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A NECESSARY AND SUFFICIENT CONDITION FOR PROBABILISTIC CONTINUITY ON A BOUNDARYLESS COMPACT RIEMANNIAN MANIFOLD by

We give a necessary and sufficient condition for the uniform convergence of random series of eigenfunctions on a boundaryless compact Riemannian manifold. Due to the lack of homogeneity of a compact manifold (by comparison with the case of compact groups studied by Marcus and Pisier), our proof relies on a suitable generalization of the Dudley-Fernique obtained via the theory of majorizing measures. As a consequence, we generalize an estimate of Burq and Lebeau about the supremum of a random eigenfunction. Finally, we prove that our results are universal w.r.t. the random variables (thus generalizing a result of Marcus and Pisier), w.r.t. compact submanifolds and w.r.t. the Riemannian structure of the underlying manifold.

Introduction and statement of the main result

Let M be a boundaryless compact Riemannian manifold of dimension d ≥ 2, the goal of Theorem 1 is to give a necessary and sufficient condition to ensure the convergence, in the Banach space C 0 (M), of suitable random linear combinations of eigenfunctions on M. The results below are Riemannian analogues of those of the classical theory, for M being a compact group, whose final treatment is done in the book of Marcus and Pisier [START_REF] Marcus | Random Fourier series with applications to harmonic analysis[END_REF]. The problem studied is posed in the paper of Tzvetkov [Tzv09, page XV-6] and, as it will be explained in this introduction, is equivalent to control expectations of supremum of linear combinations of eigenfunctions (thus we need to generalize an optimal inequality obtained by Burq and Lebeau [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF]). The approach of the present paper is however different from those of the previous works and relies on the theory of majorizing measures (developed by Fernique [Fer75,Chapter 6] and Talagrand [START_REF] Talagrand | Regularity of Gaussian processes[END_REF]). Actually, that theory allows us to overcome the lack of homogeneity of a compact manifold by comparison with a compact group and allows for a suitable generalization of the Dudley-Fernique theorem (see Theorem 7). More precisely, the usual homogeneous framework on a group (which means that Gaussian processes are usually stationary) is replaced with a weaker condition we call almost homogeneity and that turns out to be satisfied on a compact manifold M (see Lemma 6 and Proposition 24) and even for compact submanifolds with boundary of M. Finally, Theorem 1 gives an explicit condition ensuring the convergence in C 0 (M). Although our condition really looks like to a sufficient condition obtained by Salem and Zygmund in [SZ54, page 291], the main new point is that our Salem-Zygmund condition is necessary and sufficient in the manifold framework (see (19) in Theorem 1) whereas it is merely sufficient (and not necessary) in the classical theory on the torus (see [START_REF] Salem | Some properties of trigonometric series whose terms have random signs[END_REF]page 292]).

Before going into details on compact manifolds (and giving a precise definition of our random series), it is worthwhile to recall the main results on the torus T = R\2πZ (we refer to [START_REF] Marcus | Random Fourier series with applications to harmonic analysis[END_REF] for the general case with compact groups). Although the first results had been proved for Fourier series with real trigonometric functions, it is known that there is no difference to deal with complex trigonometric functions (see [START_REF] Marcus | Random Fourier series with applications to harmonic analysis[END_REF]page 122]). For any real sequence (c n ) n∈N ∈ 2 (N), let us consider the function f ∈ L 2 (T) defined by

f (x) = n∈N c n e inx .
Now fix a sequence (ε n ) n∈N of i.i.d. Rademacher random variables, in other words P(ε n = 1) = P(ε n = -1) = 1 2 . With probability 1 with respect to ω running over a reference probability space Ω, Paley and Zygmund proved in [START_REF] Paley | On some series of functions, (1) (2) (3)[END_REF]page 347] that the following random series (1)

f ω (x) := n∈N ε n (ω)c n e inx .
almost surely converges in C 0 (T) provided that the following condition is fulfilled

(2) ∃γ > 1 +∞ n=2 c 2 n ln γ (n) < +∞.
One may interpret (2) as a probabilistic Sobolev embedding assumption (more details are given in the introduction of [START_REF] Tzvetkov | Riemannian analogue of a Paley-Zygmund theorem[END_REF] and [START_REF] Imekraz | Multidimensional Paley-Zygmund theorems and sharp L p estimates for some elliptic operators[END_REF]). In [SZ54, page 291], Salem and Zygmund relaxed the assumption (2) by the following one

(3)

+∞ n=2 1 n ln(n) +∞ k=n c 2 k 1/2
< +∞, and also remarked that such a condition is not necessary. An important step is made by Marcus in the papers [START_REF] Marcus | Continuity of Gaussian processes and random Fourier series[END_REF][START_REF] Marcus | Uniform convergence of random Fourier series[END_REF] in which we learn that (3) becomes a necessary and sufficient condition if the sequence (|c n |) n∈N in (1) is non-increasing and if the Rademacher random variables ε n are replaced with a sequence (g C n ) n∈N of independent complex standard Gaussian random variables (1) N C (0, 1) (see [START_REF] Marcus | Uniform convergence of random Fourier series[END_REF] for general complex symmetric random variables satisfying suitable normalization conditions).

For the problem of finding a necessary and sufficient condition, the solution had finally come from a drastically different point of view. More precisely, for any sequence (c n ) ∈ 2 (Z), the general Gaussian Fourier series

(4) f G,ω (x) = n∈Z g C n (ω)c n e inx
is now seen as a stationary Gaussian random process on the torus T. Here the word "stationary" means that the random process (f G (x)) x∈T is invariant under the group action of T : in particular, for any angle α ∈ R, f G,ω (x + α) has the same distribution as that of f G,ω (x) due to the complex symmetry of the complex Gaussian variables g C n . It is worthwhile to underline that such a stationary assumption has no sense for a general compact manifold M. Then the important result, now called the Dudley-Fernique theorem, allows for proving that the almost sure continuity of the Gaussian functions x → f G,ω (x) is equivalent to the so-called entropy condition :

(5) +∞ 0 ln N δ (T, ε)dε < +∞, where

• the function δ : T × T → R + is the Dudley pseudo-distance of T defined by

δ(x, y) 2 = E |f G,ω (x) -f G,ω (y)| 2 = 4 n∈Z |c n | 2 sin 2 n(x -y) 2 ,
• the number N δ (T, ε) is the covering number of the torus T with respect to δ, namely the minimal number of open δ-balls of radius ε > 0 whose union covers T. Moreover, Marcus and Pisier proved that one may replace the sequence of Gaussian random variables in (4) with any sequence of independent real centered random variables (X n ) n∈Z satisfying

0 < inf n∈Z E[|X n |] and sup n∈Z E[|X n | 2 ] < +∞.
Such a result is usually called a universality phenomenon and allows for coming back to the Rademacher random variables X n = ε n , see [MP81, pages 7-9] and [Pis78, page 28, Corollaire 7.3].

One may think that the entropy condition (5) is a bit abstract but it really captures the essence of the almost sure continuity. Firstly, the entropy condition allows for showing the sufficiency of the more concrete Paley-Zygmund (2) and Salem-Zygmund (3) assumptions (see [START_REF] Marcus | Random Fourier series with applications to harmonic analysis[END_REF]Part VII.1]). Secondly, the entropy condition (which is of qualitative nature) is equivalent to the following quantitative version (see [START_REF] Marcus | Random Fourier series with applications to harmonic analysis[END_REF]page 11] or [Pis78, pages 3-4]) :

(6) E ω n k=-n ε k (ω)c k e ikx C 0 x (T) E ω n k=-n g C k (ω)c k e ikx C 0 x (T) |c 0 | + +∞ 0 ln N δ (T, ε)dε.
For instance, here are the so-called Salem-Zygmund inequalities (see [START_REF] Li | Introduction to Banach Spaces: Analysis and Probability[END_REF] page 259] for a proof with multipliers) :

(7)

∀n 1 E ω 1 √ n 2n k=n+1 ε k (ω)e ikx C 0 x (T) ln(n).
For the sequel, it is worthwhile to note why (6) implies (7). For details, we refer to Appendix A that indeed proves that the Dudley pseudo-distance δ n of 1 √ n 2n k=n+1 g C k (ω)e ikx satisfies (8) ∀n 1 δ n min(1, nδ g ) where δ g is the Riemannian distance of T.

It is time to recall the known literature about the generalization of the previous results to a boundaryless compact Riemannian manifold M of dimension d ≥ 2. We denote by ∆ the non positive Laplace-Beltrami operator of M. The Hilbert space L 2 (M) is considered with respect to the Riemannian measure vol M of M. We recall that L 2 (M) admits a Hilbert basis (φ k ) k∈N of eigenfunctions :

(9) ∆φ k = -λ 2 k φ k , 0 = λ 0 < λ 1 ≤ λ 2 ≤ • • • → +∞.
For simplicity, we shall assume that each φ k is real-valued. By fixing a sequence of coefficients (c k ) k∈N , a natural option is to replace the study of the random Fourier series (1) and (4) with the following random series on the Banach space C 0 (M) :

(10)

k∈N ε k (ω)c k φ k (x) or k∈N g k (ω)c k φ k (x) (ω, x) ∈ Ω × M,
where (g k ) k∈N is a sequence of i.i.d. real Gaussian random variables N R (0, 1). For the random series (10), Tzvetkov generalized in [START_REF] Tzvetkov | Riemannian analogue of a Paley-Zygmund theorem[END_REF] the Paley-Zygmund condition (2), that is a sufficient condition ensuring the almost sure convergence in C 0 (M). In contrast with the sequence of eigenvalues (λ 2 k ) k≥0 , the sequence of eigenfunctions (φ k ) k≥0 may not be unique (for instance if ∆ has multidimensional eigenspaces). For instance, on M = S d , there are sub-sequences of eigenfunctions having very different behaviors like concentration around a point or around a geodesic (those are called zonal eigenfunctions or Gaussian beams). Without any further information on the sequence (φ k ) k∈N , it seems hopeless to expect to have a simple, necessary and sufficient condition for the almost sure convergence in C 0 (M) of (10). By comparison with the classical theory on a compact group G, the adequate random series are defined by taking account of the irreducible representations of G (see [START_REF] Figà-Talamanca | A theorem on random Fourier series on noncommutative groups[END_REF][START_REF] Marcus | Random Fourier series with applications to harmonic analysis[END_REF]). In the Riemannian framework, it is thus natural to make an additional restriction that counterbalances the possible concentration of sub-sequences of eigenfunctions. The usual restriction in analysis on manifolds is to gather eigenfunctions whose eigenvalues are in a same suitable small interval (for instance for the same eigenvalue for M = S d , see (11)). That option is actually made by Burq-Lebeau in [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF] and will be detailed below. We also refer to [START_REF] Imekraz | Concentration et randomisation universelle de sous-espaces propres[END_REF]page 272] and also [START_REF] Imekraz | On random Hermite series[END_REF][START_REF] Imekraz | Multidimensional Paley-Zygmund theorems and sharp L p estimates for some elliptic operators[END_REF] for more details about that multidimensional point of view.

Before writing the slight modification of (10), let us underline that the situation is drastically different for the L p case with p < +∞. Indeed, there is a very nice formula of Maurey that gives a necessary and sufficient condition for the almost sure convergence of unidimensional series like (1) and (10) in L p for p < +∞ (see [START_REF] Maurey | Type et cotype dans les espaces munis de structures locales inconditionnelles, exposés 24-25[END_REF]page 22, Corollaire 1], [START_REF] Lindenstrauss | Classical Banach Spaces[END_REF]Theorem 1.d.6] or [IRT16, Proposition 2.1] for a recent use). For a multidimensional analogue of the Maurey formula, we refer to [Ime18, Théorèmes 2.1 and 2.21] and [START_REF] Imekraz | Multidimensional Paley-Zygmund theorems and sharp L p estimates for some elliptic operators[END_REF]Theorem 12.1]. Without going into details on the difficulties of the L p case for p < +∞, one could say that the analogue problems of finding necessary and sufficient conditions on L p are quite well understood for finite p (see the papers [AT08, Tzv09, Gri10, IRT16, Ime18] and [Ime19, Theorems 2.3,4.5 and 4.6]).

It is time to properly define the random series that naturally replace (10) in the case of the sphere S d (the case of a manifold M is treated just after). We recall that the sequence of eigenvalues of the Laplace-Beltrami ∆ on the sphere S d is given, without counting multiplicities, by -n(n + d -1) with n ∈ N. Moreover, the dimension of the eigenspace (11)

E n = ker(∆ + n(n + d -1)) ⊂ L 2 (S d )
satisfies the numerical equivalence dim(E n ) n d-1 for n ≥ 1. Any function f ∈ L 2 (S d ) can be written as follows

f = n∈N f n with f n = λ 2 k =n(n+d-1) f, φ k φ k ∈ E n .
For any n ∈ N , we now consider a uniform random vector U n : Ω → R dim(En) , namely whose probability distribution is the probability spherical measure on the unit sphere S dim(En)-1 . We write the coordinates U n = (U n,k ) k with k running over the set of integers such that φ k ∈ E n . A natural generalization of (1) and the first random series in (10) is given by

(12) f ω (x) = n≥1 f ω n (x), with f ω n = f n L 2 (S d ) λ 2 k =n(n+d-1) U n,k (ω)φ k ∈ E n
where the uniform random vectors U n are assumed to be mutually independent. The random function f ω n is thus a random eigenfunction of norm f n L 2 (S d ) . That formalism is connected to that used by Burq-Lebeau in [BL13, appendice C] (see [START_REF] Imekraz | Concentration et randomisation universelle de sous-espaces propres[END_REF] page 274] for more details).

On a general boundaryless compact Riemannian manifold M, the idea is to replace the eigenspace E n ⊂ L 2 (S d ) with the subspace E (Kn-K,Kn] of L 2 (M) defined as follows E (Kn-K,Kn] := Span{φ k , λ k ∈ (Kn -K, Kn]}, (13) where the spectral parameter K > 0 is large enough. In particular, it is known that the analogue of the asymptotic dim(E n ) n d-1 is given by dim(E (Kn-K,Kn] ) n d-1 (see [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF]page 923] or [START_REF] Imekraz | Multidimensional Paley-Zygmund theorems and sharp L p estimates for some elliptic operators[END_REF]Lemma 8.1]). In other words, for any f = n≥1 f n ∈ L 2 (M) with f n ∈ E (Kn-K,Kn] , we set the following random series

f ω = n≥1 f ω n with f ω n := f n L 2 (M) λ k ∈(Kn-K,Kn] U n,k (ω)φ k , (14) 
where U n : Ω → R dim(E (Kn-K,Kn] ) is a uniform random vector as above. At this stage of this introduction, we must recall an optimal result proved by Burq and Lebeau. By using the previous notations, [BL13, Théorème 5, page 930] states the following optimal bound on a uniform random eigenfunction f ω n on L 2 (S d ) with eigenvalue -n(n + d -1) :

(15) ∀n 1 E ω f ω n C 0 (S d ) ln(n) f n L 2 (S d ) .
We also refer to [START_REF] Canzani | High frequency eigenfunction immersions and supremum norms of random waves[END_REF] for a geometric control of the upper bound in (15). The idea we keep in mind is that the inequalities (15) of Burq-Lebeau should really be seen as a Riemannian analogue of the Salem-Zygmund inequalities (7).

The Salem-Zygmund inequalities (7) on T

The Burq-Lebeau inequalities (15) on S d

Classical theory on a compact group

Problem posed on a compact Riemannian manifold E E Before stating our main result, we recall the striking equivalence of the following two statements : i) for almost every ω ∈ Ω, the random series f ω n converges in C 0 (S d ), ii) the random series f ω n converges in L 1 (Ω, C 0 (S d )). For unidimensional Rademacher random series ε n (ω)f n , an analogue equivalence of the previous assertions was proved by Kahane and is indeed completely independent of the Banach space C 0 (S d ) (see the reference book [START_REF] Kahane | Some random series of functions[END_REF] about random series, [LQ17b, page 142, Remark 1] or [MP81, page 43]). For the multidimensional case we are interested in, such an equivalence is a consequence of a result by Marcus and Pisier [START_REF] Marcus | Random Fourier series with applications to harmonic analysis[END_REF]page 92]. We now understand that a general solution of our problem is equivalent to find optimal bounds of the expectations

E ω N n=1 f ω n C 0 (S d )
generalizing the Burq-Lebeau asymptotics (15). Our work will show the following new result :

(16) E ω N n=1 f ω n C 0 (S d ) N p=1 1 p ln(p + 1) N p=n f n 2 L 2 (S d ) 1 2 .
The right-hand side clearly looks like (3) but no monotonicity assumption is needed (in contrast with [START_REF] Marcus | Uniform convergence of random Fourier series[END_REF] for the torus T). More generally, Theorem 1 settles the general case of a compact manifold with a Salem-Zygmund type condition (19) which is necessary and sufficient in contrast with the classical results (for which analogue estimates of (19) are sufficient but not necessary).

Theorem 1. -There is a constant K 0 > 0 depending only on the Riemmannian manifold M such that, for any

K ≥ K 0 , if one considers • a sequence (f n ) n≥1 satisfying f n ∈ E (Kn-K,Kn] (see (13)) for each n ∈ N ,
• a non-zero dimensional compact submanifold M s ⊂ M with smooth (eventually empty) boundary,

• a sequence of independent real random variables (X n ) n≥1 satisfying

(17) 0 < inf n≥1 E[|X n |] and sup n≥1 E[|X n | 2 ] < +∞,
then 1) we have the numerical equivalence for any N ∈ N :

(18) E ω N n=1 X n (ω)f ω n C 0 (Ms) N p=1 1 p ln(p + 1) N n=p f n 2 L 2 (M) 1 2 ,
where the constants of that equivalence depend on M, M s , K,

inf n≥1 E[|X n |] and sup n≥1 E[|X n | 2
] and where we assume that all the random variables ω → X n (ω) and ω → f ω n (defined in (14)) are mutually independent. 2) Moreover, the following two statements are equivalent :

• the random series X n (ω)f ω n almost surely converges in C 0 (M s ), • the following Salem-Zygmund condition is fulfilled :

(19) +∞ p=1 1 p ln(p + 1) +∞ n=p f n 2 L 2 (M) 1 2 < +∞.
3) Finally, the same conclusion also holds true for the particular case M = S d if each f n belongs to ker(∆ + n(n + d -1)) provided that we consider (12) instead of (14) (and thus K is irrelevant in the equivalence (18)).

Similarly to the classical theory, the good idea is first to consider our problem with a suitable Gaussian analogue of the random series f ω n . A known intuition suggests that the uniform random vector U n : Ω → S dim(En)-1 , used in (12), is closely related to the Gaussian vector of R dim(En) with distribution N 0, 1 dim(En) Id (see [START_REF] Pisier | The volume of convex bodies and Banach space geometry[END_REF]page 58]). For that reason, we introduce the following Gaussian analogue of (12) for any

f ∈ L 2 (S d ) (20) f G,ω := n≥1 f G,ω n with f G,ω n = f n L 2 (S d ) dim(E n ) λ 2 k =n(n+d-1) g k (ω)φ k ,
that must be seen as a Gaussian process on the manifold S d . On a general boundaryless compact Riemannian manifold M, the Gaussian analogue of (14) should be

(21) f G,ω = n≥1 f G,ω n with f G,ω n := f n L 2 (M) dim(E (Kn-K,Kn] ) λ k ∈(Kn-K,Kn] g k (ω)φ k .
The random functions f G,ω n are usually called random waves and their study had been introduced by Zelditch in [START_REF] Zelditch | Real and complex zeros of Riemannian random waves[END_REF]. We also refer to [START_REF] Poly | Variations on Salem-Zygmund results for random trigonometric polynomials[END_REF][START_REF] Gass | Almost sure asymptotics for Riemannian random waves[END_REF] for results about random waves for other themes initiated by Salem and Zygmund. Let us explain another reason for replacing f ω n with f G,ω n . The rotational invariance of Gaussian vectors implies the following distribution equivalence (see [Ime19, page 2731]) :

f G,ω n ∼ 1 dim(E (Kn-K,Kn] ) λ k ∈(Kn-K,Kn] g 2 k (ω) 1/2 f ω n , (22) 
where all the random variables involved are assumed to be mutually independent. As a consequence of (22), one may directly replace f G,ω n with f ω n for getting bounds of E ω [ f ω n C 0 (M) ] (see Appendix B) :

E ω f G,ω n C 0 (M) = 1 dim(E (Kn-K,Kn] ) E Kn-K<λ k ≤Kn g 2 k 1/2 × E ω f ω n C 0 (M) E ω f ω n C 0 (M) .
Our results will show that the previous equivalence can be generalized to linear combinations of f ω n and f G,ω n (that is a Riemannian analogue of a result by Marcus and Pisier, see Section 3). We now turn to the main difficulty we have to overcome by considering (20) or (21). In the classical theory, the main ingredient is the fact that the Gaussian random process (4) is stationary and thus one may use the Dudley-Fernique theorem giving a complete understanding of its almost sure continuity. It seems to be reasonable, at least for the Gaussian random series (20) on spheres S d , that such ideas can be combined with the transitivity of the isometry group. It is however clear that such arguments are no longer possible for (21) on a general compact Riemannian manifold M since that case does not seem to fulfill any stationary assumption.

Without a stationary assumption, the Dudley theorem, proved in [START_REF] Dudley | The sizes of compact subsets of Hilbert space and continuity of Gaussian processes[END_REF], is a general result ensuring that the finiteness of the entropy integral (5) always implies the boundedness and the continuity of the associated Gaussian process. The Dudley theorem is indeed used by Tzvetkov in [START_REF] Tzvetkov | Riemannian analogue of a Paley-Zygmund theorem[END_REF] to derive a Paley-Zygmund theorem (see also [START_REF] Imekraz | On random Hermite series[END_REF]Annex 6] for an adaptation of the argument of Tzvetkov for the harmonic oscillator -∆ + |x| 2 ). It is however known that the converse of the Dudley theorem generally fails (an example is given in [Tal87, pages 101-102] or [START_REF] Li | Introduction to Banach Spaces: Analysis and Probability[END_REF]).

The adequate notion to understand the boundedness of a Gaussian process is that of "majorizing measure". Such a notion was introduced by Fernique in [START_REF] Fernique | Régularité des trajectoires des fonctions aléatoires gaussiennes[END_REF]. By endowing M with the Dudley pseudo-distance given by (23)

δ : (x, y) ∈ M 2 → E ω [|f G,ω (x) -f G,ω (y)| 2 ],
a probability measure m on (M, δ) is said to be majorizing if it satisfies (24) sup

x∈M +∞ 0 ln 1 m(B δ (x, ε)) dε < +∞,
where B δ (x, ε) is the open ball with respect to δ. It turns out that Fernique proved that the existence of a majorizing measure on the compact set M implies the boundedness of the Gaussian process f G,ω (see [START_REF] Ledoux | Probability in Banach Spaces: isoperimetry and processes[END_REF]Theorem 11.18] and (54)). It was a great achievement that the converse is true. That is the main result of the paper [START_REF] Talagrand | Regularity of Gaussian processes[END_REF] of Talagrand. As for the classical theory recalled in (6), the condition (24) allows for getting optimal bounds of the moments of f G,ω . The obvious drawback of that approach is that (24) is really abstract if the majorizing measure m is merely known to exist but without being explicit! Interestingly, in the specific case where M = G is a compact Abelian group and where one considers a stationary Gaussian process, it is known that the probability Haar measure m is majorizing and moreover that (24) is equivalent to the finiteness of the entropy integral of (G, δ). We refer to the introduction of [START_REF] Talagrand | Regularity of Gaussian processes[END_REF] for an enlightening summary. For the sequel, it is also worthwhile to note that the invariance of the Dudley pseudo-distance with respect to the action of the group G implies the following property fulfilled by the probability Haar measure m :

(25) ∀(x, y) ∈ G ∀ε > 0 m(B δ (x, ε)) = m(B δ (y, ε)).
At the light of the theory of the majorizing measures, we may reformulate the problem introduced in [Tzv09] on a boundaryless compact Riemannian manifold M as follows :

Q1) can we prove that the Riemannian probability volume of M is a majorizing measure of the Gaussian process f G,ω defined in (21) ? Q2) if so, is the majorizing condition (24) equivalent to the entropy integral ?

We shall give positive answers for both questions. We do not go into the details of the proof but let us mention that the main step overcoming the stationary assumption needs to weaken (25) by introducing the following property (called almost homogeneity in Section 4) of the Riemannian volumes of δ-balls : there are two constants H ≥ 1 and ≥ 1 that merely depend on the Riemannian manifold M satisfying

(26) ∀(x, y) ∈ M 2 ∀ε > 0 vol M (B δ (x, ε)) ≤ H vol M (B δ (y, ε))
in which we note the multiplicative loss ε of the radius in (26). The proof of (26) relies on a precise study of the Dudley pseudo-distance distance δ defined in ( 23). An easy computation in (23) indeed shows the formula

δ(x, y) 2 = n≥1 f n 2 L 2 (M) δ n (x, y) 2 ,
where the partial pseudo-distances δ n are given by (27)

δ n (x, y) 2 := 1 dim(E (Kn-K,Kn] ) λ k ∈(Kn-K,Kn] |φ k (x) -φ k (y)| 2 .
In another context, a study of those partial pseudo-distances is done by Canzani and Hanin in [START_REF] Canzani | C ∞ scaling asymptotics for the spectral projector of the Laplacian[END_REF] with specific geometric assumptions on the Riemannian manifold M. In order to dispense with any geometric assumption on M, it turns out that a part of the work by Canzani and Hanin (in this case Proposition 40 below coming from [CH15b, Lemma 5]) can be combined with choosing K large enough (such an idea is due to Burq and Lebeau in [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF]) and using off-diagonal estimates obtained by Hörmander (see Proposition 18 below). As a consequence, we will prove the equivalence δ n min(1, nδ g ) where δ g is the Riemannian distance of M (that is a similar form to (8)). The simplicity of such an equivalence is the reason allowing us to simplify the majorizing condition and the entropy integral in order to recover the Salem-Zygmund condition (19).

This article is organized as follows : • In Section 2, we state the two main theorems concerning the Gaussian random series (20) and (21) on M.

More precisely, Theorem 2 and Theorem 3 are respectively of qualitative and quantitative nature. • In Section 3, we first discuss a trivial consequence of Theorem 1 about universality with respect to the choice of X n in X n (ω)f ω n and with respect to the chosen submanifold M s . Then we state a result ensuring that our analysis is actually independent of the Riemannian metric initially chosen on M. That result is proved in Section 15 via the semi-classical analysis of the Laplace-Beltrami operator seen as an elliptic differential operator on the compact manifold M. • Sections 4 and 5 are devoted to the proof of a suitable generalization of the Dudley-Fernique theorem for the almost homogeneity property. • In Sections 6 and 7, we prove that the partial pseudo-distances δ n in (27) are, in some sense, equivalent to the explicit distance min(1, nδ g ) (where δ g stands for the Riemannian metric). The proofs need to make an accurate comparison with the Bessel function J d 2 -1 . • Section 8 is devoted to write a reformulation of the majorizing condition. That is the Riemannian analogue of the reformulation used by Marcus and Pisier of the entropy integral on compact groups (see [START_REF] Marcus | Random Fourier series with applications to harmonic analysis[END_REF]pages 37]). However, in our context, such a reformulation is an essential element to get the universality with respect to Riemannian submanifolds. • Section 9 is written for the sake of clarity and contains a few precisions about the Gaussian processes (20) and (21). • Sections 10, 11 are devoted to the proof of the main results in the Gaussian case for compact manifolds, namely Theorems 2 and 3. Roughly speaking, the preceding sections allow us the use of the generalization of the Dudley-Fernique theorem (see Proposition 24) that in turn gives rise to the Salem-Zygmund condition. Section 12 is devoted to S d that needs a little more work because, for the natural choice of the eigenspaces E n = ker(∆ + n(n + d -1)), the equivalence δ n min(1, nδ g ) does not hold in the whole sphere (for n even, δ n is not a distance on S d and does not distinguish antipodal points). • Sections 13 and 14 contain the proof of Theorem 1 that deals with the initial random series X n (ω)f ω n . We shall use a truncation argument (already present in the work by Marcus-Pisier) adapted here for the so-called χ random variables. The proof here is however simpler than that of the corresponding theorem of the classical theory due to the very explicit Salem-Zygmund condition (19). • As written above, Section 15 contains the proof of the invariance with respect to the Riemannian metric of M. The proof makes use of the theory of semi-classical pseudo-differential operators. • Finally, we have gathered a few appendices presenting either computations or proofs of more or less known results that we have not found in the literature in the form we need.
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Statements of the main results in the Gaussian case

We now study a necessary and sufficient condition ensuring that the Gaussian random series f G,ω n almost surely converges in C 0 (M). It turns out that the condition Theorem 2. -There is a constant K 0 > 0 depending only on the Riemannian manifold M such that, for any

K ≥ K 0 , if one considers • a sequence of functions (f n ) n≥1 satisfying f n ∈ E (Kn-K,Kn] for each n ∈ N (see (13)) and n≥1 f n 2 L 2 (M) < +∞,
• a non-zero dimensional compact submanifold M s ⊂ M with smooth (eventually empty) boundary, then the following assertions are equivalent :

i) The Gaussian random series f G,ω n is almost surely convergent in C 0 (M s ) (where f G,ω n is defined in (21)).
ii) The Salem-Zygmund condition is fulfilled In the specific case M = S d , with d ≥ 2, the same conclusion holds if each f n belongs to the eigenspace ker(∆ + n(n + d -1)) provided that we consider (20) instead of (21).

(28) +∞ p=1 1 p ln(p + 1) +∞ n=p f n 2 L 2 (M) 1 2 < +∞.
Let us discuss a quantitative version of the last result. To avoid any problem of measurability due to the uncountability of the submanifold M s of M, one usually sets

(31) E ω sup x∈Ms n≥1 f G,ω n (x) := sup F ⊂Ms F countable E ω sup x∈F n≥1 f G,ω n (x) .
We also refer to Proposition 11 and Appendix C for more details about that convention. In the concrete situation where the four conditions of Theorem 2 are true, the random function x → f G,ω n (x) and the three numbers appearing in (28), (29) and (30) are equivalent up to a multiplicative loss merely depending on the Riemannian manifold M, on the submanifold M s and on K.

Finally, the conclusion also holds true for the particular case M = S d in a similar fashion to the last statement of Theorem 2 (and thus K is irrelevant in the numerical equivalences).

Universality results for random series

In the statement of Theorem 1, the Salem-Zygmund condition (19) does not involve the random variables X n provided that the mutual independence and the moment assumption (17) are assumed. Consequently, the almost sure convergence of the random series X n (ω)f ω n (x) in C 0 (M) is universal with respect to the random variables (X n ). That is an analogue of a result by Marcus and Pisier dealing with the random Fourier series (ω, x) ∈ Ω × R\2πZ → X n (ω)e inx (see [START_REF] Marcus | Random Fourier series with applications to harmonic analysis[END_REF]] and [Pis78, page 28, Corollaire 7.3]).

For the same reason, Theorem 1 also shows the universality with respect to reasonable submanifolds M s of M although the eigenfunctions are considered with respect to the Laplace-Beltrami operator ∆ of the whole Riemannian manifold M. Indeed with the notations of Theorem 1, we directly see the equivalence of the following two assertions :

• the random series

X n (ω)f ω n is almost surely convergent in C 0 (M s ), • the random series X n (ω)f ω n is almost surely convergent in C 0 (M).
For instance, M s may be a closed geodesic of M despite the fact that M s is negligible for the Riemannian volume. The previous equivalence contrasts with the classical theory on a compact group. Maybe, the nearest result would be the following one : for any compact Abelian group G and any compact subset T ⊂ G of nonempty interior, then a classical random series almost surely converges in C 0 (G) if and only if it almost surely converges in C 0 (T ) (see the argument following [LT91, Theorem 13.3]).

We now want to study the universality with respect to the Riemannian metric of M. We first recall that the Pisier space on T is the space of functions n∈Z c n e inx ∈ L 2

x (T) such that the associated random Fourier series (4) almost surely converges in C 0 (T) (see [Pis78, page 2] or [LQ17a, Chapter 6]). In our context, it is clear how to transfer the notion of Pisier space to a boundaryless Riemannian compact manifold M.

Definition 4. -Given a function f ∈ L 2 (M) and a parameter K ≥ K 0 , one may decompose

f = M f (x)dµ(x) 1 M + n≥1 f n , with f n := Π (Kn-K,Kn] (f ),
where µ is the Riemannian probability measure of M and Π (Kn-K,Kn] : L 2 (M) → L 2 (M) is the spectral projector on the spectral window (Kn -K, Kn] with respect to √ -∆. Then the "Pisier space on M" is the space of functions f ∈ L 2 (M) such that the random series n≥1 f ω n almost surely converges in C 0 (M).

For K 1, the Salem-Zygmund condition (19) gives an explicit semi-norm on L 2 (M) that characterizes the functions f ∈ L 2 (M) of the previous definition. But such a semi-norm clearly involves the spectral decomposition of the Laplace-Beltrami operator ∆ which itself is defined via the Riemannian metric of M. It turns out that the following universality result holds.

Theorem 5. -With the above notations, the "Pisier space on M" is independent of the spectral parameter K (provided that K 1) and of the Riemannian metric on M.

Remembering that the space L 2 (M) does not depend on the Riemannian structure of M, one may compare Theorem 5 to the following L p Paley-Zygmund theorem : for any p ∈ [1, +∞), the random series f ω n almost surely converges in L p (M) if and only if f belongs to L 2 (M) (see [START_REF] Imekraz | Multidimensional Paley-Zygmund theorems and sharp L p estimates for some elliptic operators[END_REF]Theorem 2.3] but such a result essentially appears in [START_REF] Burq | Injections de Sobolev probabilistes et applications[END_REF] in a different form).

The independence with respect to K in Theorem 5 will be a simple consequence of the Salem-Zygmund condition (19) whereas the independence with respect to the Riemannian metric is more involved and uses • a semi-classical reformulation of the Salem-Zygmund as follows (for a suitable Ψ ∈ C ∞ c (R)) :

1 0 f -Ψ(-h 2 ∆)f L 2 (M) h -ln(h) dh < +∞,
(note that such a reformulation strikingly looks like the condition giving the continuity of stationary Gaussian processes [START_REF] Marcus | Continuity of Gaussian processes[END_REF][START_REF] Marcus | Continuity of Gaussian processes and random Fourier series[END_REF]), • a few estimates on semi-classical pseudo-differential operators (see Lemma 35),

• a development of the operator Ψ(-h 2 ∆) with respect to h (see the proof of Proposition 38), usually referred as a functional semi-classical calculus, as done by Burq-Gérard-Tzvetkov in [START_REF] Burq | Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds[END_REF].

Generalization of the Dudley-Fernique theorem via majorizing measures

The goal of this part is to gather all the necessary material about Gaussian processes and to state Theorem 7 that must be considered as a generalization of the Dudley-Fernique theorem.

The couple (M, δ g ) will denote a compact metric space which is not necessarily a Riemannian manifold for the moment and µ will denote a probability measure on the Borel subsets of M. For our purpose, a Gaussian process (f G,ω (x)) x∈M on (M, δ g ) is defined as a family of real random variables satisfying the following two properties i) for any finite subset {x 1 , . . . , x k } ⊂ M, the random vector

ω ∈ Ω → (f G,ω (x 1 ), . . . , f G,ω (x k )) ∈ R k is a centered Gaussian vector. In other words, any linear combination ω → k i=1 α i f G,ω (x i ), with α i ∈ R, is centered and Gaussian. ii) the function (x, y) ∈ M 2 → E ω [f G,ω (x)f G,ω (y)], called the covariance structure, is continuous. An equivalent condition is the continuity of the function x → f G,ω (x) from M to L 2 (Ω).
Here is the simple example of a Gaussian process we are interested in : for any continuous function c : M → 2 (N) the process (f G,ω (x)) x∈M given by f G,ω (x) = ∈N g (ω)c (x) is Gaussian. We refer to Proposition 23 below for the Gaussian processes (20) and (21).

We now recall the idea of Dudley [START_REF] Dudley | The sizes of compact subsets of Hilbert space and continuity of Gaussian processes[END_REF] : the almost sure properties of a Gaussian process (f G,ω (x)) x∈M are closely related to the pseudo-distance δ given by (32)

∀(x, y) ∈ M 2 δ(x, y) := E ω [|f G,ω (x) -f G,ω (y)| 2 ].
Except in very specific examples, one cannot expect to have a simple formula for δ(x, y). In our concrete situation, the pseudo-distance δ will be equivalent to a simpler distance or pseudo-distance which is a function of the original distance δ g . Here is a simple lemma that gives the definition of almost homogeneity that will be relevant for compact manifolds (see Proposition 24). Lemma 6. -Assume that the metric space (M, δ g ) admits a probability measure µ satisfying

(33) ∃H ≥ 1 ∀(x, y) ∈ M 2 ∀t > 0 µ(B δg (x, t)) ≤ Hµ(B δg (y, t)).
Now consider a subadditive, non-decreasing and right-continuous function Υ : [0, +∞) → [0, +∞) satisfying Υ(0) = 0 and a pseudo-distance δ on M which is equivalent to the pseudo-distance Υ(δ g ) as follows :

(34) ∃ ≥ 1 δ √ ≤ Υ(δ g ) ≤ √ δ.
Then the pseudo-metric space (M, δ) is almost homogeneous in the sense that the radius in the upper bound (33) suffers a multiplicative loss as follows

(35) ∀(x, y) ∈ M 2 ∀ε > 0 µ(B δ (x, ε)) ≤ Hµ(B δ (y, ε)).
Proof. One may assume that Υ does not identically vanish (otherwise (35) is obvious since any δ-ball equals M). By subadditivity, one thus has Υ(t) > 0 for any t > 0 and Υ(δ g ) turns out to be a distance on M. The assumptions also show that δ g , Υ(δ g ) and δ are three distances giving rise to the same topology on M. As a consequence, the probability measure µ is well-defined on any Υ(δ g )-ball and δ-ball of M.

We now introduce a pseudo-inverse function Υ -1 : [0, +∞) → [0, +∞] as follows

(36) ∀ε ≥ 0 Υ -1 (ε) := inf{t ≥ 0, Υ(t) ≥ ε},
with the usual convention inf ∅ = +∞. The right-continuity of Υ implies the following two equivalences

Υ(t) ≥ ε ⇔ t ≥ Υ -1 (ε), (37) Υ(t) < ε ⇔ t < Υ -1 (ε). (38)
Hence, we are able to come back to the open balls for the original distance δ g . For any x ∈ M and any ε > 0 we have

B Υ(δg) (x, ε) = B δg (x, Υ -1 (ε)) (39) µ(B Υ(δg) (x, ε)) = µ(B δg (x, Υ -1 (ε))).
For t = Υ -1 (ε) we can use (33) (which is also true for t = +∞) so we get the inequality

µ(B Υ(δg) (x, ε)) ≤ Hµ(B Υ(δg) (y, ε)).
Then the equivalence (34) leads to a multiplicative loss of the radius of the ball centered at y :

µ(B δ (x, ε)) ≤ µ(B Υ(δg) (x, √ ε)) ≤ Hµ(B Υ(δg) (y, √ ε)) ≤ Hµ(B δ (y, ε)).
The next theorem is a generalization of the Dudley-Fernique under the almost homogeneity assumption (35) (a quantitative version is given in Theorem 8).

Theorem 7. -Let (f G,ω (x)) x∈M be a Gaussian process on a compact metric space (M, δ g ) and consider its Dudley pseudo-distance δ on M defined by (32). We now assume that there is a probability measure µ on the pseudo-metric space (M, δ) that makes it almost homogeneous in the sense that (35) holds true for some constants H ≥ 1 and ≥ 1. Then the following statements are equivalent :

i) The Gaussian process (f G,ω (x)) x∈M has a version ( f G,ω (x)) x∈M which is sample-continuous in the following sense :

• with probability one, the function x → f G,ω (x) is continuous from M to R,

• for any x ∈ M, the equality P[f G,ω (x) = f G,ω (x)] = 1 holds true. ii) The probability measure µ is majorizing in the following sense

(40) sup x∈M +∞ 0 ln 1 µ(B δ (x, ε)) dε < +∞.
iii) The entropy integral is convergent

(41) +∞ 0 ln(N δ (M, ε))dε < +∞,
where the covering number N δ (M, ε) is the smallest integer N such that the pseudo-metric space (M, δ) can be covered by N open balls B δ (x 1 , ε), . . . , B δ (x N , ε) of radius ε.

Let us comment on the known literature : a) The implication iii) ⇒ i) is the Dudley theorem. As explained in the introduction, the almost homogeneity assumption (35) we have introduced is automatically satisfied for a stationary Gaussian process (by setting H = = 1 and µ being the probability Haar measure). Hence, the interest of Theorem 7 is the implication i) ⇒ iii), that is a generalization of the Dudley-Fernique theorem. b) The inequality (44) below will show that (35) allow for weakening (40) as follows : the integral in (40) converges for some x ∈ M. In a similar fashion, the almost homogeneity assumption (35) and a result by Fernique (see [START_REF] Ledoux | Probability in Banach Spaces: isoperimetry and processes[END_REF]Theorem 11.18]) would imply the sense ii) ⇒ i). c) Due to the continuity assumption (with respect to the original distance δ g on M) on the covariance structure we made in the definition of a Gaussian process, the Dudley pseudo-distance (32) is continuous on M × M and thus bounded. Hence, any ball B δ (x, ε) saturates M if ε is large enough. As a consequence, (35), ( 40) and (41) are merely relevant for ε > 0 small enough. As often in probabilistic arguments, qualitative conditions lead to a set of inequalities. We first recall the following classical inequality obtained via the symmetry of Gaussian processes (see (151)) : for any x 0 ∈ M we have

(42) E ω sup x∈M f G,ω (x) ≤ E ω sup x∈M |f G,ω (x)| ≤ E ω [|f G,ω (x 0 )|] + 2E ω sup x∈M f G,ω (x) .
Since f G,ω (x 0 ) is Gaussian and thus belongs to L 1 (Ω), it appears that bounding sup

x∈M f G,ω (x) or sup x∈M |f G,ω (x)|
poses equivalent issues. We now turn to the quantitative version of Theorem 7 as follows.

Theorem 8. -Assuming the same hypothesis as in Theorem 7. Let D be the Dudley diameter of (M, δ) :

D := sup (x,y)∈M 2 E ω [|f G,ω (x) -f G,ω (y)| 2 ].
There is a universal constant C > 0 such that the following inequalities hold true :

E ω sup x∈M f G,ω (x) ≤ C +∞ 0 ln(N δ (M, ε))dε, (43) 
E ω sup x∈M f G,ω (x) ≤ CD ln(H) + C inf x∈M +∞ 0 ln 1 µ(B δ (x, ε)) dε. (44) Similar converse inequalities hold true for E[ sup x∈M f G,ω (x)] as follows +∞ 0 ln(N δ (M, ε))dε ≤ 5 D(1 + ln(H)) + C 2 E ω sup x∈M f G,ω (x) , (45) sup x∈M +∞ 0 ln 1 µ(B δ (x, ε)) dε ≤ 2D(1 + ln(H)) + C E ω sup x∈M f G,ω (x) . ( 46 
)
Note that the Dudley diameter D is finite thanks to the compactness of (M, δ g ) and to the continuity of the covariance structure of the Gaussian process (f G,ω (x)) x∈M .

Generalization of the Dudley-Fernique theorem via majorizing measures (proofs)

The main ingredient of the proof of Theorem 7 is Proposition 9 below. The proof of Proposition 9 is inspired from [LT91, Lemma 13.1 and Proposition 13.2] by suitably replacing any reference to a group structure. We moreover emphasize that there is a result of Talagrand claiming that there always exists an abstract discrete probability measure µ satisfying an inequality almost similar to (50) (see [START_REF] Ledoux | Probability in Banach Spaces: isoperimetry and processes[END_REF]line (11.10)] for details).

True if f G,ω is is stationary (Fernique) d d d d d d d d d d s © µ is majorizing existence of a majorizing measure on M f G,ω (x) is almost surely continuous on M f G,ω (x) is almost surely bounded on M +∞ 0 ln(N δ (M, ε))dε < +∞ Dudley theorem T Compactness of M E ' Fernique theorem
Proposition 9. -On a pseudo-metric space (M, δ) with finite diameter D, we consider two probability measures m and µ. We moreover assume that µ satisfies the almost homogeneity property (35) for suitable constants H ≥ 1 and ≥ 1. Then the following implications hold (47) m is majorizing

⇐ = = = = = ⇐ = = = = = µ is majorizing ⇐==========⇒ convergence of the entropy integral
More precisely, the following three inequalities hold true

(48) sup x∈M +∞ 0 ln 1 µ(B δ (x, ε)) dε ≤ 2D(1 + ln(H)) + sup x∈M +∞ 0 ln 1 m(B δ (x, ε)) dε, +∞ 0 ln(N δ (M, ε))dε ≤ D ln(H) + 2 inf x∈M +∞ 0 ln 1 µ(B δ (x, ε)) dε, (49) sup x∈M +∞ 0 ln 1 µ(B δ (x, ε)) dε ≤ D ln(H) + +∞ 0 ln(N δ (M, ε))dε. ( 50 
)
Proof. The scheme (47) is clearly a consequence of (48), ( 49) and (50).

Step 1. The goal of Step 1 is to prove (51) and (52) below for a suitable convex function Θ :]0, +∞) → [0, +∞). The function θ : τ ∈ [0, 1] → -ln(τ ) is convex in a neighborhood of 0 + and there is a number c ∈ [0, 2; 0, 3] satisfying θ (c) = θ(1)-θ(c)

1-c

, namely 1 -c + 2c ln(c) = 0. We then modify θ to get the convexity in the whole interval [0, +∞) as follows : we define a convex non-increasing function

Θ :]0, +∞) → [0, +∞) by i) Θ(τ ) = -ln(τ ) for any τ ∈]0, c], ii) Θ is affine on [c, 1], iii) Θ(τ ) = 0 for any τ ≥ 1.
The following plot compares the graph of Θ and that of θ (which is dashed)

Whatever the fixed parameter A ∈ [1, +∞) is, we now want to check that the majorizing for the probability measure m is equivalent to the following one

sup x∈M +∞ 0 Θ(Am(B δ (x, ε)))dε < +∞.
More precisely, we will prove the following two inequalities

+∞ 0 Θ(Am(B δ (x, ε)))dε ≤ +∞ 0 ln 1 m(B δ (x, ε)) dε, ( 51 
) +∞ 0 ln 1 m(B δ (x, ε)) dε ≤ 2D(1 + ln(A)) + +∞ 0 Θ(Am(B δ (x, ε)))dε. (52) 
The first bound from is obvious because of the inequalities

Θ(Am(B δ (x, ε))) ≤ Θ(m(B δ (x, ε))) ≤ ln 1 m(B δ (x, ε) .
Let us prove the second bound (52). We remember that for any ε > D, the number m(B δ (x, ε)) equals 1, so we can write

+∞ 0 ln 1 m(B δ (x, ε)) dε = D 0 ln 1 m(B δ (x, ε)) dε.
We decompose that integral on the following two subsets (4) of the interval (0, D) :

U (x, A) := {ε ∈ (0, D) , Am(B δ (x, ε)) ≤ c} and V (x, A) := {ε ∈ (0, D) , Am(B δ (x, ε)) > c}.
For the integral on U (x, A), one may write ln

1 m(B δ (x,ε)) = ln(A) + ln 1 Am(B δ (x,ε)) = ln(A) + Θ (Am(B δ (x, ε))) 2 ≤ ln(A) + Θ(Am(B δ (x, ε))) U (x,A) ln 1 m(B δ (x, ε)) dε ≤ D ln(A) + +∞ 0 Θ(Am(B δ (x, ε)))dε.
For the integral on V (x, A), we use the non-increasingness of t → ln(1/t) :

0 ≤ V (x,A) ln 1 m(B δ (x, ε)) dε ≤ D ln A c .
We finally have the numerical computations ln(1/c) ≤ ln(1/0, 2) ≤ 2 and

D ln A c ≤ D ln(A) + D ln(1/c) ≤ D ln(A) + 2D.
As a consequence of those considerations, we get (52).

(4) Note that U (x, A) and

V (x, A) are indeed intervals since ε → m(B δ (x, ε)) is a non-decreasing function.
Step 2. Let us prove the inequality (48). Thanks to (51), we first write (5) sup

x∈M +∞ 0 ln 1 m(B δ (x, ε) dε ≥ sup x∈M +∞ 0 Θ(m(B δ (x, ε)))dε ≥ M +∞ 0 Θ(m(B δ (x, ε))dεdµ(x).
Using the Jensen inequality with the convex function Θ, the last bound from below is greater than or equal to

+∞ 0 Θ M m(B δ (x, ε))dµ(x) dε.
By integrating the non-negative measurable function

(x, y) ∈ M 2 → 1 [0,ε) (δ(x, y)) ∈ R
with respect to µ ⊗ m, the Fubini-Tonelli theorem shows the equality

M m(B δ (x, ε))dµ(x) = M µ(B δ (x, ε))dm(x).
For any element y ∈ M, the almost homogeneity property (35) implies

M µ(B δ (x, ε))dm(x) ≤ Hµ(B δ (y, ε)).
Since Θ is non-increasing, we get

sup x∈M +∞ 0 ln 1 m(B δ (x, ε) dε ≥ +∞ 0 Θ (Hµ(B δ (y, ε))) dε ≥ 1 +∞ 0 Θ (Hµ(B δ (y, ε))) dε .
Since the last bound is uniform with respect to y ∈ M, we get (48) by switching the role of m and µ in (52).

Step 3. To bound the entropy integral, we need to define the packing number

N pack δ (M, ε) as the largest integer N such that (M, δ) contains N disjoint open balls B δ (y 1 , ε), . . . , B δ (y N , ε) of radius ε.
Noticing that the open balls B δ (y 1 , 2ε), . . . , B δ (y N , 2ε) cover M, we directly get the following classical inequality :

(53) N δ (M, 2ε) ≤ N pack δ (M, ε).
Although useless for us, we note that N pack δ (M, ε) and N δ (M, ε) indeed play equivalent roles because the inequality N pack δ (M, ε) ≤ N δ (M, ε) also holds true. From the definition of N pack δ (M, ε), we get

N pack δ (M,ε) i=1 µ(B δ (y i , ε)) ≤ µ(M) = 1.
We now fix x ∈ M. From the almost homogeneity property (35), we infer the following inequality

N pack δ (M, ε) × µ B δ x, ε ≤ H. The inequalities ln(N pack δ (M, ε)) ≤ ln(H) + ln 1 µ(B δ (x,ε/ ))
and (53) imply that ln(N δ (M, 2ε)) is less or equal to ln(H) + ln 1 µ(B δ (x,ε/ )) . We then easily get (49) :

+∞ 0 ln(N δ (M, ε))dε = 2 D 2 0 ln(N δ (M, 2ε))dε ≤ D ln(H) + 2 +∞ 0 ln 1 µ(B δ (x, ε )) dε.
To get (50), we have to reverse the last inequality. Indeed, we make a similar argument by covering M with N δ (M, ε) balls B δ (x i , ε) and we write for any x ∈ M

1 = µ(M) ≤ N δ (M,ε) i=1 µ(B δ (x i , ε)) ≤ HN δ (M, ε)µ(B δ (x, ε)).
(5) Actually, we implicitly need that (x, ε) → m(B δ (x, ε)) is measurable. That is actually a consequence of the Fubini-Tonelli theorem applied to the measurable function (x, y, ε) → 1 [0,ε) (δ(x, y)) after integrating over y ∈ M with respect to m.

We conclude by integrating the following inequalities over ε ∈ [0, D]

ln 1 µ(B δ (x, ε)) ≤ ln N δ M, ε + ln(H) ≤ ln N δ M, ε + ln(H).
We now recall the fundamental result of Dudley (see [START_REF] Ledoux | Probability in Banach Spaces: isoperimetry and processes[END_REF]Theorem 11.17] or [LQ17a, page 81]).

Theorem 10 (Dudley). -Let (f G,ω (x)) x∈M be a Gaussian process, then the following inequality holds true

E ω [ sup x∈M f G,ω (x)] ≤ C +∞ 0 ln(N δ (M, ε))dε,
where C > 0 is a universal constant and δ is the pseudo-distance (32) associated to (f G,ω (x)) x∈M . Moreover, if the entropy integral is convergent then the Gaussian process (f G,ω (x)) x∈M has a sample-continuous version with respect to the pseudo-distance δ (see Point i) of Theorem 7).

We note that we are interested in the almost sure continuity with respect to the original distance on M which was denoted by δ g (we keep in mind that M will be a Riemannian manifold). But we add, in our definition of a Gaussian process, the continuity of the covariance structure of the Gaussian process (f G,ω (x)) x∈M . As a consequence, the pseudo-distance δ is continuous with respect to δ g and if one denotes by f G,ω the version of f G,ω given in Theorem 10, we infer that the sample paths of f G,ω are almost surely continuous with respect to the original distance δ g of M :

(M, δ g ) --------→ (M, δ) --------→ R x --------→ x --------→ f G,ω (x).
Let us now recall the important notion of boundedness for Gaussian processes. A Gaussian process is called bounded if it satisfied the four equivalent statements of the next proposition (see Appendix C for explanations and also the inequalities (42) allowing for replacing f G,ω (x) with |f G,ω (x)|) Proposition 11. -For any Gaussian process (f G,ω (x)) x∈M on M, the following four statements are equivalent i) the supremum

E ω sup x∈M f G,ω (x) := sup F ⊂M F countable E ω sup x∈F f G,ω (x) is finite, ii) the supremum sup F ⊂M F finite E ω [sup x∈F f G,ω (x)
] is finite and moreover equals the upper bound in i), iii) for any countable subset F ⊂ M, the function

x ∈ F → f G,ω (x) ∈ R is almost surely bounded, iv) the Gaussian process (f G,ω (x)) x∈M admits a version ( f G,ω (x)) x∈M which is sample-bounded in the fol- lowing sense • with probability 1, the function x → f G,ω (x) is bounded from M to R, • for any x ∈ M, the equality P[f G,ω (x) = f G,ω (x)] = 1 holds true.
We now state the two fundamental theorems obtained by Fernique (see [START_REF] Ledoux | Probability in Banach Spaces: isoperimetry and processes[END_REF]Theorem 11.18] and Talagrand (see [Tal87, Theorem 1] or [LT91, Theorem 12.8]).

Theorem 12 (Fernique). -There is a universal constant C such that for any Gaussian process (f G,ω (x)) x∈M and any probability measure µ on (M, δ) (where δ is defined in (32)) the following inequality holds

(54) E ω sup x∈M f G,ω (x) ≤ C sup x∈M +∞ 0 ln 1 µ(B δ (x, ε)) dε.
Consequently, if µ is majorizing then the Gaussian process (f G,ω (x)) x∈M is bounded.

The Fernique inequality will not be used to prove Theorems 7 and 8. But (54) will be used for the proof of Theorems 2 and 3 for spheres M = S d (see Section 12).

Theorem 13 (Talagrand). -Let (f G,ω (x)) x∈M be a Gaussian process which is bounded in the sense of Proposition 11. Then there exists a probability measure m on (M, δ) satisfying

(55) sup x∈M +∞ 0 ln 1 m(B δ (x, ε)) dε ≤ CE ω sup x∈M f G,ω (x)
where C > 0 is a universal constant. In particular m is majorizing.

The proof of Theorem 7 and Theorem 8 is done in the following steps :

1) If i) holds true then the compactness of M and Point iv) of Proposition 11 show that the process (f G,ω (x)) x∈M is bounded. 2) If the process (f G,ω (x)) x∈M is bounded, then the Talagrand inequality (55) and Proposition 9 prove the inequalities (45) and (46). In particular, the measure µ satisfies the majorizing condition. Point ii) is proved. 3) If ii) holds true, then we may apply Proposition 9 so that (49) shows the convergence of the entropy integral. Point iii) is proved. 4) If iii) holds true, then Theorem 10 proves (43) and i). Moreover (44) directly comes from ( 43) and (49). 5) Finally note that the previous four steps show that the expectation E ω sup x∈M f G,ω (x) , the entropy integral and the majorizing integral for µ are simultaneously finite or infinite. Hence, the inequalities (43), ( 44), ( 45) and (46) always hold true.

Partial pseudo-distances on spheres

For any integers d ≥ 2 and n ≥ 1, we denote by δ n the pseudo-distance on the sphere S d given by (56) Theorem 14. -For any d ≥ 2 and for any ϑ ∈ (0, π 2 ), there is C = C(d, ϑ) ≥ 1 such that for any n ∈ N and any p ∈ S d , the pseudo-distance δ n is equivalent on the closed ball B δg (p, ϑ) to the distance min(1, nδ g ) as follows

δ n (x, y) 2 := 1 dim(E n ) λ 2 k =n(n+d-1) |φ k (x) -φ k (y)| 2 ,
1 C min(1, nδ g ) ≤ δ n ≤ C min(1, nδ g ).
Proof. Let us denote by e n (x, y) the reproducing kernel of the eigenspace ker(∆ + n(n + d -1)) :

e n (x, y) := λ 2 k =n(n+d-1) φ k (x)φ k (y),
where each eigenfunction φ k is assumed to be real-valued. The pseudo-distance δ n then takes the form (57)

δ n (x, y) 2 = e n (x, x) + e n (y, y) -2e n (x, y) dim(E n ) .
Let us recal how e n (x, y) may be expressed thanks to orthogonal polynomials (for instance Gegenbauer polynomials). We prefer here Jacobi polynomials (which are directly related to Gegenbauer polynomials). Let (P

( d 2 -1, d 2 -1) n
) n∈N be the family of Jacobi polynomials assiociated to the weight t ∈

[-1, 1] → (1 -t 2 ) d 2 -1 and satisfying (see [Sze75, page 58]) : (58) P ( d 2 -1, d 2 -1) n (1) = n + d 2 -1 n ∼ n d 2 -1 Γ( d 2 )
.

The so-called additional formula (see [SW71, Lemma 2.8 (page 143) and Theorem 2.14 (page 149)]) ensures the existence of a constant c d,n satisfying (59)

e n (x, y) = c d,n P ( d 2 -1, d 2 -1) n ( x, y ). Note that e n (x, x) = c d,n P ( d 2 -1, d 2 -1) n
(1) does not depend on x and so equals

S d e n (x, x) dx vol S d (S d ) = dim(En) vol S d (S d ) n d-1 . As a consequence, one has (60) c d,n dim(E n ) c d,n n d-1 1 P ( d 2 -1, d 2 -1) n (1) 1 n d 2 -1 .
We now simplify (57) as 2 dim(En) (e n (x, x) -e n (x, y)) and we get the following closed form (61)

δ n (x, y) 2 = 2c d,n dim(E n ) P ( d
One may write x, y = cos(δ g (x, y)) where δ g (x, y) ∈ [0, π] is the Riemannian distance between x and y on the sphere S d . Hence, we have the equivalence

(62) 1 -x, y δ g (x, y) 2 .
Note that the Riemannian distance between two elements x and y on the spherical cap B δg (p, ϑ) is less or equal to 2ϑ. Hence we have x, y = cos(δ g (x, y)) ≥ cos(2ϑ) > -1.

So the conclusion is a consequence of Proposition 15 below and of (60), ( 61) and (62).

Proposition 15. -For any integer d ≥ 2 and any real number ϑ ∈ (0, π 2 ), there is a constant C d,ϑ ≥ 1 such that the following inequalities hold true for any n ≥ 1 and any α ∈ [cos(2ϑ), 1)

(63) 1 C d,ϑ ≤ P ( d 2 -1, d 2 -1) n (1) -P ( d 2 -1, d 2 -1) n (α) n d 2 -1 min(1, n 2 (1 -α)) ≤ C d,ϑ . Proof.
Step 1. We first prove a weak version of (63) in which the constant C d,ϑ may depend on n. We set

Q n,d (α) := P ( d 2 -1, d 2 -1) n (1) -P ( d 2 -1, d 2 -1) n (α) 1 -α
which is a polynomial with respect to α. It turns out that P

( d 2 -1, d 2 -1) n
reaches its maximum in [cos(2ϑ), 1] at the mere point 1 (see [START_REF] Szego | Orthogonal polynomials[END_REF]page 168]) and so the polynomial Q n,d is positive on [cos(2ϑ), 1). Moreover, it also does not vanish for α = 1 thanks to the following formula (see (58) and [Sze75, page 63, (4.21.7)]) :

(64) P ( d 2 -1, d 2 -1) n (1) = n + d -1 2 P ( d 2 , d 2 ) n-1 (1) > 0.
By compactness of [cos(2ϑ), 1], there is a constant C d,ϑ,n ≥ 1 and such that the following holds for any α ∈

[cos(2ϑ), 1] 1 C d,ϑ,n ≤ Q n,d (α) ≤ C d,ϑ,n .
Since 1 -α belongs to [0, 2], we have

min(1, n 2 (1 -α)) n 2 ≤ (1 -α) ≤ 2 min(1, n 2 (1 -α))
and hence

1 n 2 C d,ϑ,n ≤ P ( d 2 -1, d 2 -1) n (1) -P ( d 2 -1, d 2 -1) n (α) min(1, n 2 (1 -α)) ≤ 2C d,ϑ,n .
Such estimates are very far from the expected inequalities but show that it is sufficient to prove (63) for n ≥ n d,ϑ (for a suitable positive integer n d,ϑ merely depending on (d, ϑ)).

Step 2. The mean value theorem and the formula giving the derivative of a Jacobi polynomial (as in (64)) ensure the existence of z ∈ (α, 1) such that the previous computations can be continued :

Q n,d (α) = d dz P ( d 2 -1, d 2 -1) n (z) = n + d -1 2 P ( d 2 , d 2 ) n-1 (z).
Classical estimates on Jacobi polynomials (see the proof of [Ime18, Lemme 3.9] or (68) below) ensure that there is c 1 > 0, merely depending on the dimension d, such that the equivalence P

( d 2 , d 2 )
n-1 (cos(θ)) n d 2 uniformly holds true with respect to θ ∈ 0, c1 n . As a consequence, we get

∀n 1 ∀θ ∈ 0, c 1 n Q d,n (cos(θ)) n 2 n d 2 -1 .
In the last regime, we remark that we have the equivalence n 2 (1 -cos(θ)) min(1, n 2 (1 -cos(θ))). We thus have proved

(65) ∀n 1 ∀θ ∈ 0, c 1 n P ( d 2 -1, d 2 -1) n (1) -P ( d 2 -1, d 2 -1) n (cos(θ)) min(1, n 2 (1 -cos(θ))) n d 2 -1 .
Step 3. Thanks to [Sze75, Theorem 7.32.2, page 169], we know that for any constant c 2 > 0 one may find [START_REF] Szego | Orthogonal polynomials[END_REF]page 59]) and the previous inequality implies the following one for any constant c 3 larger than c 2 :

C 2 ≥ 1 such that ∀n 1 ∀θ ∈ c 2 n , π 2 |P ( d 2 -1, d 2 -1) n (cos(θ))| ≤ C 2 √ nθ d-1 2 . The formula P ( d 2 -1, d 2 -1) n (-x) = (-1) n P ( d 2 -1, d 2 -1) n (x) (see
∀n 1 ∀θ ∈ c 3 n , π - c 3 n |P ( d 2 -1, d 2 -1) n (cos(θ))| ≤ C 2 n d 2 -1 c d-1 2 3 .
Remembering (58) and noting that C 2 is independent of c 3 , one sees that one may choose c 3 large enough satisfying for all θ ∈ c3 n , π -c3 n :

|P ( d 2 -1, d 2 -1) n (cos(θ))| ≤ 1 2 P ( d 2 -1, d 2 -1) n (1) (66) P ( d 2 -1, d 2 -1) n (1) -P ( d 2 -1, d 2 -1) n (cos(θ)) n d 2 -1 .
Since we assumed ϑ < π 2 , the inequality 2ϑ ≤ π -c3 n holds true for n ≥ n d,ϑ (with a suitable positive integer n d,ϑ ). In contrast with (65), we have the equivalence min(1, n 2 (1 -cos(θ)))

1 in such a regime. As a consequence, we have

(67) ∀n ≥ n d,ϑ ∀θ ∈ c 3 n , 2ϑ P ( d 2 -1, d 2 -1) n (1) -P ( d 2 -1, d 2 -1) n (cos(θ)) min(1, n 2 (1 -cos(θ))) n d 2 -1 .
Step 4. Comparing (65) and (67), one cannot exclude the possibility that c 3 may have been chosen too large in Step 3. To complete our proof, we need to understand the case c 1 < c 3 . Here we invoke the following uniform limit with respect to t ∈ [0, c 3 ] (see [START_REF] Szego | Orthogonal polynomials[END_REF]page 192, (8.1.1)]) that makes a connexion between the Jacobi polynomials P

( d 2 -1, d 2 -1) n and the Bessel function J d 2 -1 : (68) lim n→+∞ P ( d 2 -1, d 2 -1) n cos t n n d 2 -1 = 2 d 2 -1 J d 2 -1 (t) t d 2 -1 in the Banach space C 0 t ([0, c 3 ], R).
The Poisson representation of the Bessel function J d 2 -1 (see [Sze75, page 15, (1.71.6)]) suggests introducing the following real-valued function

(69) σ d-1 (t) := J d 2 -1 (t) t d 2 -1 = 1 2 d 2 -1 Γ( d-1 2 ) √ π 1 -1 e its (1 -s 2 ) d-3 2 ds.
The notation σ d-1 is justified since that function may be interpreted as the radial part of the Fourier transform of the spherical measure σ d-1 on S d-1 (see (77)). One directly checks that the function σ d-1 is real-valued, admits a maximum at the unique point t = 0 and satisfies lim t→+∞ σ d-1 (t) = 0 (thanks to the Riemann-Lebesgue lemma).

As a consequence, we get the strict inequality sup t≥c1 σ d-1 (t) < σ d-1 (0) which in turn implies the equivalent one

(70) ∃ρ ∈ (0, 1) ∀t ≥ c 1 σ d-1 (t) < ρ σ d-1 (0).
Coming back to (68), we see that the sequence of functions

t → n -( d 2 -1) P ( d 2 -1, d 2 -1) n cos t n -ρP ( d 2 -1, d 2 -1) n (1) uniformly converges on [c 1 , c 3 ] to the continuous negative function t → 2 d 2 -1 [ σ d-1 (t) -ρ σ d-1 (0)].
Hence, we infer that the following holds true

∀n 1 ∀θ ∈ c 1 n , c 3 n P ( d 2 -1, d 2 -1) n (cos(θ)) ≤ ρP ( d 2 -1, d 2 -1) n (1).
Such new estimates allow us to replace c 3 with c 1 in (66) and hence in (67). Taking account of (65), we finally obtain the wanted uniform equivalence (63).

Partial pseudo-distances on manifolds

In this part, M is a general boundaryless compact Riemannian manifold (and we use the notations of the introduction about the spectral analysis of the Laplace-Beltrami operator). For any interval I ⊂ [0, +∞) we define the spectral function of I (with respect to √ -∆) as follows : for any (x, y) ∈ M 2 we set

e I (x, y) = λ k ∈I φ k (x)φ k (y),
where we recall that each eigenfunction φ k of ∆ is assumed to be real-valued. Let us recall an idea we attribute to Burq and Lebeau in [BL13, page 923] (we also refer to the end of the proof of [Ime19, Lemma 8.1]) : one may find two numbers K 0 ≥ 1 and C ≥ 1 that merely depend on the Riemannian manifold M such that the following on-diagonal estimates hold

(71) ∀K ≥ K 0 ∀n ≥ 1 ∀x ∈ M K d n d-1 C ≤ e (Kn-K,Kn] (x, x) ≤ CK d n d-1 .
Upon modifying C, we note that the same estimates hold for dim(E (Kn-K,Kn] ) by integration on the compact manifold M :

(72) ∀K ≥ K 0 ∀n ≥ 1 ∀x ∈ M K d n d-1 C ≤ dim(E (Kn-K,Kn] ) ≤ CK d n d-1 .
We now introduce a pseudo-distance δ n on the manifold M which is analogue to (56) (we keep the same notation δ n for simplicity). For any couple (x, y) ∈ M 2 we set

δ n (x, y) 2 : = 1 dim(E (Kn-K,Kn] ) λ k ∈(Kn-K,Kn] |φ k (x) -φ k (y)| 2 (73) = e (Kn-K,Kn] (x, x) + e (Kn-K,Kn] (y, y) -2e (Kn-K,Kn] (x, y) dim(E (Kn-K,Kn] ) . (74) By bounding |φ k (x) -φ k (y)| 2 ≤ 2(|φ k (x)| 2 + |φ k (y)| 2
) and using ( 71) and (72), we remark the uniform estimate (75) sup

n≥1 sup (x,y)∈M 2 δ n (x, y) < +∞.
In the sequel, we will prove the following analogue result of Theorem 14 (but here the equivalence (76) holds in the whole manifold M).

Theorem 16. -There are two constants K 0 ≥ 1 and C ≥ 1 that merely depend on the Riemannian manifold M such that the following equivalence holds true for any K ≥ K 0 , any couple (x, y) ∈ M 2 and any n ∈ N :

1 C min 1, Knδ g (x, y) ≤ δ n (x, y) ≤ C min 1, Knδ g (x, y) . (76) 
The main interest of the previous result is that it holds true without any geometric assumption on the boundaryless compact Riemannian manifold M. It indeed relies on the freedom to set K large enough. Under specific geometric assumptions, a similar upper bound to that of (76) appears in [CH15a, Theorem 1]. Moreover, a much more precise than (76) is given in [CH15b, Theorem 9] by assuming a "geometric mutually nonfocal hypothesis" on the manifold M.

We now recall the relation linking the Bessel function J d 2 -1 and the Fourier transform of the spherical measure

σ d-1 on S d-1 : ∀ν ∈ R d \{0} J d-2 2 (|ν|) |ν| d-2 2 = 1 (2π) d 2 S d-1 e i ν,w dσ d-1 (w) = 1 (2π) d 2 S d-1 exp(i|ν|w 1 )dσ d-1 (w).
Since the previous Fourier transform is radial, we make the following abuse of notation :

(77) ∀ν > 0 σ d-1 (ν) := J d-2 2 (ν) ν d-2 2 = 1 (2π) d 2 S d-1 exp(iνw 1 )dσ d-1 (w).
We will use some material developed by Canzani and Hanin. More precisely we need a suitable asymptotic of the spectral function given in the next theorem (proved by Hörmander in [Hör68, Theorem 4.4] for the case |I| = |J| = 0). But the choice of the explicit principal term has been enlightened by Canzani and Hanin in [START_REF] Canzani | Scaling limit for the kernel of the spectral projector and remainder estimates in the pointwise Weyl law[END_REF]. The asymptotic formula, involving derivatives, is now considered as known (see the introduction of [START_REF] Canzani | C ∞ scaling asymptotics for the spectral projector of the Laplacian[END_REF]). We give here a reformulation with coordinate patches.

Theorem 17. -There is α 0 > 0 such that for any coordinate patch τ :

U ⊂ R d → V ⊂ M with diam(V ) < α 0 ,
for any multi-indexes I ∈ N d and J ∈ N d , the following asymptotic holds true for any (x, y) ∈ V 2 and λ ≥ 0 (where the derivatives are seen in the coordinate patch) :

∂ I x ∂ J y λj ≤λ φ j (x)φ j (y) = ∂ I x ∂ J y (2π) d 2 λ 0 ν d-1 σ d-1 (νδ g (x, y))dν + O (1 + λ) d-1+|I|+|J| .
Finally, the remainder is uniform provided that x and y run over a compact subset of the open set V .

Proof. Since we do not know a published reference where Theorem 17 is stated with a proof, we explain in Appendix D how it can be easily recovered as a consequence of the analysis of [START_REF] Canzani | C ∞ scaling asymptotics for the spectral projector of the Laplacian[END_REF], a Bernstein-type inequality proved in [START_REF] Bin | Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold[END_REF] and a Tauberian theorem as in [Sog17, Chapter 4].

The reason of restricting the estimates of Theorem 17 to compact subsets of the open subset V is due to the definition of the C ∞ (M)-topology (see [Die72, Chapters XVII.1 and XVII.2]). Obviously for |I| = |J| = 0, coordinate patches are useless and the estimates hold on the whole compact manifold.

If the two points x and y are far from each other, we shall need to forget the principal term of the asymptotic of the spectral function (at least for |I| = |J| = 0). In [CH15b, line (79)], a geometric mutually nonfocal hypothesis on the manifold M is assumed, and thus Canzani and Hanin make use of an asymptotic of Safarov [START_REF] Safarov | Asymptotic of the spectral function of a positive elliptic operator without the nontrap condition[END_REF] stating e [0,λ] (x, y) = o(λ d-1 ). Since our issue is posed without any geometric assumption, we replace their argument with the off-diagonal Hörmander estimate e [0,λ] (x, y) = O(λ d-1 ).

Proposition 18. -For any fixed α > 0, one may find two numbers K 0 ≥ 1 and c ≥ 1 (depending on the Riemannian manifold M and α > 0) satisfying the following property : for any K ≥ K 0 the following implication holds true for any n ∈ N and any couple (x, y) ∈ M 2 :

δ g (x, y) ≥ α ⇒ 1 c ≤ δ n (x, y) ≤ c.
Proof. The upper bound δ n (x, y) ≤ c has already been proved in (75). From [Hör68, line (4.11)] (see also [Shu01, page 162, Theorem 21.1, point 2)]), we know that for any α > 0 there is C > 0 such that, for any (x, y) ∈ M 2 , the following uniform off-diagonal estimate holds true

δ g (x, y) ≥ α ⇒ ∀λ ≥ 0 e [0,λ] (x, y) ≤ C(1 + λ) d-1
where C depends on α and on the Riemannian structure of M. Thus we obtain

|e (Kn-K,Kn] (x, y)| = e [0,Kn+K] (x, y) -e [0,Kn] (x, y) ≤ C(1 + Kn + K) d-1 + C(1 + Kn) d-1 ≤ C(3 d-1 + 2 d-1 )(Kn) d-1 .
We now recall the estimate e (Kn-K,Kn] (x, x) K d n d-1 (see ( 71)), which also implies dim(E (Kn-K,Kn] ) K d n d-1 by integration over M. Remembering the formula (74), we infer that there are three positive constants C 1 , C 2 , C 3 (independent of n and K) such that

δ n (x, y) 2 ≥ n d-1 dim(E (Kn-K,Kn] ) C 1 K d -C 2 K d-1 (78) ≥ C 1 K d -C 2 K d-1 C 3 K d .
We conclude by making K tend to +∞.

We now need to improve the previous result if nδ g (x, y) is bounded from below or from above. By comparison with [CH15b, pages 1728-1729] that involve geometric assumptions on the manifold M and rely on several tools obtained by Zelditch, Potash and Xu, our proofs of the next two results merely use the asymptotic of the spectral function given by Theorem 17.

Proposition 19. -For any fixed β > 0, one may find two numbers K 0 ≥ 1 and c ≥ 1 (depending on the Riemannian manifold M and β > 0) satisfying the following property : for any K ≥ K 0 , for any n ∈ N and any couple (x, y) ∈ M 2 the following implication holds true

δ g (x, y) ≥ β Kn ⇒ 1 c ≤ δ n (x, y) ≤ c.
Proof. As for Proposition 18, the upper bound δ n ≤ c is given in (75). To get the lower bound, we apply Proposition 18 with the constant α = α 0 appearing in the statement of Theorem 17. Hence, the case δ g (x, y) ≥ α 0 is already done. We now assume α 0 > δ g (x, y) ≥ β Kn and we have the following asymptotic

(79) e (Kn-K,Kn] (x, y) = Kn Kn-K ν d-1 σ d-1 (νδ g (x, y)) dν (2π) d 2 + (Kn) d-1 O(1),
where the remainder O(1) is uniformly bounded with respect to (x, y, K, n). By using the definition (74) of the pseudo-distance δ n , we infer that the product dim(E (Kn-K,Kn] )δ n (x, y) 2 equals

2K d n n-1 ν d-1 [ σ d-1 (0) -σ d-1 (Kνδ g (x, y))] dν (2π) d/2 + (Kn) d-1 O(1).
Remembering that the function | σ d-1 | is bounded by σ d-1 (0) (see (77)), we can restrict our analysis on n-1 2 , n :

(80) δ n (x, y) 2 ≥ 2K d dim(E (Kn-K,Kn] ) n n-1 2 ν d-1 [ σ d-1 (0) -σ d-1 (Kνδ g (x, y))] dν (2π) d/2 + (Kn) d-1 O(1) dim(E (Kn-K,Kn] )
.

By looking the last integral and our assumptions, one notices

∀ν ∈ n - 1 2 , n Kνδ g (x, y) ≥ n - 1 2 β n ≥ β 2 .
The inequality (70) (proved in the case M = S d ) may be used to ensure the existence of ρ ∈ (0, 1) (merely depending on the dimension d and on β) such that the following holds true

∀ν ∈ n - 1 2 , n σ d-1 (Kνδ g (x, y)) ≤ ρ σ d-1 (0).
As at the end of the proof of Proposition 18, we obtain an inequality similar to (78) which in turn gives suitable constants K 0 and c.

Proposition 20. -There are three numbers β 0 ∈ (0, 1), K 0 ≥ 1 and c ≥ 1 (depending on the Riemannian manifold M) satisfying the following property : for any K ≥ K 0 , for any n ∈ N and any couple (x, y) ∈ M 2 , the following implication holds true

δ g (x, y) < β 0 Kn ⇒ Knδ g (x, y) c ≤ δ n (x, y) ≤ cKnδ g (x, y).
Proof. The main issue is that an inequality like (80) seems to give an unavoidable O(1) remainder. Forgetting technicalities, one may consider that the main idea relies on the formula (81) that will need derivatives of order 2 of the spectral function. In the next steps, we will make several restrictions so that any small enough number β 0 will be convenient.

Step 1. We first recall that if β 0 is small enough, then any two points x and y of M, satisfying δ g (x, y) < β 0 , belong to a same geodesically convex Riemannian ball. To see that point, we invoke the Whitehead theorem (see [CE75, Theorem 5.14]) : there is a continuous function c : M → (0, +∞), called the convexity radius, such that each Riemannian ball B δg (z, r), for z ∈ M, is geodesically convex for r < c(z). We finish by using the compactness of M and choosing β 0 less than the positive number min z∈M c(z).

Step 2. We now claim that if β 0 is small enough, then for any z ∈ M the open Riemannian ball B δg (z, β 0 ) is relatively compact in the domain of a suitable local chart around z. We again give a compactness argument. Let r(z) > 0 be such that there is a coordinate patch around z (for some open subset

U z of R d ) R d M ∪ ∪ τ z : U z → B δg (z, r(z)).
By compactness, one may cover the compact manifold M with a finite atlas as follows

M = B δg (z 1 , r(z 1 )) ∪ • • • ∪ B δg (z , r(z )).
In other words, any z ∈ M satisfies max 1≤k≤ r(z k ) -δ g (z, z k ) > 0. By continuity and compactness, one may enforce the previous inequality as follows for some positive constant R :

max 1≤k≤ r(z k ) -δ g (z, z k ) ≥ 2R.
Hence, by choosing β 0 ≤ R, for any z ∈ M, there is k ∈ {1, . . . , } such that we have the inclusion

B δg (z, β 0 ) ⊂ B δg (z k , r(z k ) -R).
In other words, B δg (z, β 0 ) is relatively compact in the domain B δg (z k , r(z k )).

Step 3. Now fix x and y satisfying δ g (x, y) < β0 Kn as in the statement (other restrictions on β 0 will be given in Step 4 and Step 5). Since we are looking for K ≥ 1, we also have δ g (x, y) < β 0 . Thanks to Step 2, we can consider a coordinate patch τ k :

U z k ⊂ R d → B δg (z k , r(z k )) ⊂ M so that the ball B δg (x, β 0 ) is included in the compact set B δg (z k , r(z k ) -R). Thanks to Step 1, there is a geodesic γ : [0, 1] → B δg (z k , r(z k ) -R) starting from
x and stopping at y. By using the symmetry of (x, y) → e (Kn-K,Kn] (x, y), we obtain the following integral formulas e (Kn-K,Kn] (x, x) + e (Kn-K,Kn] (y, y) -2e (Kn-K,Kn] (x, y) = e (Kn-K,Kn] (y, y) -e (Kn-K,Kn] (y, x) -[e (Kn-K,Kn] (x, y) -e (Kn-K,Kn] (x, x)]

= 1 0 ∂ ∂t 1 {e (Kn-K,Kn] (γ(t 1 ), y) -e (Kn-K,Kn] (γ(t 1 ), x)}dt 1 = 1 0 1 0 ∂ 2 ∂t 1 ∂t 2 e (Kn-K,Kn] (γ(t 1 ), γ(t 2 )) dt 1 dt 2 . ( 81 
)
Step 4. Assuming that β 0 is smaller than the constant α 0 of Theorem 17, it is natural to compare the previous integral formula by replacing e (Kn-K,Kn] with its principal term appearing in (79). More precisely, let us introduce

(82) e ℘ (Kn-K,Kn] (x, y) = K d n n-1 ν d-1 σ d-1 (Kνδ g (x, y)) dν (2π) d 2
.

We now claim that the following inequality holds true for any (t

1 , t 2 ) ∈ [0, 1] 2 : (83) ∂ 2 ∂t 1 ∂t 2 e (Kn-K,Kn] (γ(t 1 ), γ(t 2 )) -e ℘ (Kn-K,Kn] (γ(t 1 ), γ(t 2 )) ≤ C(Kn) d+1 δ g (x, y) 2 ,
where C merely depend on the Riemannian structure of M. To obtain that bound, we work with the coordinate patch τ k :

U z k ⊂ R d → B δg (z k , r(z k
)) ⊂ M around x and y as above :

e (Kn-K,Kn] (γ(t 1 ), γ(t 2 )) = Uz k ×Uz k →R e (Kn-K,Kn] • (τ k ⊕ τ k ) ∈Uz k ×Uz k τ -1 k • γ(t 1 ), τ -1 k • γ(t 2 )
. By denoting (p, q) a generic point of U z k × U z k , the previous formula allows us to write the double derivative

∂ 2 ∂t 1 ∂t 2 e (Kn-K,Kn] (γ(t 1 ), γ(t 2 ))
as follows (in which we denote by (τ -1 k ) i the i-th coordinate of τ -1 k ) :

d i=1 d j=1 d dt 1 (τ -1 k ) i • γ(t 1 ) × d dt 2 (τ -1 k ) j • γ(t 2 ) × ∂ 2 ∂p i ∂q j {e (Kn-K,Kn] • (τ k ⊕ τ k )} τ -1 k •γ(t1),τ -1 k •γ(t2)
.

A similar computation holds true for e ℘ (Kn-K,Kn] . Here is the point where we really need the asymptotic given by Theorem 17 of the spectral function with derivatives and holding uniformly on any compact subset of the domain B δg (z k , r(z k )) of the local chart τ -1 k given by the coordinate patch τ k . More precisely we choose the compact subset B δg (z k , r(z k ) -R) that turns out to contain the geodesic γ (see Step 3). Theorem 17 then shows the bound (uniformly in (t 1 , t 2 ) ∈ [0, 1] 2 ) :

∂ 2 ∂p i ∂q j (e (Kn-K,Kn] -e ℘ (Kn-K,Kn] ) • (τ k ⊕ τ k ) τ -1 k •γ(t1),τ -1 k •γ(t2) = O (Kn) d+1 .
And hence we get

∂ 2 ∂t 1 ∂t 2 e (Kn-K,Kn] (γ(t 1 ), γ(t 2 )) -e ℘ (Kn-K,Kn] (γ(t 1 ), γ(t 2 )) ≤ C(Kn) d+1 d i=1 d j=1 d dt 1 (τ -1 k ) i • γ(t 1 ) × d dt 2 (τ -1 k ) j • γ(t 2 ) .
where C merely depend on the Riemnnian structure of M (we recall that Step 2 allows us to work in a finite atlas and with a finite collection of compact subsets B δg (z k , r(z k ) -R)). Remembering now that γ : [0, 1] → M is a geodesic between x and y, the speed of γ is constant and must equal δ g (x, y) (since we have parametrized the curve with [0, 1]). In other words, we have γ (t 1 ) T γ(t 1 ) M = δ g (x, y) in the tangent space T γ(t1) M endowed with its Riemannian inner product. Still using that we are working with a finite atlas, we clearly obtain, for a suitable uniform constant C > 0, the following bound

∀t 1 ∈ [0, 1] d dt 1 (τ -1 k ) i • γ(t 1 ) ≤ C γ (t 1 ) T γ(t 1 ) M = Cδ g (x, y).
A similar reasoning may be done for t 2 and (83) is proved.

Step 5. We now claim that if β 0 is small enough, then the contribution of the principal term e ℘ (Kn-K,Kn] defined in (82) is given by the following equivalence (uniformly in (t

1 , t 2 ) ∈ [0, 1] 2 ) : (84) ∂ 2 ∂t 1 ∂t 2 e ℘ (Kn-K,Kn] (γ(t 1 ), γ(t 2 )) K(Kn) d+1 δ g (x, y) 2 ,
where the constants of equivalence merely depend on the dimension d = dim(M). To prove such estimates, we shall use the equality δ g (γ(t 1 ), γ(t 2 )) = δ g (x, y)|t 1 -t 2 | coming from the fact that geodesic γ : [0, 1] → M has a speed equaling δ g (x, y). Since the function σ d-1 : (0, +∞) → R admits an even smooth extension to R (see (69) and ( 77)), one may write

σ d-1 Kνδ g (γ(t 1 ), γ(t 2 )) = σ d-1 Kνδ g (x, y)|t 1 -t 2 | = σ d-1 Kνδ g (x, y)(t 1 -t 2 )
and hence

∂ 2 ∂t 1 ∂t 2 e ℘ (Kn-K,Kn] (γ(t 1 ), γ(t 2 )) = K d n n-1 ν d-1 ∂ 2 ∂t 1 ∂t 2 σ d-1 Kνδ g (x, y)(t 1 -t 2 ) dν (2π) d 2 = -K d+2 δ g (x, y) 2 n n-1 ν d+1 σ d-1 Kνδ g (x, y)(t 1 -t 2 ) dν (2π) d 2
.

Remember now that x and y satisfy the inequality δ g (x, y) < β0 Kn . In the last integral, we see that the term Kνδ g (x, y)(t 1 -t 2 ) belongs to the interval (-β 0 , β 0 ). Differentiating and taking the real part of the Poisson formula (69) give

-σ d-1 (t) = 1 2 d 2 -1 Γ( d-1 2 ) √ π 1 -1 cos(ts)s 2 (1 -s 2 ) d-3 2 ds.
Here is our last restriction for β 0 : due to the continuity of σ d-1 at 0, if β 0 is small enough then one obviously has ∃c > 0

∃C > 0 ∀t ∈ (-β 0 , β 0 ) c ≤ -σ d-1 (t) ≤ C.

Those inequalities lead to (84).

Step 6. By plugging (83) and ( 84) in (81), we get the following inequality (for suitable positive constants C 1 and C 2 ) :

e (Kn-K,Kn] (x, x) + e (Kn-K,Kn] (y, y) -2e (Kn-K,Kn] (x, y) ≥ (C 1 K d+2 -C 2 K d+1 )n d+1 δ g (x, y) 2 .
Coming back to (74) and (72), there is also another positive constant C 3 > 0 satisfying

δ n (x, y) 2 ≥ C 1 K d+2 -C 2 K d+1 C 3 K d n 2 δ g (x, y) 2 .
A similar argument would show

δ n (x, y) 2 ≤ C 1 K d+2 + C 2 K d+1 C 3 K d n 2 δ g (x, y) 2 .
We conclude by making K tend to +∞.

Theorem 16 follows by an application of Proposition 19 for the constant β = β 0 ∈ (0, 1) of Proposition 20. Upon increasing the constants K 0 and c, we assume that those numbers have the same meaning in Proposition 19 and Proposition 20. In the zone δ g ≥ β0 Kn , we have 1 c ≤ δ n ≤ c and hence

β 0 c min(1, Knδ g ) ≤ δ n ≤ c β 0 min(1, Knδ g ).
Similarly, in the zone δ g < β0 Kn , the inequalities 1 c Knδ g ≤ δ n ≤ cKnδ g hold true and so do the following ones

1 c min(1, Knδ g ) ≤ δ n ≤ c min(1, Knδ g ).
Hence we get (76) in which one may choose C = c β0 .

Preliminaries for proofs of Theorems 2 and 3, part A

In this part, we prove a result giving a more convenient form of the majorizing condition. The main interest of Proposition 22 below is its invariance with respect to submanifolds. We first need to make some elementary remarks about submanifolds. Let M be a boundaryless compact Riemannian manifold of dimension d ≥ 2 and M s be a σ-dimensional compact submanifold with smooth (eventually empty) boundary (our model will be R σ-1 × [0, +∞) with σ ∈ {1, . . . , d}). The submanifold M s inherits a Riemannian structure from M. So we can consider the Riemannian measure of M s that can be seen as a measure on M with support in the submanifold M s and satisfying µ s (∂M s ) = 0. Since M s is compact, we may normalize the previous measure to get a Riemannian probability measure from now denoted by µ s . The main property of µ s we need is given by the simplest case of Bishop inequalities.

Lemma 21. -With the above notations, there are two positive constants H 1 and H 2 (depending on the Riemannian structures of M and M s ) such that the Riemannian probability measure µ s of M s satisfies

(85) ∀x ∈ M s ∀t ∈ [0, D g ] H 1 t σ ≤ µ s (B δg (x, t)) ≤ H 2 t σ ,
where D g is the Riemannian diameter of M, namely D g := sup x∈M sup y∈M δ g (x, y).

Proof. See Appendix E.

Here is the consequence of Lemma 21 for majorizing conditions.

Proposition 22. -With the above notations, let us consider a subadditive, non-decreasing and right-continuous function Υ : [0, +∞) → [0, +∞) satisfying Υ(0) = 0. Then the following quantities are equivalent (up to multiplicative constants merely depending on D g , σ, H 1 and H 2 and so which are independent of Υ) : a)

1 0 Υ(t) t -ln (t) dt, b) sup x∈Ms +∞ 0 ln 1 µ s (B Υ(δg) (x, ε))
dε where B Υ(δg) (x, ε) is the open ball of M of center x and radius ε with respect to the pseudo-distance Υ(δ g ).

Proof. We first prove the following technical inequality for any x ∈ M s :

+∞ 0 ln 1 µ s (B Υ(δg) (x, ε)) dε - √ σ 2 1 0 Υ(D g t) t -ln(t) dt ≤ Υ(D g ) ln max H 2 , 1 H 1 + Υ(D g ) σ| ln(D g )|. ( 86 
)
Step 1. We prefer writing (85) as ( 87)

H 1 D σ g t D g σ ≤ µ s (B δg (x, t)) ≤ H 2 D σ g t D g σ .
By using the pseudo-inverse Υ -1 (see (36)), the equality (39) and the fact that the diameter of (M s , Υ(δ g )) is obviously less or equal to Υ(D g ), we get

+∞ 0 ln 1 µ s (B Υ(δg) (x, ε)) dε = Υ(Dg) 0 ln 1 µ s (B Υ(δg) (x, ε)) dε = Υ(Dg) 0 ln 1 µ s (B δg (x, Υ -1 (ε))) dε.
By making tend t → D g from above, the first inequality in (87) gives H 1 D σ g ≤ 1 and

+∞ 0 ln 1 µ s (B Υ(δg) (x, ε)) dε ≤ Υ(D g ) ln 1 H 1 D σ g + √ σ Υ(Dg) 0 ln D g Υ -1 (ε)
dε.

A converse inequality can be similarly proved via the second inequality of (87) :

√ σ Υ(Dg) 0 ln D g Υ -1 (ε) dε ≤ Υ(D g ) ln(H 2 D σ g ) + +∞ 0 ln 1 µ s (B Υ(δg) (x, ε)) dε.
We then obtain

+∞ 0 ln 1 µ s (B Υ(δg) (x, ε)) - √ σ Υ(Dg) 0 ln D g Υ -1 (ε) dε ≤ Υ(D g ) max ln 1 H 1 D σ g , ln(H 2 D σ g ) ≤ Υ(D g ) ln max 1 H 1 , H 2 + | ln(D σ g )|
where again the logarithm is licit thanks to the necessary assumption H 1 ≤ H 2 .

Step 2. As a consequence, the bound (86) will be proved once the following formula will be justified (88)

Υ(Dg) 0 ln D g Υ -1 (ε) dε = 1 2 1 0 Υ(D g t) t -ln(t) dt.
Let us recall that the Lebesgue-Stieltjes measure dΥ on [0, D g ] can be seen as the pushforward measure of the measure Lebesgue of [0, Υ(D g )] via the pseudo-inverse function Υ -1 : [0, Υ(D g )] → [0, D g ] (that is a consequence of (37)). Also note that 0 is of zero measure for dΥ since 0 is not a jump point of Υ. So we get (89)

Υ(Dg) 0 ln D g Υ -1 (ε) dε = (0,Dg] ln D g t dΥ(t).
For any a ∈ (0, D g ), an integration by parts in the sense of Stieltjes and the condition Υ(0) = 0 give 1 2 By making a tend to 0 + and looking at (89), we get (88).

Step 3. Let us now prove the equivalence of +∞ 0 ln 1 µs(B Υ(δg ) (x,ε)) dε and

1 0 Υ(t) t √ -ln(t)
dt (independently of the choice of Υ and x ∈ M s ). From now, s stands for the least integer greater than or equal to a given number s > 0. By using the fact that Υ is subadditive and non-decreasing, one remarks the inequality Υ(st) ≤ s Υ(t) for any t ≥ 0. By replacing (s, t) with ( 1 s , st), the previous bound can be reversed as follows

(90) 1 1/s Υ(t) ≤ Υ(st) ≤ s Υ(t).
In other words, one may replace Υ(D g t) with Υ(t) provided we authorize a multiplicative loss merely depending on D g as follows

1 1/D g 1 0 Υ(t) t -ln(t) dt ≤ 1 0 Υ(D g t) t -ln(t) dt ≤ D g 1 0 Υ(t) t -ln(t) dt.
It remains to explain why we can drop out the contribution of Υ(D g ) in (86) by comparison with each of the integrals +∞ 0 ln 1 µs(B Υ(δg ) (x,ε)) dε and

1 0 Υ(t) t √ -ln(t)
dt. Again (90) allows us to write

1 0 Υ(D g t) t -ln(t) dt ≥ 1 1 2 Υ Dg 2 t -ln(t) dt = 2 ln(2)Υ D g 2 ≥ ln(2) × Υ(D g ).
Actually, we can get a similar bound from below of the majorizing integral. We first remark that (85) ensures that the inequality t ≤ 1 2H2 1 σ implies µ s (B δg (x, t)) ≤ 1 2 . By using (37) and (39), we then get the implication

ε ∈ [0, Υ((2H 2 ) -1/σ )] ⇒ µ s (B Υ(δg) (x, ε)) ≤ 1 2 .
The previous considerations, combined with (90), imply

+∞ 0 ln 1 µ s (B Υ(δg) (x, ε)) dε ≥ Υ((2H2) -1/σ ) 0 ln 1 µ s (B Υ(δg) (x, ε)) dε ≥ Υ((2H 2 ) -1/σ ) ln(2) ≥ ln(2) (2H 2 ) 1/σ D g × Υ(D g ). (91)

Preliminaries for proofs of Theorems 2 and 3, part B

We keep the notations of the previous section, in particular M s denotes a submanifold of M. If the Gaussian random series f G,ω n defined in (21) almost surely converges in C 0 (M s ) then the random series f G,ω n (x) almost surely converges for any x ∈ M s . For the sake of clarity, we state the following result.

Proposition 23. -There is a constant K 0 ≥ 1 merely depending on the Riemannian manifold M such that for any K ≥ K 0 and for any sequence (f n ) n≥1 satisfying f n ∈ E (Kn-K,Kn] for n ≥ 1 (see (13)), then the following assertions are equivalent : i) the series

f n 2 L 2 (M) is convergent,
ii) for any x ∈ M, the random series f G,ω n (x) converges in L 2 (Ω) to a Gaussian random variable, iii) for any x ∈ M, the random series f G,ω n (x) almost surely converges in R, iv) there is x ∈ M such that the random series f G,ω n (x) almost surely converges in R.

Moreover, the previous statements imply the following one v) the family of random variables f G,ω (x) = n≥1 f G,ω n (x) is a Gaussian process on M and its Dudley pseudodistance δ : M 2 → [0, +∞) is given, for any (x, y) ∈ M 2 , by

(92) δ(x, y) 2 = E ω [ f G,ω (x) -f G,ω (y) 2 ] = n≥1 f n 2 L 2 (M) δ n (x, y) 2 ,
where the partial pseudo-distance δ n is defined in (73).

Finally, in the specific case M = S d , a similar statement holds true if each f n belongs to the eigenspace ker(∆ + n(n + d -1)) provided that we replace f G,ω n with (20) and δ n with (56).

Proof. i) ⇔ ii). For any x ∈ M, the random variable f G,ω n (x) is centered and Gaussian with variance equaling

E ω [|f G,ω n (x)| 2 ] = f n 2 L 2 (M)
dim(E (Kn-K,Kn] )

λ k ∈(Kn-K,Kn] φ k (x) 2 .
By orthogonality of the random variables (f 

E ω n≥1 f G,ω n (x) 2 = n≥1 E ω [|f G,ω n (x)| 2 ].
Thanks to (71) and (72), we get the equivalence i) ⇔ ii) and there are two constants C ≥ 1 and K 0 ≥ 1 that merely depend on the Riemannian structure of M such that for any K ≥ K 0 we have

(93) 1 C n≥1 f n 2 L 2 (M) ≤ E ω n≥1 f G,ω n (x) 2 ≤ C n≥1 f n 2 L 2 (M) .
iii) ⇒ iv). Obvious. i) ⇒ iii) and iv) ⇒ i). See for instance [LQ17a, Corollary III.6, page 26] and the previous computations. Proof of v). We have to fulfill the two conditions posed at the beginning of Section 4. The finite linear combination

p i=1 α i n≥1 f G,ω n (x i ) , with α i ∈ R, is Gaussian because it is the limit in L 2 (Ω) of the Gaussian random variables N n=1 p i=1 α i f G,ω n (x i )
as N → +∞ (with the same argument as in i) ⇒ ii)).

We now have to check the continuity of the covariance structure. By using the notation (73) and orthogonality arguments, the definition (21) of f G,ω n directly proves (92). We recalled in Section 4 that the expected continuity is equivalent to the continuity of the function x ∈ M → f G,ω (x) ∈ L 2 (Ω). But the partial pseudo-distance δ n are continuous on M 2 and uniformly bounded on M 2 (see (75)). Hence, the right-hand side of (92) absolutely converges in C 0 (M 2 ) and we obtain the expected continuity.

Towards the case M = S d . For the sphere S d , we work with (20). In the same spirit as (59), we have

λ 2 k =n(n+d-1) φ k (x) 2 = dim(E n ) vol S d (S d
) .

From such an identity, we see that the equivalence (93) becomes

(94) E ω n≥1 f G,ω n (x) 2 = 1 vol S d (S d ) n≥1 f n 2 L 2 (S d ) .
We also deduce that the partial pseudo-distances δ n , associated to the sequence of the eigenspaces of ∆ and defined in (56), are uniformly bounded on S d × S d (an information used in the proof of v)) : Proposition 24. -There is K 0 ≥ 1 merely depending on the Riemannian manifold M such that for any K ≥ K 0 , the pseudo-metric space (M s , δ) is almost homogeneous (in the sense of (35)) with respect to the Riemannian probability measure µ s of M s .

(95) δ n ≤ 2 vol S d (S d ) .
Proof. In order to simplify δ, we introduce the following notation for any t ∈ [0, +∞) :

(96) Υ(t) := n≥1 f n 2 L 2 (M) min(1, K 2 n 2 t 2 ).
Note that the function Υ is non-decreasing, continuous thanks to the convergence of f n

2

L 2 (M) and subadditive (due to the subadditivity of each function t → min(1, Knt)). Thanks to Theorem 16 and (92), we infer that δ is equivalent to Υ(δ g ) (with constants of equivalence merely depending on the Riemannian structure of M) :

(97) ∃ ≥ 1 δ √ ≤ Υ(δ g ) ≤ √ δ.
We now apply (85) and we set H = H1 H2 that merely depends on the Riemannian structure of M and M s . By recalling that D g is the Riemannian diameter of M, we get

∀t ∈ [0, D g ] ∀(x, y) ∈ M s × M s µ s (B δg (x, t)) ≤ Hµ s (B δg (y, t)).
The previous estimates still hold true for t > D g and simply read 1 ≤ H (that inequality is clear thanks to (85)).

Since µ s has support in M s , the number µ s (B δg (x, t)) = µ s (B δg (x, t) ∩ M s ) equals the measure of the open ball of center x and radius t in (M s , δ g ). Then the elementary result given by Lemma 6 shows that (M s , δ) is almost homogeneous with respect to µ s .

We can now use the conclusion of Theorem 7 and we are ready to check the equivalence of the assertions of Theorem 2.

Proof of iii) ⇔ iv). That is a consequence of Theorem 7. Proof of i) ⇔ iv). Theorem 7 proves that the majorizing condition for µ s is actually equivalent to the existence of a sample-continuous version of the Gaussian process Proof of ii) ⇔ iv). Thanks to (97), we easily see that the majorizing conditions for δ and Υ(δ g ) are equivalent :

(98) sup

x∈Ms +∞ 0 ln 1 µ s (B δ (x, ε)) dε sup x∈Ms +∞ 0 ln 1 µ s (B Υ(δg) (x, ε)) dε.
It is time to use Proposition 22. The assertion iv) is then equivalent to the condition (99)

1 0 Υ(t) t -ln(t) dt < +∞.
We now prove that (99) is equivalent to the Salem-Zymgund type condition (28) given in the assertion ii). Upon loosing a multiplicative constant depending on K, one may clearly drop out the parameter K in (96) due to the inequalities min(1, nt) ≤ min(1, Knt) ≤ K min(1, nt). We now write

1 0 n≥1 f n 2 L 2 (M) min(1, n 2 t 2 ) dt t -ln(t) = p≥1 1 p 1 p+1 n≥1 f n 2 L 2 (M) min(1, n 2 t 2 ) dt t -ln(t) p≥1 n≥1 f n 2 L 2 (M) min 1, n 2 p 2
1 p ln(p + 1) .

We now write

n≥1 f n 2 L 2 (M) min 1, n 2 p 2 = 1 p 2 U p + V p √ Up p
+ V p where U p and V p are defined as follows (100)

U p = p-1 n=1 n 2 f n 2 L 2 (M)
and

V p = +∞ n=p f n 2 L 2 (M) ,
with the convention U 1 = 0. Hence we get

1 0 Υ(t) t -ln(t) dt p≥1 U p p 2 ln(p + 1) + V p p ln(p + 1) .
The V p part is exactly the Salem-Zygmund type term in (28). So the proof will be finished provided that we show that the contribution of the U p part is controlled by that of the V p part :

(101) p≥2 U p p 2 ln(p + 1) p≥1 V p p ln(p + 1) .
Thanks to the Cauchy-Schwarz inequality and the definition of U p in (100), we have

p≥2 U p p 2 ln(p + 1) = p≥2 1 √ p ln(p + 1) × U p ln(p + 1) p 3/2 ≤ C p≥2 U p ln(p + 1) p 3 1/2 = C n≥1 f n 2 L 2 (M) n 2 p≥n+1 ln(p + 1) p 3 1/2 ≤ C +∞ n=1 f n 2 L 2 (M) 2 ln(n + 1) 1/2
. By using the equivalence ln(n + 1)

n p=1 1 p √ ln(p+1)
and the definition of V p in (100), we obtain

p≥1 U p p 2 ln(p + 1) ≤ C +∞ n=1 f n 2 L 2 (M) n p=1 1 p ln(p + 1) 2 1/2 ≤ C +∞ n=1 f n 2 L 2 (M) n p=1 n q=1 1 
p ln(p + 1)q ln(q + 1)

1/2 ≤ C +∞ p=1 +∞ q=1 V max(p,q)
p ln(p + 1)q ln(q + 1)

1/2
. By bounding V max(p,q) ≤ V p V q , we finally prove (101). The proof of Theorem 2 is complete for compact manifolds.

Proof of Theorem 3 for compact manifolds

We keep the same notations as above. Thanks to Proposition 22 and (98), we have seen in the proof of ii) ⇔ iv) of Theorem 2 that the following two numbers are equivalent (up to multiplicative constants merely depending on the Riemannian manifold M, the submanifold M s , and on the spectral parameter K) :

• the Salem-Zygmund condition (28),

• the majorizing condition (30) for δ.

It remains to study the equivalence with the entropy integral in (29) and the expectation E ω sup

x∈Ms n≥1 f G,ω n (x) .
Step 1. We begin with the entropy integral. Remember now Proposition 24 and denote by D s the Dudley diameter of (M s , δ). By applying Theorem 8, the inequalities ( 46) and ( 43 dε.

We now have to prove that the contribution of D s is both controlled by the entropy integral and the majorizing condition. For any ε ∈ (0, Ds 3 ) and any x ∈ M s , the open ball B δ (x, ε) cannot cover M s . So we have

D s 3 × ln(2) ≤ Ds 3 0 ln(N δ (M s , ε))dε ≤ +∞ 0 ln(N δ (M s , ε))dε.
A similar bound also holds true for the majorizing integral : (97) allows us to compare the Dudley diameter D s and the Riemannian diameter D g and we then use ( 91) and ( 98) to reach the bounds (102)

D s = sup x∈Ms y∈Ms δ(x, y) Υ(D g ) sup x∈Ms +∞ 0 ln 1 µ s (B δ (x, ε)) dε.
Step 2. We now finish the proof by considering the equivalence with the expectation E ω sup

x∈Ms n≥1 f G,ω n (x) .
We again use Proposition 24 and Theorem 8. Thanks to (46), we get

sup x∈Ms +∞ 0 ln 1 µ s (B δ (x, ε)) dε D s + E ω sup x∈Ms n≥1 f G,ω n (x) .
where the constants in depend on M and M s as in Step 1. The definition (32) of the Dudley diameter D s of M s directly gives

D s ≤ 2 sup x∈Ms E ω n≥1 f G,ω n (x) 2 1/2 . Remembering that ω → n≥1 f G,ω n (x
) is a centered real Gaussian random variable, we have

E ω n≥1 f G,ω n (x) 2 1/2 = √ π √ 2 E ω n≥1 f G,ω n (x) .
We have thus proved

sup x∈Ms +∞ 0 ln 1 µ s (B δ (x, ε)) dε E ω sup x∈Ms n≥1 f G,ω n (x) .
In order to reverse such an estimate, we fix a point x 0 ∈ M s and apply the inequalities ( 42) and (44) as follows

(103) E ω sup x∈Ms n≥1 f G,ω n (x) E ω n≥1 f G,ω n (x 0 ) + D s + sup x∈Ms +∞ 0 ln 1 µ s (B δ (x, ε)) dε.
The Cauchy-Schwarz inequality and the equivalence (93) allow us to bound

E ω n≥1 f G,ω n (x 0 ) ≤ E ω n≥1 f G,ω n (x 0 ) 2 1/2 n≥1 f n 2 L 2 (M) .
We now invoke the definition (96) of Υ to easily get

n≥1 f n 2 L 2 (M) ≤ 1 min(1, KD g ) Υ(D g ).
Consequently, (102) allows us to get rid of D s and E ω n≥1 f G,ω n (x 0 ) in (103) (provided that we authorize to depend on K). The proof of Theorem 3 is finished for compact manifolds.

12. Proof of Theorem 2 and Theorem 3 for spheres

Let us now prove the last statements of Theorem 2 and Theorem 3 in which we consider the assumption f n ∈ ker(∆ + n(n + d -1)) for any n ≥ 1. The mere difference with Sections 10 and 11 is that we have to be careful with the reduction of the Dudley pseudo-distance δ since Theorem 14 does not hold on the whole manifold S d . A natural approach would be to consider a finite subset {a 1 , . . . , a N } of the compact submanifold M s such that we can cover

M s = 1≤k≤N M s ∩ B δg a k , π 4 
and then apply the analysis of Sections 10 and 11 to each M s ∩B δg a k , π 4 . However, in the last decomposition, the subsets M s ∩ B δg a k , π 4 may have a non-smooth boundary. In order to apply Lemma 21 and avoid considerations about the regularity of the boundaries, we use the following elementary result.

Lemma 25. -Let M s be a σ-dimensional manifold with (eventually empty) smooth boundary. Then any point of M s admits a basis of neighborhoods made of σ-dimensional compact submanifolds with smooth boundary.

Proof. -See appendix F.

Let us apply the last lemma to the compact submanifold M s of S d . By compactness, we can decompose M s as a union of σ-dimensional compact submanifolds M s,1 , . . . , M s,N with smooth boundary and with diameter less than π 4 :

(104)

M s = M s,1 ∪ • • • ∪ M s,N max x∈M s,k y∈M s,k δ g (x, y) ≤ π 4 ∀k ∈ {1, . . . , N }.
Thanks to Theorem 14 (with ϑ = π 4 ) and ( 92), the Dudley pseudo-distance δ of the Gaussian process 

n≥1 f G,ω n (x) x∈M s,k satisfies the following equivalence on M s,k × M s,k (105) δ Υ(δ g ) with Υ : t → n≥1 f n 2 L 2 (S d ) min(1, nt) 2 .
µ s,k (B δ (x, ε)) = µ s (B δ (x, ε) ∩ M s,k ) µ s (M s,k ) .
By using that the measure µ s,k satisfies the bounds (85), we may repeat the analysis of Section 10. Consequently, we get the equivalence of the following statements for any k ∈ {1, . . . , N } : 1) the Gaussian random series f G,ω n is almost surely convergent in C 0 (M s,k ), 2) the Salem-Zygmund (28) condition is fulfilled, 3) the entropy integral of M s,k , with respect to the Dudley pseudo-distance δ, is convergent :

+∞ 0 ln(N δ (M s,k , ε))dε < +∞, 4) the Riemannian probability measure µ s,k of M s,k is majorizing, namely we have sup x∈M s,k +∞ 0 ln 1 µ s,k (B δ (x, ε)) dε < +∞.
Moreover, by repeating the arguments of Section 11, we have the following equivalences (in which the multiplicative constants merely depending on d and M s and can be made independent of k since k runs over a finite set) :

p≥1 1 p ln(p + 1) +∞ n=p f n 2 L 2 (S d ) 1 2 +∞ 0 ln(N δ (M s,k , ε))dε (107) sup x∈M s,k +∞ 0 ln 1 µ s,k (B δ (x, ε)) dε (108) E ω sup x∈M s,k n≥1 f G,ω n (x) . ( 109 
)
Let us now prove Theorem 2 and Theorem 3 on S d . i) ⇔ ii). By using (104) and the independence of the Salem-Zygmund condition with respect to k ∈ {1, . . . , N }, we infer that 1) and 2) are indeed equivalent to the almost sure convergence in C 0 (M s ). Moreover, we have the equivalence

p≥1 1 p ln(p + 1) +∞ n=p f n 2 L 2 (S d ) 1 2 max 1≤k≤N E ω sup x∈M s,k n≥1 f G,ω n (x) E ω sup x∈Ms n≥1 f G,ω n (x) .
iii) ⇔ ii). Due to the equivalence (107), it is sufficient to prove the following one (110) max

1≤k≤N +∞ 0 ln N δ (M s,k , ε)dε +∞ 0 ln N δ (M s , ε)dε.
The definition of the covering number and (104) lead to the following inequalities (6)

max 1≤k≤N N δ (M s,k , 2ε) ≤ N δ (M s , ε) ≤ 1≤k≤N N δ (M s,k , ε).
The first inequality implies the part of (110). The second inequality needs an additional argument to obtain the part of (110). By using the inequality

N k=1 t k ≤ N N k=1 t k for (t 1 , . . . , t N ) ∈ [1, +∞) N , we get (111) N δ (M s , ε) ≤ N × 1≤k≤N N δ (M s,k , ε).
Thanks to (92) and ( 95), the Dudley diameter of (S d , δ) is bounded as follows (112) sup

x∈S d sup y∈S d δ(x, y) ≤ C(d) n≥1 f n 2 L 2 (S d ) .
In particular, we have

N δ (M s , ε) = 1 for ε > C(d) n≥1 f n 2 L 2 (S d ) .
Hence, the upper bound in (111) allows us to continue the following computations

+∞ 0 ln N δ (M s , ε)dε = C(d) n≥1 fn 2 L 2 (S d ) 0 ln N δ (M s , ε)dε ≤ C(d) n≥1 fn 2 L 2 (S d ) 0 √ ln N + N k=1 ln N δ (M s,k , ε) dε ≤ C(d) √ ln N n≥1 f n 2 L 2 (S d ) 1 2 + N k=1 +∞ 0 ln N δ (M s,k , ε)dε ≤ C(d) √ ln N n≥1 f n 2 L 2 (S d ) 1 2 + N max 1≤k≤N +∞ 0 ln N δ (M s,k , ε)dε.
Furthermore, by replacing N with the minimal N satisfying (104), we may assume that N merely depends on the submanifold M s and the dimension d of S d . We now remark that the term

n≥1 f n 2 L 2 (S d ) 1
2 can be dropped out thanks to the equivalence (107) (for p = 1). So (110) is proved. iv) ⇔ ii). As above, and due to the equivalence (108), the conclusion will be a consequence of the following one (113) max

1≤k≤N sup x∈M s,k +∞ 0 ln 1 µ s,k (B δ (x, ε)) dε sup x∈Ms +∞ 0 ln 1 µ s (B δ (x, ε)) dε.
For the part of (113), we give an indirect argument based on the Fernique inequality. Thanks to (109), the left-hand side of ( 113) is equivalent to

max 1≤k≤N E ω sup x∈M s,k n≥1 f G,ω n (x) (6) For the inequality N δ (M s,k , 2ε) ≤ N δ (M, ε), we consider a finite cover M = ∪B δ (x i , ε) with x i ∈ M. If B δ (x i , ε) intersects M s,k then any element x i ∈ B δ (x i , ε) ∩ M s,k satisfies B δ (x i , ε) ⊂ B δ (x i , 2ε). Hence we obtain a cover M s,k ⊂ ∪B δ (x i , 2ε).
which itself is equivalent to

E ω sup x∈Ms n≥1
f G,ω n (x) thanks to (104). By using ( 42) and ( 94), we hence obtain the equivalent term

n≥1 f n 2 L 2 (S d ) + E ω sup x∈Ms n≥1 f G,ω n (x) .
We now invoke the Fernique inequality (54) for the probability measure (7) µ s on (M s , δ). Consequently, the last expectation is controlled by the majorizing condition sup Proof. The measure µ s has support in M s , so the cover (104) shows the following inequality for any

x ∈ M s µ s (B δ (x, ε)) = µ s (B δ (x, ε) ∩ M s ) ≤ N k=1 µ s (B δ (x, ε) ∩ M s,k ).
Let us fix k and assume that B δ (x, ε) ∩ M s,k is not empty (otherwise we have nothing to bound). For any choice of

x k ∈ B δ (x, ε) ∩ M s,k , we have B δ (x, ε) ∩ M s,k ⊂ B δ (x k , 2ε) ∩ M s,k .
For a suitable constant C d > 0, the equivalence (105) shows the inclusion

B δ (x k , 2ε) ∩ M s,k ⊂ B Υ(δg) (x k , C d ε). But, we have B Υ(δg) (x k , C d ε) = B δg (x k , Υ -1 (C d ε)) thanks to (38).
The previous considerations and Lemma 21 lead to the following upper bound

µ s (B δ (x, ε)) ≤ N H 2 Υ -1 (C d ε)) σ .
In particular, for any ε ≤ 1

C d Υ (2N H 2 )
-1 σ we have µ s (B δ (x, ε)) ≤ 1 2 (see (37)). We finally combine the argument of (91) and the definition of Υ in (105) to get the lower bound

+∞ 0 ln 1 µ s (B δ (x, ε)) dε ≥ ln(2) C d Υ (2N H 2 ) -1 σ n≥1 f n 2 L 2 (S d ) .
Let us now give a proof of the part of (113). Thanks to (106), we first note the inequality

µ s (M s,k ) × µ s,k (B δ (x, ε)) ≤ µ s (B δ (x, ε)).
Then (112) allows us to reduce the majorizing integrals to a compact set and we may control the majorizing condition for µ s with those of µ s,k :

sup x∈Ms +∞ 0 ln 1 µ s (B δ (x, ε)) dε = sup 1≤k≤N sup x∈M s,k C(d) n≥1 fn 2 L 2 (S d ) 0 ln 1 µ s (B δ (x, ε)) dε ≤ sup 1≤k≤N sup x∈M s,k C(d) n≥1 fn 2 L 2 (S d ) 0 ln 1 µ s (M s,k ) + ln 1 µ s,k (B δ (x, ε)) dε ≤ C n≥1 f n 2 L 2 (S d ) + sup 1≤k≤N sup x∈M s,k +∞ 0 ln 1 µ s,k (B δ (x, ε)) dε,
where C depends on d and µ s (M s,k ). As already used, by looking at the equivalence (108), one can drop out

n≥1 f n 2 L 2 (S d
) and we get the part of (113).

(7) Note that Point v) of Proposition 23 ensures that the δ-balls are open for the standard topology of S d . Hence, µs is well-defined on the Borel subsets of (Ms, δ).

Proof of Theorem 1, quantitative version

In the following proof, the implicit constants merely depend on M, M s and K (except for the setting M = S d and f n ∈ ker(∆ + n(n + d -1)) for which K is obviously irrelevant). Moreover, in the manifold framework, the spectral parameter K is assumed to be large enough so that the conclusions of Theorem 2 and Theorem 3 hold.

The quantitative part of Theorem 1, namely the equivalence (18), is a direct consequence of Proposition 27, Proposition 30 below and the Cauchy-Schwarz inequality :

(114) E ω sup x∈Ms N n=1 X n (ω)f ω n (x) ≤ E ω sup x∈Ms N n=1 X n (ω)f ω n (x) 2 1 2 .
Proposition 27. -There is a constant C > 0 such that for any N ∈ N , any sequence (f n ) as in Theorem 1 and random variables (X n ) belonging to L 2 (Ω), the following holds true

(115) E ω sup x∈Ms N n=1 X n (ω)f ω n (x) 2 1 2 ≤ C sup 1≤n≤N E[|X n | 2 ] × N p=1 1 p ln(p + 1) N n=p f n 2 L 2 (M) 1 2 ,
where all the random variables X 1 (ω), f ω 1 , . . . , X N (ω), f ω n are assumed to be independent. The last result is analogue to [MP81, page 53, Lemma 1.1] or [LQ17a, page 249, Theorem III.6] but the proof of Proposition 27 is somehow simpler and relies, among other arguments, on fact that the Salem-Zygmund condition (28) is very explicit. We begin by recalling a form of the contraction principle that we will use for the symmetric random functions F n : ω → f ω n (see the definitions in ( 12) and ( 14)). Proposition 28. -Let B a Banach space and F 1 , . . . , F N be N independent and symmetric random variables belonging to L p (Ω, B) for some p ∈ [1, +∞). Then for any tuple (a 1 , . . . , a N ) ∈ R N , the following inequalities hold true

min 1≤n≤N |a n | × E N n=1 F n p B 1 p ≤ E N n=1 a n F n p B 1 p ≤ max 1≤n≤N |a n | × E N n=1 F n p B 1 p .
Proof. The first inequality is a consequence of the second one (upon assuming that each a n is not zero and upon replacing a n with 1 an ). For the second one, we refer to [LQ17b, page 136] or the proof of [LT91, Theorem 4.4].

It is known that the previous result has a reformulation if each coefficient a n is random (see [LT91, Lemma 4.5], [MP81, Theorem 4.9, page 45] or [LQ17b, page 137, Theorem IV.4]). For the convenience of the reader, we write the proof of the following result (but all ideas are included in the last references).

Corollary 29. -Let B be a Banach space, F 1 , . . . , F N be N symmetric random variables belonging to L p (Ω, B) for some p ∈ [1, +∞) and A 1 , . . . , A n be N real random variables belonging to L 1 (Ω, R). We assume that the 2n variables A 1 , F 1 , . . . , A n , F N are mutually independent. Then the following inequalities hold true

E N n=1 A n F n p B 1 p ≤ E max 1≤n≤N |A n | p 1 p × E N n=1 F n p B 1 p , (116) min 1≤n≤N E[|A n |] × E N n=1 F n p B 1 p ≤ E N n=1 A n F n p B 1 p . ( 117 
)
Proof. By independence (see [Ime19, Appendix F] for more details), we may write

(118) E N n=1 A n F n p B = E ω1 E ω2 N n=1 A n (ω 1 )F n (ω 2 ) p B
.

We now freeze ω 1 and apply Proposition 28 with respect to the expectation in ω 2 . Hence we get

E ω2 N n=1 A n (ω 1 )F n (ω 2 ) p B ≤ max 1≤n≤N |A n (ω 1 )| p × E ω2 N n=1 F n (ω 2 ) p B .
We then obtain the expected inequality by integrating in ω 1 . In order to get the lower bound, we first need to modify the right-hand side of (118). For ω 1 fixed, let us consider θ n (ω 1 ) = ±1 such that A n (ω 1 )θ n (ω 1 ) = |A n (ω 1 )|. By symmetry and independence, one can replace each F n (ω 2 ) with θ n (ω 1 )F n (ω 2 ) in the expectation E ω2 in (118). So we get (119)

E N n=1 A n F n p B = E ω1 E ω2 N n=1 |A n (ω 1 )|F n (ω 2 ) p B
.

We now bound from below with the Hölder inequality and the triangular inequality in ω 1 , namely

E ω1 [ • ] ≥ E ω1 [ • ] , as follows E N n=1 A n F n p B = E ω2 E ω1 N n=1 |A n (ω 1 )|F n (ω 2 ) p B ≥ E ω2 E ω1 N n=1 |A n (ω 1 )|F n (ω 2 ) B p ≥ E ω2 N n=1 E ω1 [|A n (ω 1 )|]F n (ω 2 ) p B 1 p = E N n=1 E[|A n |]F n p B .
The second inequality of the statement is then a consequence of Proposition 28.

Proof of Proposition 27.

Step 1. We first need to compare f ω n with f G,ω n . More precisely, we shall prove

(120) E ω sup x∈Ms N n=1 X n (ω)f ω n (x) 2 ≤ CE ω E ω sup x∈Ms N n=1 |X n (ω )|f G,ω n (x) 2 .
The distribution equivalence (22) for the manifold framework suggests introducing the following random variable (collinear to a so-called chi random variable)

(121) ∀ω ∈ Ω χ n (ω) := 1 dim(E (Kn-K,Kn] ) Kn-K<λ k ≤Kn g 2 k (ω) 1 2 .
The case M = S d with f n ∈ ker(∆ + n(n + d -1)) is completely similar and merely needs to change the definition (121). Having assumed the independence of all the random variables, we may write

E ω E ω sup x∈Ms N n=1 |X n (ω )|f G,ω n (x) 2 = E ω E ω sup x∈Ms N n=1 |X n (ω )|χ n (ω)f ω n (x) 2 . (122) 
For almost any ω ∈ Ω, one may see |X n (ω )| as a constant in the expectation E ω . Hence, the contraction principle given by (117) in L 2 (Ω, C 0 (M s )), with A n (ω) = χ n (ω) and F n (ω) = |X n (ω )|f ω n (x), gives the bound from below

E ω E ω sup x∈Ms N n=1 |X n (ω )|χ n (ω)f ω n (x) 2 ≥ inf 1≤n≤N E[χ n ] 2 E ω E ω sup x∈Ms N n=1 |X n (ω )|f ω n (x) 2 .
By independence and symmetry of each ω → f ω n (as in (119)), the last lower bound equals

inf 1≤n≤N E[χ n ] 2 E ω sup x∈Ms N n=1 X n (ω)f ω n (x) 2 . Now we use the inequality E[χ n ] ≥ √ 2 √ π (see Appendix B) to get (120).
Step 2. Fox ω fixed, we now recall that N n=1 X n (ω )f G,ω n can be seen, with respect to ω, as a Gaussian random finite sum in the Banach space C 0 (M s ). We now invoke the important property stating that all the moments of such a Gaussian sum are universally equivalent, that is the Gaussian version of the Kahane-Khintchine inequalities (see [LT91, Corollary 3.2], [MP81, page 44] or [LQ17b, page 256, Corollary V.27]). Hence, (120) implies the following bound

E ω sup x∈Ms N n=1 X n (ω)f ω n (x) 2 ≤ CE ω E ω sup x∈Ms N n=1 |X n (ω )|f G,ω n (x) 2 . Note now that changing f n by X n (ω )f n in (21) leads to change f G,ω n by |X n (ω )|f G,ω n
. Consequently, Theorem 3 (for f n replaced with X n (ω )f n ) allows us to replace the last upper bound with

(123) CE ω N p=1 1 p ln(p + 1) N n=p X n (ω ) 2 f n 2 L 2 (M) 1 2 2 .
Step 3 below will show the concavity of the following function :

(124)

Ψ : [0, +∞) N → R (t 1 , . . . , t N ) → N p=1 1 p √ ln(p+1) N n=p t n f n 2 L 2 (M) 1 2 2 .
Hence, the multidimensional Jensen inequality ensures that (123), that is CE[Ψ(X 2 1 , . . . , X 2 N )], is bounded by

CΨ(E[X 2 1 ], . . . , E[X 2 N ]) = C N p=1 1 p ln(p + 1) N n=p E[|X n | 2 ] f n 2 L 2 (M) 1 2 2 ≤ C sup 1≤n≤N E[|X n | 2 ] N p=1 1 p ln(p + 1) N n=p f n 2 L 2 (M) 1 2 2 .
The expected inequality (115) is proved.

Step 3. It remains to check the concavity of (124). By developing (124), we see that is is sufficient to prove the concavity of any continuous function of the form √ Φ 1 Φ 2 on the set Λ := {Φ 1 ≥ 0} ∩ {Φ 2 ≥ 0} in which Φ 1 : R N → R and Φ 2 : R N → R are two linear functionals. Actually, such a fact is a straightforward consequence of the Cauchy-Schwarz inequality applied to the two vectors ( Φ 1 (s), Φ 1 (t)) and ( Φ 2 (s), Φ 2 (t)) for any (s, t) ∈ Λ 2 :

Φ 1 s + t 2 Φ 2 s + t 2 = Φ 1 (s) + Φ 1 (t) Φ 2 (s) + Φ 2 (t) 2 ≥ Φ 1 (s) Φ 2 (s) + Φ 1 (t) Φ 2 (t) 2 .
In in order to finish the proof of the numerical equivalence (18), we have to reverse the inequality (115). Actually, we will use a suitable truncation argument first used by Marcus and Pisier (see [MP81, pages 53-54, proof of Lemma 1.1 and page 99, Lemma 3.7]). In our specific context, the truncation argument is based on the uniform estimate (126) of the sequence of random variables (χ n ) n≥1 defined in (121).

Proposition 30. -There is a constant C > 0 such that for any N ∈ N and any sequence (f n ) and random variables (X n ) as in Theorem 1, the following holds true

inf 1≤n≤N E[|X n |] × N p=1 1 p ln(p + 1) N n=p f n 2 L 2 (M) 1 2 ≤ CE ω sup x∈Ms N n=1 X n (ω)f ω n (x) .
Proof.

The contraction principle (117) and Theorem 3 ensure that we merely have to prove the following inequality :

(125) E ω sup x∈Ms N n=1 f G,ω n (x) ≤ CE ω sup x∈Ms N n=1 f ω n (x) .
As in (122), we have

E ω sup x∈Ms N n=1 f G,ω n (x) = E ω sup x∈Ms N n=1 χ n (ω)f ω n (x) ,
where all the random variables are assumed to be mutually independent. Let us now consider a number M > 0 (that will be chosen below) and we bound

E ω sup x∈Ms N n=1 f G,ω n (x) ≤ E ω sup x∈Ms N n=1 χ n (ω)1 χn(ω)>M f ω n (x) +E ω sup x∈Ms N n=1 χ n (ω)1 χn(ω)≤M f ω n (x) .
By using (114), Proposition 27 with X n = χ n 1 χn>M and Theorem 3 on the one hand, and then the contraction principle (116) on the other, we obtain

E ω sup x∈Ms N n=1 f G,ω n (x) ≤ C sup n∈N E[|χ n 1 χn>M | 2 ] E ω sup x∈Ms N n=1 f G,ω n (x) +M E ω sup x∈Ms N n=1 f ω n (x) .
In order to get (125), it is sufficient to justify that there is

M > 0 satisfying C sup n∈N E[|χ n 1 χn>M | 2 ] < 1.
That is actually a consequence of the following more precise bound (See Appendix B) :

(126) E[|χ n 1 χn>M | 2 ] = E[χ 2 n 1 χn>M ] ≤ E χ 4 n M 2 ≤ 3 M 2 .

Proof of Theorem 1, qualitative version

The end of the proof of Theorem 1 is a consequence of the equivalence i) ⇔ iv) of the following result.

Proposition 31. -Let us assume the same assumptions as in Theorem 1. Then the following assertions are equivalent i) the random series X n (ω)f ω n almost surely converges in C 0 (M s ), ii) with probability 1, the sequence of partial sums of the random series X n (ω)f ω n is bounded in C 0 (M s ), iii) the sequence of partial sums of the random series

X n (ω)f ω n is bounded in L 1 (Ω, C 0 (M s )), iv) the Salem-Zygmund condition +∞ p=1 1 p √ ln(p+1) +∞ n=p f n 2 L 2 (M) 1 2 < +∞ holds, v) the random series X n (ω)f ω n converges in L 2 (Ω, C 0 (M s )).
Remark 32. -The Gaussian random series f G,ω n can be written as χ n (ω)f ω n (see (122)) in which the sequence of χ n satisfies the assumptions (17) (see Appendix B). In other words, Proposition 31 holds true for the Gaussian random series f G,ω n .

Let us prove Proposition 31. i) ⇒ ii). Obvious.

ii) ⇒ iii). We shall use the Paley-Zygmund inequality in a similar spirit to [MP81, page 55, Lemma 1.2] and [Ime18, Proposition 2.17]. For any N ∈ N and ω ∈ Ω, we set the partial sum

S N (ω) := N n=1 X n (ω)f ω n .
We now give a proof by contradiction and we may assume that there is a subsequence of integers (N k ) k≥1 satisfying

(127) E[ S N k C 0 (M)s ] ≥ 2k.
The classical Paley-Zygmund inequality [Kah68, Page 8, Inequality II] can be combined to Proposition 27 and Proposition 30 so we get

P S N k C 0 (Ms) ≥ 1 2 E[ S N k C 0 (Ms) ] ≥ E[ S N k C 0 (Ms) ] 2 4E[ S N k 2 C 0 (Ms) ] ≥ C inf 1≤n≤N k E[|X n |] 2 sup 1≤n≤N k E[|X n | 2 ] .
Therefore (17) and (127) imply

inf k≥1 P S N k C 0 (Ms) ≥ k] > 0.
That inequality contradicts ii) since the dominated convergence theorem proves

lim k→+∞ P( S N k C 0 (Ms) ≥ k) = lim k→+∞ E ω 1 S N k (ω) C 0 (Ms) ≥k = 0.
iii) ⇒ iv). Thanks to Proposition 30 and the assumption (17), we have sup

N ∈N N p=1 1 p ln(p + 1) N n=p f n 2 L 2 (M) 1 2 < +∞ which implies sup (N,N )∈(N ) 2 N <N N p=1 1 p ln(p + 1) N n=p f n 2 L 2 (M) 1 2 < +∞
and which in turn means the convergence of

+∞ p=1 1 p √ ln(p+1) +∞ n=p f n 2 L 2 (M) 1 2 . iv) ⇒ v).
Let us prove that (S N ) N ≥1 is a Cauchy sequence in L 2 (Ω, C 0 (M s )). As a consequence of Proposition 27, for any integers N > N we have

E S N -S N 2 C 0 (Ms) 1 2 ≤ C sup N <n≤N E[|X n | 2 ] × N p=1 1 p ln(p + 1) N n=p f n 2 L 2 (M) 1 [N +1,+∞) (n) 1 2 .
Looking at p = 1 in the Salem-Zygmund condition, we see that iv) implies the convergence of the series f n 2 L 2 (M) . We then conclude with the assumption (17) and the following limit proved via the discrete dominated convergence theorem :

lim N →+∞ +∞ p=1 1 p ln(p + 1) +∞ n=p f n 2 L 2 (M) 1 [N +1,+∞) (n) 1 2 = 0. v) ⇒ i).
Due to the Markov inequality, we get the convergence in probability in C 0 (M s ). Then i) is a known consequence (see [START_REF] Ledoux | Probability in Banach Spaces: isoperimetry and processes[END_REF]Theorem 6.1] or [LQ17b, pages 130-131, Theorem III.3]).

15. Proof of Theorem 5, universality w.r.t. the Riemannian metric

The Salem-Zygmund condition (19) depends on the Riemannian structure via the spectral analysis of the Laplace-Beltrami operator ∆. Hence, we have to prove that if one considers another Laplace-Beltrami operator ∆ on M (defined with another Riemannian structure of M), then the Salem-Zygmund condition does not change.

For any 

K ≥ K 0 we set f = n≥1 f n ∈ L 2 (M) with f n ∈ E (Kn-K,
: L 2 (M) → L 2 (M)
is the spectral projector on the spectral window (Kp, +∞) with respect to √ -∆. Although the inequality K ≥ K 0 is essential in the proof of Theorem 1 (see Theorem 16), it turns out that (128) is independent of K > 0 from a Hilbertian point of view. More precisely, the following lemma shows the first part of the statement of Theorem 5.

Lemma 33. -For any f ∈ L 2 (M), the condition (128) is independent of K ∈ (0, +∞).

Proof. Let K and K be two spectral parameters satisfying K ≤ K . Let us moreover consider a positive integer q satisfying K ≤ K ≤ Kq. Thus we clearly have

+∞ p=1 Π (Kp,+∞) (f ) L 2 (M) p ln(p + 1) ≥ +∞ p=1 Π (K p,+∞) (f ) L 2 (M)
p ln(p + 1) .

In order to reverse that inequality, we just note that for any r ∈ {0, 1, . . . , q -1} we have K p ≤ Kpq + Kr and hence for p ≥ 1

Π (K p,+∞) (f ) L 2 (M) p ln(p + 1) ≥ Π (Kpq+Kr,+∞) (f ) L 2 (M) p ln(p + 1) ≥ Π (Kpq+Kr,+∞) (f ) L 2 (M)
(pq + r) ln(pq + r + 1) .

By summing over r and p, we get

q-1 r=0 +∞ p=1 Π (K p,+∞) (f ) L 2 (M) p ln(p + 1) ≥ q-1 r=0 +∞ p=1 Π (Kpq+Kr,+∞) (f ) L 2 (M) (pq + r) ln(pq + r + 1) = +∞ p=q Π (Kp,+∞) (f ) L 2 (M) p ln(p + 1) +∞ p=1 Π (K p,+∞) (f ) L 2 (M) p ln(p + 1) ≥ 1 q +∞ p=q Π (Kp,+∞) (f ) L 2 (M)
p ln(p + 1) .

The sequel is devoted to the proof of the invariance of (128) with respect to the choice of the Laplace-Beltrami operator ∆. We first need a semi-classical reformulation of the Salem-Zygmund condition.

Lemma 34. -Let us fix a smooth function Ψ : [0, +∞) → [0, 1] satisfying

(129) t ∈ [0, 1] ⇒ Ψ(t) = 1, t ≥ 2 ⇒ Ψ(t) = 0.
Then, for any f ∈ L 2 (M), the Salem-Zygmund condition (128) is equivalent to the following semi-classical condition

(130) 1 0 f -Ψ(-h 2 ∆)f L 2 (M) h -ln(h) dh < +∞.
Proof. Following (9), we decompose f = k∈N c k φ k with (c k ) ∈ 2 (N). Hence we get

f -Ψ(-h 2 ∆)f = +∞ k=0 (1 -Ψ(h 2 λ 2 k ))c k φ k f -Ψ(-h 2 ∆)f 2 L 2 (M) = +∞ k=0 (1 -Ψ(h 2 λ 2 k )) 2 |c k | 2 .
The imposed conditions on Ψ allow us to bound as follows

λ k > √ 2 h |c k | 2 ≤ f -Ψ(-h 2 ∆)f 2 L 2 (M) ≤ λ k > 1 h |c k | 2 Π ( √ 2 h ,+∞) (f ) L 2 (M) ≤ f -Ψ(-h 2 ∆)f L 2 (M) ≤ Π ( 1 h ,+∞) (f ) L 2 (M)
. By integrating with respect to h ∈ (0, 1], we get (131)

1 0 Π ( √ 2 h ,+∞) (f ) L 2 (M) h -ln(h) dh ≤ 1 0 f -Ψ(-h 2 ∆)f L 2 (M) h -ln(h) dh ≤ 1 0 Π ( 1 h ,+∞) (f ) L 2 (M) h -ln(h) dh.
By using that h ∈ (0, 1] → Π ( 1 h ,+∞) (f ) L 2 (M) is non-decreasing, we see that the upper bound in ( 131) is bounded from above by

p≥1 1 p 1 p+1 Π ( 1 h ,+∞) (f ) L 2 (M) h -ln(h) dh ≤ p≥1 Π (p,+∞) (f ) L 2 (M) 1 p 1 p+1 dh h -ln(h) p≥1 Π (p,+∞) (f ) L 2 (M) p ln(p + 1)
.

Similarly, we see that the lower bound in ( 131) is bounded from below by

p≥1 1 p 1 p+1 Π ( √ 2 h ,+∞) (f ) L 2 (M) h -ln(h) dh p≥2 Π ( √ 2p,+∞) (f ) L 2 (M)
p ln(p + 1) .

We conclude with Lemma 33.

Before analyzing the semi-classical Salem-Zygmund condition (130), we need to recall a few facts about semi-classical symbols and semi-classical pseudo-differential operators. The standard relation between a symbol s : R d × R d × (0, 1] → R and its quantized operator, usually denoted by s(x, D, h), is given by the formula

(132) ∀F ∈ S(R d ) ∀x ∈ R d (s(x, D, h)F )(x) = R d e i x,ξ s(x, ξ, h) F (ξ) dξ (2π) d .
For the particular case s(x, hξ), one prefers writing s(x, hD). Such operators, with h running over (0, 1], are called semi-classical pseudo-differential operators. Here is the result we need in the sequel.

Lemma 35. -For any symbols s 1 and s 2 belonging to C ∞ b (R d × R d ) and having disjoint supports, for any N ∈ N , there are constant C > 0 and C N such that the following estimates uniformly hold for any h ∈ (0, 1]

s 1 (x, hD) L 2 (R d )→L 2 (R d ) ≤ C (133) s 1 (x, hD) • s 2 (x, hD) L 2 (R d )→L 2 (R d ) ≤ C N h N . ( 134 
)
Proof. We will use the notations of [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF]. For any m ∈ R, one denotes by S m scl the space of symbols s(x, ξ, h) satisfying for any α ∈ N d and β ∈ N d : sup

x∈R d sup ξ∈R d sup h∈(0,1] |(∂ α ξ ∂ β x s)(x, ξ, h)|h m-|α| < +∞.
With those notations, the symbols s 1 (x, hξ) and s 2 (x, hξ) belong to the class S 0 scl . The first estimate is merely the semi-classical Calderon-Vaillancourt (see [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators[END_REF]Theorem 1.1.30]). For the second estimate, [Ler10, Theorem 1.1.31] states that there is a "composition" symbol s(x, ξ, h) belonging to the class S 0 scl satisfying s 1 (x, hD) • s 2 (x, hD) = s(x, D, h).

Then we use the semi-classical symbolic calculus at rank N of s 1 (x, hξ) ∈ S 0 scl and s 2 (x, hξ) ∈ S 0 scl (see [Ler10, Theorem 1.1.32]) that ensures that the "composition" symbol s(x, ξ, h) satisfies

s(x, ξ, h) - |α|<N 1 α!i α ∂ α ξ {s 1 (x, hξ)}∂ α x {s 2 (x, hξ)} ∈ S -N
scl which means that s(x, ξ, h) belongs to S -N scl because the partial sum vanishes thanks to the assumption of disjoints supports. Finally, a new use of the semi-classical Calderon-Vaillancourt (see [Ler10, Theorem 1.1.30]) proves (134).

We now recall the local expression of the Laplace-Beltrami operator ∆ of M. Let τ : U ⊂ R d → V ⊂ M be a coordinate patch of M. For any x ∈ U , we denote by g x the d × d positive-definite matrix corresponding to the Riemannian metric at τ (x) ∈ M via the coordinate patch τ . Moreover, (g ij x ) i,j is the usual notation for the inverse of the matrix g x . For any smooth function f : M → C with compact support in V , the action of the Laplace-Beltrami operator on f can be seen as that of a differential operator acting on f • τ : U → R as follows (see for instance [Shu01, page 167]) :

(∆f )(τ (x)) = 1 √ det g x d i=1 d j=1 ∂ xi g ij x det g x ∂ xj (f • τ ) = d i=1 d j=1 g ij x ∂ xi ∂ xj (f • τ ) + differential terms of order 1.
By introducing the so-called principal symbol of -∆ on the coordinate patch τ :

℘ : (x, ξ) ∈ R d × R d → 1 U (x) d i=1 d j=1 g ij x ξ i ξ j ∈ R (135)
an using the pseudo-differential notation (132) above (without h), the principal term of (-∆)(f • τ ) reads

- d i=1 d j=1 g ij x ∂ xi ∂ xj (f • τ ) = ℘(x, D)(f • τ ),
where f • τ ∈ S(R d ) is extended by 0 outside U . Moreover, on any compact subset of the domain U of the coordinate patch, there is by continuity a constant γ ≥ 1 for which the following uniform estimates hold

(136) ∀ξ ∈ R d 1 γ |ξ| 2 ≤ ℘(x, ξ) ≤ γ|ξ| 2 .
Those inequalities implies that -∆ is a second order elliptic operator. We stress that ℘ depends on the chosen coordinate patch τ : U ⊂ R d → V ⊂ M (although we merely write ℘ for simplicity).

In order to avoid repeating the same technical assumptions, we set the following definition.

Definition 36. -We denote by Λ(M) the set of triplets (τ, ψ, ψ) as follows

i) τ is a coordinate patch of M from an open subset U ⊂ R d to an open subset V ⊂ M, ii) ψ belongs to C ∞ c (V ), iii) ψ belongs to C ∞ c (V )
and equals 1 on a neighborhood of the support of ψ. Furthermore, for any (τ, ψ, ψ) ∈ Λ(M) and any smooth function Ψ : [0, +∞) → [0, 1] satisfying (129), we define the following two symbols

∀(x, ξ) ∈ R d × R d s ℘,Ψ τ,ψ (x, ξ) := 1 U (x)ψ(τ (x)) × (1 -Ψ • ℘(x, ξ)), (137) 
s •Ψ τ,ψ (x, ξ) := 1 U (x)ψ(τ (x)) × (1 -Ψ(|ξ| 2 )), ( 138 
)
where ℘ in (137) is given in (135) (note that s ℘,Ψ τ,ψ (x, ξ) = 0 for x ∈ U ).

For the sequel, we underline that the symbol s ℘,Ψ τ,ψ will appear by making a semi-classical development of Ψ(-h 2 ∆) in (130) (see the proof of Proposition 38). The main drawback of s ℘,Ψ τ,ψ is its dependence with respect to the Laplace-Beltrami operator ∆ (more precisely to ℘ via the coordinate patch τ ). The next result shows that the symbol s ℘,Ψ τ,ψ is equivalent, in a semi-classical sense, to the symbol s •Ψ τ,ψ whose expression (138) is clearly independent of the Laplace-Beltrami operator.

Proposition 37. -Let us fix a smooth function Ψ : [0, +∞) → [0, 1] satisfying (129). For any (τ, ψ, ψ) ∈ Λ(M), there are α > 0 and C > 0 such that the following inequalities hold true uniformly in F ∈ L 2 (R d ) and h ∈ (0, 1] :

s ℘,Ψ τ,ψ (x, hD)F L 2 x (R d ) ≤ C s •Ψ τ, ψ (x, αhD)F L 2 x (R d ) + F L 2 (R d ) O(h), (139) 
s •Ψ τ,ψ (x, hD)F L 2 x (R d ) ≤ C s ℘,Ψ τ, ψ (x, αhD)F L 2 x (R d ) + F L 2 (R d ) O(h). ( 140 
)
Proof. Let us explain the main idea for (139). We will decompose

F = s •Ψ τ, ψ (x, αhD)F + 1 -s •Ψ τ, ψ (x, αhD) F
which in turn will imply that s ℘,Ψ τ,ψ (x, hD)

F L 2 x (R d ) is bounded by s ℘,Ψ τ,ψ (x, hD)s •Ψ τ, ψ (x, αhD)F L 2 x (R d ) + s ℘,Ψ τ,ψ (x, hD)(1 -s •Ψ τ, ψ (x, αhD))F L 2 x (R d
) . We will then conclude by applying (133) and (134) provided that α > 0 is chosen large enough so that the two symbols s ℘,Ψ τ,ψ (x, ξ) and 1 -s •Ψ τ, ψ (x, αξ) have disjoint supports. Let us now go into technical details. We first remark that the smooth function 1 U (x)×(ψ •τ (x)) has compact support and thus belongs to C ∞ b (R d ). Similarly, thanks to (129) and ( 136), one also checks that the two symbols

1 U (x)(ψ • τ (x)) × Ψ(℘(x, ξ)) and 1 U (x)( ψ • τ (x)) × Ψ(α 2 |ξ| 2 ) belong to C ∞ b (R d × R d ).
As a consequence of (133), the pseudo-differential operators s ℘,Ψ τ,ψ (x, hD) and s •Ψ τ, ψ (x, αhD) are well-defined and bounded on L 2 (R d ). We now turn to the choice of α. The two symbols s ℘,Ψ τ,ψ and

1 U (x)( ψ • τ (x)) × Ψ(α 2 |ξ| 2 ) are respectively supported in U × |ξ| 2 ≥ 1 γ and U × |ξ| 2 ≤ 2 α 2 .
For α > √ 2γ, the two supports are disjoint. In order to prove (139), we decompose as follows for any (x, ξ) ∈

R d × R d 1 = 1 U (x)( ψ • τ (x)) × (1 -Ψ(α 2 h 2 |ξ| 2 )) + 1 U (x)( ψ • τ (x)) × Ψ(α 2 h 2 |ξ| 2 ) + 1 -1 U (x)( ψ • τ (x))
which leads, after using the quantization formula (132), to

F = s •Ψ τ, ψ (x, αhD)F + 1 U × ψ • τ × Ψ(-αh 2 ∆) F + 1 -1 U × ψ • τ F. (141) Hence we get s ℘,Ψ τ,ψ (x, hD)F L 2 x (R d ) ≤ s ℘,Ψ τ,ψ (x, hD)s •Ψ τ, ψ (x, αhD)F L 2 x (R d ) + s ℘,Ψ τ,ψ (x, hD) 1 U × ψ • τ × Ψ(-αh 2 ∆) F L 2 x (R d ) (142) + s ℘,Ψ τ,ψ (x, hD) 1 -1 U × ψ • τ F L 2 x (R d ) . (143) 
By using the Calderon-Vaillancourt inequality (133) for s 1 = s ℘,Ψ τ,ψ , we obtain

s ℘,Ψ τ,ψ (x, hD)s •Ψ τ, ψ (x, αhD)F L 2 x (R d ) ≤ C s •Ψ τ, ψ (x, αhD)F L 2 x (R d ) .
The inequality (139) can then be proved by bounding the two terms (142) and (143) by F L 2 (R d ) O(h) thanks to (134) and the following two remarks : i) accordingly to the choice of α > √ 2γ, the symbols s ℘,Ψ τ,ψ (x, ξ) and 1 U (x) × ( ψ • τ (x)) × Ψ(α 2 |ξ| 2 ) have disjoint supports because of the frequency variable ξ, ii) set the smooth symbol s 2 (x, ξ) := 1 -1 U (x) × ( ψ • τ (x)) that merely depends on x. The quantization formula (132) shows that s 2 (x, hD) is the multiplication operator by 1-1 U (x)×( ψ •τ (x)). We furthermore note that the spatial component of the support of s ℘,Ψ τ,ψ (x, ξ) (see ( 137)) is included in U and more precisely in the support of ψ • τ . But the supports of ψ • τ and 1 -ψ • τ are disjoint because 1 -ψ vanishes in a neighborhood of the support of ψ (see Definition 36). In other words, the symbols s ℘,Ψ τ,ψ (x, ξ) and s 2 (x, ξ) have disjoint supports.

The second inequality (140) can be proved with a similar strategy. Actually, we have to choose α > 0 so that the two symbols s •Ψ τ,ψ (x, ξ) and 1 U (x) × ( ψ • τ (x)) × (Ψ • ℘(x, αξ)) have disjoint supports. According to (129), (136) and (138), the supports of those two symbols are respectively included in

U × |ξ| ≥ 1 and U × |ξ| 2 ≤ 2γ α 2 .
Here again, for the same choice of α > √ 2γ, we may apply (133) and (134) to the following similar decomposition to (141) :

F = s ℘,Ψ τ, ψ (x, αhD)F + 1 U × ψ • τ × Ψ(℘(x, αD)) F + 1 -1 U × ψ • τ F.
We are now ready to give a local but pseudo-differential reformulation of the semi-classical Salem-Zygmund condition (130).

Proposition 38. -Let us fix a smooth function Ψ : [0, +∞) → [0, 1] satisfying (129). For any f ∈ L 2 (M), the semi-classical Salem-Zygmund condition (130) is equivalent to the following condition : for any (τ, ψ, ψ) ∈ Λ(M) (according to Definition 36), we have

(144) 1 0 s ℘,Ψ τ,ψ (x, hD) ( ψf ) • τ L 2 x (R d ) h -ln(h) dh < +∞,
where s ℘,Ψ τ,ψ is defined in (137).

Proof. By compactness of M, there is a finite open cover

M = V 1 ∪ • • • ∪ V n where each open subset V i corresponds to a coordinate patch τ i : U i ⊂ R d → V i ⊂ M. Now consider a smooth partition of unity 1 = ψ 1 + • • • + ψ n subordinate
to the previous open cover. Since the support of ψ i is a compact subset of V i , one infers that, for any g ∈ L 2 (M), the equivalence

ψ i g L 2 (Vi) (ψ i g) • τ i L 2 (R d )
holds with constants independent of g. We then easily obtain the equivalence

g L 2 (M) n i=1 (ψ i g) • τ i L 2 (R d ) .
As a consequence, it is clear that (130) is equivalent to the following property : for any coordinate patch

τ : U ⊂ R d → V ⊂ M and for any ψ ∈ C ∞ c (V ), we have (145) 1 0 ψ × f -ψ × (Ψ(-h 2 ∆)f ) • τ L 2 x (R d ) h -ln(h) dh < +∞,
with the convention (ψ × f ) • τ (x) = 0 for x ∈ U . We now invoke the semi-classical functional calculus of the Laplace-Beltrami operator as stated in [BGT04, Proposition 2.1 with N = 1 and σ = 0]. Let ψ ∈ C ∞ c (V ) be a function equaling 1 on the support of ψ (in other words, (τ, ψ, ψ) belongs to Λ(M) in Definition 36). The semi-classical functional calculus ensures that there exists an explicit symbol Ψ 0 ∈ C ∞ c (U × R d ) satisfying the following properties : i) the pseudo-differential Ψ 0 (x, hD) quantizes Ψ 0 as in (132) and satisfies the uniform estimates

(146) ψΨ(-h 2 ∆)f • τ -Ψ 0 (x, hD) ( ψf ) • τ L 2 (R d ) ≤ Ch f L 2 (M) ,
ii) the symbol Ψ 0 has the following explicit expression :

(147) ∀(x, ξ) ∈ U × R d Ψ 0 (x, ξ) = ψ(τ (x))Ψ(℘(x, ξ)).
By plugging (146) in (145) and using the finiteness of

1 0 dh √ -ln(h) = √ π, we see that (145) is equivalent to (148) 1 0 (ψf ) • τ -Ψ 0 (x, hD) ( ψf ) • τ L 2 x (R d ) h -ln(h) dh < +∞.
Remembering that ψ equals 1 on the support of ψ, we get ψ = ψ ψ and so (ψf

) • τ = (ψ • τ ) × (( ψf ) • τ ). Since the pseudo-differential operator (1 U × ψ • τ )(x, hD) with symbol 1 U × ψ • τ (independent of ξ) is merely the multiplication by 1 U × ψ • τ (see ( 132 
)), one may look at (137) and (147) to conclude that (148) reduces to (144).

The following result completes the proof of Theorem 5 because it allows us to get rid of the Laplace-Beltrami operator ∆ and because the vector space L 2 (M) is independent of the Riemannian structure of M.

Proposition 39. -Let us fix a smooth function Ψ : [0, +∞) → [0, 1] satisfying (129). Then for any f ∈ L 2 (M), the Salem-Zygmund condition (128) is equivalent to the following condition : for any (τ, ψ, ψ) ∈ Λ(M) (according to Definition 36), we have

(149) 1 0 s •Ψ τ,ψ (x, hD) ( ψf ) • τ L 2 x (R d ) h -ln(h) dh < +∞,
where s •Ψ τ,ψ is defined in (138).

Proof. The key point is the following : for any (τ, ψ, ψ) ∈ Λ(M) there is ψ ∈ C ∞ c (V ) such that (τ, ψ, ψ) and (τ, ψ, ψ) belong to Λ(M). Indeed, there is an open subset W ⊂ V such that supp(ψ) ⊂ W ⊂ { ψ = 1}. So we just have to choose ψ ∈ C ∞ c (W ) that equals 1 on a neighborhood of the compact subset supp(ψ). If the finiteness conditions (149) hold, then for (τ, ψ, ψ) ∈ Λ(M) we get (150)

1 0 s •Ψ τ,ψ (x, hD) ( ψf ) • τ L 2 x (R d ) h -ln(h) dh < +∞.
Thanks to the Calderon-Vaillancourt inequality (133), we know that s

•Ψ τ,ψ (x, hD) ( ψf ) • τ L 2 x (R d
) is bounded with respect to h ∈ (0, 1] and hence the integrability of (150) is at h = 0. For any α > 0, a simple linear change of variable shows

1 0 s •Ψ τ,ψ (x, αhD) ( ψf ) • τ L 2 x (R d ) h -ln(h) dh < +∞.
By applying (139) of Proposition 37 with (τ, ψ, ψ) ∈ Λ(M), we clearly get the finiteness conditions (144) of Proposition 38. A perfectly similar argument using (140) allows us to reverse the previous implication. 

G,ω (x) = 1 √ n 2n k=n+1 g C k (ω)e ikx on T := R\2πZ is given by δ n (x, y) 2 = 4 n 2n k=n+1 sin 2 k(x -y) 2 .
Upon adding a multiple of 2π and switching x and y, we can assume y ≤ x ≤ y + π. The Riemannian distance δ g (x, y) thus equals x -y once we identify the torus T to the circle S 1 via the map x → e ix . We easily prove the inequality δ n ≤ 2 min(1, nδ g ) which in turn implies Let us now bound δ n from below by setting θ = x-y 2 ∈ 0, π 2 and considering the following two cases for n ≥ 2 :

• If θ belongs to [ 2 n , π 2 ], we can use the exact formulas

δ n (x, y) 2 = 2 - 2 n 2n k=n+1 cos(2kθ) = 2 - 2 sin(nθ) n sin(θ) cos (3n + 1)θ ≥ 2 - 2 n sin(θ) ≥ 2 - 1 sin(1)
≥ 0, 8.

• For the case θ ∈ 0, 2 n , we use the inequality sin(t) t for any t ∈ [0, 3] to get

δ n (x, y) 2 = 4 n 2n k=n+1 sin 2 (kθ) ≥ 4 n 1,5n k=n+1 sin 2 (kθ) 1 n 1,5n k=n+1 k 2 θ 2 n 2 δ g (x, y) 2 .
In other words, we have proved the bound δ n ≥ C min(1, nδ g ) for a universal constant C > 0. As a consequence, we may write

+∞ 0 ln N δn (T, ε)dε ≥ C 0 ln N δn (T, ε)dε ≥ C 0 ln N C min(1,nδg) (T, ε)dε = C 0 ln N Cnδg (T, ε)dε
which allows us to get as above an asymptotic of order ln(n).

B First moments of chi distributions

We give elementary estimates about the first moments of chi distributions. For any n ∈ N , we set

χ n := 1 √ n n k=1 g 2 k 1 2 ,
where g 1 , . . . , g n are i.i.d. Gaussian random variables N R (0, 1). The equality E[χ 2 n ] = 1 is obvious. The following uniform inequalities also hold (with sharpness for n = 1) :

√ 2 √ π ≤ E[χ n ] ≤ 1 and 1 ≤ E[χ 4 n ] ≤ 3. • For the bound on E[χ 4 n ], we write E[χ 4 n ] = 1 n 2 1≤k≤n 1≤ ≤n E[g 2 k g 2 ] and use the Cauchy-Schwarz inequality E[g 2 k g 2 ] ≤ E[g 4 k ]E[g 4 ] = 3. Note that the Cauchy-Schwarz inequality also shows 1 = E[χ 2 n ] 2 ≤ E[χ 4 n ]. • Let us now justify the bounds of E[χ n ]. The inequality E[χ n ] ≤ E[χ 2 n ] = 1 is direct. For the lower bound E[χ n ] ≥ √ 2 √
π , one considers random variables ε 1 , . . . , ε n (which are, as usual, independent of all other random variables), then one has

n k=1 g k (ω) 2 = E ω n k=1 ε k (ω )g k (ω) 2 ≥ E ω n k=1 ε k (ω )g k (ω) 2 ⇒ E ω [χ n ] ≥ 1 √ n E ω E ω n k=1 ε k (ω )g k (ω) .
We now remark that, for a fixed ω , the random variable ω → n k=1 ε k (ω )g k (ω) is Gaussian and more precisely has the same distribution as √ ng 1 . Hence, we get

E[χ n ] ≥ E[|g 1 |] = √ 2 √ π .

C Proof of Proposition 11, boundedness of Gaussian processes

We give some elements of the proof for the sake of clarity but the content of this Appendix is known. Before beginning the proof, let us note that, by fixing x 0 ∈ F, the following decomposition ensures that E ω [sup x∈F f G,ω (x)], for F countable, has a sense and belongs to R ∪ {+∞} :

sup x∈F f G,ω (x) = f G,ω (x 0 ) ∈L 1 (Ω) + -f G,ω (x 0 ) + sup x∈F f G,ω (x)
non-negative and measurable . i) ⇔ ii). The following inequality is obvious sup

F ⊂M F finite E ω [sup x∈F f G,ω (x)] ≤ sup F ⊂M F countable E ω [sup x∈F f G,ω (x)].
To obtain the converse inequality, let F 0 be a countable subset of M and x 0 be an arbitrary element of M, the Beppo-Levi theorem ensures that the following inequality holds true

E ω [-f G,ω (x 0 ) + sup x∈F0 f G,ω (x) non-negative ] ≤ sup F ⊂M F finite E ω [-f G,ω (x 0 ) + sup x∈F f G,ω (x) non-negative ]. Since ω → f G,ω (x 0 ) belongs to L 1 (Ω), we get E ω [ sup x∈F0 f G,ω (x)] ≤ sup F ⊂M F finite E ω [sup x∈F f G,ω (x)].
ii) ⇒ iii). For any finite subset F ⊂ M and any x 0 ∈ M, we have

E ω sup x∈F |f G,ω (x)| ≤ E ω [|f G,ω (x 0 )|] + E ω sup (x,y)∈F 2 |f G,ω (x) -f G,ω (y)| ≤ E ω [|f G,ω (x 0 )|] + E ω sup (x,y)∈F 2 f G,ω (x) -f G,ω (y) ≤ E ω [|f G,ω (x 0 )|] + E ω sup x∈F f G,ω (x) + E ω sup x∈F -f G,ω (x) .
Since F is finite, the symmetry of the Gaussian vector ω

→ (f G,ω (x)) x∈F ∈ R F gives E ω sup x∈F |f G,ω (x)| ≤ E ω [|f G,ω (x 0 )|] + 2E ω sup x∈F f G,ω (x) (151) ≤ E ω [|f G,ω (x 0 )|] + 2C.
As for i) ⇔ ii), the Beppo-Levi theorem shows that the previous inequality also holds true if F is countable, which in turn proves the integrability of ω → sup x∈F |f G,ω (x)| and hence iii).

iii) ⇒ i). The integrability properties of Gaussian random variables (see for instance [Led01, page 134, Theorem 7.1]) implies E ω sup x∈F f G,ω (x) < +∞ for any countable subset F. We now note that the upper bound sup

F ⊂M F countable E ω sup x∈F f G,ω (x) can be written as a limit lim n→+∞ E ω sup x∈Fn f G,ω (x) for at least one sequence (F n ) n∈N of countable subsets of M. By setting F := n∈N F n , we get lim n→+∞ E ω sup x∈Fn f G,ω (x) ≤ E ω sup x∈F f G,ω (x) < +∞. iv) ⇒ iii). It is direct since the following event has probability one {ω ∈ Ω, ∀x ∈ F f G,ω (x) = f G,ω (x)} ∩ {ω ∈ Ω, sup x∈M | f G,ω (x)| < +∞}.
iii) ⇒ iv). We repeat with our notations the essence of the argument of [Lif95, page 26, Proposition 1] that merely needs the separability of M. Let F be a countable dense subset of the compact set (M, δ g ). In the definition of a Gaussian process, we recall that we made the assumption of continuity of the covariance structure (x, y) ∈ M × M → E ω [f G,ω (x)f G,ω (y)] with respect to the initial distance δ g on M. Consequently, for any n ∈ N and x ∈ M, there is π

n (x) ∈ F satisfying (152) E ω [|f G,ω (x) -f G,ω (π n (x))| 2 ] ≤ 1 2 n . For x ∈ M and any ω ∈ Ω, we define f G,ω (x) := lim sup n→+∞ f G,ω (π n (x)).
Note that for each x ∈ M, the measurability of ω ∈ Ω → f G,ω (x) ∈ R is clear and we moreover have

sup x∈M | f G,ω (x)| ≤ sup x∈F |f G,ω (x)|.
The last inequality and Point iii) ensure that the function x ∈ M → f G,ω (x) ∈ R is almost surely bounded.

Let us now explain why, for any x ∈ M, there is an event Ω x of probability 1 such that

∀ω ∈ Ω x f G,ω (x) = f G,ω (x).
To see that point, we fix M ∈ N and we combine (152) with the Markov inequality

+∞ n=1 P |f G,ω (x) -f G,ω (π n (x))| > 1 M ≤ M 2 3 < +∞.
The Borel-Cantelli lemma ensures the existence of a full probability event Ω x,M such that

∀ω ∈ Ω x,M ∃n 0 = n 0 (x, ω, M ) ∀n ≥ n 0 |f G,ω (x) -f G,ω (π n (x))| ≤ 1 M .
For any x ∈ M and any ω belonging to the full probability event Ω

x := M ∈N Ω x,M , the limit lim n→+∞ f G,ω (π n (x)) =
f G,ω (x) holds true. In particular, the equality f G,ω (x) = f G,ω (x) almost surely holds true.

D Proof of Theorem 17 via a result by Canzani-Hanin

As written above, Theorem 17 is considered as known (see for instance [CH18, lines (4),( 5) and (8)]). We merely write elements of proofs for the non-specialist reader since we do not know a published reference. The argument here relies on the published references [START_REF] Canzani | C ∞ scaling asymptotics for the spectral projector of the Laplacian[END_REF][START_REF] Sogge | Fourier integrals in classical analysis[END_REF] and on a Bernstein-type inequality on the boundaryless compact Riemannian manifold M proved in [START_REF] Bin | Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold[END_REF]line (11)].

We recall a few facts of Riemannian geometry. For any y ∈ M, the Riemmannian structure of M induces a canonical isomorphism between the tangent space T y M and the cotangent space T y M. Hence, we may endow T y M with a canonical inner product and a canonical Euclidean norm ξ → |ξ| y . Consequently, in the Riemannian setting, the exponential map of M is canonically defined on the cotangent fiber bundle. We denote by inj(M ) the injectivity radius of M, namely the supremum of radii r > 0 us such that, for any y ∈ M, the restriction of the exponential map exp y : T y M → M on the open ball {ξ ∈ T y M, |ξ| y < r} is a diffeomorphism. The injectivity radius inj(M ) is positive thanks to the compactness of M. Moreover one has exp y ({ξ ∈ T y M, |ξ| y < r}) = B δg (y, r).

For any ξ ∈ T y M in the ball {|ξ| y < inj(M )}, the norm |ξ| y equals the distance δ g (exp y (ξ), y). In particular for any point x ∈ M satisfying dist(x, y) < inj(M ), the element ξ = exp -1 y (x) ∈ T y M is well defined and moreover satisfies the following norm equality in T y M : where ds denotes the measure of the unit sphere of T y M (canonically induced by the inner product on the cotangent space T y M). Finally, the remainder is uniform provided that x and y run over a compact subset of the open set V .

The presence of the distance δ g (x, y) in the remainder is of interest in [START_REF] Canzani | C ∞ scaling asymptotics for the spectral projector of the Laplacian[END_REF] and also in [CH15b, Proposition 10] because δ g (x, y) may become very small in the previous papers. However, by using the fact that the Riemannian distance is bounded on the compact manifold M, we may integrate on ν ∈ [0, λ] with polar coordinates to get Note actually that the results of [START_REF] Bin | Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold[END_REF] are stated in specific coordinate patches that are usually called normal coordinates. Here are some details explaining why (159) is still true for other coordinates. Let us consider normal coordinates τ N : U N ⊂ R d → V ⊂ M (see [START_REF] Bin | Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold[END_REF] for definitions). Since τ -1 N • τ : U → U N is a diffeomorphism, all its derivatives are bounded on any compact subset of U . Given an eigenfunction φ j : M → R, it is clear that bounding a finite number of derivatives of φ j • τ : U → R or φ j • τ N : U N → R are equivalent problems since, by decomposing φ j • τ = (φ j • τ N ) • (τ -1 N • τ ) and using the Faà di Bruno's formula, we have for any k ∈ N and x ∈ V an inequality of the form

|I|≤k (∂ I (φ j • τ )| τ -1 (x) ) 2 ≤ C |I|≤k (∂ I (φ j • τ N )| τ -1 N (x) ) 2
and the last inequality is moreover uniform for x running over a compact subset of V . Hence the inequality (159) of [START_REF] Bin | Derivatives of the spectral function and Sobolev norms of eigenfunctions on a closed Riemannian manifold[END_REF] still holds for non-normal coordinates.

Let us turn to the proof of (158). We begin by writing the finite sums Using that ρ belongs to the Schwartz space and the fact that the length of the interval [λ -λ j , λ -λ j + s] is less or equal to 1, we obtain the following upper bound (1 + k) d+1+2|I|

≤ C(1 + λ) d-1+2|I| .

E Proof of Lemma 21 about Riemannian measures of submanifolds

We write a detailed proof for the convenience of the reader. Actually, the proof essentially relies on compactness arguments and on the formula (164).

Step 1. We follow the analysis of Step 2 of Proposition 20. Firstly, there is a finite subset {x 1 , . . Step 2. For any t ∈ (0, R], we shall check the following equivalence (164) µ s (B δg (x, t)) vol R σ ×{0} d-σ τ -1 x k B δg (x, t) ∩ (R σ-1 × [0, +∞) × {0} d-σ ) . The constants of the previous equivalence can be considered independent of k since k runs over the finite set {1, . . . , }. For any y ∈ U x k , let us denote by g y the Riemannian metric of U x k at y corresponding to the Riemannian metric of M at τ x k (y) via the coordinate patch (161). If y runs over the compact subset τ -1 x k B δg (x k , r(x k ) -R) , we clearly have an inequality of the following form for any ξ ∈ R d : 1 C |ξ| 2 ≤ g y (ξ, ξ) ≤ C|ξ| 2 .

We recall that the Riemannian metric of M induces a Riemannian metric of M s by restriction on tangent subspaces. That Riemannian metric corresponds, in the coordinate patch (162), to a Riemannian metric g sub y on U x k ∩ (R σ-1 × [0, +∞) × {0} d-σ ) which is precisely the restriction of g y to R σ × {0} d-σ . As a consequence, we also have 1 C |ξ| 2 ≤ g sub y (ξ, ξ) ≤ C|ξ| 2 .

By remembering the inclusion τ -1 x k (B δg (x, t)) ⊂ τ -1 x k B δg (x k , r(x k ) -R) (see (160)), one may invoke the local expression of the Riemannian measure µ s with respect to g sub where dy stands for the Lebesgue measure of R σ × {0} d-σ . One easily deduces (164) by combing the previous bounds on g sub y with the following equality

τ -1 x k B δg (x, t) ∩ M s = τ -1 x k B δg (x, t) ∩ U x k ∩ (R σ-1 × [0, +∞) × {0} d-σ ) = τ -1 x k B δg (x, t) ∩ (R σ-1 × [0, +∞) × {0} d-σ ).
Step 3. We now prove the lower bound in (85). Let us define L := max(1, L 1 , . . . , L ) in which L k is the following Lipschitz constant (in which W k is given in (163)) :

L k := sup (a,b)∈W k ×W k a =b δ g (τ x k (a), τ x k (b)) |a -b| ∞ .
Note that L k is indeed finite since τ x k : U x k → B δg (x k , r(x k )) is a diffeomorphism and since W k is a compact subset of U x k . As a consequence of (163) and of the inequality L ≥ 1, we get for any t ≤ min(R, R )

τ x k B ∞ τ -1 x k (x), t L ⊂ B δg (x, t) B ∞ τ -1 x k (x), t L ⊂ τ -1
x k (B δg (x, t)).

Remembering that x belongs to M s ∩ B δg (x k , r(x k )), we see that τ -1 x k (x) belongs to R σ-1 × [0, +∞) × {0} d-σ (see (162)) and we clearly have the following volume bound for the maximum norm 2 σ-1 L -σ t σ ≤ vol R σ ×{0} d-σ B ∞ (τ -1

x k (x), t L ) ∩ (R σ-1 × [0, +∞) × {0} d-σ ) .

For any t ≤ min(R, R ), the equivalence (164) then leads to (165) t σ µ s (B δg (x, t))

which gives the lower bound in (85) for small balls. Note that (165) can be extended to the case min(R, R ) < t ≤ D g by writing

t σ ≤ D σ g = D σ
g min(R, R ) σ min(R, R ) σ µ s (B δg (x, min(R, R ))) ≤ µ s (B δg (x, t)).

Step 4. The upper bound in (85) is easier by introducing L • = max(L • 1 , . . . , L • ) with

L • k := sup a =b |τ -1 x k (a) -τ -1 x k (b)| ∞ δ g (a, b)
where a and b run over the compact set B δg (x k , r(x k ) -R) of M. Here again, L • k is finite because τ -1 x k : B δg (x k , r(x k )) → U x k is a diffeomorphism. Thanks to (160), we may write for any t ≤ R the following inclusion τ -1 x k (B δg (x, t)) ⊂ B ∞ (τ -1

x k (x), L • t).

Then (164) gives the upper bound µ s (B δg (x, t)) t σ . The remaining case t > R is straightforward since µ s is a probability measure on M s :

µ s (B δg (x, t)) ≤ 1 ≤ 1 R σ t σ .

n≥1 f n 2 L 2

 22 (M) < +∞ implies that the Gaussian random series f G,ω := n≥1 f G,ω n defines an element of L 2 (Ω), hence the Dudley pseudo-distance δ in (23) is well defined on M (see Proposition 23).

  iii) By denoting ε → N δ (M s , ε) the covering number (2) function of M s with respect to the Dudley pseudodistance δ defined in (23), then the entropy condition is satisfied δ (M s , ε))dε < +∞. iv) By denoting µ s the Riemannian probability measure of M s (inherited from the Riemannian structure of M, see Section 8 for more details), then µ s is majorizing in the sense of Fernique : B δ (x, ε)) dε < +∞, where B δ (x, ε) is the open ball (3) of center x ∈ M s and radius ε in the pseudo-metric space (M, δ) (see (23)).

  surely continuous and (31) clearly recovers the classical meaning of E ω n≥1 f G,ω n C 0 (Ms) by choosing a dense countable subset F of M s . We can now state the quantitative version of Theorem 2. Theorem 3. -Under the assumptions of Theorem 2, the expectation E ω sup x∈Ms n≥1

10. Proof of Theorem 2 for compact manifolds Thanks to the convergence of n≥1 f n 2 L 2 .

 22 (M) and Point v) of Proposition 23, we know that the process n≥1 so is its restriction to the compact submanifold M s . We are now interested in studying the almost sure continuity of x ∈ M s → n≥1 f G,ω n (x) ∈ R. We endow the compact submanifold M s with the Dudley pseudo-distance δ of the Gaussian process n≥1 Note that δ implicitly depends on K since f G,ω n is a random wave with values in E (Kn-K,Kn] . Assuming K 1, the following result ensures that the assumptions of Theorem 7 are fulfilled.

  on M s . It remains to explain why that point is also equivalent to the almost sure convergence of the Gaussian random seriesf G,ω n in C 0 (M s ), namely Point i) of Theorem 2.That is the same argument as for the one used in the classical theory for compact groups. Actually, we apply the Itô-Nisio theorem (see[START_REF] Li | Introduction to Banach Spaces: Analysis and Probability[END_REF] page 238]) that merely needs to check the additional assumption ensuring that, for any x ∈ M s , each numerical random series f G,ω n (x) is almost surely convergent. Such a fact is actually proved in Point iii) of Proposition 23.

  B δ (x, ε)) dε D s + +∞ 0 ln(N δ (M s , ε))dε where the constants in the symbol merely depend on H and and hence on M and M s (see the proof of Proposition 24). Similarly, (45) and (44) give +∞ 0 ln(N δ (M s , ε))dε D s + sup x∈Ms +∞ 0 ln 1 µ s (B δ (x, ε))

  Now let µ s,k be the Riemannian probability measure of the submanifold M s,k . The equality dim M s,k = dim M s (see the last lemma) means that M s,k \∂M s,k is an open subset of M s . In other words, the canonical Riemannian measure of M s,k is merely the restriction of the canonical Riemannian measure of M s . After probability normalization, for any x ∈ M s,k and any ε > 0 we have (106)

f n 2 L 2

 22 B δ (x, ε)) dε. The part of (113) is obtained by dropping out n≥1 (S d ) accordingly to the following lemma. Lemma 26. -With the above notations, the following inequality holds true n≥1 B δ (x, ε)) dε.

  Finally, Lemma 34 and Proposition 38 show the equivalence with the Salem-Zygmund condition (128). A Proof of the equivalence (8) and of the Salem-Zygmund inequality on T The Dudley pseudo-distance of the Gaussian process f

  2nδg (T, ε)dε.Since the minimal number of open arcs of Riemannian length εn that cover T is clearly of order n ε , we get 2 0 ln N 2nδg (T, ε)dε = 2 ln(n) + O(1).

  (153)| exp -1 y (x)| y = δ g (x, y). In order to keep the same notations as in[START_REF] Canzani | C ∞ scaling asymptotics for the spectral projector of the Laplacian[END_REF] line (11)], we also denote by ρ : R → R a Schwartz function satisfying the following properties|t| ≤ 1 2 inj(M ) ⇒ ρ(t) = 1, (154) |t| ≥ inj(M ) ⇒ ρ(t) = 0.For any (x, y) ∈ M 2 and λ ≥ 0, we also write the spectral functione [0,λ] (x, y) = λj ≤λ φ j (x)φ j (y).We now decompose the derivatives of e [0,λ] (x, y) via a coordinate patch τ :U ⊂ R d → V ⊂ M as follows : (155) ∂ I x ∂ J y e [0,λ] (x, y) = ρ ∂ I x ∂ J y e [0,λ] (x, y) + ∂ I x ∂ J y e [0,λ] (x, y) -ρ ∂ I x ∂ J y e [0,λ] (x, y)where the convolution has to be understood with respect to λ. We now invoke the part of a work by Canzani-Hanin that holds true without any geometric property on the manifold. In local coordinates, Lemma 5 of[START_REF] Canzani | C ∞ scaling asymptotics for the spectral projector of the Laplacian[END_REF] (with Q = Id, D Q 0 = 1 and D Q -1 = 0) implies the following statement.Proposition 40(Canzani-Hanin). -Let M be a boundaryless compact Riemannian manifold of dimension d ≥ 2 and let us consider a coordinate patch τ :U ⊂ R d → V ⊂ M with diam(V ) ≤ 1 2 inj(M ).For any multiindexes I ∈ N d and J ∈ N d , the following asymptotics holds true for any (x, y) ∈ V 2 and any ν ≥ 1 (where the spatial derivatives are seen in the coordinate patch and ∂ ν is seen in R) :∂ ν (ρ ∂ I x ∂ J y e [0,ν] )(x, y) = ν d-1 (2π) d ∂ I x ∂ I y |ξ|y=1e iν exp -1 y (x),ξ ds(ξ)+O ν d-2+|I|+|J| δ g (x, y) + (1 + ν) d-3+|I|+|J| ,

  ρ ∂ I x ∂ I y e [0,λ] (x, y) = ∂ I x ∂ I y (2π) d λ ν=0 |ξ|y=1 e i exp -1 y (x),νξ ν d-1 ds(ξ)dν + O(λ d-1+|I|+|J| ) = ∂ I x ∂ I y (2π) d |ξ|y<λ e i exp -1y (x),ξ dξ |g y | + O(λ d-1+|I|+|J| ),where dξ √ |gy| is the usual notation for the Lebesgue measure associated to the inner product of the cotangent space T y M. With the formulas (153), (77) and [CH18, lines (8-9)], we recover the principal term of the statement of Theorem 17 :ρ ∂ I x ∂ I y e [0,λ] (x, y) 1 σ d-1 (νδ g (x, y))dν + O(λ d-1+|I|+|J| ).To complete the proof of Theorem 17, we merely need to look at the decomposition (155) and the following result (still written in local coordinates).Proposition 41. -Let M be a boundaryless compact Riemannian manifold of dimension d ≥ 2 and let us consider a coordinate patch τ : U ⊂ R d → V ⊂ M. For any two multi-indexes I ∈ N d and J ∈ N d , the following inequalities hold true for any x and y belonging to a compact subset of the open set V :(156) ∀λ ≥ 1 |ρ ∂ I x ∂ J y e [0,λ] (x, y) -∂ I x ∂ J y e [0,λ] (x, y)| ≤ Cλ d-1+|I|+|J| .Proof. Let us convene that e [0,λ] (x, y) equals 0 for λ < 0. Thanks to (154), the Fourier transform ofλ ∈ R → ρ ∂ I x ∂ J y e [0,λ] (x, y) -∂ I x ∂ J y e [0,λ] (x,y) can be factorized by ρ(t) -1 and hence vanishes near 0. Hence, a standard Tauberian lemma (see [Sog17, Lemma 4.2.3, lines (4.2.13) and (4.2.14)]) ensures that (156) will be a consequence of the following estimates for all λ ≥ 0 and s ∈ [0, 1]|ρ ∂ I x ∂ J y e (λ,λ+s] (x, y) -∂ I x ∂ J y e (λ,λ+s] (x, y)| ≤ C(1 + λ) d-1+|I|+|J| .Clearly, it sufficient to prove the following two ones|∂ I x ∂ J y e (λ,λ+s] (x, y)| ≤ C(1 + λ) d-1+|I|+|J| ,(157)|ρ ∂ I x ∂ J y e (λ,λ+s] (x, y)| ≤ C(1 + λ) d-1+|I|+|J| . (158) Let us prove (157). The Cauchy-Schwarz inequality gives |∂ I x ∂ J y e (λ,λ+s] (x, y)| = λ<λj ≤λ+s ∂ I x φ j (x)∂ J y φ j (y) ≤ λ<λj ≤λ+s |∂ I x φ j (x)| 2 λ<λj ≤λ+s |∂ J y φ j (y)| 2 . We then get (157) by invoking the following Bernstein-type inequality proved by Bin (see [Bin04, line (11)]) : (159) λ≤λj ≤λ+1 |∂ I x φ j (x)| 2 ≤ C(1 + λ)

  ρ ∂ I x ∂ J y e (λ,λ+s] (x, y) = ρ j∈N ∂ I x φ j (x)∂ J y φ j (y)1 [λj -s,λj ) (λ) = j∈N ∂ I x φ j (x)∂ J y φ j (y)λ-λj +s λ-λj ρ(ν)dν.

  |ρ ∂ I x ∂ J y e (λ,λ+s] (x, y)| ≤ C j∈N |∂ I x φ j (x)||∂ J y φ j (y)| (1 + |λ -λ j |) d+1+|I|+|J| ≤ C j∈N |∂ I x φ j (x)| 2 (1 + |λ -λ j |) d+1+2|I| j∈N |∂ J y φ j (y)| 2 (1 + |λ -λ j |) d+1+2|J| .We finish by bounding the first square root (the other is obviously similar) :j∈N |∂ I x φ j (x)| 2 (1 + |λ -λ j |) d+1+2|I| = k∈N |λj -λ|∈[k,k+1) |∂ I x φ j (x)| 2 (1 + |λ -λ j |) d+1+2|I| ≤ k∈N 1 (1 + k) d+1+2|I| |λj -λ|∈[k,k+1) |∂ I x φ j (x)| 2 .In the last sum, λ j belongs to (λ -k -1, λ -k] ∪ [λ + k, λ + k + 1) and we may use (159) to getj∈N |∂ I x φ j (x)| 2 (1 + |λ -λ j |) d+1+2|I| ≤ C k∈N (1 + λ + k) d-1+2|I|

  . , x k } ⊂ M s and an open cover of M s as follows M s ⊂ 1≤k≤ B δg (x k , r(x k ))and there is R > 0 such that for any x ∈ M s there is k ∈ {1, . . . , } satisfying (160)B δg (x, R) ⊂ B δg (x k , r(x k ) -R).Secondly, by recalling that R σ-1 × [0, +∞) is our local model for the submanifold M s with smooth boundary, one may assume that for any k ∈ {1, . . . , } there is a coordinate patch of M (161)τ x k : U x k ⊂ R d → B δg (x k , r(x k )) ⊂ M around x k that induces a coordinate patch of the submanifold M s : (162) τ x k : U x k ∩ (R σ-1 × [0, +∞) × {0} d-σ ) → B δg (x k , r(x k )) ∩ M s .With the above notations, τ -1 x k (x) belongs to the compact subset τ -1x k B δg (x k , r(x k ) -R) of the open subset U x k of R d . By endowing R d with the maximum norm p ∈ R d → |p| ∞ = max(|p 1 |, . . . , |p d |), we deduce that there is a number R > 0 (independent of x ∈ M s and k ∈ {1, . . . , }) and a compact subsetW k of U x k such that (163) B ∞ (τ -1 x k (x), R ) ⊂ W k .

y

  in the coordinate patch (162) (see for instance [Shu01, page 165, line (22.7)]) :µ s (B δg (x, t)) = µ s (B δg (x, t) ∩ M s ) = τ -1 x k (B δg (x,t)∩Ms)| det g sub y |dy

  Kn] . Noting that f 1 does not impact the convergence of the Salem-Zygmund condition (19) and remembering that the subspaces E (Kn-K,Kn] are orthogonal, we see that (19) is indeed equivalent to

	(128)	+∞ p=1	Π (Kp,+∞) (f ) L 2 (M) p ln(p + 1)	< +∞,
	where Π (Kp,+∞)			

(2) We recall that N δ (Ms, ε) is the minimal number of open δ-balls of radius ε that cover Ms.(3) Since µs has support in Ms, one can replace B δ (x, ε) with B δ (x, ε) ∩ Ms which is nothing else than a δ-ball of (Ms, δ).

-1, d 2 -1) n (1) -P ( d 2 -1, d 2 -1) n ( x, y ) .

Partially supported by the ANR projects ESSED ANR-18-CE40-0028 and UNIRANDOM ANR-17-CE40-0008.

(1) In particular we have

F Proof of Lemma 25 about basis of neighborhoods in manifolds

Let us fix x ∈ M s . By reasoning with a coordinate patch around x and since the local model for M s is R σ-1 × [0, +∞), it is sufficient to prove that any point of R σ-1 × [0, +∞) admits a basis of neighborhoods made of compact submanifolds with smooth boundary. The last statement merely deserves an argument for the boundary points of R σ-1 × [0, +∞), and we may consider the origin without loss of generality. Let us choose a smooth function ρ : [0, +∞) → [0, +∞) satisfying i) we have ρ(t) = 0 for any t ∈ [0, 1], ii) we have ρ (t) > 0 for any t > 1, iii) we have ρ(2) = 1.

For instance, ρ(t) = e 1-1 t-1 is convenient for t > 1. Let V be the closed subset of R σ defined by the inequality +∞) and thus is compact. By making increase |1 -x σ |, one sees that the boundary ∂V is given by the equation (1

Furthermore, ∂V is a smooth submanifold of R σ because a singular point (x 1 , . . . , x σ ) of ∂V should satisfy the following unsolvable conditions

Consequently, the family (εV ) ε>0 is a basis of neighborhoods, in R σ-1 × [0, +∞), around 0 made of compact manifolds with smooth boundary.