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Abstract

In this article, we obtain a recursive description of the Horn cone
Hornpp, qq with respect to the integers p and q, as in the classical Horn’s
conjecture.
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1 Introduction

When G is Lie group, a natural problem is to understand how the sum of
two adjoint orbits decomposes into a union of adjoint orbits. Let g be the
the Lie algebra of G and let g{G be the set of adjoint orbits. The Horn cone
is defined as follows

HornpGq “ tpO,O1,O2q P pg{Gq3, O2 Ă O `O1u.

Consider the case where G is a compact connected Lie group. Let T Ă G
be a maximal torus with Lie algebra t. The set g{G admits a canonical
identification with a Weyl chamber tě0 Ă t. In this setting, the Horn cone
HornpGq Ă ptě0q

3 has been at the center of numerous studies [13, 15, 16,
4, 2, 3, 14, 27] that we summarize by the following theorem. We refer the
reader to the survey articles [5, 18] for details.
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Theorem 1.1 If G is a compact connected Lie group, HornpGq is a poly-
hedral convex cone and one can parametrize the equation of its facets by
cohomological means.

1.1 Horn’s conjecture

When G is the unitary group Upnq, the convex polyhedral cone1 Hornpnq
has a nice feature which was predicted by A. Horn in the 60s : it admits a
recursive description relative to the integer n ě 1 [13].

Denote the set of cardinality r subsets I “ ti1 ă i2 ă ¨ ¨ ¨ ă iru of
rns “ t1, . . . , nu by Pnr . To each I P Pnr we associate a weakly decreasing
sequence of non-negative integers

(1) λpIq “ pλ1 ě λ2 ¨ ¨ ¨ ě λrq P Zrě0

where λa “ n´ r ` a´ ia for a P rrs.
Let d : Rn Ñ upnq be the map that sends X “ px1, . . . , xnq to the

diagonal matrix dX “ Diagpix1, . . . , ixnq. The map d induces a one to
one correspondence between Cn “ tpx1 ě ¨ ¨ ¨ ě xnqu Ă Rn and the set
of Upnq-adjoint orbits. If X “ px1, . . . , xnq P Rn and I Ă rns, we define
|X |I “

ř

iPI xi and |X | “
řn
i“1 xi.

Definition 1.2 Let n ě 1.

Hornpnq “ tpA,B,Cq P pCnq3, UpnqdC Ă UpnqdA ` UpnqdBu.

The following Horn’s conjecture [13] was settled in the affirmative by
combining the work of A. Klyachko [15] with the work of A. Knutson and
T. Tao [16] on the “saturation” problem. We refer the reader to Fulton’s
survey article [10] for details.

Theorem 1.3 (Horn’s conjecture) An element pA,B,Cq P pCnq3 belongs
to Hornpnq if and only if the following conditions holds

• |A | ` |B | “ |C |,

• @r P rn´ 1s, @I, J,K P Pnr , we have

|A |I ` |B |J ď |C |K if pλpIq, λpJq, λpKqq P Hornprq.

1We note HornpUpnqq simply by Hornpnq.
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1.2 Holomorphic Horn cone Hornholpp, qq

Let p ě q ě 1. We begin by recalling the definition of the holomorphic Horn
cone Hornholpp, qq associated with the pseudo-unitary group Upp, qq.

The Lie group Upp, qq Ă GLp`qpCq is defined by the relations gIdp,qg
˚ “

Idp,q, where Idp,q is the diagonal matrice DiagpIdp,´Idqq. The Lie algebra
upp, qq of Upp, qq admits the following invariant convex cone

Cpp, qq “
 

X P upp, qq, ImpTrpgXg´1Idp,qqq ě 0, @g P Upp, qq
(

.

Let us consider

Cp,q “ tx P Rp ˆ Rq, x1 ě ¨ ¨ ¨ ě xp ą xp`1 ě ¨ ¨ ¨ ě xp`qu Ă Cp ˆ Cq
and the map d : Rp ˆ Rq Ñ upp, qq. A well-know result says that for any
Upp, qq-orbit O contained in the interior of Cpp, qq, there exists a unique
X P Cp,q such that O “ Upp, qqdX (see [28, 21]). In other words, the map
d realizes a one to one map between Cp,q and the set of Upp, qq-orbits in the
interior of the invariant convex cone Cpp, qq. The holomorphic Horn cone is
then defined as follows :

Hornholpp, qq “
 

pA,B,Cq P pCp,qq3, Upp, qqdC Ă Upp, qqdA ` Upp, qqdB
(

.

In a companion paper [23], we have proved that Hornholpp, qq is a closed
convex cone of pCp,qq3, and we have explained a way to compute it. In
order to detail this result, we need some additional notations. For any
n ě 1, we consider the semigroup ^`n “ tpλ1 ě ¨ ¨ ¨ ě λnqu Ă Zn. If

λ “ pλ1, λ2q P ^`p ˆ ^
`
q , then Vλ :“ V

Uppq
λ1 b V

Upqq
λ2 denotes the irreducible

representation of UppqˆUpqq with highest weight λ. We denote by Mp,q the
vector space of p ˆ q complex matrices, and by SympMp,qq the symmetric
algebra of Mp,q.

If H is a representation of Uppq ˆ Upqq, we denote by rVν : Hs the
multiplicity of Vν in H.

Definition 1.4 1. HornZpp, qq is the semigroup of p^`p ˆ ^
`
q q

3 defined
by the conditions:

pλ, µ, νq P HornZpp, qq ðñ rVν : Vλ b Vµ b SympMp,qqs ‰ 0.

2. Hornpp, qq is the convex cone of pCp ˆ Cqq3 defined as the closure of
Qą0 ¨HornZpp, qq.

The following result is proved in [23].

Theorem 1.5 We have

Hornholpp, qq “ Hornpp, qq
č

pCp,qq3.
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1.3 Statement of the main result

We now explain the main purpose of this paper that concerns a recursive
description of the convex polyhedral cones Hornpp, qq as in Horn’s conjecture.
We need another notations.

1. If A “ pA1, A2q P Rp ˆ Rq and I “ I 1 ˆ I2 Ă rps ˆ rqs, we define
|A |I “ |A

1 |I 1 ` |A
2 |I2 and |A | “ |A1 | ` |A2 |.

2. If I “ I 1 ˆ I2 Ă rns ˆ rms then λpIq “ pλpI 1q, λpI2qq P ^`n ˆ^
`
m.

3. Let 1n “ p1, . . . , 1q P Zn.

The main result of this paper is the following theorem.

Theorem 1.6 Let p ě q ě 1. An element pA,B,Cq P pCp ˆ Cqq3 belongs to
Hornpp, qq if and only if the following conditions holds:

• |A | ` |B | “ |C | .

• |A1 | ` |B1 | ď |C 1 | .

• For any r P rp´1s, for any I 1, J 1,K 1 P Ppr , we have :

|A1 |I 1 ` |B
1 |J 1 ď |C

1 |K1 if pλpI 1q, λpJ 1q, λpK 1qq P Hornprq.

|A1 |I 1 ` |B
1 |J 1 ě |C

1 |K1 if pλpI 1q, λpJ 1q, λpK 1q ` pq`p´rq1rq P Hornprq.

• For any s P rq´1s, for any I2, J2,K2 P Pqs , we have :

|A2 |I2 ` |B
2 |J2 ě |C

2 |K2 if pλpI2q, λpJ2q, λpK2q ` pq´sq1sq P Hornpsq.

|A2 |I2 ` |B
2 |J2 ď |C

2 |K2 if pλpI2q, λpJ2q, λpK2q ´ p1sq P Hornpsq.

• For any pr, sq P rp´1s ˆ rq´1s with r ě s, for any I, J,K P Ppr ˆ Pqs ,
we have

|A |I ` |B |J ď |C |K if
`

λpIq, λpJq, λpKq`p0, pr´pq1sq
˘

P Hornpr, sq.
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1.4 Examples

The convex cones Hornp1, 1q, Hornp2, 1q and Hornp2, 2q admit the following
descriptions.

Proposition 1.7 An element pA,B,Cq P pRˆ Rq3 belongs to Hornp1, 1q if
and only if the following conditions holds:

a1 ` a2 ` b1 ` b2 “ c1 ` c2

a1 ` b1 ď c1

Proposition 1.8 An element pA,B,Cq P pC2ˆRq3 belongs to Hornp2, 1q if
and only if the following conditions holds:

a1 ` a2 ` a3 ` b1 ` b2 ` b3 “ c1 ` c2 ` c3

a1 ` a2 ` b1 ` b2 ď c1 ` c2

a2 ` b2 ď c2
a2 ` b1 ď c1
a1 ` b2 ď c1
a1 ` b1 ě c2

Proposition 1.9 An element pA,B,Cq P pC2 ˆ C2q3 belongs to Hornp2, 2q
if and only if the following conditions holds:

a1 ` a2 ` a3 ` a4 ` b1 ` b2 ` b3 ` b4 “ c1 ` c2 ` c3 ` c4

a1 ` a2 ` b1 ` b2 ď c1 ` c2

a2 ` b2 ď c2
a2 ` b1 ď c1
a1 ` b2 ď c1

a3 ` b3 ě c3
a3 ` b4 ě c4
a4 ` b3 ě c4
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a2 ` a4 ` b2 ` b4 ď c1 ` c4
a2 ` a4 ` b2 ` b4 ď c2 ` c3
a2 ` a4 ` b1 ` b4 ď c1 ` c3
a1 ` a4 ` b2 ` b4 ď c1 ` c3
a2 ` a4 ` b2 ` b3 ď c1 ` c3
a2 ` a3 ` b2 ` b4 ď c1 ` c3

1.5 Outline of the article

The recursive description of Hornpp, qq is obtained by studying the Hamil-
tonian action of pUppq ˆ Upqqq3 on the manifold2 pGLp ˆGLqq

2 ˆCp bCq.
Let Spp, qq Ă pCp ˆ Cqq3 be the corresponding Kirwan polyhedron.

In §2, we study the general framework of a Hamiltonian action of a
compact Lie group K3 on pKC ˆ KCq

2 ˆ E : here E is a K-module such
that the coordinate ring CrEs does not admit non-constant invariant vec-
tors. We explain how to parameterize the facets of the Kirwan polyhedron
∆ppKC ˆKCq

2 ˆEq in terms of Ressayre’s data [22]. This parametrization
requires two steps : determination of the admissible elements which are the
potential vectors orthogonal to the facets, and computation of cohomological
conditions on flag varieties.

In §3, we check that the semigroup HornZpp, qq is saturated. It is a direct
consequence of the Darksen-Weyman saturation theorem [7].

In §4, we determine the admissible elements relative to the action of
pUppqˆUpqqq3 on pGLpˆGLqq

2ˆCpbCq, and we detailed the cohomological
conditions in this particular case. The formulas need the computation of
certain Euler classes which we carry over to §5.

In §6, we calculate (recursively) the facets of the Kirwan polyhedron
Spp, qq. In the last subsection, we complete the proof of our main result.

Acknowledgements

I wish to thank Michèle Vergne for our discussions on this subject and for
pointing to my attention the Derksen-Weyman saturation theorem.

2 The K3-manifold KC ˆKC ˆ E

In this section, we briefly recall the result of §6 of [22] concerning the
parametrization of the facets of Kirwan polyhedrons in terms of Ressayre’s

2We use the notation GLn for the Lie group GLpCnq.
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data.
Let K be a compact connected Lie group with complexification KC. Let

T Ă K be a maximal torus with Lie algebra t. We consider the lattice ^ :“
1
2π kerpexp : tÑ T q and the dual lattice ^˚ Ă t˚ defined by ^˚ “ homp^,Zq.
We remark that iη is a differential of a character of T if and only if η P ^˚.
The Q-vector space generated by the lattice ^˚ is denoted by t˚Q: the vectors
belonging to t˚Q are designed as rational. Let t˚ě0 be a Weyl chamber. The set
^˚` :“ ^˚ X t˚ě0 parametrizes the irreducible representations of K: for any
µ P ^˚`, we denote by Vµ the irreducible representation of K with highest
weight µ.

When K acts linearly on a vector space H, we denote by HK the sub-
space of invariant vectors under the K-action.

Let E be a K-module such that CrEsK “ C : hence the coordinate
ring CrEs has finite K-multiplicities. We consider the following K ˆK ˆK
action on the affine variety KC ˆKC ˆ E :

pk1, k2, k3q ¨ px, y, vq “ pk1xk
´1
3 , k2yk

´1
3 , k3vq.

The coordinate ring CrKC ˆKC ˆ Es, viewed as a K3-module, admits the
following decomposition

CrKC ˆKC ˆ Es “
ÿ

λ,µ,νP^˚`

mEpλ, µ, νq V
1
λ b V

2
µ b V

3
ν ,

where mEpλ, µ, νq “ dimrVλ b Vµ b Vν b SympEqsK .

Definition 2.1 We define the following sets :

• The semigroup ∆ZpKC ˆ KC ˆ Eq Ă p^˚`q
3 is defined as follows:

pλ, µ, νq P ∆ZpKC ˆKC ˆ Eq ðñ mEpλ, µ, νq ‰ 0.

• The convex cone ∆pKC ˆ KC ˆ Eq Ă pt˚ě0q
3 is the closure of

Qą0 ¨∆ZpKC ˆKC ˆ Eq.

Let us explain why the complex K3-manifold N “ KCˆKCˆE admits
a symplectic structure ΩN compatible with the complex structure, and a
moment map Φ : N Ñ pk˚q3 associated to the action of K3 on pN,ΩN q.

Let hE be a K-invariant hermitian structure on E. We equip E with
the 2-form ΩE “ ´ImphEq. The moment map ΦE relative to the action of
K on the symplectic vector space pE,ΩEq is defined by

xΦEpvq, Xy “
1
2ΩEpXv, vq, @v P V, @X P k.
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The hypothesis CrEsK “ C implies that ΦE is a proper map.
There is a diffeomorphism of the cotangent bundle T˚K with KC defined

as follows. We identify T˚K with K ˆ k˚ by means of left-translation and
then with K ˆ k by means of an invariant inner product on k. The map
ϕ : K ˆ k Ñ KC given by ϕpk,Xq “ keiX is a diffeomorphism. If we use
ϕ to transport the canonical symplectic 2-form of T˚K to KC, then the
resulting 2-form ΩKC on KC is compatible with the complex structure (see
[12], §3).

Finally, the K3-manifold KC ˆKC ˆ E » T˚K ˆT˚K ˆ E carries the
symplectic 2-form ΩN :“ ΩKC ˆ ΩKC ˆ ΩE which is compatible with the
complex structure. The moment map relative to the K3-action on pN,ΩN q

is the proper map Φ “ Φ1 ‘ Φ2 ‘ Φ3 : T˚K ˆ T˚K ˆ E Ñ k˚ ‘ k˚ ‘ k˚

defined by

(2) Φpg1, ξ1, g2, ξ2, vq “ p´g1ξ1,´g2ξ2, ξ1 ` ξ2 ` ΦEpvqq.

By definition, the Kirwan polyhedron ∆pT˚K ˆT˚K ˆEq is the inter-
section of the image of Φ with pt˚ě0q

3. The following result is classical (see
Theorem 4.9 in [25]).

Proposition 2.2 The Kirwan polyhedron ∆pT˚K ˆT˚K ˆ Eq is equal to
∆pKC ˆKC ˆ Eq.

2.1 Admissible elements

Definition 2.3 When a Lie group G acts on a manifold N , the stabilizer
subgroup of n P N is denoted by Gn “ tg P G, gn “ nu, and its Lie algebra
by gn. Let us define dimGpX q “ minnPX dimpgnq for any subset X Ă N .

We start by introducing the notion of admissible elements. The group
hompUp1q, T q admits a natural identification with the lattice^ :“ 1

2π kerpexp :
tÑ T q. A vector γ P t is called rational if it belongs to the Q-vector space
tQ generated by ^.

We consider the K3-action on N :“ T˚K ˆT˚K ˆ E.

Definition 2.4 A non-zero element pγ1, γ2, γ3q P t3 is called admissible if
the elements γi are rational and if dimK3pN pγ1,γ2,γ3qq ´ dimK3pNq P t0, 1u.

Let R be the set of roots for pK,T q, and let W “ NpT q{T be the Weyl
group. The set of weights for the T -action on E is denoted RE . If γ P t, we
denote by pRYREq X γ

K the subsets of weight vanishing against γ.
If w “ pw1, w2, w3q P W

3 and γ P t, we write γw “ pw1γ,w2γ,w3γq. We
start with the following lemma whose proof is left to the reader.
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Lemma 2.5 1. N pγ1,γ2,γ3q ‰ H if and only if γ1, γ2 PWγ3.

2. dimK3pNq “ dimT pkˆ Eq “ dimptq ´ dimpVectpRYREqq.

3. dimK3pNγwq “ dimT pk
γ ˆEγq “ dimptq´ dimpVectppRYREqX γ

Kqq.

The following result is a direct consequence of the previous lemma.

Lemma 2.6 The admissible elements relative to the K3-action on T˚K ˆ

T˚K ˆ E are of the form γw where w P W 3 and γ is a non-zero rational
element satisfying VectpRYREq X γ

K “ VectppRYREq X γ
Kq.

2.2 Ressayre’s data

Definition 2.7 1. Consider the linear action ρ : G Ñ GLCpV q of a
compact Lie group on a complex vector space V . For any pη, aq P gˆR,
we define the vector subspace V η“a “ tv P V, dρpηqv “ iavu. Thus, for
any η P g, we have the decomposition V “ V ηą0‘V η“0‘V ηă0 where
V ηą0 “

ř

aą0 V
η“a, and V ηă0 “

ř

aă0 V
η“a.

2. The real number TrηpV
ηą0q is defined as the sum

ř

aą0 a dimpV η“aq.

We consider an admissible element γw “ pw1γ,w2γ,w3γq. The sub-
manifold fixed by γw is Nγw “ w1K

γ
Cw

´1
3 ˆ w2K

γ
Cw

´1
3 ˆ Ew3γ . There is

a canonical isomorphism of the manifold Nγw equipped with the action of
w1K

γw´11 ˆw2K
γw´12 ˆw3K

γw´13 with the manifold Kγ
CˆK

γ
CˆE

γ equipped
with the action of Kγ ˆ Kγ ˆ Kγ . The tangent bundle pTN |Nγw qγwą0 is
isomorphic to Nγw ˆ kγą0C ˆ kγą0C ˆ Eγą0.

The choice of positive roots R` induces a decomposition kC “ n‘ tC‘n,
where n “

ř

αPR`pkb Cqα. We consider the map

ργ,w : Kγ
CˆK

γ
CˆE

γ ÝÑ hom
´

nw1γą0 ˆ nw2γą0 ˆ nw3γą0, kγą0C ˆ kγą0C ˆ Eγą0
¯

defined by the relation

ργ,wpx, y, vq : pX,Y, Zq ÞÑ ppw1xq
´1X´w´13 Z ; pw2yq

´1Y´w´13 Z ; pw´13 Zq¨vq,

for any px, y, vq P Kγ
C ˆK

γ
C ˆ E

γ .

Definition 2.8 pγ,wq P tˆW 3 is a Ressayre’s data if

1. γw is admissible,
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2. Dpx, y, vq such that ργ,wpx, y, vq is bijective.

Remark 2.9 In [22], the Ressayre’s data were called regular infinitesimal
B-Ressayre’s pairs.

Since the linear map ργ,wpx, y, vq commutes with the γ-actions, we obtain
the following necessary conditions.

Lemma 2.10 If pγ,wq P tˆW 3 is a Ressayre’s data, then

• Relation (A) :
ř3
i“1 dimpnwiγą0q “ 2 dimpkγą0C q ` dimpEγą0q.

• Relation (B) :
ř3
i“1 Trwiγpn

wiγą0q “ 2 Trγpk
γą0
C q ` TrγpE

γą0q.

2.3 Cohomological characterization of Ressayre’s data

Let γ P t be a rational element. We denote by B Ă KC the Borel subgroup
with Lie algebra b “ tC ‘ n. Consider the parabolic subgroup Pγ Ă KC
defined by

(3) Pγ “ tg P KC, lim
tÑ8

expp´itγqg exppitγq existsu.

We work with the projective variety Fγ :“ KC{Pγ . We associate to any
w PW , the Schubert cell

Xow,γ :“ Brws Ă Fγ ,

and the Schubert variety Xw,γ :“ Xow,γ . If W γ denotes the subgroup of W
that fixes γ, we see that the Schubert cell Xow,γ and the Schubert variety
Xw,γ depends only of the class of w in W {W γ .

We consider the cohomology3 ring H˚pFγ ,Zq of Fγ . If Y is an irreducible
closed subvariety of Fγ , we denote by rY s P H2nY pF̃γ ,Zq its cycle class in
cohomology : here nY “ codimpY q. Recall that the cohomology class rpts
associated to a singleton tptu Ă Fγ is a basis of HmaxpFγ ,Zq.

To an oriented real vector bundle E Ñ N of rank r, we can associate its
Euler class EulpEq P HrpN,Zq. When E Ñ N is a complex vector bundle,
then EulpERq corresponds to the top Chern class cppEq. Here p is the complex
rank of E , and ER means E viewed as a real vector bundle oriented by its
complex structure (see [6], §21).

The isomorphism Eγą0 » E{Eγď0 shows that Eγą0 can be viewed as a
Pγ-module. Let Eγą0 “ KC ˆPγ E

γą0 be the corresponding complex vector

3Here, we use singular cohomology with integer coefficients.
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bundle on Fγ . In the following proposition, we denote simply by EulpEγą0q

the Euler class EulpEγą0R q P H˚pFγ ,Zq.
The following characterization of Ressayre’s data was obtained in [22],

§6.

Proposition 2.11 pγ,wq P tˆW 3 is a Ressayre’s data if and only if

1. γw is admissible,

2. Relation (B) holds,

3. The following relation holds in H˚pFγ ,Zq :

(4) rXw1,γs ¨ rXw2,γs ¨ rXw3,γs ¨ EulpEγą0q “ krpts, k ě 1.

Remark 2.12 Notice that relation (A) is equivalent to
ř3
i“1 codimpXwi,γq`

dimpEγą0q “ dimpFγq, hence relation (A) follows from (4).

2.4 Convex cone ∆pKC ˆKC ˆ Eq : equations of the facets

The following result is proved in [22], §6.

Theorem 2.13 Let E be a K-module such that CrEsK “ C. An element
pξ1, ξ2, ξ3q P pt

˚
ě0q

3 belongs to ∆pKC ˆKC ˆ Eq if and only

(5) xξ1, w1γy ` xξ2, w2γy ` xξ3, w3γy ě 0

for any pγ,wq P t ˆW 3 that is a Ressayre’s data, that is to say satisfying
the following properties:

a) γ is a non-zero rational element.

b) VectpRYREq X γ
K “ VectppRYREq X γ

Kq.

c) rXw1,γs ¨ rXw2,γs ¨ rXw3,γs ¨ EulpEγą0q “ krpts, k ě 1 in H˚pFγ ,Zq.

d) Relation (B) holds :
ř3
i“1 Trwiγpn

wiγą0q “ 2 Trγpk
γą0
C q ` TrγpE

γą0q.

12



2.5 Remark on the saturation property

The semigroup ∆ZpKC ˆ KC ˆ Eq Ă p^˚`q
3 is called saturated if for any

θ P p^˚`q
3 and any N ě 1 we have Nθ P ∆ZpKC ˆ KC ˆ Eq only if θ P

∆ZpKC ˆKC ˆ Eq.

Proposition 2.14 1. We have

Qą0 ¨∆ZpKC ˆKC ˆ Eq “ ∆pKC ˆKC ˆ Eq X pt
˚
Qq

3.

2. The semigroup ∆ZpKC ˆKC ˆ Eq is saturated if and only if

∆ZpKC ˆKC ˆ Eq “ ∆pKC ˆKC ˆ Eq X p^
˚
`q

3.

Proof. Let us prove the first point. The inclusion Qą0 ¨∆ZpKC ˆKC ˆ

Eq Ă ∆pKC ˆKC ˆ Eq X pt
˚
Qq

3 follows from the definitions. Let us explain
why the opposite inclusion is a consequence of the rQ,Rs “ 0 theorem.

We consider the proper moment map Φ : KC ˆ KC ˆ E Ñ pk˚q3. For
any µ “ pµ1, µ2, µ3q P p^

˚
`q

3, we denote by mEpµq the multiplicity of Vµ “

V K,1
µ1 bV K,2

µ2 bV K,3
µ3 in the coordinate ring CrKCˆKCˆEs, and we consider

the reduced space

Mµ :“ Φ´1pKµ1 ˆKµ2 ˆKµ2q{K ˆK ˆK.

that is equipped with the line bundle

Lµ “ Φ´1pKµ1 ˆKµ2 ˆKµ2q ˆKµ1ˆKµ2ˆKµ2 pC´µ1 b C´µ2 b C´µ3q .

Suppose that Mµ is non-empty. Then Mµ is a complex-projective va-
riety, a projective embedding being given by the Kodaira map Mµ Ñ

PpH0pMµ,Lbkµ qq for all sufficiently large k (see Theorem 2.17 in [24]). More-
over, the rQ,Rs theorem says that for all k ě 1, we have mEpkµq “
dimH0pMµ,Lbkµ q: hence mEpkµq ‰ 0 for k sufficiently large.

Let ξ P ∆pKCˆKCˆEqXpt
˚
Qq

3: let N ě 1 such that µo :“ Nξ P p^˚`q
3.

By definition, the reduced space Mµo is non-empty. So there exists, ko ě 1
such that mEpkoµoq ‰ 0, i.e. koµo P ∆ZpKC ˆ KC ˆ Eq. We have proved
that ξ “ 1

koN
koµ P Qą0 ¨∆ZpKC ˆKC ˆ Eq.

The first point is settled and the second one is an immediate consequence
of the first one. l
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3 Saturated semigroups

For any n ě 1, we consider the semigroup ^`n “ tpλ1 ě ¨ ¨ ¨ ě λnqu Ă Zn
that parametrizes the irreducible representations of the unitary group Upnq.
When λ P ^`n , the notation λ ě 0 (resp. λ ď 0) means that λn ě 0
(resp. λ1 ď 0), and lengthpλq is the number of non-zero coordinates λi. To
λ “ pλ1 ě ¨ ¨ ¨ ě λnq P ^

`
n , we associate λ˚ “ p´λn ě ¨ ¨ ¨ ě ´λ1q P ^

`
n :

the representation V
Upnq
λ˚ is then the dual of V

Upnq
λ .

Let start by recalling the properties of the semigroup HornZpnq of p^`n q
3

defined by the relations

pλ, µ, νq P HornZpnq ðñ
”

V Upnq
ν : V

Upnq
λ b V Upnq

µ

ı

‰ 0.

First, the convex cone of pCnq3 defined as the closure of Qą0 ¨ HornZpnq
corresponds to Hornpnq (see Definition 1.2). Moreover, thanks to the sat-
uration Theorem of A. Knutson and T. Tao [16], we know that an ele-
ment pλ, µ, νq P p^`n q

3 belongs to the semigroup HornZpnq if and only if
pλ, µ, νq P Hornpnq (see Proposition 2.14).

In the rest of this section we work with the compact Lie group K “

Uppq ˆ Upqq, so that KC “ GLp ˆ GLq. If λ “ pλ1, λ2q P ^`p ˆ ^
`
q , then

Vλ :“ V
Uppq
λ1 b V

Upqq
λ2 denotes the irreducible representation of Uppq ˆ Upqq

with highest weight λ.
Recall that for any p, q ě 1, Mp,q denotes the vector space of p ˆ q

complex matrices.
The purpose of this section is the study of the following semigroups of

p^`p ˆ^
`
q q

3.

Definition 3.1 Let pλ, µ, νq P p^`p ˆ^
`
q q

3.

• The semigroup HornZpp, qq is defined by the conditions:

pλ, µ, νq P HornZpp, qq ðñ rVν : Vλ b Vµ b SympMp,qqs ‰ 0.

• The semigroup QZpp, qq is defined by the conditions:

pλ, µ, νq P QZpp, qq ðñ

$

’

&

’

%

λ ď 0,

µ ď 0,

rVλ b Vµ b Vν b SympMp,qqs
UppqˆUpqq

‰ 0.

• The semigroup SZpp, qq is defined by the conditions:

pλ, µ, νq P SZpp, qq ðñ rVλ b Vµ b Vν b SympCp b CqqsUppqˆUpqq ‰ 0.

14



Figure 1: Quiver Q with dimension vector vp,q

3.1 The semigroup QZpp, qq

Let p, q ě 1. We consider the quiver Q of Figure 1, with dimension vector
vp,q “ pp, p, p, q, q, qq. The vector space

ReppQ,vp,qq “ pMp,p ˆMq,qq
2 ˆMp,q

admits a natural action of the algebraic group GLpQ,vp,qq “ pGLpˆGLqq
3

that we recall. Take g “ pg1, g2, g3q P GLpQ,vp,qq with gi “ pg1i, g
2
i q P

GLpˆGLq and pX1, X2, Y q P ReppQ,vq where Xi “ pX
1
i, X

2
i q PMp,pˆMq,q

and Y PMp,q. Then g ¨X “ px1, y2, yq where xi “ pg
1
iX

1
ipg

1
3q
´1, g2iX

2
i pg

2
3q
´1q

and y “ g13Y pg
2
3q
´1.

We consider the multipicity map m : p^`p ˆ^
`
q q

3 Ñ N defined by

mpλ, µ, νq “ dim rVλ b Vµ b Vν b SympMp,qqs
GLpˆGLq .

Lemma 3.2 The coordinate ring CrReppQ,vp,qqs, viewed as GLpQ,vp,qq-
module, admits the following decomposition

CrReppQ,vp,qqs “
ÿ

λď0,µď0,ν

mpλ, µ, νqV 1
λ b V

2
µ b V

3
ν .

Proof. It is due to the fact that the GLpQ,vp,qq-module CrpMp,pˆMq,qq
2s

admits the decomposition CrpMp,pˆMq,qq
2s “

ř

λď0,µď0 V
1
λ bV

2
µ bV

3
λ˚bV

3
µ˚ .

l

The previous lemma shows that QZpp, qq corresponds to the semigroup
of highest weights associated to the action of the group GLpQ,vp,qq on the
coordinate ring CrReppQ,vp,qqs.

Proposition 3.3 The semigroup QZpp, qq is saturated.
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Figure 2: Quiver rQ with dimension vector rvp,q

Proof. This is a direct consequence of the Derksen-Weyman saturation
theorem [7], which asserts that, for a quiver without cycles, the semigroup of
weights of semi-invariants is saturated. Indeed, augment the quiver pQ,vp,qq

to the quiver p rQ, rvp,qq (see Figure 2). Then, using the Cauchy formula for
the decomposition of bn´1k“1CrpC

kq˚ b Ck`1s under the action of
śn
k“1GLk,

one sees that there is a bijective morphism between the semigroup of weights
of semi-invariants of the coordinate ring CrRepp rQ, rvp,qqs under the action of
p
śp
k“1GLkq

3 ˆ p
śq
`“1GL`q

3 and the semigroup QZpp, qq. l

3.2 The semigroups HornZ
pp, qq and SZpp, qq

We use the involution Θ : p^`p ˆ^
`
q q

3 Ñ p^`p ˆ^
`
q q

3 that sends pλ, µ, νq to

ˆˆ

λ1

pλ2q˚

˙

,

ˆ

µ1

pµ2q˚

˙

,

ˆ

pν 1q˚

ν2

˙˙

.

Let us denote by 1 P ^`p ˆ^
`
q the vector p1, . . . , 1, 1, . . . , 1q. The main

purpose of this section is the following result.

Proposition 3.4 1. For any pλ, µ, νq P HornZpp, qq, there exists ko ě 0
such that pλ´ k1, µ´ k1, ν˚ ` 2k1q P QZpp, qq, @k ě ko.

2. pλ, µ, νq P HornZpp, qq if and only if Θpλ, µ, νq P SZpp, qq.
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3. The semigroups HornZpp, qq and SZpp, qq are saturated.

Proof. Let pλ, µ, νq P HornZpp, qq : it means that
rVλ b Vµ b Vν˚ b SympMp,qqs

GLpˆGLq ‰ 0 and so pλ, µ, ν˚q P QZpp, qq if
λ ď 0 and µ ď 0. We notice that pλ ` k1, µ ` k1, ν ` 2k1q P HornZpp, qq,
@k P Z. Let ko “ supp|λ1|, |µ1|q: we see that λ ´ k1 ď 0 and µ ´ k1 ď 0
if k ě ko, and consequently pλ´ k1, µ´ k1, ν˚ ` 2k1q P QZpp, qq if k ě ko.
The first point is settled.

Cauchy formulas give the decompositions

SympMp,qq “ SympCp b pCqq˚q “
ÿ

lengthpaqďinfpp,qq
aě0

V
GLp
a b V

GLq
a˚ ,

SympCp b Cqq “
ÿ

lengthpaqďinfpp,qq
aě0

V
GLp
a b V

GLq
a .

For the second point, we have to compare the following cases :

• pλ, µ, νq P HornZpp, qq if there exists a ě 0 with lengthpaq ď infpp, qq
such that both conditions hold

“

Vλ1 b Vµ1 b Vpν1q˚ b Va
‰GLp

‰ 0
“

Vλ2 b Vµ2 b Vpν2q˚ b Va˚
‰GLq

‰ 0.

• pλ, µ, νq P SZpp, qq if there exists a ě 0 with lengthpaq ď infpp, qq such
that both conditions hold

“

Vλ1 b Vµ1 b Vν1 b Va
‰GLp

‰ 0
“

Vλ2 b Vµ2 b Vν2 b Va
‰GLq

‰ 0.

It is then immediate to conclude that pλ, µ, νq P HornZpp, qq if and only if
Θpλ, µ, νq P SZpp, qq.

Let us check that HornZpp, qq is saturated. Let pλ, µ, νq such that
Npλ, µ, νq P HornZpp, qq for some N ě 1. If we use the first point, we
know that there exists ko ě 0, such that

Npλ, µ, ν˚q ´ kp1,1,´2 ¨ 1q P QZpp, qq, @k ě ko.

Take k “ Nko ě ko : we obtain that Npλ ´ ko1, µ ´ ko1, ν
˚ ` 2ko1q P

QZpp, qq. It follows that pλ ´ ko1, µ ´ ko1, ν
˚ ` 2ko1q P QZpp, qq because
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the semigroup QZpp, qq is saturated. Finally, the last relation implies that
pλ, µ, νq P HornZpp, qq.

We have verified that the semigroup HornZpp, qq is saturated, and the
second point also allows us to conclude that the semigroup SZpp, qq is satu-
rated. l

3.3 Final remarks

We have seen that the semigroups HornZpp, qq, SZpp, qq and QZpp, qq are all

related. Thus, the associated convex cones Hornpp, qq “ Qą0 ¨HornZpp, qq,

Spp, qq “ Qą0 ¨ SZpp, qq and Qpp, qq “ Qą0 ¨QZpp, qq are also interdependent.
The calculation of one entails those of the others. In this paper, we obtain
a recursive description of the Horn cone Hornpp, qq through the calculation
of Spp, qq.

Let Qo be a quiver without cycle which is equipped with a dimension
vector vo. In [1], V. Baldoni, M. Vergne and M. Walter have proposed a
recursive description of the cone generated by the highest weights associated
to the action of the group GLpQo,voq on the coordinate ring CrReppQo,voqs.
By applying their result to the quiver pQ,vp,qq in Figure 1, this should also
allow a recursive description of the Horn cone Hornpp, qq.

4 Convex cone Spp, qq

In this section, we apply the results of §2 to the case where KC “ GLp ˆ
GLq and the KC-module is E “ Cp b Cq. The coordinate ring CrpGLp ˆ
GLqq

2 ˆCp bCqs, viewed as a pGLp ˆGLqq
3-module, admits the following

decomposition

CrpGLp ˆGLqq2 ˆ Cp b Cqs “
ÿ

λ,µ,νP^`p ˆ^
`
q

mpλ, µ, νq V 1
λ b V

2
µ b V

3
ν ,

where mpλ, µ, νq “ dimrVλ b Vµ b Vν b SympCp b CqqsGLpˆGLq .
We see that the semigroup ∆ZppGLp ˆ GLqq

2 ˆ Cp b Cqq corresponds
to SZpp, qq. Hence we will denote by Spp, qq the convex cone ∆ppGLp ˆ
GLqq

2ˆCpbCqq : it corresponds to the Kirwan polyhedron relative to the
Hamiltonian action of Uppq ˆ Upqq on pGLp ˆGLqq

2 ˆ Cp b Cq.

4.1 Admissible elements for pGLp ˆGLqq
2 ˆ Cp b Cq

Let T » Up1qpˆUp1qq be the maximal torus of K “ UppqˆUpqq formed by
the diagonal matrices. The Lie algebra t admits a canonical identification
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with RpˆRq through the map d and the Weyl group of pK,T q is isomorphic
to W “ Sp ˆSq.

The set of roots for pK,T q is R “ tεi ´ εj , 1 ď i ‰ j ď puY
tε1k´ ε

1
l, 1 ď k ‰ l ď qu. The set of weights for the T -action on E “ CpbCq

is RE “ tεi ` ε1k, 1 ď i ď p, 1 ď k ď qu. Let us denote Ro “ R YRE . We
first notice that RKo “ Rγ00 , with γ00 “ 1p ‘´1q P t.

Definition 4.1 For any pr, sq P t0, . . . , puˆ t0, . . . , qu, we define γrs “ γr ‘
γs P t where γr “ p0, . . . , 0

loomoon

r times

, 1, . . . , 1q and γs “ p´1, . . . ,´1, 0, . . . , 0
loomoon

s times

q.

Lemma 4.2 Let γ P t be a non-zero rational element such that VectpRoq X

γK “ VectpRo X γKq. There exists pr, sq R tp0, 0q , pp, qqu, w P W and
pa, bq P Qě0 ˆQ such that γ “ apwγrsq ` bγ

0
0 .

Proof. For any t P R, we define

γptq “
ÿ

1ďiďp
γi“t

ei ´
ÿ

1ďkďq
γk“´t

e1k.

We notice that γptq is orthogonal to Ro X γK. If VectpRoq X γK “

VectpRo X γKq holds we get that γptq P pVectpRoq X γKqK “ Rγ00 ` Rγ
for all t P R. Take to such that γptoq ‰ 0. Two situations holds.

1. γptoq P Rγ00 . This case only occurs if γ P Qγ00 .

2. γptoq R Rγ00 . Then there exists pr, sq R tp0, 0q , pp, qqu, w P W and
px, yq P Q ´ t0u ˆ Q such that γptoq “ wγrs and γptoq “ xγ ` yγ00 :
hence γ “ 1

xpwγ
r
sq ´

y
xγ

0
0 . If 1

x ą 0, the proof is completed. If 1
x ă 0,

we use that ´γrs “ woγ
p´r
q´s ´ γ00 for some wo P W in order to come

back to the previous case. l

In order to describe the facets of the convex cone Spp, qq, we must con-
sider the following admissible elements:

• ˘pγ00 , γ00 , γ00q,

• pw1γ
r
s , w2γ

r
s , w3γ

r
sq where w1, w2, w3 PW and pr, sq R tp0, 0q , pp, qqu.

4.2 Admissible elements ˘pγ00 , γ
0
0 , γ

0
0q

The admissible elements ˘pγ00 , γ
0
0 , γ

0
0q act on pGLp ˆ GLqq

2 ˆ Cp b Cq
trivially. Hence ˘pγ00 , γ

0
0 , γ

0
0q are Ressayre’s data, and inequalities (5) are

˘
`

xA, γ00y ` xB, γ
0
0y ` xC, γ

0
0y
˘

ě 0. In other words,

(6) |A1 | ` |B1 | ` |C 1 | “ |A2 | ` |B2 | ` |C2 | .
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4.3 Admissible element pw1γ
r
s , w2γ

r
s , w3γ

r
sq

Recall the relations that a Ressayre’s data pγ,w1, w2, w3q must satisfy (see
Lemma 2.10):

Relation pAq :
3
ÿ

i“1

dimpnwiγą0q “ 2 dimpkγą0C q ` dimppCp b Cqqγą0q,

Relation pBq :
3
ÿ

i“1

Trwiγpn
wiγą0q “ 2 Trγpk

γą0
C q ` TrγppCp b Cqqγą0q.

It is immediate to see that for pγrs , w1, w2, w3q, Relations (A) and (B)
are equivalent.

We associate to pw1, w2, w3q P pSp ˆSqq
3 the following subsets :

• Those of cardinal r : I 1 “ w11pt1, . . . , ruq, J
1 “ w12pt1, . . . , ruq, and

K 1“w13pt1, . . . , ruq.

• Those of cardinal s : I2 “ w21ptq ´s ` 1, . . . , quq, J2 “ w22ptq ´s `
1, . . . , quq, and K2“w23ptq ´s` 1, . . . , quq.

Inequality (5) becomes |A1|pI 1qc`|B
1|pJ 1qc`|C

1|pK1qc ě |A
2|pI2qc`|B

2|pJ2qc`

|C2|pK2qc which is equivalent to

(7) |A1 |I 1 ` |B
1 |J 1 ` |C

1 |K1 ď |A
2 |I2 ` |B

2 |J2 ` |C
2 |K2 ,

thanks to (6).

4.4 Schubert classes

For any m,n ě 0, let Gpm,nq denote the Grassmannian of complex m-
dimensional linear subspaces of Cm`n. The singular cohomology of Gpm,nq
with integers coefficients is denoted H˚pGpm,nq,Zq.

Let m,n ě 1. When a partition λ is included in a m ˆ n rectangle, we
write λ Ă mˆ n : n ě λ1 ě ¨ ¨ ¨ ě λm ě 0.

Denote the set of cardinality m subsets I “ ti1 ă i2 ă ¨ ¨ ¨ ă imu
of rm ` ns “ t1, . . . ,m ` nu by Pm`nm . To each I P Pm`nm we associate
λpIq “ pλ1 ě λ2 ¨ ¨ ¨ ě λmq Ă mˆ n where λa “ n` a´ ia for a P rms. The
map I ÞÑ λpIq is one to one map between Pm`nm and the set of partitions of
size mˆ n. The inverse map is denoted by λ Ă mˆ n ÞÑ Ipλq P Pm`nm .

We work with the flag 0 Ă C Ă C2 Ă ¨ ¨ ¨ Ă Cn`m´1 Ă Cn`m. For any
partition λ Ă mˆ n, we define the Schubert cell

Xoλ “ tF P Gm,n, Ck´1 X F ‰ Ck X F if and only if k P Ipλqu.
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and the Schubert variety Xλ “ Xoλ. When the partition is pk, 0, . . . , 0q with
1 ď k ď n, the corresponding Schubert variety is denoted by Xk.

LetBn`m Ă GLn`m be the Borel subgroup formed by the upper-triangular
matrices. The following facts are well-known (see e.g. [11, 8, 20]) :

1. Xoλ “ Bm`n ¨Vectpei, i P Ipλqq,

2. Gm,n “
Ť

λĂmˆnX
o
λ,

3. codimpXoλq “ |λ| “
ř

k λk.

Since the Schubert cells define a complex cellular decomposition of the
Grassmannian, an immediate consequence is that the fundamental class of
the Schubert varieties, the Schubert classes σλ “ rXλs P H2|λ|pGm,n,Zq,
where λ Ă mˆn, form a basis of the cohomology with integers coefficients :

H˚pGpm,nq,Zq “
à

λĂmˆn

Zσλ.

When λ “ pk, 0, . . . , 0q, we denote by σk P H
2kpGm,n,Zq the correspond-

ing Schubert class.
We finish this section by recalling that the Grassmannian Gm,n admits

the following complex vector bundles :

1. A canonical vector bundle of rank m : Em,n.

2. A vector bundle of rank n, denoted EKm,n, such that Em,n ‘ EKm,n is a
trivial bundle of rank m` n.

4.5 Cohomological conditions

Theorem 2.13 tells us that an element pA,B,Cq P pCp ˆ Cqq3 belongs to
Spp, qq “ ∆ppGLpˆGLqq

2ˆCpbCqq if and only (6) holds and (7) holds for
any pw1, w2, w3q P pSpˆSqq

3 and any couple pr, sq P t0, . . . , puˆt0, . . . , qu´
tpp, qq, p0, 0qu, satisfying the relation

(8) rXw1,γrs s ¨ rXw2,γrs s ¨ rXw3,γrs s ¨ EulpVrs q “ krpts, k ě 1

in H˚pFγrs ,Zq.

Let us detailed (8). We fix pr, sq R tp0, 0q , pp, qqu. The parabolic sub-
group Pγrs Ă GLpˆGLq associated to γrs by (3) is equal to Pγr ˆPγs where

Pγr “

ˆ

GLr ˚

0 GLp´r

˙

Ă GLp and Pγs “

ˆ

GLq´s ˚

0 GLs

˙

Ă GLq.
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Let Cr Ă Cp and Cq´s Ă Cq denote respectively the subspaces
Vectpei, 1 ď i ď rq and Vectpej , 1 ď j ď q ´ sq. We use on Cp and Cq
the canonical bilinear forms px, yq ÞÑ

ř

k xkyk. Then pCrqK Ă Cp and
pCq´sqK Ă Cq are respectively the subspaces Vectpei, r ` 1 ď i ď pq and
Vectpej , q ´ s` 1 ď j ď qq.

The flag variety Fγrs “ GLp{Pγr ˆGLq{Pγs admits a canonical identifi-
cation with Gpr, p´ rq ˆGpq ´ s, sq through the map

prgs, rhsq P GLp{PγrˆGLq{Pγs ÞÝÑ
`

gpCrq, hpCq´sq
˘

P Gpr, p´rqˆGpq´s, sq.

Let Bp Ă GLp and Bq Ă GLq be the Borel subgroups formed by the
upper-triangular matrices. For any w “ pw1, w2q P SpˆSq, we consider the
Schubert cell Xow,γrs “ Bprw

1s ˆ Bqrw
2s Ă Gpp ´ r, rq ˆ Gps, q ´ sq and the

Schubert variety

Xw,γrs “ Bprw1s ˆBqrw2s “ Xµ1 ˆ Xµ2

where µ1 “ λpw1t1, . . . , ruq Ă rˆp´r and µ2 “ λpw2t1, . . . , q´suq Ă q´sˆs.
If we associate to pw1, w2, w3q P pSp ˆSqq

3, the subsets

• I 1“w11pt1, . . . , ruq, J 1“w12pt1, . . . , ruq, and K 1“w13pt1, . . . , ruq,

• I2 “ w21ptq ´ s ` 1, . . . , quq, J2 “ w22ptq ´ s ` 1, . . . , quq, and K2 “

w23ptq ´s` 1, . . . , quq,

the term rXw1,γrs s ¨ rXw2,γrs s ¨ rXw3,γrs s P H
˚pGpr, p´rqˆGpq´s, sq,Zq is then

equal to the tensor product of the cohomology classes4

σλpI 1q ¨ σλpJ 1q ¨ σλpK1q P H
˚pGpr, p´ rq,Zq,

σλppI2qcq ¨ σλppJ2qcq ¨ σλppK2qcq P H
˚pGpq ´ s, sq,Zq.

The subspace pCp b Cqqγrsą0 is equal to pCrqK b pCq´sqK. Hence the
vector bundle Vrs is equal to the tensor product EKr,p´rbEKq´s,s. Let EulpVrs q P
H2pp´rqs pGpr, p´ rq ˆGpq ´ s, sq,Zq be its Euler class.

Finally, the cohomological condition (8) says that the product

`

σλpI 1q b σλppI2qcq
˘

¨
`

σλpJ 1q b σλppJ2qcq
˘

¨
`

σλpK1q b σλppK2qcq
˘

¨ EulpVrs q

is a non zero multiple of rpts P Hmax pGpr, p´rqˆGpq´s, sq,Zq.
4Xc denotes the complement of X.

22



5 Computation of the Euler class EulpVrs q
Before giving a formula for the Euler class EulpVrs q, we need to recall some
well-known facts.

5.1 Polynomial representations

We are concerned here with the polynomial representations of GLm. When
a representation πV : GLm Ñ GLpV q is polynomial, its character is an
invariant polynomial χV P CrMm,ms. We denote then by sV the restriction
of χV to the diagonal matrices.

Let R`pGLmq denotes the polynomial representation ring of GLm, and
let

Ź

m “ Zrx1, . . . , xmsSm be the ring of symmetric polynomials, with
integral coefficients, in m variables. The map V P R`pGLmq ÞÑ sV P

Ź

m is
a ring isomorphism.

For any partition λ of length m, we associate the irreducible polynomial
representation5 V GLm

λ of the group GLm and the Schur polynomial sλ :“
sVλ P

Ź

m. Recall that the Schur polynomials sλ determine a Z-basis of
Ź

m.
We recall the following classical fact (for a proof see §3.2.2 in [20]).

Theorem 5.1 The map φm,n :
Ź

m ÝÑ H˚pGm,n,Zq defined by the rela-
tions

φm,npsλq “

#

σλ if λ1 ď n,

0 if λ1 ą n.

is a ring morphism.

Remark 5.2 Since V P R`pGLmq ÞÑ sV P
Ź

m is a ring isomorphism, we
will also denote by φm,n : R`pGLmq ÝÑ H˚pGm,n,Zq the ring morphism
V ÞÑ φm,npsV q.

If k ě 1, we denote by 1k the partition p1, . . . , 1, 0, . . . , 0q where there
are k-times 1.

Example 5.3

φm,npSymkpCmqq “

#

σk if 1 ď k ď n,

0 if k ą n.

φm,np
ľk

Cmq “

#

σ1k if 1 ď k ď m,

0 if k ą m.
5When the group is understood, we use the notation Vλ.
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5.2 Duality I

We associate to a partition λ Ă m ˆ n it’s complementary partition pλ Ă
mˆ n : pλk “ n´ λm`1´k, 1 ď k ď m. Recall that

• If λ “ λpIq then pλ “ λprIq where rI “ tn`m` 1´ i ; i P Iu.

• If Vλ is the irreducible polynomial representation of GLm associated
to λ Ă mˆ n, then pVλq

˚ “ V
pλ
b det´n.

The cohomology class rpts P H2nmpGm,n,Zq of top degree associated to
a singleton tptu is a basis of H2nmpGm,n,Zq.

We recall the following classical fact (for a proof see §3.2.2 in [20]).

Proposition 5.4 Let λ1, λ Ă mˆ n be two partitions such that |λ| ` |λ1| “
nm. Then, the following relations hold in H˚pGm,n,Zq :

σλ ¨ σλ1 “

#

rpts if λ1 “ pλ,

0 if λ1 ‰ pλ.

The next corollary follows from Theorem 5.1 and Proposition 5.4.

Corollary 5.5 Let λ1, λ2, λ3 Ă mˆ n. The following assertions are equiv-
alent :

• σλ1 ¨ σλ2 ¨ σλ3 “ krpts, k ě 1 in H˚pGm,n,Zq.

•
”

V
pλ3

: Vλ1 b Vλ2

ı

‰ 0.

•
“

Vλ1 b Vλ2 b Vλ3 b det´n
‰GLm

‰ 0.

5.3 Duality II

Taking the transpose of the Young diagram defines a bijective map λ Ă
mˆn ÞÝÑ λ_ Ă nˆm. The following lemma is useful in our computations.

Lemma 5.6 If the partition λ Ă m ˆ n is equal to λpIq then λ_ “ λpI_q

where I_ “ ĄpIcq.

The canonical bilinear form on Cn`m permits to define the map δ :
Gn,m ÝÑ Gm,n that sends F to FK. Let δ˚ : H˚pGm,nq Ñ H˚pGn,mq

denotes the pullback map in cohomology.

Lemma 5.7 For any partition λ Ă mˆ n, we have δ˚pσλq “ σλ_.
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5.4 Morphism φm,n : geometric definition

To a polynomial representation V P R`pGLmq, we associated the polyno-
mial map πV : Mm,m ÝÑ EndpV q and the invariant polynomial χV pXq :“
TrV pπV pXqq.

Let Em,n Ñ Gm,n be the canonical vector bundle of rank m. Let Ωm,n P

A2pGm,n,EndpEm,nqq be its curvature. The Chern-Weil homomorphism as-
sociates to the invariant polynomial χV the closed form χV

`

i
2πΩm,n

˘

of even
degree on Gm,n. We denote by H˚pGm,nq the de Rham cohomology of Gm,n.
We have a natural (injective) morphism H˚pGm,n,Zq Ñ H˚pGm,nq.

Here is a geometric definition of the map φm,n [26].

Theorem 5.8 For any V P R`pGLmq, φm,npV q P H
˚pGm,nq is the class

defined by the closed form χV
`

i
2πΩm,n

˘

.

If V Ñ N is a complex vector bundle, we denote by ckpVq its k-Chern
class. In the next lemma, we recall the computation of the Chern classes of
the vector bundles Em,n and EKm,n.

Lemma 5.9 The following relations holds in H˚pGm,nq.

ckpEm,nq “

#

σ1k if 1 ď k ď m,

0 if k ą m.

ckpEKm,nq “

#

σk if 1 ď k ď n,

0 if k ą n.

Proof : If k ą m “ rankpEm,nq, then ckpEm,nq “ 0. If 1 ď k ď m,

then ckpEm,nq “ φm,np
ŹkCmq “ σ1k . For the second point, let us use the

isomorphism δ : Gm,n Ñ Gn,m. We see that the vector bundle EKm,n is

isomorphic to δ´1pEn,mq. Then ckpEKm,nq “ δ˚pckpEn,mqq “ δ˚pσ1kq “ σk for
any 1 ď k ď n. l

5.5 Cauchy formula

We fix some integers m,n,m1, n1 ě 1.
We consider the vector bundles Em,n Ñ Gm,n and Em1,n1 Ñ Gm1,n1 . We

can form the bundles Em,nbEm1,n1 and EKm,nbEKm1,n1 on Gm,nˆGm1,n1 . The
purpose of this section is the computation of their Euler classes.

For any partition λ Ă m1 ˆm, we define λ̃ “ pλ_ Ă mˆm1.

25



Proposition 5.10 The following relation holds in H2mm1pGm,n ˆGm1,n1q :

EulpEm,n b Em1,n1q “
ÿ

λĂm1ˆm

σλ̃ b σλ,

where σλ P H
2|λ|pGm1,n1q and σλ̃ P H

2pmm1´|λ|qpGm,nq. For a partition λ Ă
m1ˆm, the product σλ̃bσλ does not vanish if only if the following conditions
hold :

• n1 ě λ1,

• 7t1 ď k ď m1, λk “ mu ě m1 ´ n.

Proof : The Euler class EulpEm,n b Em1,n1q is equal to the top Chern

class cmm1pEm,n b Em1,n1q P H2mm1pGm,n ˆ Gm1,n1q. The curvature of the
vector bundle Em,n b Em1,n1 is equal to Ωm,n b Id1 ` Id b Ωm1,n1 where
Id P EndpEm,nq and Id1 P EndpEm1,n1q are the identity maps. In order to
compute

cmm1pEm,n b Em1,n1q “ det
`

i
2πΩm,n b Id1 ` Id b i

2πΩm1,n1
˘

we use the following Cauchy formula (see [19])

ź

1ďiďm
1ďjďm1

pxi ` x
1
jq “

ÿ

λĂm1ˆm

sλ̃pxqsλpx
1q.

The previous relation implies that

det
`

X b Id1 ` Id b X 1
˘

“
ÿ

λĂm1ˆm

χVλ̃pXqχVλpX
1q,

for all pX,X 1q PMm,m ˆMm1,m1 . Finally, we obtain thank to Theorem 5.8,
the following relation

cmm1pEm,n b Em1,n1q “
ÿ

λĂm1ˆm

χVλ̃p
i
2πΩm,nqχVλp

i
2πΩm1,n1q

“
ÿ

λĂm1ˆm

σλ̃ b σλ.

Let us analyse when σλ̃ b σλ ‰ 0. From the definition, we see that for

any partition λ Ă m1 ˆ m, we have λ̃j “ 7t1 ď k ď m1, λk ď m ´ ju,
@j P t1, . . . ,mu. In particular we get λ̃1 “ m1´7t1 ď k ď m1, λk “ mu since
λk ď m, @k.
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The element σλ P H
2|λ|pGm1,n1q does not vanish if and only if λ1 ď n1,

and σλ̃ P H
2pmm1´|λ|qpGm,nq does not vanish if and only if λ̃1 ď n. Our proof

is completed since the relation λ̃1 ď n is equivalent to 7t1 ď k ď m1, λk “
mu ě m1 ´ n. l

We apply our formula to the case where p ě q ě 1, 1 ă r ă p and
1 ă s ă q. The following relation holds in H2pp´rqspGp´r,r ˆGs,q´sq :

(9) EulpEp´r,r b Es,q´sq “
ÿ

λĂ sˆp´r

σλ̃ b σλ,

where σλ P H
2|λ|pGp´r,rq and σλ̃ P H

2ppp´rqs´|λ|qpGs,q´sq. For a partition
λ Ă sˆ p´ r, the product σλ̃b σλ does not vanish if only if q´ s ě λ1, and
7t1 ď k ď s, λk “ p´ ru ě s´ r.

Lemma 5.11 Suppose that p ě q. Then EulpEp´r,r b Es,q´sq “ 0 if s ą r.

Proof : Suppose that s´ r ą 0. If EulpEp´r,r b Es,q´sq ‰ 0, there exists
a partition λ Ă s ˆ p ´ r such that σλ̃ b σλ ‰ 0: hence q ´ s ě λ1 and
7t1 ď k ď s, λk “ p ´ ru ě s ´ r ą 0. We obtain q ´ s ě λ1 “ p ´ r, so
q ě p` s´ r ą p, which is in contradiction with our hypothesis. l

We consider now the vector bundle Vrs “ EKr,p´r b EKq´s,s on Gr,p´r ˆ

Gq´s,s.

Proposition 5.12 Let p ě q ě 1, 1 ă r ă p and 1 ă s ă q.

• If s ą r, then EulpVrs q “ 0

• If s ď r, the following relation holds in H2pp´rqspGr,p´r ˆGq´s,sq :

EulpVrs q “
ÿ

λĂ sˆp´r

σ
pλ
b σλ_ ,

where σλ_ P H
2|λ|pGq´s,sq and σ

pλ
P H2ppp´rqs´|λ|qpGr,p´rq. For a par-

tition λ Ă sˆ p´ r, the product σ
pλ
b σλ_ does not vanish if and only

if q ´ s ě λ1.

Proof : Let δ ˆ δ : Gr,p´r ˆGq´s,s Ñ Gp´r,r ˆGs,q´s be the product of
“duality” maps (see §5.3). Since EKr,p´rbEKq´s,s » pδˆδq´1pEp´r,rbEq´s,sq,
we have EulpVrs q “ δ˚ ˆ δ˚pEulpEp´r,r b Es,q´sqq. We can use Lemmas 5.11
and 5.7, and (9) to complete the proof. l
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6 Convex cone Spp, qq : equations of the facets

Theorem 2.13 tells us that an element pA,B,Cq P pCp ˆ Cqq3 belongs to
Spp, qq “ ∆ppGLp ˆGLqq

2 ˆ Cp b Cqq if and only

|A1| ` |B1| ` |C 1| “ |A2| ` |B2| ` |C2|

and

(10) |A1 |I 1 ` |B
1 |J 1 ` |C

1 |K1 ď |A
2 |I2 ` |B

2 |J2 ` |C
2 |K2 ,

for any couple pr, sq P t0, . . . , puˆt0, . . . , qu´tpp, qq, p0, 0qu, for any I 1, J 1,K 1 P

Ppr and any I2, J2,K2 P Pps , such that the product

(11)
`

σλpI 1q b σλppI2qcq
˘

¨
`

σλpJ 1q b σλppJ2qcq
˘

¨
`

σλpK1q b σλppK2qcq
˘

¨ EulpVrs q

is a non zero multiple of rpts P Hmax pGpr, p´ rq ˆGpq ´ s, sq,Zq.
In the following sections, we study each case according to the parameter

pr, sq.

6.1 r “ 0 and s “ q

Here, Gpr, p´ rq ˆGpq ´ s, sq “ tptu and V0q ‰ 0, hence the cohomological
condition (11) does not hold.

6.2 r “ p and s “ 0

Here, Gpr, p´ rq ˆGpq ´ s, sq “ tptu and Vp0 “ 0, hence the cohomological

condition (11) holds. Relation (10) becomes |A1 | ` |B1 | ` |C 1 | ď 0 .

6.3 0 ă r ă p and s “ 0

Here Vr0 “ 0 and the cohomological condition (11) becomes σλpI 1q ¨ σλpJ 1q ¨
σλpK1q “ krpts, k ě 1, in H˚pGpr, p´ rqq which is equivalent to asking that

”

VλpI 1q b VλpJ 1q b VλpK1q b det´pp´rq
ıGLr

‰ 0.

Here inequality (10) becomes |A1 |I 1 ` |B
1 |J 1 ` |C

1 |K1 ď 0 .
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6.4 0 ă r ă p and s “ q

Here Vrq is the vector bundle EKr,p´r b Cq on Gpr, p´ rq. Since

EulpVrq q “ EulpEKr,p´rqq “
`

cp´rpEKr,p´rq
˘q
“ pσp´rq

q P H˚pGpr, p´ rqq,

condition (11) is σλpI 1q ¨σλpJ 1q ¨σλpK1q ¨ pσp´rq
q “ krpts, k ě 1. If we take the

image of the previous relation through δ : H˚pGpr, p´rqq Ñ H˚pGpp´r, rqq,
we obtain

σ
λpĆpI 1qcq

¨ σ
λpĆpJ 1qcq

¨ σ
λpČpK1qcq

¨ pσ1p´rq
q “ krpts, k ě 1, in H˚pGpp´ r, rqq

that is equivalent to

”

V
λpĆpI 1qcq

b V
λpĆpJ 1qcq

b V
λpČpK1qcq

b detq´r
ıGLp´r

‰ 0.

Here inequality (10) is equivalent to |A1 |pI 1qc ` |B
1 |pJ 1qc ` |C

1 |pK1qc ě 0 .

6.5 r “ 0 and 0 ă s ă q

Here V0s is the vector bundle CpbEKq´s,s on Gpp´s, sq. Since EulpV0s q “ pσsqp,
condition (11) is σλppI2qcq ¨ σλppJ2qcq ¨ σλppK2qcq ¨ pσsq

p “ krpts, k ě 1. If
we take the image of the previous relation through δ : H˚pGpq ´ s, sqq Ñ
H˚pGps, q ´ sqq, we obtain

σ
λpĂI2q

¨ σ
λpĂJ2q

¨ σ
λpĄK2q

¨ pσ1sq
p “ krpts, k ě 1, in H˚pGps, q ´ sqq

that is equivalent to

”

V
λpĂI2q

b V
λpĂJ2q

b V
λpĄK2q

b detp´pq´sq
ıGLs

‰ 0.

Here inequality (10) becomes |A2 |I2 ` |B
1 |J2 ` |C

1 |K2 ě 0 .

6.6 r “ p and 0 ă s ă q

Here Vps “ 0 and the cohomological condition (11) becomes σλppI2qcq¨σλppJ2qcq¨
σλppK2qcq “ krpts, k ě 1, in H˚pGpq ´ s, sqq that is equivalent to

“

VλppI2qcq b VλppJ2qcq b VλppK2qcq b det´s
‰GLq´s

‰ 0.

Here inequality (10) is equivalent to |A2 |pI2qc ` |B
2 |pJ2qc ` |C

2 |pK2qc ď 0 .
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6.7 0 ă r ă p and 0 ă s ă q

We know that EulpVrs q “ 0 if s ą r, hence condition (11) does not hold if
s ą r. Suppose now that s ď r. Thanks to Proposition 5.12, we see that
condition (11) is equivalent to asking that the sum

ÿ

λĂsˆp´r

`

σλppI 1qcq ¨ σλppJ 1qcq ¨ σλppK1qcq ¨ σpλ
˘

b
`

σλpI2q ¨ σλpJ2q ¨ σλpK2q ¨ σλ_
˘

is equal to krpts, k ě 1 in H˚pGpr, p ´ rqq b H˚pGpq ´ s, sqq. Hence (11)
holds if and only if there exists a partition λ Ă sˆ p´ r such that

σλpI 1q ¨ σλpJ 1q ¨ σλpK1q ¨ σpλ “ `1rpts in H˚pGpr, p´ rq,Zq,(12)

σλppI2qcq ¨ σλppJ2qcq ¨ σλppK2qcq ¨ σλ_ “ `2rpts in H˚pGpq ´ s, sq,Zq,(13)

for some `1, `2 ě 1.

Lemma 6.1 If s ď r, then (12) and (13) hold if and only if there exists a
partition µ Ă sˆ p´ r, such that both conditions hold

”

VλpI 1q b VλpJ 1q b VλpK1q b Vµ b det´pp´rq
ıGLr

‰ 0,(14)

”

VλpI2q b VλpJ2q b VλpK2q b Vµ b det´pp´rq´2pq´sq
ıGLs

‰ 0.(15)

Proof : Let λ Ă sˆp´ r satisfying (12) and (13). Let µ “ pλ Ă sˆp´ r.
Condition (12) is then equivalent6 to (14).

Take now the image of (13) through the map δ : H˚pGpq ´ s, sq,Zq Ñ
H˚pGps, q ´ sq,Zq : we obtain σ

λpĂI2q
¨ σ

λpĂJ2q
¨ σ

λpĄK2q
¨ σλ “ `2rpts, `2 ě 1 in

H˚pGps, q ´ sq,Zq, that is equivalent to

(16) rV
λpĂI2q

b V
λpĂJ2q

b V
λpĄK2q

b Vλ b det´pq´sqsGLs ‰ 0.

Since we have the following relations between representations of GLs :

1. V
λpĂI2q

“ pVλpI2qq
˚ b detq´s (with the same relations for J2 and K2),

2. Vλ “ pVµq
˚ b detp´r,

condition (16) is equivalent to (15). l

6Since the length of µ is less than r ě s, Vµ is well defined as an irreducible represen-
tation of GLr.
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6.8 Summary

Let us summarize the computations done in the previous sections.
An element pA,B,Cq P pCp ˆ Cqq3 belongs to Spp, qq if and only the

following conditions hold

• |A1| ` |B1| ` |C 1| “ |A2| ` |B2| ` |C2| .

• |A1 | ` |B1 | ` |C 1 | ď 0 .

• For any 0 ă r ă p, for any I 1, J 1,K 1 P Ppr , we have :

|A1 |I 1 ` |B
1 |J 1 ` |C

1 |K1 ď 0 if
“

VλpI 1q b VλpJ 1q b VλpK1q b det´p`r
‰GLr

‰ 0,

|A1 |I 1 ` |B
1 |J 1 ` |C

1 |K1 ě 0 if
”

V
λprI 1q

b V
λp rJ 1q

b V
λpĂK1q

b detq´p`r
ıGLr

‰ 0.

• For any 0 ă s ă q, for any I2, J2,K2 P Pqs , we have :

|A2 |I2 ` |B
2 |J2 ` |C

2 |K2 ď 0 if
“

VλpI2q b VλpJ2q b VλpK2q b det´q`s
‰GLs

‰ 0.

|A2 |I2 ` |B
2 |J2 ` |C

2 |K2 ě 0 if
”

V
λpĂI2q

b V
λpĂJ2q

b V
λpĄK2q

b detp´q`s
ıGLs

‰ 0.

• For any pr, sq P rp´ 1s ˆ rq´ 1s with r ě s, for any I, J,K P Ppr ˆPqs ,
we have

|A1 |I 1 ` |B
1 |J 1 ` |C

1 |K1 ď |A
2 |I2 ` |B

2 |J2 ` |C
2 |K2

if there exists a partition µ Ă sˆp´ r, such that both conditions hold

”

VλpI 1q b VλpJ 1q b VλpK1q b Vµ b det´pp´rq
ıGLr

‰ 0,

”

VλpI2q b VλpJ2q b VλpK2q b Vµ b det´pp´rq´2pq´sq
ıGLs

‰ 0.

6.9 Proof of the main result

In the previous section, we described the facets of the convex cone Spp, qq.
We will now exploit the fact that pA,B,Cq P Hornpp, qq if and only if

ΘpA,B,Cq “

ˆˆ

A1

pA1q˚

˙

,

ˆ

B1

pB2q˚

˙

,

ˆ

pC 1q˚

C2

˙˙

P Spp, qq.
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In what follows, we crucially use that the semigroups HornZpnq and
HornZpp, qq are saturated. Hence HornZpnq “ Hornpnq X p^`n q

3 and
HornZpp, qq “ Hornpp, qq X p^`p ˆ ^

`
q q

3. Recall also the identity |A˚|I “
´|A|

rI
which will be used several times.

Let us compute the image of the facets of Spp, qq through the linear map
Θ :

• The image of |A1| ` |B1| ` |C 1| “ |A2| ` |B2| ` |C2| through Θ is

|A | ` |B | “ |C | .

• The image of the half space |A1 | ` |B1 | ` |C 1 | ď 0 through the map

Θ is |A1 | ` |B1 | ď |C 1 | .

• The image of the half space |A1 |I 1 ` |B
1 |J 1 ` |C

1 |K1 ď 0 through the

map Θ is |A1 |I 1 ` |B
1 |J 1 ď |C

1 |
ĂK1

, and condition

“

VλpI 1q b VλpJ 1q b VλpK1q b det´p`r
‰GLr

‰ 0

is equivalent to pλpI 1q, λpJ 1q, λpĂK 1qq P Hornprq.

• The image of of the half space |A1 |I 1 ` |B
1 |J 1 ` |C

1 |K1 ě 0 through

the map Θ is |A1 |I 1 ` |B
1 |J 1 ě |C

1 |
ĂK1

, and condition

”

V
λprI 1q

b V
λp rJ 1q

b V
λpĂK1q

b detq´p`r
ıGLr

‰ 0

is equivalent to pλpI 1q, λpJ 1q, λpĂK 1q ` pq`p´rq1rq P Hornprq.

• The image of of the half space |A2 |I2 ` |B
2 |J2 ` |C

2 |K2 ď 0 through

the map Θ is |A2 |
ĂI2
` |B2 |

ĂJ2
ě |C2 |K2 and condition

“

VλpI2q b VλpJ2q b VλpK2q b det´q`s
‰GLs

‰ 0

is equivalent to pλp rI2q, λpĂJ2q, λpK2q ` pq´sq1sq P Hornpsq.

• The image of of the half space |A2 |I2 ` |B
2 |J2 ` |C

2 |K2 ě 0 through

the map Θ is |A2 |
ĂI2
` |B2 |

ĂJ2
ď |C2 |K2 and condition

”

V
λpĂI2q

b V
λpĂJ2q

b V
λpĄK2q

b detp´q`s
ıGLs

‰ 0

is equivalent to pλp rI2q, λpĂJ2q, λpK2q ´ p1sq P Hornpsq.
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• The image of of the half space

|A1 |I 1 ` |B
1 |J 1 ` |C

1 |K1 ď |A
2 |I2 ` |B

2 |J2 ` |C
2 |K2

through the map Θ is

|A1 |I 1 ` |A
2 |

ĂI2
` |B1 |J 1 ` |B

2 |
ĂJ2
ď |C 1 |

ĂK1
` |C2 |K2

and conditions

”

VλpI 1q b VλpJ 1q b VλpK1q b Vµ b det´pp´rq
ıGLr

‰ 0,

”

VλpI2q b VλpJ2q b VλpK2q b Vµ b det´pp´rq´2pq´sq
ıGLs

‰ 0.

are equivalent to

”

VλpI 1q b VλpJ 1q b V
˚

λpĂK1q
b Vµ

ıGLr
‰ 0,

”

V
λpĂI2q

b V
λpĂJ2q

b V ˚λpK2q b detpp´rq b V ˚µ

ıGLs
‰ 0.

The existence of a partition µ P s ˆ p ´ r satisfying the previous
relations is equivalent to asking that

ˆˆ

λpI 1q

λp rI2q

˙

,

ˆ

λpJ 1q

λpĂJ2q

˙

,

ˆ

λpĂK 1q

λpK2q ´ pp´ rq1s

˙˙

P p^`r ˆ^
`
s q

3

belongs to Hornpr, sq.

The proof of Theorem 1.6 is complete.
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