T. Tao [16], we know that an ele-
ment (A, 1, v) € (A})? belongs to the semigroup HornZ(n) if and only if
(A, i, v) € Horn(n) (see Proposition 2.14).

In the rest of this section we work with the compact Lie group K =

U(p) x U(g), so that Kc = GL, x GLg. It X = (XN, \") € A} x AF, then

Vy = V)\[,](p ) ® V)\[i(q) denotes the irreducible representation of U(p) x U(q)
with highest weight .

Recall that for any p,q > 1, M, , denotes the vector space of p x ¢
complex matrices.

The purpose of this section is the study of the following semigroups of

(Af x Af).

Definition 3.1 Let (X, p,v) € (A x AF)?.

o The semigroup Horn?(p, q) is defined by the conditions:
(\, i, v) € HornZ(p,q) <= [V, : ) ® V., ® Sym(M, 4)] # 0.

o The semigroup Q%(p,q) is defined by the conditions:

)

A<0
()\,M,V)GQZ(p,q)<:> ,u<0,
[V ® V,, ® Vi, ® Sym(M,, )]V @ *V(@ » o,

o The semigroup S(p,q) is defined by the conditions:

(A 1, v) € 8%(p, q) = [Va ® V, ® V, ® Sym(CP @ C1)]V P>V - .

14
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3.1 The semigroup Q%(p,q)

Let p,q = 1. We consider the quiver () of Figure 1, with dimension vector
Vp.q = (0,P,D, 4, q, q). The vector space

Rep(Q, vpq) = (Mp X Mq,q)2 X Mpq

admits a natural action of the algebraic group GL(Q, vp4) = (GL, x GL,)?
that we recall. Take g = (g1,92,93) € GL(Q,vp,) with ¢; = (g,9)) €
GL,xGLy and (X1, X2,Y) € Rep(Q, v) where X; = (X, X!) € M, , x M, 4
and Y € M, 4. Then g- X = (21,2, y) where z; = (¢! X/(g5) 1, g/ X/ (g5)™1)
and y = g5 (g5) .

We consider the multipicity map m : (A ]‘_f X /\;“)3 — N defined by

m(\, g1, v) = dim [VA @ V,, ® V,, ® Sym(M), ;)] “»* e

Lemma 3.2 The coordinate ring C[Rep(Q, vpq)], viewed as GL(Q,Vpq)-
module, admits the following decomposition

C[Rep(Q; vp,q)] = Z m(A, g, v) Vi ® VMQ V.
A<0,u<0,v

Proof. Tt is due to the fact that the GL(Q, v, )-module C[(M, , x M, ;)]
admits the decomposition C[(M,, , x M, 4)*] = 20<0,4<0 Vi®V2iQV ®Vi’*.
[

The previous lemma shows that Q% (p,q) corresponds to the semigroup
of highest weights associated to the action of the group GL(Q, Vv, 4) on the
coordinate ring C[Rep(Q, vpq)]-

Proposition 3.3 The semigroup Q% (p, q) is saturated.

15
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Proof. This is a direct consequence of the Derksen-Weyman saturation
theorem [7], which asserts that, for a quiver without cycles, the semigroup of
weights of semi-invariants is saturated. Indeed, augment the quiver (Q, v )
to the quiver (@,\71,,(]) (see Figure 2). Then, using the Cauchy formula for
the decomposition of ®}Z]C[(C*)* ® C*1] under the action of [ [}_; GLy,
one sees that there is a bijective morphism between the semigroup of weights
of semi-invariants of the coordinate ring C[Rep(Q, Vp,q)| under the action of
(ITh_, GLi)? x ([1f_, GL¢)® and the semigroup Q%(p,q). OJ

3.2 The semigroups Horn”(p, ¢) and S%(p, q)

We use the involution © : (A} x AF)? — (A} x AF)? that sends (X, p,v) to
)\/ //L/ (V/)*
()\//) * ? (/J/”)* Y 7/” °
Let us denote by 1 € A x Al the vector (1,...,1,1,...,1). The main

purpose of this section is the following result.

Proposition 3.4 1. For any (\, pu,v) € Horn?(p, q), there exists ko, = 0
such that (A — k1, — k1,v* 4+ 2k1) € Q%(p, q), Yk = k.

2. (A, p,v) € Horn®(p, q) if and only if O(X, i, v) € S%(p, q).

16



3. The semigroups HornZ(p, q) and S%(p, q) are saturated.

Proof. Let (A pu,v) € Horm%(p,q) - it means that
[VA® V ® Vi @ Sym(M, )] “#*F0 2 0 and so (A, %) € Q%(p,q) if
A < 0 and gz < 0. We notice that (A + k1, + k1, v + 2k1) € HornZ(p, q),
Vk € Z. Let k, = sup(|A1], |1]): we see that A — k1 < 0 and p— k1 <0
if k > k,, and consequently (A — k1, — k1,v* + 2k1) € Q%(p, q) if k = k.
The first point is settled.

Cauchy formulas give the decompositions

GL GL
Sym(Mp,q) = Sym(CP ® (C?)*) = Z Va " @Vou ™,
length(a)<inf(p,q)
az
Sm(E@@c) = 3 et
length(a)<inf(p,q)
az

For the second point, we have to compare the following cases :

e (\ p,v) € HornZ(p, q) if there exists a > 0 with length(a) < inf(p, q)
such that both conditions hold

[V ® Vi @ Viyrye @ Vi | ¥ # 0
[V)\// @ V#// ® ‘/(l/”)* ® Va*]GLq 75 0

e (\ u,v) € S%(p, q) if there exists a > 0 with length(a) < inf(p, ¢) such
that both conditions hold

[VX ® V,u’ RV, ® Va] GLy £0
[V)\// ® Vu// ® VI/” ® Va]GLq #* 0.

It is then immediate to conclude that (X, i, ) € HornZ(p, q) if and only if
O\, p,v) € S%(p, q).

Let us check that HornZ(p,q) is saturated. Let (\,p,v) such that
N(\ p,v) € HornZ(p,q) for some N > 1. If we use the first point, we
know that there exists k, > 0, such that

N, p,v*) —k(1,1,-2-1) € Q%(p,q), Vk = k,.

Take k = Nk, > k, : we obtain that N(A — k,1,u — ko1, v* + 2k,1) €
Q%(p,q). It follows that (A — ko1, — ko1, v* + 2k,1) € Q%(p,q) because

17



the semigroup Q%(p, q) is saturated. Finally, the last relation implies that
(X, i, v) € Horn%(p, q).

We have verified that the semigroup Horn” (p,q) is saturated, and the
second point also allows us to conclude that the semigroup S%(p, q) is satu-
rated. []

3.3 Final remarks

We have seen that the semigroups HornZ(p, q), SZ(p, q) and Q%(p, q) are all

related. Thus, the associated convex cones Horn(p, q) = Q>0 - Horn?(p, q),
S(p,q) = Q9 - SZ(p, q) and Q(p, ¢) = Q>0 - QZ(p, q) are also interdependent.
The calculation of one entails those of the others. In this paper, we obtain
a recursive description of the Horn cone Horn(p, ¢) through the calculation
of S(p, q).

Let @, be a quiver without cycle which is equipped with a dimension
vector ve. In [1], V. Baldoni, M. Vergne and M. Walter have proposed a
recursive description of the cone generated by the highest weights associated
to the action of the group GL(Q,, Vo) on the coordinate ring C[Rep(Q,, vo)]-
By applying their result to the quiver (Q), v, ) in Figure 1, this should also
allow a recursive description of the Horn cone Horn(p, q).

4 Convex cone S(p,q)

In this section, we apply the results of §2 to the case where K¢ = GL, x
GL4 and the Kc-module is £ = CP @ C?. The coordinate ring C[(GL,, x
GL,)? x CP @ CY], viewed as a (GL, x GL,)3>-module, admits the following
decomposition

Cl(GLy x GL)* xCP@CY = > m\puv) Vi@ViQ Ve

ot
MUVEA X Ag

where m(\, 1, v) = dim[Vy ® V, ® V,, ® Sym(CP @ C9)]¢Lr*CGLa,

We see that the semigroup AZ((GL, x GL4)? x CP ® CY) corresponds
to S%(p,q). Hence we will denote by S(p,q) the convex cone A((GL, x
GL,)? x C°P®CY) : it corresponds to the Kirwan polyhedron relative to the
Hamiltonian action of U(p) x U(q) on (GL, x GL,)? x CP ® CY.

4.1 Admissible elements for (GL, x GL,)* x C* ® C4

Let T~ U(1)? x U(1)? be the maximal torus of K = U(p) x U(q) formed by
the diagonal matrices. The Lie algebra t admits a canonical identification
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with RP x R? through the map d and the Weyl group of (K, T) is isomorphic
to W =6, x &,.

The set of roots for (K,T) is R = {& —¢,1 < i # j < p}u
{e,. —€,1 <k # 1< q}. The set of weights for the T-action on F = C? ® C?
is Rp = {&; + €,,1 <i<p,1<k<gq} Letusdenote R, =R U Rp. We
first notice that |t = ]R’yg, with 78 =1,®-1,¢€t

Definition 4.1 For any (r,s) € {0,...,p} x{0,...,q}, we define vl =" @

vs € t where 4" = (0,...,0,1,...,1) and vs = (—1,...,—1,0,...,0).
~—— ~——
r times s times

Lemma 4.2 Let v € t be a non-zero rational element such that Vect(R,) N
vt = Vect(R, n v1). There exists (r,s) ¢ {(0,0), (p,q)}, w € W and
(a,b) € Q%Y x Q such that v = a(wy") + by§.

Proof. For any t € R, we define

~y(t) = Z e — Z €

1<i<p 1<k<gq
yi=t Ye=—1

We notice that +(t) is orthogonal to M, n yt. If Vect(R,) n 4+ =
Vect(R, N y1) holds we get that y(t) € (Vect(R,) N yH)t = RyJ + Ry
for all ¢t € R. Take t, such that v(t,) # 0. Two situations holds.

1. ¥(to) € Ry{. This case only occurs if v € Q).

2. y(to) ¢ RyJ. Then there exists (r,5) ¢ {(0,0), (p,q)}, w € W and
(z,y) € Q — {0} x Q such that y(t,) = wy’ and y(t,) = 2y + y7§:
hence v = %(wfyg) — %78. If % > 0, the proof is completed. If % <0,
we use that —y] = wey) ", —~{ for some w, € W in order to come
back to the previous case. []

In order to describe the facets of the convex cone S(p, q), we must con-
sider the following admissible elements:

 +£(40,70:70).
o (wivy,ways,wsys) where wy,ws, w3 € W and (r,s) ¢ {(0,0), (p,q)}.

4.2 Admissible elements +(79,7,73)

The admissible elements +(1,79,70) act on (GL, x GL,)? x CP ®@ CY
trivially. Hence £(7,70,7) are Ressayre’s data, and inequalities (5) are
+ (4,78 + (B,7Y) +(C,~§)) = 0. In other words,

(6) | AT+ |B'[+]C"| = [A"[+]B"[+]C"]]
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4.3 Admissible element (w;7!, woyl, w3yl)

Recall the relations that a Ressayre’s data (v, w1, ws, ws) must satisfy (see
Lemma 2.10):

3
Relation (A) : Z (nvi7=0) = = 2dim (¢}~ %) + dim((CP @ C9)7*"),
i=1

3
Relation ( Z Ty (0770) = 2 Tr, (€270) + T, ((CP @ C9)7>0).

It is immediate to see that for (77, ws,ws,ws), Relations (A) and (B)
are equivalent.
We associate to (w1, ws, w3) € (&, x &,) the following subsets :
e Those of cardinal r : I' = wi({1,...,r}), J = w)({1,...,7}), and
K'=wi({1,...,7}).

e Those of cardinal s : I” =w{({g —s + 1,...,¢}), J" =wh({qg —s +
1,...,q}),and K"=ws({g—s+1,...,q}).

Inequality( )becomes|A’| I')e +|B/| Je +|C,‘ K')e = |A”| Iye +|B”| Jmye ct+
|C"| (g which is equivalent to

(7) |A'lp + | B |y +1C g < [A" | + | B" | jn + | C" | g,

thanks to (6).

4.4 Schubert classes

For any m,n = 0, let G(m,n) denote the Grassmannian of complex m-
dimensional linear subspaces of C™*". The singular cohomology of G(m,n)
with integers coefficients is denoted H*(G(m,n),Z).

Let m,n > 1. When a partition A is included in a m x n rectangle, we
write \cmxn:n= A==\, = 0.

Denote the set of cardinality m subsets I = {i1 < iy < -+ < ip}
of [m+n] = {1,...,m + n} by P To each I € PI'™™ we associate
AI) = (A1 = Ao ~>)\ ) € m x n where A\, = n + a — i, for a € [m]. The
map [ — A(I) is one to one map between P**t"™ and the set of partitions of
size m x n. The inverse map is denoted by A € m x n— I(\) € P*".

We work with the flag 0 c C < C?2 < --- < C**™~! < C"*™. For any
partition A € m x n, we define the Schubert cell

={FeGuu, C1AF#CFnF if and only if ke I(\)}.
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and the Schubert variety X, = .’{73 When the partition is (k,0,...,0) with
1 < k < n, the corresponding Schubert variety is denoted by Xj.

Let Bh+m < GLy+m be the Borel subgroup formed by the upper-triangular
matrices. The following facts are well-known (see e.g. [11, 8, 20]) :

1. X§ = Byyn - Vect(e;, i € I(N)),

2. Gm,n = U)\cmxn:{())\’
3. codim(XS) = |A] = D) Mk

Since the Schubert cells define a complex cellular decomposition of the
Grassmannian, an immediate consequence is that the fundamental class of
the Schubert varieties, the Schubert classes oy = [X,] € H2|/\|(Gm,n,Z),
where A € m x n, form a basis of the cohomology with integers coefficients :

H*(G(m,n),Z) = @ Zox.

Acmxn

When A = (k,0,...,0), we denote by oy, € ]’{QIC(Gm,n7 Z) the correspond-
ing Schubert class.

We finish this section by recalling that the Grassmannian G, , admits
the following complex vector bundles :

1. A canonical vector bundle of rank m : E,, .

2. A vector bundle of rank n, denoted E#Ln, such that E,, , ® IE#W is a
trivial bundle of rank m + n.

4.5 Cohomological conditions

Theorem 2.13 tells us that an element (A, B,C) € (C, x C4)® belongs to
S(p,q) = A((GL, x GL,)? x C°P®CY) if and only (6) holds and (7) holds for
any (w1, ws, ws) € (&, x &,)3 and any couple (r,s) € {0,...,p}x{0,...,q}—
{(p,q),(0,0)}, satisfying the relation

(8) [Xuw ] [Xuwsnr] - [Xuwspr] - Bl(V5) = E[pt], k=1

in H*(F,;,7Z).

Let us detailed (8). We fix (r,s) ¢ {(0,0), (p,q)}. The parabolic sub-
group P,r  GL, x GL4 associated to v} by (3) is equal to P,r x P, where

_ (GL, * _ (GLg—s | =
Py = <T‘GTW> cGL, and P, = <04‘G7LS> c GL,.
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Let C" < CP and C?° < CY denote respectively the subspaces
Vect(e;,1 < @ < r) and Vect(ej,1 < j < ¢ —s). We use on CP and C?
the canonical bilinear forms (x,y) — > zxyx. Then (C")t < CP and
(Ca=%)+ < C9 are respectively the subspaces Vect(e;,r + 1 < i < p) and
Vect(ej,q —s+1<j<q).

The flag variety F.r = GL,/P,r x GLy/P,, admits a canonical identifi-
cation with G(r,p —r) x G(q — s, s) through the map

(g, [R]) € GLy/Pyr xGLg/ Py, —> (g((CT), h(Cq_S)) € G(r,p—r)xG(q—s, s).

Let B, ¢ GL, and B, < GL, be the Borel subgroups formed by the
upper-triangular matrices. For any w = (', w") € &, x &4, we consider the
Schubert cell X{, .~ = By[w'] x Bg[w"] = G(p —r,7) x G(s,q — s) and the
Schubert variety

%wfyg = Bp[/w/] X Bq[w//] — x'u/ X xu//

where p/ = Mw'{1,...,r}) € rxp—rand p” = \N(w"{1,...,q—s}) € g—sxs.
If we associate to (wy, w2, ws) € (&, x &,)3, the subsets

o I'=wi({1,....r}), J'=wh({1,...,r}), and K' =w§({1,...,r}),

o I"=wi({g—s+1....q}), J" =wy({g —s + 1,....q}), and K" =
wg({q_8+177q})7

the term [Xuw, 4r] - [Xwsnr ] [Xws ] € H*(G(r,p—1) x G(q—s,5),Z) is then
equal to the tensor product of the cohomology classes?
oAy oAy - Oxkr) € HY (G(r,p — 1), Z),
TX(I")e) " OA((J")e) " OA((K")°) e H* (G(q — S, S), Z)

The subspace (CP ® C7)%>0 is equal to (C")* ® (CI7*)L. Hence the
vector bundle V' is equal to the tensor product E- _, KIE- Let Eul(V}) €

T7p_r q_S7S.
H2®=7)s (G(r,p—r) x G(q — s,5),Z) be its Euler class.
Finally, the cohomological condition (8) says that the product

(930 @ ox((17)9) - (9a() @ Oa(mye)) - (Oa(x) @ Ox((sryey) - Eul(V))

is a non zero multiple of [pt] € H™** (G(r,p—r)xG(q—s, s),Z).

4X¢ denotes the complement of X.
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5 Computation of the Euler class Eul(V!)

Before giving a formula for the Euler class Eul(V!), we need to recall some
well-known facts.

5.1 Polynomial representations

We are concerned here with the polynomial representations of GL,,. When
a representation my : GL,, — GL(V) is polynomial, its character is an
invariant polynomial xy € C[M,,,,]. We denote then by sy the restriction
of xy to the diagonal matrices.

Let Ry (GL,,) denotes the polynomial representation ring of GL,,, and
let A\,, = Z[z1,...,2,]%™ be the ring of symmetric polynomials, with
integral coefficients, in m variables. The map V € Ry (GLy,) — sy € /\,, is
a ring isomorphism.

For any partition A of length m, we associate the irreducible polynomial
representation® V)\GLT” of the group GL,, and the Schur polynomial sy :=
sy, € /\,,- Recall that the Schur polynomials sy determine a Z-basis of /,,.

We recall the following classical fact (for a proof see §3.2.2 in [20]).

Theorem 5.1 The map ¢mp : N\,, — H*(Gun,Z) defined by the rela-

tions
o if A <n,

Pman(83) = {o it A >

s a ring morphism.

Remark 5.2 Since V € Ry (GLy,) — sy € \,, is a ring isomorphism, we
will also denote by ¢mn : Ry (GLy,) — H*(Gpyp,Z) the ring morphism
Vi ¢m,n(3V)-

If £ > 1, we denote by 1% the partition (1,...,1,0,...,0) where there
are k-times 1.

Example 5.3

O if 1<k<n,

Gmn (Sym*(C™)) = {0 if k> n.

if k>m.

k o if 1<k<m,
Fmn(/\ cm>={01’“ .

SWhen the group is understood, we use the notation V.
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5.2 Duality I

We associate to a partition A < m x n it’s complementary partition =
mxXn: A, =n—Anti—k, 1 <k<m. Recall that

o If A= A(I) then A\ = A(I) where I = {n+m+1—i;icl}.

e If V) is the irreducible polynomial representation of GL,, associated
to A = m x n, then (Vy)* = V5 ®@det™".

The cohomology class [pt] € H*"™ (G, n,Z) of top degree associated to
a singleton {pt} is a basis of H>""™(Gy, n,7Z).
We recall the following classical fact (for a proof see §3.2.2 in [20]).

Proposition 5.4 Let ', A € m x n be two partitions such that || + |[N'| =
nm. Then, the following relations hold in H*(Gyyp,Z) :

[pt] if N =X,
gy O\ = ~
AMENT0 i N £

The next corollary follows from Theorem 5.1 and Proposition 5.4.

Corollary 5.5 Let A\, A9, A3 € m x n. The following assertions are equiv-
alent :

® o) 0N 0N, =k[pt], k=1 in H* (G, Z).
o [15, T @] £ 0.

—n1GLm
o [Vi, ® Vi, ® V), @det™"] # 0.

5.3 Duality 11

Taking the transpose of the Young diagram defines a bijective map A <
m xn+—— AV < nxm. The following lemma is useful in our computations.

Lemma 5.6 If the partition A € m x n is equal to N(I) then A\ = \(IV)
where IV = (I¢).

The canonical bilinear form on C**™ permits to define the map ¢ :
Gnm — G, that sends F' to FL. Let §* : H*(Gpp) — H*(Gpm)
denotes the pullback map in cohomology.

Lemma 5.7 For any partition A\ € m x n, we have §*(o)) = oxv.
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5.4 Morphism ¢,,, : geometric definition

To a polynomial representation V € R, (GL,,), we associated the polyno-
mial map 7wy : My, — End(V) and the invariant polynomial xy (X) :=
Try (mv (X))

Let E;, n, — Gy be the canonical vector bundle of rank m. Let Q,,,, €
A2(Gyp, End(Eyp, 1)) be its curvature. The Chern-Weil homomorphism as-
sociates to the invariant polynomial yy the closed form xy (ﬁan) of even
degree on Gy, ,. We denote by H*(G,y, ) the de Rham cohomology of G, ,,.
We have a natural (injective) morphism H* (G, Z) — H* (G p).

Here is a geometric definition of the map ¢y, ,, [26].

Theorem 5.8 For any V € Ry(GLn), ¢pmn(V) € H*(Gmpn) is the class
defined by the closed form xv (ﬁan)

If V — N is a complex vector bundle, we denote by ¢ (V) its k-Chern
class. In the next lemma, we recall the computation of the Chern classes of
the vector bundles E,, ,, and Eﬁln

Lemma 5.9 The following relations holds in H*(Gyy, ).

0 if k>m.

if 1<k<n,
a(Bh) =% "
’ 0 if k>n.

Proof : If k > m = rank(E,,,), then ¢;(Ep,) = 0. If 1 < k < m,
then ¢x(Em.n) = dma(/A*C™) = or. For the second point, let us use the
isomorphism 6 : Gy, — Gy . We see that the vector bundle E#m is
isomorphic to 6~ (Ep ). Then c (B, ) = 6*(ckx(Bnm)) = 6*(ox) = oy, for
any 1 <k <n. [

5.5 Cauchy formula

We fix some integers m,n,m’,n’ > 1.

We consider the vector bundles E, , — Gy, ,, and Ep 0 — Gy . We
can form the bundles E,, , XIE,, ,, and E#LnEfn, 00 Gy X Gy . The
purpose of this section is the computation of their Euler classes.

For any partition A © m’ x m, we define A = A cmxm.
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Proposition 5.10 The following relation holds in H2mm/(Gm’n X Gy t) -

Eul(Epp BB w) = Y. 05®@0n,

Acm/xm

where oy € H*N(G,py ) and o5 € H2v'=N)(G,, ). For a partition \ c
m' xm, the product o5 ®oy does not vanish if only if the following conditions
hold :

o n/>)\1;

o HlI<k<m/ Ag=m}=m—n.

Proof :  The Euler class Eul(E,, , X E,, /) is equal to the top Chern
class Crm/ (B X Epy ) € H 2mm’ (Gmn x Gyy ). The curvature of the
vector bundle E,, , X E,, , is equal to £, ® Id +1d ® Qs ny Where
Id € End(E,, ) and Id" € End(E,, ) are the identity maps. In order to
compute

Cmmt (Emn K By ) = det (55 Qp @ Id' +1d @ 5= Qs )
we use the following Cauchy formula (see [19])

H ($i+$9)= Z 35\(:1:)3)\(3:’).

1<i<m rcm/ xm
1<j<m/

The previous relation implies that

det (X @ I +Td @ X') = > xv; (X)xws (X),

Acm/xm

for all (X, X") € My, X My . Finally, we obtain thank to Theorem 5.8,
the following relation

Crmm/ (Em,n Em’,n’) = Z XV5 (%Qm,n)XV,\ (ﬁgm’,n’)

Acm/xm

Z 5 Q0.

Acm/xm

Let us analyse when o5 ® o # 0. From the definition, we see that for
any partition A < m/ x m, we have 5\]- =l <k <m N\ < m—j}
Vje {1,...,m}. In particular we get Ay = m/ —#{1 < k < m’, \), = m} since
A < m, VEk.
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The element o) € H 2"\‘(Gm/7n/) does not vanish if and only if Ay < n
and o5 € H2mm'=IA)(G,, ) does not vanish if and only if A\; < n. Our proof
is completed since the relation A < nis equivalent to f{1 < k < m/, \; =
m} =m' —n. [

We apply our formula to the case where p > ¢ > 1, 1 < r < p and
1 < s < q. The following relation holds in HQ(p*r)S(Gp_T,T X G g-s) :

(9) Eul(Epfr,r IEs,qfs) = Z Ix Qo

AC sxp—r

where oy € Hz‘)‘|(Gp_T’r) and o5 € H2((p*’“)s*|)‘|)(Gs7q_s). For a partition
A € s x p—r, the product o5 ® o) does not vanish if only if ¢ —s > Ay, and
H{l<k<s,\pg=p—r}=s—r.

Lemma 5.11 Suppose that p = q. Then Eul(Ep_,, XEs ;) =0 if s > r.

Proof : Suppose that s —r > 0. If Eul(E,_,, X E, ;—s) # 0, there exists
a partition A © s x p —r such that o5 ® o) # 0: hence ¢ —s > A1 and
Hl<k<s,\g=p—r}=s—7r>0 Weobtaing—s >\ =p—r, so
q = p+ s—r > p, which is in contradiction with our hypothesis. []

We consider now the vector bundle Vi = EL EL

r,p—T q—s,s on G”‘vp—r X
G
qis’s.

Proposition 5.12 letp=>qg=>1,1<r<pandl <s<gq.
o Ifs>r, then Eul(Vy) =0

o If s <r, the following relation holds in H2(p*T)S(GT,p_,« X Gg—ss) :

Bul(V]) = )| o3®0a,

AC sxp—r

where oyv € H2|’\‘(Gq_s75) and o5 € HQ((-”_T)S_‘)‘D(GT,Z)_T). For a par-
tition A © s x p —r, the product o5, ® ov does not vanish if and only
ifq—s = MA.

Proof : Let § x 0 : Gy X Gy—ss = Gp—pr x G4 4—s be the product of
“duality” maps (see §5.3). Since E%p_T,qu_&s ~ (6x8) N Ep_r, KE;—s.5),

we have Eul(V]) = §* x 6*(Eul(E,—,, XIE, 4—s)). We can use Lemmas 5.11
and 5.7, and (9) to complete the proof. []
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6 Convex cone S(p,q) : equations of the facets

Theorem 2.13 tells us that an element (A, B,C) € (C, x C;)® belongs to
S(p,q) = A((GLp x GLq)2 x CP @ CY) if and only

AT +|B| +|C] = [A"] + |B"] +|C"|

and

(10) |A'|p +|B' |y + | C g < |A" | + | B" | + | C" ||,

for any couple (r, s) € {0,...,p}x{0,...,¢}—{(p,q), (0,0)}, forany I', J', K' €
P and any I”,J", K" € PY, such that the product
(11) (0’)\([/) ® U)\((Il/)c)) . (O’)\(J/) ® U)\((J/l)c)) . (OA(K’) ® O’)\((Ku)c)) . EUI(VLZ)
is a non zero multiple of [pt] € H™** (G(r,p — 1) x G(q — s, 5),Z).

In the following sections, we study each case according to the parameter
(r,s).
6.1 r=0and s=gq
Here, G(r,p — 1) x G(q — s,s) = {pt} and Vg # 0, hence the cohomological
condition (11) does not hold.
6.2 r=pands=0

Here, G(r,p —r) x G(q — s,s) = {pt} and VI = 0, hence the cohomological
condition (11) holds. Relation (10) becomes || A" |+ |B' |+ |C'| < 0|

6.3 0O<r<pands=0

Here Vj = 0 and the cohomological condition (11) becomes (/) - o5y -
ok = klpt], k=1, in H*(G(r,p —r)) which is equivalent to asking that

_( —1”) GLT‘
[V/\(I/) ® Vi @ Vykry ® det™ ] £ 0.

Here inequality (10) becomes || A" |/ + | B' | +|C" |k < 0.
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6.4 0O0<r<pands=gq
Here VT is the vector bundle E+

r,p—T

® C? on G(r,p —r). Since

Bul(V)) = Bul(Ey,, )" = (6 (Erpoy))” = (0-0)" € HY(G(rp = 7)),

r.p—Tr
condition (1].) is U)\(I’) . O')\(J/) . O-)\(K’) . (O'p_r)q = k[pt], k = 1. If we take the

image of the previous relation through 6 : H*(G(r,p—71)) — H*(G(p—r,1)),
we obtain

O\ T NG Oa@y) | (o)t =kt k=1, in HY(G(p—r,7))

that is equivalent to

Lyr

G
—— — q—r
[VA«I')c) OV @ V) ® det ] 7 0.

Here inequality (10) is equivalent to | | A" |(jye + | B"[(jrye + [ C”|(grye = 0.

6.5 r=0and 0 <s<gq

Here 1 is the vector bundle (f‘;p@)IEql s.s0nG(p—s,s). Since Eul(VY) = (0)?,

Condltlon (11) IS O')\((I//) ) O-)\((J”) ) U)\((K”)c) . (O'S) = k[pt] k = ]. If
we take the image of the previous relation through ¢ : H*(G(q — s,s)) —
H*(G(s,q — s)), we obtain

O\T) " NG OAET) (o1s)P = k[pt], k=1, in H*(G(s,q—s))

that is equivalent to

p—(g—s5)| "
(Vi) @ Vi) ® Vi oy ® det | =0

Here inequality (10) becomes || A” |» + | B"|jn + | C" |gn = 0

6.6 r=pand 0<s<gq

Here V{ = 0 and the cohomological condition (11) becomes o ((1rye)-Or((.j7)e)"
o) = k[pt], k=1, in H*(G(q — s, s)) that is equivalent to

_s1GL4—s
[V)\((Iu)c) ® V/\((J//)c) @ V)\((K//)c) ® det ] ?

Here inequality (10) is equivalent to | | A" [ e + | B" |(jr)e + [ C" |(gmye <0
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6.7 O<r<pand O0O<s<gq

We know that Eul(V!) = 0 if s > r, hence condition (11) does not hold if
s > r. Suppose now that s < r. Thanks to Proposition 5.12, we see that
condition (11) is equivalent to asking that the sum

D1 (oa@) o) oA - 03) © (Taum) Ty - Takn)  Oav)

ACsxp—r

is equal to k[pt],k = 1 in H*(G(r,p — 1)) ® H*(G(q — s,s)). Hence (11)
holds if and only if there exists a partition A € s x p — r such that

(12) oIy oA - Oakry - 05 = Cpt] 0 H¥(G(r,p—7),Z),
(13) TX((I™)e) " OX(J")e) " OX((K™)e) " Oxv = f”[pt] in H*(G(q — S, 8), Z),

for some ¢/, ¢" > 1.

Lemma 6.1 If s < r, then (12) and (13) hold if and only if there ezists a
partition @t < s X p —r, such that both conditions hold

GL,
[ =0

(14) |:V)\(I’) ® V)\(J’) ® V)\(K’) ® V# ® det_(p_r)

—(p-r)—2(q—s) |
(15) |:V)\(I”) ® V)\(J”) ® V)\(K”) ® VH ® det P 1 ] # 0.

Proof : Let A < s x p—r satisfying (12) and (13). Let y = A < s x p—r.
Condition (12) is then equivalent® to (14).

Take now the image of (13) through the map 6 : H*(G(q — s,s),Z) —
H*(G(s,q— s),Z) : we obtain O\(T) " OaG) " OA@T) 0N = [pt], £" > 1in
H*(G(s,q — s),Z), that is equivalent to

(16) [V/\(ﬁ) ®V\ 1 @V 7 @2 ® det~(4=9)]1GLs £ 0.

Since we have the following relations between representations of GL; :

1. V)\(ﬁ) =

(Va(my)* @ det?* (with the same relations for J” and K”),
2. Vi = (V,)* @ det?,

condition (16) is equivalent to (15). [

6Since the length of y is less than r > s, V, is well defined as an irreducible represen-
tation of GL...
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6.8 Summary

Let us summarize the computations done in the previous sections.
An element (A, B,C) € (C, x C,)? belongs to S(p,q) if and only the
following conditions hold

o |4+ IBT+]C = A"+ |B"| + |C"]}

o ||A|+|B'|+|C'| <0}

For any 0 < r < p, for any I',J/, K" € PF, we have :

GL,

| A" |+ | B[y + | C" | < 0| if [V @ Vi) ® Vary ® det P77 £ 0,

Ly

(A |y + | B |y + |C | = 0] if [V/\(;,)®VA(5,)®VA(I?,)®detq’p+r] £0.

For any 0 < s < ¢, for any I”,J”, K" € Pd, we have :

GLs

‘ A” |I” =+ ’ B// ‘J// + ’ C” ‘K” <0 if [V)\(I”) X V/\(J//) &® V)\(K”) X det_q+8] # 0.

GLs
| A" |pr + | B" |gn + | C" |gen = 0] if [V)\(ﬁ) ® V/\(JN,,) ® V)\(’Eﬁ) ® detp—‘HS] # 0.

e For any (r,s) € [p—1] x [¢ — 1] with r > s, for any I, J, K € P¥ x Pd,
we have

’A/‘]/+‘B/‘J’+‘C/’K’< ’A”‘[”""B”’J”‘i“C”’K”

if there exists a partition u < s x p—r, such that both conditions hold

GL,
[V’\(I’) ® Vi @ Vg @V, ® det*(p*r)] £ 0,

) GLs
[V’\(I") Q Vaum @ Varmy @V, ® det~(P—7)— (Q*S)] 2 0.

6.9 Proof of the main result

In the previous section, we described the facets of the convex cone S(p, q).
We will now exploit the fact that (A, B,C) € Horn(p, ¢) if and only if

0420~ () () (C)) e 500
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In what follows, we crucially use that the semigroups HornZ(n) and

Horn%(p,q) are saturated. Hence Horn%(n) = Horn(n) n (A;})? and
Horn”(p, q) = Horn(p,q) n (A} x AJ)3. Recall also the identity |A*[; =

—|A|y which will be used several times.
Let us compute the image of the facets of S(p, ¢) through the linear map
O :

e The image of |A'| + |B'| + |C'| = |A"| + |B"| + |C”"| through © is
Al+[B|=C]]

e The image of the half space | A"| + | B’'| + | C’| < 0 through the map
Ois||A|+|B'|<|C]|

e The image of the half space | A’ |y + | B'| ;s + | C" |k < 0 through the
map O is|| A" |y + |B' | <|C

, and condition

|7

19 %0

[V)\(I’) ® V)\(J/) ® V)\(K’) ® det_p”
is equivalent to (A(I"), A(J'), \(K7)) € Horn(r).

e The image of of the half space | A’ | + | B' |y + | C' |k = 0 through
the map © is || A" + | B' | = | C"| |, and condition

GL,
(Vi © Vi ® Vagien ®dett >+ 20

is equivalent to (A(I"), A(J), A(K") + (g+p—7)1,) € Horn(r).

e The image of of the half space | A” |;» + | B | j» + | C" | g» < 0 through
A" |z + | B" |5 = | C" |[gn | and condition

the map © is

“Ls 20

[V/\(I”) ® V)\(J//) ® V)\(K”) ® det_quS]
is equivalent to (A(I”), \(J7), \(K") + (¢—s)1) € Horn(s).

e The image of of the half space | A” |;» + | B | j» + | C" | g» = 0 through
A" |z + | B" |5 < |C" |gn | and condition

the map © is

|77

GLs
[Vaa) ® Vi ® Vi @ det? 07| 7 % 0
is equivalent to (A(I”), A(J7), A\(K") — p1,) € Horn(s).
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e The image of of the half space
| A [ + | By + | C i < [ A" |10 + | B [y + ] C" |

through the map O is

|A,|[/+|A//|}‘,7+|B/|Jl+|B”’!’]‘,’,<|C,|[’(‘-’,+|C”’Kﬁ

and conditions

(]G L

[VW’) ® Vi ® Vaxn) ® V, ® det (P 7“)] £0,
~(p—r)-2(¢—9)|

I:V)\(I//) ® V)\(J//) ® V)\(K”) ® V# @ det ] £ 0.

are equivalent to

GL,
] £0,

(VA ® Vi @ Vi) ® Vi

GL,
] # 0.

[VA(}W) ® V1) ® Vigon) ® det? ) @ V7

The existence of a partition p € s x p — r satisfying the previous
relations is equivalent to asking that

(i) Gim) G 5 ) ==

belongs to Horn(r, s).

The proof of Theorem 1.6 is complete.
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