
HAL Id: hal-02867074
https://hal.science/hal-02867074

Submitted on 13 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application Topology Definition and Tasks Mapping for
Efficient Use of Heterogeneous Resources

Kods Trabelsi, Loïc Cudennec, Rihab Bennour

To cite this version:
Kods Trabelsi, Loïc Cudennec, Rihab Bennour. Application Topology Definition and Tasks Mapping
for Efficient Use of Heterogeneous Resources. Euro-Par 2019: Parallel Processing Workshops, 11997,
pp.258-269, 2020, Lecture Notes in Computer Science book series, �10.1007/978-3-030-48340-1_20�.
�hal-02867074�

https://hal.science/hal-02867074
https://hal.archives-ouvertes.fr


Application Topology Definition and Tasks
Mapping for Efficient Use of Heterogeneous

Resources

Kods Trabelsi, Löıc Cudennec, and Rihab Bennour

CEA, LIST
Computing and Design Environment Laboratory

F-91191 Gif-sur-Yvette, France
{kods.trabelsi, loic.cudennec, rihab.bennour}@cea.fr

Abstract. Nowadays, high-performance computing (HPC) not only faces
challenges to reach computing performance, it also has to take in con-
sideration the energy consumption. In this context, heterogeneous ar-
chitectures are expected to tackle this challenge by proposing a mix of
HPC and low-power nodes. There is a significant research effort to define
methods for exploiting such computing platforms and find a trade-off be-
tween computing performance and energy consumption. To this purpose,
the topology of the application and the mapping of tasks onto physical
resources are of major importance. In this paper we propose an iterative
approach based on the exploration of logical topologies and mappings.
These solutions are executed onto the heterogeneous platform and eval-
uated. Based on these results a Pareto front is built, allowing users to
select the most relevant configurations of the application according to
the current goals and constraints. Experiments have been conducted on
a heterogeneous micro-server using a video processing application run-
ning on top of a software-distributed shared memory and deployed over a
mix of Intel i7 and Arm Cortex A15 processors. Results show that some
counterintuitive solutions found by the exploration approach perform
better than classical configurations.

Keywords: heterogeneous architectures · tasks mapping · solutions space
exploration.

1 Introduction

Numerical simulation requires the efficient use of computing resources and leads
to a growing demand in performance to provide more accurate results or to de-
crease the computing time. High-performance computing centers usually scale
up to offer more computing power and, despite significant R&D efforts on the
hardware side to limit the energy consumption, the power efficiency has be-
come an important constraint in the design and management of such centers.
Heterogeneous computing platforms combines high-performance and low-power
computation nodes and are not only intended to be deployed in HPC but also in



2 Kods Trabelsi, Löıc Cudennec, and Rihab Bennour

embedded HPC as in autonomous vehicles, IoT and smart manufacturing. The
efficient use of heterogeneous platforms is a complex task since it is the result of
several intricated sub-problems including application sizing, task mapping and
scheduling. The design of high-level tools to help users and platform managers
has become an important field of research in the heterogeneous computing com-
munity.

One of the issues in such architectures is the deployment of distributed appli-
cations in respect of performance constraints and goals. Distributed applications
can usually be configured prior to deployment by setting the number of tasks
and the placement of tasks onto computing resources. The combination of appli-
cation sizing and task mapping provides different computing performance (eg.
computing time, latency, bandwidth..) and energy consumption (eg. instanta-
neous power in W or total consumption in kJ) for the same functionality. In this
work we propose an exploratory approach to automatically evaluate different
application configurations and relieves the user from manually configuring the
deployment of applications. Configurations are evaluated on the heterogeneous
platform when needed and a Pareto front is built according to constraints and
objectives of interest. This representation is given as a decision tool for the user,
from which it is possible to pick a particular configuration that meets at best
the current requirements.

As a motivating example, we consider applications running on top of a
software-distributed shared memory (S-DSM) and deployed over a heterogeneous
computing platform. S-DSM is basically a runtime that aggregates distributed
physical memories into a shared logical space. It is inherently a distributed sys-
tem with different roles: S-DSM servers for managing data and metadata and
application clients to run the user code. These roles can be instantiated, or-
ganized into topologies and mapped onto physical resources, hence leading to
performance and energy consumption trade-off when deploying onto the hetero-
geneous platform. We use a video processing application on top of the S-DSM
and evaluate the exploratory approach to build a Pareto front using an hetero-
geneous Christmann RECS|Box Antares Microserver as for testbed.

The paper is organized as follows: section 2 describes the S-DSM model and
deployment context. Section 3 introduces the S-DSM topology definition prob-
lem, the resolution approach and the results of the deployment on heterogeneous
architectures. Section 4 defines the mapping problem, the developed strategies
and the deployment on heterogeneous architectures results. Section 5 gives some
references on previous works. Finally, section 6 concludes this paper and gives
new perspectives.

2 Topologies and Mappings for DSM

Shared memory is a convenient programming model in which a set of tasks can
concurrently allocate and access data in a global memory space. While the im-
plementation is quite straightforward in a single memory system, shared memory



Application Topology Exploration for Heterogeneous Resources 3

requires a tight design to be deployed on a complex architecture with physically
distributed memories.

2.1 Distributed Shared Memory

The distributed shared memory (DSM) provides such a completely hardware-
independent layer, at the price of hiding complexity into the runtime. The run-
time is in charge of transparently managing local and remote data while mini-
mizing the processing and communication costs. DSM have been studied since
the late eighties with systems such as Ivy [9] and later adapted to new com-
putation contexts such as clusters [1], grids [2] and many-core processors [11].
There is a price for offering hardware abstraction and code portability: most of
DSM systems come with a significant overhead compared to distributed applica-
tions that use explicit communications. The contribution proposed in this paper,
while based on a generic approach, is applied to the DSM context and aims at
finding efficient configurations for the deployment of distributed shared memory
applications.

2.2 Topology for DSM

In this work [3], a Software-DSM (S-DSM) is proposed to federate memories over
heterogeneous architectures. The system can be seen as a regular distributed
application with state machines to implement data coherence protocols. The
S-DSM is organized as a semi-structured super-peer network as presented in
Figure 1. A set of clients are connected to a peer-to-peer network of servers,
mixing both client-server and peer-to-peer topology types. Servers are in charge
of the shared data and metadata management while clients stand as the interface
between the application user code and the S-DSM API. Building constraints for
topologies include: (1) a minimal topology is made of one server, (2) there is a
fully connected graph between servers, (3) each client is connected to one and
only one server and (4) connections are not allowed between clients.

2.3 Application Model and Description

Applications running on this S-DSM are defined as a set of roles. Roles can be
instantiated into clients using a given implementation. For each role, the appli-
cation description defines the following constraints: the minimum and maximum
numbers of instances (clients) and the available implementations. A descrip-
tion example is given in Figure 2. This application requires one client to de-
code the input video stream, at least one client to process the stream and one
client to encode the output. From this description it is possible to build differ-
ent functionally-equivalent S-DSM topologies by setting the number of S-DSM
servers, the number of processing clients and the way it is connected.

In this paper we consider a video processing application as presented in
Figure 2. Video frames are decoded by the input role, assigned to one of the



4 Kods Trabelsi, Löıc Cudennec, and Rihab Bennour

Fig. 1: S-DSM semi-structured super-peer topology.

ROLE MIN MAX IMPLEM

sdsm server 1 ∞ C, Pthread

video input 1 1 OpenCV

video process 1 ∞ C, Pthread, OpenMP

video output 1 1 OpenCV

Fig. 2: Video processing application description.

process role using an eager scheduling strategy and encoded by the output role.
Frames are stored into shared buffers within the Distributed Shared Memory:
one input buffer and one output buffer for each processing task. The processing
task applies an edge detection algorithm (a convolution using a 3x3 kernel) and a
line detection algorithm (a Hough transform implemented in double precision).
For technical reasons, the input and output roles are implemented using the
OpenCV library and always deployed on the Core i7 processors. The processing
role can be instantiated in C, Pthread (4 threads) and OpenMP. The input is
a 1-minute video file, with a total of 1730 frames and a resolution of 1280x720
pixels.

2.4 Heterogeneous Platform

Previous results in [3] have shown that building relevant topologies and mappings
are of major importance when it comes to efficiently use computing resources.
This is particularly true when considering heterogeneous resources. The plat-
form used in [3] is close to the one that is used in this work. It is a Christmann
RECS|Box micro-server with heterogeneous processing elements. This server is
a 1U rack composed by a backplane that provides power supply and networking
capabilities to a set of slots. Each slot can host a computing node such as high-
performance processors, low-power processors, accelerators, GPGPUs and FP-



Application Topology Exploration for Heterogeneous Resources 5

GAs. Processing elements are different in terms of computing power and energy
consumption. In this configuration, and for our own applications, a Cortex A15 is
nearly 4 times slower than a Core i7. Instantaneous power consumption is around
7W for A15 and 30W for i7 at full load. The network also presents disparities in
terms of bandwidth and latency due to different mediums and network architec-
tures. For example, the Ethernet over USB is common for embedded devices and
the Cortex A15 processors that rely on this interface are loosely connected com-
pared to the i7 processors. In this work, we limited resources to a subset of the
computations nodes available on the RECS|Box Antares micro-server. Figure 3
gives details of the nodes used in this paper as well as the number of processing
units and supported implementations.

Node PU IMPLEM

Intel I7 8 C, OpenMP, Pthread, OpenCV

Cortex A15 2 C, OpenMP, Pthread

Cortex A15 2 C, OpenMP, Pthread

Cortex A15 2 C, OpenMP, Pthread

Cortex A15 2 C, OpenMP, Pthread

Fig. 3: Computing nodes used in the experiments.

Consequences on Heterogeneous Resources. In Figure 4, processing
times are given for an image processing application with different topologies
and mappings. S-DSM servers are represented with green cylinders, image input
and output clients with orange arrows and processing clients with blue arrows.
For each client, an horizontal segment indicates to which server it is connected.
Topologies and mappings lead to very different results, even when comparing
similar configurations. Even with a tight knowledge of the application, the S-
DSM runtime and the hardware, it is difficult to find efficient hand-made solu-
tions based on the sole expression of intuition.

Fig. 4: S-DSM performance results for different topologies.



6 Kods Trabelsi, Löıc Cudennec, and Rihab Bennour

Neighborhood 
Solutions 

Generation

βkβkTopology

First Solutions 
Generation

Application 
description

HW Platform 
description

Mapping 
Solutions 

Generation
βkβkMapping

βkβkTopology

Solutions 
Deployment

Fig. 5: Automatic design space exploration flow for efficient use of heterogeneous
resources

In this context, an automatic design space exploration should be used to
build application configurations. This is particularly important when consider-
ing adversarial metrics such as computing time and power consumption, while
targeting heterogeneous resources. In that case, the exploration system should
propose different trade-off solutions and help the user to take an appropriate de-
cision. Furthermore, this has to be done quite transparently for the application,
without any code modification such as pragmas.

In this work, we propose to automatically explore application configurations
and mappings over heterogeneous resources. Figure 5 illustrates the proposed
design space exploration flow. Topologies and mappings are generated from given
application and hardware descriptions. Solutions are evaluated by deploying and
monitoring the application on the targeted computing hardware platform. The
results are then used to build a Pareto front allowing a user to select relevant
configurations corresponding to his objectives and constraints.

3 Space exploration for topologies

Generating all possible configurations is not acceptable because it is a time con-
suming operation. However, in order to generate a relevant set of topologies,
we have been inspired by approximate methods. This class of methods, called
also heuristics, gives a trade-off between the computation time and the quality
of solutions. Neighborhood search (local search), is a meta-heuristic method for
solving computationally hard optimization problems. This type of algorithms is
widely applied to various computational problems in several fields. This algo-
rithms move from a solution to another in the space of candidate solutions (the
search space) by applying local changes, until a solution deemed as optimal is
found or a time bound is elapsed.



Application Topology Exploration for Heterogeneous Resources 7

In this work, we instrument a multi-starts local search to investigate the
search space. This approach involves starting from several solutions and per-
forming as much parallel local searches in order to generate a set of new solu-
tions. The key point of this approach is the generation of starting solutions. The
starting solutions have to be sufficiently scattered in the search space to explore
it at best.

We chose to implement this approach among others because of its simplicity.
Moreover, it can be a good starting point for building more sophisticated ap-
proaches such as simulated annealing algorithm. This method involves two steps.
The first step is the generation of initial solutions. The second one corresponds
to the neighborhood exploration. Initial solutions and those generated using lo-
cal search were deployed on the RECS|Box Antares micro-server for evaluating
their execution times and their energetic costs. For the rest of the document,
”solution” designates a topology.

3.1 Initial solutions generation

Initial solutions are built using a greedy approach. To build a solution we have to
set the number of servers, the number of tasks for each role and the connections
between servers and clients. To obtain various starting solutions, we varied the
number of servers and the number of tasks for each role. The server number has
been varied from one to the number of nodes available on the targeted computing
platform (5 in our example), to obtain a set of partial solutions. Then for each
partial solution, we varied the number of the processing role instances to obtain a
new set of partial solutions. Once the number of servers and the number of tasks
for each role are set, a function is in charge of randomly establishing connections
between servers and tasks preserving the uniqueness constraint. This last step
leads to the completion of all the solutions. The generated topologies are not
necessarily valid solutions: at this stage we can not guarantee that each topology
will have at least one possible mapping on the target computing platform.

Deployment of initial solutions on heterogeneous platform.

Figure 3 gives details on the resources used while the application is described
on figure 2. Figure 6 shows the performance and energetic costs of initial solu-
tions. First, the energy consumption increases according to the number of nodes.
Second, the execution time does not necessarily decrease if we use more comput-
ing nodes, hence falling beyond speedup. Figure 7 gives details of the solutions
used to build the Pareto front (Solutions A and B). Solution B takes less time
to complete its execution thanks to the extra processing task and the load dis-
tribution between the two S-DSM servers. However this has an additional cost
for energy consumption and solution B is not as efficient as solution A when
comparing frames per second per KJ (FPS/KJ).

Solution A’ (Figure 7) is obtained by adding to solution A a processing
instance mapped on the Intel processor. Adding this processing task should
intuitively decrease the application execution time, but that is not what happens.
The Open MPI runtime implementation is intended to be deployed on HPC



8 Kods Trabelsi, Löıc Cudennec, and Rihab Bennour

Fig. 6: Initial topologies

Solutions Nodes nbs nb tasks Time (s) FPS KJ FPS/KJ

solution A 1 Intel 1 4 398 4.3 11.5 0.38

solution B 1 Intel + 1 Cortex A15 2 5 375 4.6 13.5 0.34

solution A’ 1 Intel 1 5 375 4.6 13.5 0.34

Fig. 7: Solutions of the initial Pareto front (A and B) and solution A’ obtained
by adding a processing task onto the Intel node. nbs stands for the number of
S-DSM servers. Frames per second (FPS). Energy is given in KJ.

systems. In order to be as responsive as possible, the receive function busy-
waits and continuously polls for new messages, the latter being CPU-demanding.
When deploying several MPI processes on the same CPU, the local OS scheduler
has to cope with legitimate MPI processes running user code and falsely busy
MPI processes waiting for messages, the first being slowed down by the second.

3.2 Neighborhoods description

A neighborhood is obtained by applying a given number of modifications such
as sub-topology swapping to the original solution. This generates several new
solutions. In our context, several modifications are used such as adding or delet-
ing S-DSM servers, adding or deleting a role instance (in respect with the min
and max constraints), deleting a connection between a task and a server and
establishing a connection with a new server. A first neighborhood is obtained
by moving a client from the clients’s list of a server to a clients’s list of another
server. The second neighborhood is obtained by merging all servers clients’s lists
into a single list, shuffling the clients, splitting the list according to the initial
number of servers, and finally randomly assigning new lists to servers.

Deployment of local solutions on the heterogeneous platform.
In Figure 8a the performance and the energy consumption of the initial so-

lutions are compared with the solutions generated by the local search. For these



Application Topology Exploration for Heterogeneous Resources 9

(a) Initial vs. neighborhoods topologies (b) ’mapping 1’ vs. ’mapping 2’ strategies

Fig. 8: Topologies and mapping solutions spaces exploration.

experiments we have discarded solutions that overrun 16 minutes of execution
time. This figure reveals that the local search allowed to conquer empty spaces in
which solutions are of better quality in terms of both energy cost and execution
time, compared to those generated initially. The best solution found using the
neighborhood exploration regarding the performance metric is 16% better than
the best solution of the initial set. Figure 9 gives details about the solutions used
to build the Pareto front with local search.

Solutions Nodes nbs Time (s) FPS KJ FPS/KJ

solution C 1 Intel + 3 Cortex A15 4 316 5.4 15.8 0.35

solution D 1 Intel + 2 Cortex A15 3 324 5.3 13.9 0.38

solution E 1 Intel + 1 Cortex A15 2 328 5.3 11.8 0.45

Fig. 9: Solutions building the Pareto front using local search.

Solution C takes less time to complete its execution thanks to an efficient
load distribution between 4 S-DSM servers. The Pareto front solutions have the
following pattern: a server, the I/O clients and the processing tasks are mapped
onto the Intel i7 node and additional servers are mapped on the Cortex A15
nodes. The more servers we have, the lower the processing time is. This rule
stops being true for solutions having 5 and more servers. Increasing the number
of S-DSM servers balances the load of access requests from the clients, and
avoids the centralized bottleneck server issue. However, after reaching a given
number, the benefit vanishes because of the increasing probability for a server to
forward the request to another one, leading to additional communication delays
(multi-hop). Using more Cortex A15 to manage shared data increases the energy
consumption and solution C is not efficient considering FPS/KJ.



10 Kods Trabelsi, Löıc Cudennec, and Rihab Bennour

4 Mapping problem

In this section, we evaluate the impact of the mapping step on the execution
time and energy consumption of the generated topologies. The mapping step
consists in assigning servers and tasks instances to computing resources, tak-
ing into consideration the heterogeneous aspect of the platform and the avail-
able implementations (a role can provide different implementations, eg. pthread,
OpenMP, OpenCL). A complete mathematical formulation of tasks mapping on
heterogeneous system problem is available in [13]. In this work, two straightfor-
ward mapping strategies were developed for the experiments. The first strategy
mapping 1 attempts to co-localize the clients with their corresponding servers
in order to benefit from data locality. The second mapping strategy mapping 2

randomly assigns servers and clients to computing nodes. For both strategies
we limit the exploration to one server per node at most. Figure 8b shows the
impact of the two mapping strategies on performance and energy consumption.
Blue dots in the Pareto indicates solutions with the mapping 1 strategy while
the yellow dots are for solutions with mapping 2. This figure reveals that the
solutions coming from mapping 2 are better in both execution time and en-
ergy consumption. Intuitively, collocating processing tasks together with their
attached S-DSM servers sounds to be an efficient strategy to benefit from data
locality. This does not appear to be an efficient strategy: processing tasks that
are mapped onto Cortex A15 severely slow down the entire computation as this
kind of processor is not suited for executing high performance tasks. Conversely,
Cortex A15 are better used to host S-DSM servers only, as application helpers,
which is quite counterintuitive at first given the poor network communication
capabilities. In conclusion, as applications and heterogeneous computing plat-
forms become more complex, the automatic exploration of configurations appear
to be a steady approach towards an efficient use of resources.

5 Related Works

The idea of using the most suitable hardware resource for a specific application
is not new and has been explored in previous works. However, the two different
subjects of exploring the application topology and the task mapping are usu-
ally addressed separately. Some works have targeted regular MapReduce-based
applications. For instance, the TARA [8] system uses a description of the appli-
cation to allocate the resources. However, this work is tailored for a very specific
class of applications and does not address hardware details. In [6] the authors
introduce a new topology-aware resource selection algorithm to determine the
best choice among the available processing units of the platform, based on their
position within the network and taking into account the applications commu-
nication matrix. However this work does not study the methodology impact on
energy consumption. In mARGOt [5] the authors propose a design space explo-
ration method leading to the building of a Pareto front. Their method requires
code transformations and code variants called software knobs. In this work, there



Application Topology Exploration for Heterogeneous Resources 11

is no need to modify the application. The tasks mapping problem has been ex-
tensively studied in the last decade and numerous methods have been reported
in the literature under various assumptions and objectives. In [4] the authors
aim at finding a trade-off between energy consumption and execution time using
genetic algorithm heuristic to build a Pareto front. In [12] the authors resolve
task assignment problem on heterogeneous platform attempting to minimize the
total execution time and the communication cost. In [10] an iterative algorithm
is proposed for the mapping problem on heterogeneous computing platforms
with load balancing as a goal. In [13] the authors model both task scheduling
and mapping in a heterogeneous system as a bi-objective optimization problem
between energy consumption and system performance.

Previous works have not established a relationship between the application
sizing, the application topology building and the task mapping problems, and
their impact on both performance and energy consumption. In our work we
propose to combine these problems and explore different configurations without
relying on user hints, code modifications, pragmas or a specific dataflow pro-
gramming model. We evaluate the solutions on the heterogeneous platform and
build a Pareto front allowing users to select the most relevant configuration as
in a decision system. In the early 2000, a definition of autonomic computing
has been introduced by IBM [7] including self-managing attributes. This work
contributes to the self-configuring and self-optimizing attributes.

6 Conclusion

The new great challenge for today’s high-performance computing stands in
the energy savings. Innovative heterogeneous computing platforms such as the
Christmann RECS|Box offers several computing units with different specifica-
tions in order to offer to the users the possibility to optimize the execution of
their applications in terms of performance and energy consumption. However,
the efficient use of these platforms remains an open topic for both the academic
and the industrial worlds. In this work we have presented some experiments
using a video processing application on heterogeneous computing machine to
analyze the impact of the S-DSM topology definition and mapping steps on the
execution time and energetic cost. To achieve this, we have proposed a local
search method to generate several topologies that have been evaluated in order
to build a Pareto front. This Pareto allows users to choose the solution that
matches at best their current goals and constraints in terms of execution time
and energy consumption. Thanks to this approach we were able to find coun-
terintuitive solutions that perform surprisingly well for both performance and
energy. Future work will include a model for energy and performance estimation
to evaluate topology and mapping solutions at a higher level and avoid as much
as possible the deployment of the generated solutions onto the hardware.



12 Kods Trabelsi, Löıc Cudennec, and Rihab Bennour

Acknowledgement

This work received support from the H2020-ICT-2015 European Project M2DC
under Grant Agreement number 688201.

References

1. Amza, C., Cox, A.L., Dwarkadas, S., Keleher, P., Lu, H., Rajamony, R., Yu, W.,
Zwaenepoel, W.: TreadMarks: Shared memory computing on networks of worksta-
tions. IEEE Computer 29(2), 18–28 (Feb 1996)

2. Antoniu, G., Bougé, L., Jan, M.: JuxMem: an adaptive supportive platform for
data-sharing on the grid. Scalable Computing: Practice and Experience (SCPE)
6(3), 45–55 (Nov 2005)

3. Cudennec, L.: Software-distributed shared memory over heterogeneous micro-
server architecture. In: Euro-Par 2017: Parallel Processing Workshops. pp. 366–
377. Springer International Publishing (2018)

4. Friese, R., Khemka, B., Maciejewski, A.A., Siegel, H.J., Koenig, G.A., Powers, S.,
Hilton, M., Rambharos, J., Okonski, G., Poole, S.W.: An analysis framework for
investigating the trade-offs between system performance and energy consumption
in a heterogeneous computing environment (2013)

5. Gadioli, D., Palermo, G., Silvano, C.: Application autotuning to support runtime
adaptivity in multicore architectures. In: 2015 International Conference on Em-
bedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS).
pp. 173–180 (July 2015)

6. Georgiou, Y., Jeannot, E., Mercier, G., Villiermet, A.: Topology-aware resource
management for hpc applications. In: Proceedings of the 18th International Con-
ference on Distributed Computing and Networking. pp. 17:1–17:10. ICDCN ’17,
ACM, New York, NY, USA (2017). https://doi.org/10.1145/3007748.3007768

7. Horn, P.: Autonomic computing: Ibm’s perspective on the state of information
technology 2007 (10 2001)

8. Lee, G., Tolia, N., Ranganathan, P., Katz, R.H.: Topology-aware resource allo-
cation for data-intensive workloads. SIGCOMM Comput. Commun. Rev. 41(1),
120–124 (Jan 2011). https://doi.org/10.1145/1925861.1925881

9. Li, K.: IVY: a shared virtual memory system for parallel computing. In: Proc.
1988 Intl. Conf. on Parallel Processing. pp. 94–101. University Park, PA, USA
(Aug 1988)

10. Renard, H., Vivien, F., Legrand, A., Robert, Y.: Mapping and load-balancing it-
erative computations. IEEE Transactions on Parallel and Distributed Systems 15,
546–558 (06 2004). https://doi.org/10.1109/TPDS.2004.10

11. Ross, J.A., Richie, D.A.: Implementing openshmem for the adapteva epiphany risc
array processor. Procedia Computer Science 80, 2353 – 2356 (2016), international
Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego,
California, USA

12. Ucar, B., Aykanat, C., Kaya, K., Ikinci, M.: Task assignment in heterogeneous
computing systems. Journal of Parallel and Distributed Computing 66(1), 32 – 46
(2006). https://doi.org/https://doi.org/10.1016/j.jpdc.2005.06.014

13. Zaourar, L., Aba, M.A., Briand, D., Philippe, J.M.: Modeling of ap-
plications and hardware to explore task mapping and scheduling strate-
gies on a heterogeneous micro-server system. IEEE International Paral-
lel and Distributed Processing Symposium Workshops (IPDPSW) (2017).
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPSW.2017.123

https://doi.org/10.1145/3007748.3007768
https://doi.org/10.1145/1925861.1925881
https://doi.org/10.1109/TPDS.2004.10
https://doi.org/https://doi.org/10.1016/j.jpdc.2005.06.014
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/IPDPSW.2017.123

	Application Topology Definition and Tasks Mapping for Efficient Use of Heterogeneous Resources

