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Abstract

We address the problem of unsupervised domain adaptation under the setting of
generalized target shift (both class-conditional and label shifts). For this frame-
work, we theoretically show that, for good generalization, it is necessary to learn
a latent representation in which both marginals and class-conditional probabili-
ties are aligned accross domains. For this sake, we propose a learning problem
that minimizes importance weighted loss in the source domain and a Wasserstein
distance between weighted marginals. For a proper weighting, we provide an
estimator of target label proportion by blending mixture estimation and optimal
transport. This estimation comes with theoretical guarantees of correctness under
mild assumptions. Our experimental results show that our method performs better
on average than competitors across a range domain adaptation problems including
digits,VisDA and Office.

1 Introduction

Unsupervised Domain Adaptation (UDA) is a machine learning subfield that aims at addressing
issues due to the discrepancy of train/test data distributions. There exists a large amount of literature
addressing the UDA problem under different assumptions. One of the most studied setting is based
on the covariate shift assumption (ps(x) # pr(z) and ps(y|z) = pr(y|z)) for which methods
perform importance weighting [Sugiyama et al.| (2007) or aim at aligning the marginal distributions
in some learned feature space |Pan et al.| (2010); [Long et al. (2015); |Ganin & Lempitsky| (2015)).
Target shift, also denoted as label shift (Scholkopf et al., 2012)) assumes that ps(y) # pr(y) while
ps(zly) = pr(z|y). For this problem, most works seek at estimating either the ratio pr(y)/ps(y)
or the label proportions (Lipton et al.,2018};|Azizzadenesheli et al., 2019} [Shrikumar et al., 2020; [Li
et al.,[2019; Redko et al., 2019).

However as most models now learn the latent representation space, in practical situations we have
both a label shift (ps(y) # pr(y)) and class-conditional probability shift ) (ps(z|y) # pr(z|y)).
For this more general DA assumption, denoted as generalized target shift, fewer works have been
proposed. [Zhang et al.| (2013)) have been the first one that proposed a methodology for handling
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both shifts. They used a kernel embedding of distributions for estimating importance weights and
for transforming samples so as to match class-conditional distributions. |Gong et al.| (2016) follow
similar idea by assuming that there exists a linear mapping that maps source class-conditionals
to the target ones. For addressing the same problem [Wu et al| (2019) introduced a so-called
asymmetrically-relaxed distance on distributions that allows to mitigate the effect of label shift when
aligning marginal distributions. Interestingly, they also show that, when marginals in the latent space
are aligned, error in the target domain is lower-bounded by the mismatch of label distributions be-
tween the two domains. Very recently, (Combes et al.[(2020) have presented a theoretical analysis of
this problem showing that target generalization can be achieved by matching label proportions and
class-conditionals in both domains. The key component of their algorithm relies on a importance
weight estimation of the label distributions. Unfortunately, although relevant in practice, their label
distribution estimator got theoretical guarantee only when class conditionals match across domains
and empirically breaks as soon as class conditionals mismatch becomes large enough.

Our work addresses UDA with generalized target shift and we make the following contributions.
From a theoretical side, we introduce a bound which clarifies the role of the label shift and class-
conditional shift in the target generalization error bound. Our theoretical analysis emphasizes the
importance of learning with same label distributions in source and target domains while seeking at
minimizing class-conditional shifts in a latent space. Based on this theory, we derive a learning prob-
lem and an algorithm which aims at minimizing Wasserstein distance between weighted marginals
while ensuring low empirical error in a weighted source domain. Since a weighting scheme requires
the knowledge of the label distribution in the target domain, we solve this estimation problem by
blending a consistent mixture proportion estimator and an optimal matching assignment problem.
While conceptually simple, our strategy is supported by theoretical guarantees of correctness. Then,
given the estimated label proportion in the target domain, we theoretically show that finding a latent
space in which the Wasserstein distance between the weighted source marginal distribution and the
target one have zero distance, guarantees that class-conditionals are also matched. We illustrate in
our experimental analyses how our algorithm (named MARS from Match And Reweight Strategy)
copes with label and class-conditional shifts and show that it performs better than other generalized
target shift competitors on several UDA problems.

2 Related works

From a theoretical point of view, several works have pointed out the limitations of learning domain
invariant representations. Johansson et al.| (2019), Zhao et al.| (2019) and Wu et al.| (2019) have
introduce some generalization bounds on the target error that show the key role of label distribution
and conditional distribution shifts when learning invariant representations. Importantly, Zhao et al.
(2019) and|Wu et al.| (2019) have shown that in a label shift situation, minimizing source error while
achieving invariant representation will tend to increase the target error. In our work, we introduce
an upper bound that clarifies the importance of learning invariant representations that also align
class-conditional representations in source and target domains.

Algorithmically, most related works are the one by Wu et al.| (2019) and |Combes et al.| (2020) that
also address generalized target shift. The first approach learns invariant representations by using an
assymetrically-relaxed distance. This relaxation allows to mitigate the effect of label distribution
shift. In the case of Wasserstein distance, their approach consists in reweighting the marginal of the
source distribution and in its dual form, their distance boils to
WDy (ps,pr) = Sup E-psw(2)v(2) = Eznpro(2) (1)
viiL>

where the importance weight w(+) is actually a constant ﬁ At the contrary, in our reweighting

scheme w(z) in an estimate of target label proportion. Hence, we believe that our approach would
adapt better to imbalance without the need to tune 3. The work of [Combes et al.|(2020) estimates
w(-) by applying a technique tailored and grounded for problems without class-conditional shifts.
Our differs in the way the weights w(z) are estimated, an important distinction being that we con-
sider a theoretically supported and consistent estimation of the target label proportion. We show
in the experimental section that their estimator in some cases leads to poorer generalization. And
more importantly, compared to their work, we provide theoretical guarantees and assumptions un-
der which, the solution of our learning problem leads to matched class-conditionals which is key for
generalization.



3 Notation and Background

Let X and ) be the input and output space. We denote by Z the latent space and G the class of
representation mapping from X to Z. Similarly, H represents the hypothesis space, which is a set of
function from Z to ). A labeling function f is a function from X to ). Elements of X', ) and Z are
respectively noted as z, y and z. For our UDA problem, we assume a learning problem with source
and target domains and respectively note as ps(z, y) and pr(z, y) their joint distributions of features
and labels. We have at our disposal a labeled source dataset {«f, y7};=; withy? € {1...C} and
only unlabeled examples from the target domain {z!}?**; with all z; € X, sampled i.i.d from their
respective distributions. We refer to the marginal distributions of the source and target domains in
the latent space as p%(z) and p%.(z). Class-conditional probabilities in the latent space and label
proportion for class j will be respectively noted as py; 2 py(zly = j) and i’ 2 py(y = j) with
Ue{S.T}.

Domain adaptation framework Since the seminal work of [Pan et al.[|(2010); Long et al.| (2015));
Ganin & Lempitsky| (2015), a common formulation of the covariate shift domain adaptation prob-
lem is to learn a mapping of the source and target samples into a latent representation space where
the distance between their marginal distributions is minimized and to learn a hypothesis that cor-
rectly predicts labels of samples in the source domain. This typically translates into the following
optimization problem:

1 &
min - ;L(yf,h(g(wf))) +AD(p%, p%) + Q(h, g) )

where h(-) is the hypothesis, g(-) a representation mapping and L(-,-) : Y x ) + RT is a continuous
loss function differentiable on its second parameter and 2 a regularization term. Here, D(,-) is a
distance metric between distributions that measures discrepancy between source and target marginal
distributions as mapped in a latent space induced by g. Most used distance measures are MMD
Tzeng et al.| (2014)), Wasserstein distance [Shen et al.|(2018) or Jensen-Shannon distance|Ganin et al.
(2016).

Optimal Transport (OT) We provide here some background on optimal transport as it will be a
key concept for assigning label proportion. More details can be found inPeyré et al.|(2019). Optimal
transport measures the distance between two distributions over a space X’ given a transportation cost
c: X x X — RTt. It seeks for an optimal coupling between the two measures that minimizes
a transportation cost. In a discrete case, we denote the two measures as p = Z?Zl a;0,, and
v=>y., b;9,:. The Kantorovitch relaxation of the OT problem seeks for a transportation coupling
P that minimizes the problem

min (C,P) 3)

Pcll(a,b)

where C € R™ ™ is the matrix of all pairwise costs, C;; = c(zi,z}) and [I(a,b) = {P €
RY*™|P1 = a, PT1 = b} is the transport polytope between the two distributions. The above
problem is known as the discrete optimal transport problem and in the specific case where n = m
and the weights a and b are positive and uniform then the solution of the above problem is a scaled
permutation matrix (Peyré et al.l[2019). One of the key features of OT that we are going to exploit
for solving the domain adaptation problem is its ability to find correspondences between samples
in an unsupervised way by exploiting the underlying space geometry. These features have been
for instance exploited for unsupervised word translation |Alvarez-Melis et al.| (2019); |Alaux et al.
(2019).

4 Theoretical insights

In this work, we are interested in a situation where both class-conditional and label shifts occur
between source and target distributions i.e there exists some j so that ps(z|y = j) # pr(zly = j))
and p?~’ # p¥’. Because we have these two sources of mismatch, the resulting domain adaptation
problem is difficult and aligning marginals is not sufficient Wu et al.| (2019).

For better understanding the key aspects of the problem, we provide an upper bound on the target
generalization error which exhibits the role of class-conditional and label distribution mismatches.



For a sake of simplicity, we will consider binary classification problem. Let X" be the input space
and assume that the function f : X — [0, 1] be the domain-invariant labeling function, which is a
classical assumption in DA (Wu et al.} 2019;[Shen et al., [2018). For a domain U, with U = {S,T'},
the induced marginal probability of samples in Z is formally defined as p{;(A) = py (g~ '(A)) for
any subset A C Z and g~ *(A) being potentially a set (p{;(A) is thus the push -forward of py (x) by

g(-)). Similarly, we define the conditional distribution gy (-|2) such that py (z) = [ gu (z|2)p4(2)d=
holds for all x € &'. For a representation mapping g, an hypothesis h and the labeling function
f. the expected risk is defined as ey (h o g, f) £ Epnpy [[1(g(2)) — f(@)]] = Eanpz [[h(2) —
fU( )|] £ g% (h, f{) with ff being a domain-dependent labeling function defined as f7(z) =
[ f(@)gu(z|z)da.

Now, we are in position to derive a bound on the target error but first, we introduce a key intermediate
result.

Lemma 1. Assume two marginal distributions p%, and p%., with p?, = EkC:1 p}"J kp’f], U={S1T}
For all p¥,, p%, and for any continuous class-conditional density distribution Pk & and ph such that for
all z and k, we have ps(z|ly = k) > 0 and ps(y = k) > 0, the inequality sup;, ,[w(z)Sk(2)] > 1

y=k
holds with Si(z) = % and w(z) = 55:’“ if z is of class k.
S

Intuitively, this lemma says that the maximum ratio between class-conditionals weighted by la-
bel proportion ratio is lower-bounded by 1, and that potentially, this bound can be achieved when

both p%:k = p%:k and p¥ = pk. Interestingly, Wu et al.[ (2019)’s results involve a similar term

g9
sup,, ’; 58 for defining their assymetrically-relaxed distribution distance. But we use a finer mod-
S

eling that allows us to explicitly disentangle the role of the class-conditionals and label distribution
ratio. In our case, owing to this inequality, we can bound one of the key term that upper bounds the
generalization error in the target domain.

Theorem 1. Under the assumption of Lemma |l| and assuming that any function h € H is K-
Lipschitz and g is a continuous function then for every function h and g, we have

er(hog, f) <es(hog, f)+ 2K -WD:(p%,p%)

+
+e7(f§: /1)

where Si(2) and w(z) are as defined in Lemma h* = arg mlnhe% es(hog; f) and e%.(f5, ) =

E.npz [|f7(2) = f&(2)|] and W Dy as defined in Equattonlwzth w(-) =1

1+ supw(z)Sk(Z))] es(h* oy, f)

Let us analyze the terms that bound the target generalization error. The first term eg(h o g, f) =
e%(h, f£) can be understood as the error induced by the hypothesis & and the mapping g. This
term is controllable through an empirical risk minimization approach as we have some supervised
training data available from the source domain. The second term is the Wasserstein distance between
the marginals of the source and target distribution in the latent space. Again, this can be minimized
based on empirical examples and the Lipschitz constant K can be controlled either by regularizing
the model g(-) or by properly setting the architecture of the neural network model used for g(-). The
last term ep(f g, f:,%) is not directly controllable (Wu et al., [2019) but it becomes zero if the latent
space labelling function is domain-invariant which is a reasonable assumption especially when latent
joint distributions of the source and target domains are equal. The remaining term that we have to
analyze is supy, ,[w(2)Sk(2)] which according to Lemma is lower bounded by 1. This lower
bound is attained when the label distributions are equal and class-conditional distributions are all
equal and in this case, the joint distributions in the source and target domains are equal and thus

e (fe f7) = 0.
S Match and Reweight Strategy

5.1 The learning problem

The bound in Theorem|I]suggests that a good model should: i) look for a latent representation map-
ping g and a hypothesis h that generalizes well on the source domain, ii) have minimal Wasserstein



Algorithm 1 Training the full MARS model

Require: {z$,ys}, {z!}, number of classes C, batch size B, number of critic iterations n
1: Initialize representation mapping g, the classifier i and the domain critic v(-), with parameters
0}1» eg’ ev
2: repeat
3:  estimate py from {z!} using Algorithm 2] {done every 10 iterations}
4:  sample minibatches {z%, y% }, {z%; } from {z¢, vy} and {z!}
5:  compute {w)}< , given {z%,y%} and pp
6.
7
8

fort=1,--- ;ndo
2*  g(z%), 2" < g(a)
compute gradient penalty ﬁgmd

9: compute empirical Wasserstein dual loss L,,q = Y, w(z{)v(2f) — 5 3, v(z!)
10: e'u — 91) + avveu [L'wd - ‘Cg’r'ad]
11:  end for

12:  compute the weighted classification loss £,, = >, w'(25)L(y$, h(g(x5)))
13: On < On + anVo, Ly

14: 09 — 9g + O[gveg [‘CU) + Ewd]

15: until a convergence condition is met

distance between marginal distributions of the latent representations while having class-conditional
probabilities that match, and iii) learn from source data with equal label proportions as the target so
as to have w(z) = 1 for all z. For yielding our learning problem, we will translate these properties
into an optimization problem.

At first, let us note that one simple and efficient way to handle mismatch in label distribution is to
consider importance weigthing in the source domain. Hence, instead of learning from the marginal

. . . C = . .
source distribution pg = > ,_; p% kp’g, we learn from a reweighted version denoted as pg =

ch:1 p%:kpg, as proposed by [Sugiyama et al.| (2007)); |Combes et al.| (2020), so that no label shift

occurs between pg and pr . This approach needs an estimation of p%:k that we will detail in the next
k

y= y=k
subsection, but interestingly, in this case, for Theorem 1} we will have w(z) = pZT" = % =1
3 T

Then, based on the bound in Theorem applied on pg and pr, we propose to learn the functions h
and g by solving the problem

Ns

min = 3wt (@) Ly? hlg(@))) + AW D (52, 55) + (S, 9) @

i=1

Y=Y4
where the importance weight w? (x3) = % allows to simulate sampling from p% given p?, the

S
discrepancy between marginals is the Wasserstein distance

WD1(]5‘Z>Pf) = | SHU-p<1 Ezwpng(Z)v(Z) - Ezwpijv(z)‘
viLS

The first term of equation corresponds to the empirical loss related to the error € g in Theorem
[I] while the distribution divergence aims at minimizing distance between marginal probabilities,
the second term in that theorem. In the next subsections, we will make clear why the Wasserstein
distance is used as the divergence and provide conditions and guarantees for having W D+ (pZ, p%.) =
0 = WD(pk,pk) = 0, i.e. perfect class-conditionals matching, and thus Sy, (z) = 1 for all &, 2.
Recall that in this case, the lower bound on maxy,_ ,[w(2)Sk(z)] will be attained.

Algorithmically, for solving the problem in Equation (@),we employ a classical adversarial learning
strategy (detailed in algorithm[I]) and we use gradient penalty for estimating the Wasserstein distance
(Gulrajani et al., 2017).

5.2 Estimating target label proportion using optimal assignment

The above learning problem needs an estimation of Pr(y) for weighting the classification loss and
for computing the Wasserstein distance between p% and p¥.. Several approaches exist for estimating



Algorithm 2 Label proportion estimation in the target domain

Require: {z7,ys}, {z!}, number of classes C
Ensure: pr : Estimated label proportion
1: {p}}, pu < Estimate a mixture with C' modes and related proportions from {xz!}.
2: D « Given D, compute the matrix pairwise distance {p%} and {p7.} modes.
3: P* < Solve OT problem (3)) with D and uniform marginals as in Proposition [I]
4: pr < C-P*p, Permute the mixture proportion on source ( C - P* is a permutation matrix)

p% when class-conditional distributions in source and target matches Redko et al.| (2019); (Combes
et al.|(2020). However, this is not the case in our general setting. Hence, in order to make the problem
tractable, we will introduce some assumptions on the structure and geometry of the class-conditional
distributions in the target domain that allow us to provide guarantee on the correct estimation of p#..

For achieving this goal, we first consider the target marginal distribution as a mixture of models and
estimate the proportions of the mixture. Next we aim at finding a permutation o (-) that guarantees,
under mild assumptions, correspondence between the class-conditional probabilities of same class
in the source and target domain. Then, this permutation allows us to correctly assign a class to each
mixture proportion leading to a proper estimation of each class label proportion in the target domain.

In practice, for the first step, we assume that the target distribution is a mixture model with C
components {p’.} and we want to estimate the mixture proportion of each component. For this
purpose, we have considered two alternative strategies coming from the literature : i) applying
agglomerative clustering on the target samples tells us about the membership class of each sample
and thus, it provides the proportion of each component in the mixture. ii) learning a Gaussian
mixture model over the data in the target domain. This gives us both the estimate components {p7. }
and the proportion of the mixture p,,. Under some conditions on its initialization and assuming the
model is well-calibrated, Zhao et al.| (2020) have shown that the sample estimator asymptotically
converges towards the true mixture model.

Matching class-conditionals with OT Since, we do not know to which class each component of
the mixture in target domain is related to, we assume that the conditional distribution in the source
and target domain of the same class can be matched owing to optimal assignment. The resulting
permutation would then help us assign each label proportion estimated as above to the correct class-
conditional. Figure[d]in the appendix illustrates this matching problem.

Let us suppose that we have an estimation of all C' class-conditional probabilities on source and
target domain (based on empirical distributions). We want to solve an optimal assignment prob-

lem with respect to the class-conditional probabilities {p%}< | and {p?. }le and we clarify under
which conditions on distance between class-conditional probabilities, the assignment problem solu-
tion achieves a correct matching of classes (i.e p% is correctly assigned to p%. for all ¢). Formally,
denote as IP the set of probability distributions over R? and assume a metric over P. We want to
optimally assign a finite number C' of probability distributions to another set of finite number C' of
probability distributions, in a minimizing distance sense. Based on a distance D between couple of
class-conditional probability distributions, the assignment problems looks for the permutation that
solves min, & >, D(ps, p77)). Note that the best permutation o* solution to this problem can be
retrieved by solving a Kantorovitch relaxed version of the optimal transport (Peyré et al., [2019) with
marginals a = b = %IL Hence, this OT-based formulation of the matching problem can be in-
terpreted as an optimal transport one between discrete measures of probability distributions of the

form % Zle i - In order to be able to correctly match class-conditional probabilities in source
U
and target domain by optimal assignement, we ask ourselves:

Under which conditions the retrieved permutation matrix would correctly match the class-
conditionals?

In other word, we are looking for conditions of identifiability of classes in the target domain based
on their geometry with respect to the classes in source domain. Our proposition below presents an
abstract sufficient condition for identifiability based on the notion of cyclical monotonicity and then
we exhibit some practical situations in which this property holds.



Proposition 1. Denote as v = é Zle 5112 and p = % Z]C:1 Pl representing respectively the
balanced weighted sum of class-conditionals probabilities in source and target domain. Given D
a distance over probability distributions, assume that for any permutation o of C elements, the
following assumption, known as the D-cyclical monotonicity relation, holds

> DWh.pp) <Y D pi”)
J J

then solving the optimal transport problem between v and i as defined in equation (3)) using D as
the ground cost matches correctly class-conditional probabilities.

While the cyclical monotonicity assumption above can be hard to grasp, there exists several sit-
uations where it applies. One condition that is simple and intuitive is when class-conditionals of
same source and target classes are “near” each other in the latent space. More formally, if we as-
sume that Vj D(p%, p7) < D(p%,p%) Vk, then summing over all possible j, and choosing k so
that all the couples of (j, k) form a permutation, we recover the cyclical monotonicity condition

Z]C D(pg, p{F) < ZJD (pfg7 p;(j )), Vo. We can note that while our assumptions can be considered

as strong, we illustrate in Figure[7]in the supplementary material, that those hypotheses hold for the
VisDA problem.

Another more general condition on the identifiability of the target class-conditional can be retrieved
by exploiting the fact that, for discrete optimal transport with uniform marginals, the support of
optimal transport plan satisfies the cyclical monotonicity condition (Santambrogio} [2015). This is
for instance the case, when pé and pjf are Gaussian distributions of same covariance matrices and
the mean m]f of each pjT is obtained as a linear symmetric positive definite mapping of the mean

mJS of p]é and the distance D(pé, ) is ||mJS — m%||3 (Courty et al., [2016). This situation would
correspond to a linear shift of the class-conditionals of the source domain to get the target ones.

It is interesting to compare our assumptions on identifiability to other hypotheses proposed in the
literature for solving (generalized) target shift problems. When handling only target shift, one com-
mon hypothesis Redko et al.|(2019) is that class-conditional probabilities are equal. This in our case
boils down to have a 0 distance between D(P%, P;.) guaranteeing matching under our more general
assumptions. When both shifts occur on labels and class-conditionals, (Wu et al.| (2019) assume that
there exists continuity of support between the p(z|y) in source and target domains. Again, this as-
sumption may be related to the above minimum distance hypothesis if class-conditionals in source
domain are far enough. Interestingly, one of the hypothesis of Zhang et al.|(2013) for handling gen-
eralized target shift is that there exists a linear transformation between the class-conditional proba-
bilities in source and target domains. This is a particular case of our Proposition [I] and subsequent
discussion, where the mapping between class-conditionals is supposed to be linear. Our conditions
for correct matching and thus for identifying classes in the target domain are more general than those
proposed in the current literature.

5.3 When matching marginals lead to matched class-conditionals?

In our learning problem, since one term we aim at minimizing is WDl(p%, p%), with
p% =2 p%:j p{g and p7. = >, p%:j pjT, we want to understand under which assumptions
WDl(p%,p%) = 0 implies that ps(z|ly = j) = pr(z|ly = j) for all j, which is key for a good
generalization as stated in Theorem [I] Interestingly, the assumptions needed for guaranteeing this
implication are the same as those in Proposition|[I}

Proposition 2. Denote as ~y the optimal coupling plan for distributions v and 1 defined as balanced
weighted sum of class-conditionals that is v = % Z]C:1 6pg and p = % Z]C:l 6pjT under assump-
tions given in Proposition|l| Assume that the classes are ordered so that we have v = %diag(]l)

then v/ = diag(a) is also optimal for the transportation problem with marginals V' = Zf,l ;0

- S

and 1/ = ch:l ;6 , with a; > 0,Vj. In addition, if the Wasserstein distance between v' and
T

is 0, it implies that the distance between class-conditionals are all 0.

Applying this proposition with a; = py:j brings us the guarantee that under some geometrical as-
sumptions on the class-conditionals in the latent space, having W D (p%, p%-) = 0 implies matching
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Figure 1: Performance of the compared algorithms for three different covariance matrices of the
Gaussians composing the toy dataset with respect to the imbalance. The x-axis is given with respect
to the percentage of majority class which is the class 1. (left) Low-error setting. (middle) mid-error
setting. (right) high-error setting. Example of the source and target samples for the different cases
are provided in the supplementary material.

Table 1: Table of averaged balanced accuracy for the compared models and different domain adap-
tation problems and label proportion imbalance settings. Reported in bold are the best performances
as well as other methods which achieve performance that are statistically similar according to a
Wilcoxon signrank test with p = 0.01. Last lines present the summary of 34 experiments presented
in the supplementary (including experiments on Office). #Win includes the statistical ties.

Setting Source DANN WDs_o WDgs—; WDg_o WDg_3 WDg—y IW-WD MARSg MARSc
MNIST-USPS 10 modes
Balanced 76.89+3.7 79.74+£3.5 93.71£0.7 74.27+43 51.33+4.0 76.61+£3.3  71.90+5.7 95.28+0.4 95.61+£0.7 95.64+1.0
Mid 80.41+3.1  78.65+3.0 94.30+0.7 75.36+3.4 5555443  78.98+3.1 7232442 95.60+0.5 89.70+2.3  90.394+2.6
High 78.13+£4.9  81.79+4.0 93.86+1.1 87.44+1.7 83.83+52  85.65+2.5 83.65+£3.0 94.08+1.0 88.30£1.5 89.65+2.3
USPS-MNIST 10 modes
Balanced 77.04+2.6 80.49+22 73.35£2.8 66.70+£2.9 49.86+2.8  55.83+29 52.124+3.5 80.52+22 84.59£1.7 85.50+2.1
Mid 79.54+2.8 78.88+1.8 75.85+1.6 63.33+2.3 53.2242.8 4720424 4829429 78.36+3.5 79.73+3.6 78.49+2.5
High 78.484+2.4 77.79+2.0 76.14+2.7 63.00+3.3 57.56+4.8 51.19+44 4931433 71.53+4.7 75.62+£1.8 77.14+2.4
MNIST-MNISTM 10 modes
Setting 1 5834+1.3 61.22+1.1 57.44+1.7 502044 47.01£2.0 57.85£1.1 55.95£13 63.10£3.1 58.08+2.3 56.58+4.6
Setting 2 59.94+1.1 61.09+£1.0 58.08+t1.4 53.39+3.5 48.61+24  59.74+0.7 58.14+0.8 65.03+£3.5 57.69+2.3 55.64+2.1
Setting 3 58.14+1.2  60.39+14 57.68+1.2 47.72+449 42.15+7.3  57.094+1.0 53.524+1.1 52.46+14.8 53.68+7.2 53.72433
VisdDA 3 modes
setting 1 79.28+4.3  78.83+9.1 91.83£0.7 73.78£2.0 61.65£2.2  65.62+27 58.58+2.6 94.11+0.6 92.47+12 92.13£1.8
setting 4 80.15£53 7546493 72.75+12 86.86+7.5 86.82+12  80.16+£6.9 7571£2.0 8588+5.7 87.69+3.0 91.29+4.8
setting 2 81.47+3.5 68.46+14.7 68.81+1.3 84.45+1.2 93.15+04 73.65+142 60.67£0.9 78.73+£10.8 84.04+4.3 91.80+3.4
setting 3 78.35+32 58.93%+159 64.13£1.9 79.17+£0.8 77.12+103  89.93+0.5 94.38+0.3 77.96+9.3 75.68+4.1 73.81%+13.2
setting 5 83.524+3.5 80.83+t14.5 63.82+£0.6 73.70£7.3 5091%1.1  76.52+6.7 59.28+£1.0 90.40+£3.6 89.01+0.9  89.03+3.5
setting 6 80.84+42 54.76+19.8 4527424 63.70£5.1 67.05£6.1 42.86+10.8 62.21+£1.4 94.36+1.0 93.70+0.4 93.86+1.0
setting 7 79.22+3.7 4294425 57.51+1.5 55.39+2.0 50.22+44.3  43.66+83 6247+0.8 88.524+4.9 78.56+3.2 82.33+7.5
VisDA 12 modes
setting 1 41.90£1.5 5279+£21 4581+43 4423+£3.0 3545£4.6 40.96+3.0 37.59+£3.4 5035123 5331£09 55.05f1.6
setting 2 41.75+1.5 50.82+1.6 4572489 40.49+4.8 36.21+5.0 36.12+4.6  31.86+5.7 48.59+1.8 53.09+£1.6 55.33+1.6
setting 3 40.64+4.3  49.17+13  47.1241.6 42.10+£3.0 3632444  37.26+3.5 34.96+54 46.59+1.3 50.78+1.6 52.08+1.2
#Wins (/34) 7 9 5 0 1 0 2 9 12 21
Aver. Rank 4.16 4.73 532 6.97 8.38 6.59 7.57 4.95 3.38 2.95

of the class-conditionals, resulting in a minimization of maxy, , w(z)Sk(2) (remind that w(z) = 1
as mixture components p% and p7. of p% and p¥. are both weighted by p¥~7 for all j, since we learn

using p%).

6 Numerical Experiments

Experimental setup Our goal is to show that among algorithms tailored for handling generalized
target shift, our method is the best performing one (on average). Hence, we compare with two very
recent methods designed for generalized target shift and with two domain adaptation algorithms
tailored for covariate shift for sanity check.

As a baseline, we consider a model, denoted as Source trained for f and ¢ on the source exam-
ples and tested without adaptation on the target examples. Two other competitors apply adversarial
domain learning using approximation of the H divergence and the Wasserstein distance computed
in the dual as distances for measuring discrepancy between pg and pr, denoted as DANN and
WDg—o. We consider the model proposed by Wu et al.| (2019) and |Combes et al|(2020) as com-
peting algorithms able to cope with generalized target shift. For this former approach, we use the
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Figure 2. Exﬁfﬁﬁlé"ﬁ of ¢ 1 horm error of estitifted Tabel proportion. We have féﬁdi‘ﬂ%d the perfor-
mance of our two methods (MARSg and MARSc) as well as the performance of IW-WD. The three
panels are related to the (left) VisDA-3, (middle) VisDA-12, (right) Office 31 and the different ex-
perimental imbalance settings (see Table [3). We have also reported, with a “*’ on top, among the
three approaches, the best performing one in term of balanced accuracy. We note that MARSc pro-
vides better estimation than IW-WD on 12 out of 16 experiments. Note also the correlation between
better pr estimation and accuracy.

asymmetrically-relaxed Wasserstein distance so as to make it similar to our approach and also re-
ported results for different values of the relaxation 5. This model is named WDg with 5 > 1.
The |Combes et al.|(2020)’s method, named IW-WD (for importance weighted Wasserstein distance)
solves the same learning problem as ours and differs only on the way the ratio w(z;) is estimated.
Our approaches are denoted as MARSc or MARSg respectively when estimating proportion by
hierarchical clustering or by Gaussian mixtures. All methods differ only in the metric used for com-
puting the distance between marginal distributions and most of them except DANN use a Wassertein
distance. The difference essentially relies on the reweighting strategy of the source samples. For all
models, learning rate and the hyperparameter A in Equation @ have been chosen based on a reverse
cross-validation strategy. The metric that we have used for comparison is the balanced accuracy (the
average recall obtained on each class) which is better suited for imbalanced problems (Brodersen
et al.,[2010). All presented results have been obtained as averages over 20 runs.

Toy dataset The toy dataset is a 3-class problem in which class-conditional probabilities are Gaus-
sian distributions. For the source distribution, we fix the mean and the covariance matrix of each of
the three Gaussians and for the target, we simply shift the means (by a fixed translation). We have
carried out two sets of experiments where we have fixed the shift and modified the label proportion
imbalance and another one with fixed imbalance and increasing shift. For space reasons, we have
deported to the supplementary the results of the latter. Figure [I] show how models perform for vary-
ing imbalance and fixed shift. The plots nicely show what we expect. DANN performs worse as the
imbalance increases. WDg works well for all balancing but its parameter 3 needs to increase with
the imbalance level. Because of the shift in class-conditional probabilities, IW-WD is not able to
properly estimated the importance weights and fails. Our approaches are adaptive to the imbalance
and perform very well over a large range for both a low-noise and mid-noise setting (examples of
how the Gaussians are mixed are provided in the supplementary material). For the hardest problem
(most-right panel), all models have difficulties and achieve only a balanced accuracy of 0.67 over
some range of imbalance. Note that for this low-dimension toy problem, as expected, the approach
GMM and OT-based matching achieves the best performance as reported in the supplementary ma-
terial.

Digits, VisDA and Office We present some UDA experiments on computer vision datasets (Peng
et al., |2017; [Venkateswara et al.| 2017)), with different imbalanced settings. Details of problem
configurations as well as model architecture and training procedure can be found in the appendix.
Table [T] reports the averaged balanced accuracy achieved by the different models for only a fairly
chosen subset of problems. The full table is in the supplementary. Results presented here are not
comparable to results available in the literature as they mostly consider covariate shift DA (hence
with balanced proportions). For these subsets of problems, our approaches yield the best average
ranking. They perform better than competitors except on the MNIST-MNISTM problems where the
change in distribution might violate our assumptions. Figure 2] presents some quantitative results
label proportion estimation in the target domain between our method and IW-WD. We show that
MARSCc provides better estimation than this competitor 12 out of 16 experiments. As the key issue
in generalized target shift problem is the ability to estimate accurately the importance weight or



the target label proportion, we believe that the learnt latent representation fairly satisfies our OT
hypothesis leading to good performance.

7 Conclusion

The paper proposed a strategy for handling generalized target shift in domain adaptation. It builds
upon the simple idea that if the target label proportion where known, then reweighting class-
conditional probabilities in the source domain is sufficient for designing a distribution discrepancy
that takes into account those shifts. In practice, our algorithm estimates the label proportion using
Gaussian Mixture models or agglomerative clustering and then matches source and target class-
conditional components for allocating the label proportion estimations. Resulting label proportion
is then plugged into an weighted Wasserstein distance. When used for adversarial domain adapta-
tion, we show that our approach outperforms competitors and is able to adapt to imbalance in target
domains.
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Supplementary material for
Match and Reweight for Generalized Target Shift

This supplementary material presents some details of the theoretical and algorithmic aspects of the
work as well as as some additional results. They are listed as below.

. Theoretical details and proofs
. The full algorithm for MARS is detailed and a pseudo-code is given in Algorithm ]
. Dataset details and architecture details are given in Section[9.1]and[9.2]

. Figure 3| presents some samples of the 3-class toy data set for different configurations of
covariance matrices making the problem easy, of mid-difficulty or difficult.

A W N =

5. Examples of source and target class-conditionals that allow class matching through optimal
transport[das discussed in Proposition 1.

6. Figure 5] exhibits the performances of the compared algorithms depending on the shift of
the class-conditional distributions.

7. Figure [6] shows for the imbalanced toy problem, the results obtained by all competitors
including a GMM.

8. Table 2 shows the performance of Source only and a simple GMM+OT on a Visda 3-class
problem.

9. Table[3|depicts the different configurations of the dataset we used in our experiments

10. The full table presenting the experimental results for all competitors on different dataset
settings is in Table

11. Examples of label proportion error estimation is given in Figure 2?.

12. Examples of 7-sne embeddings on the VisDA-3 problem, given in Figure[/|illustrating the
features obtained by DANN, WDg = 1, IW-WD and MARSc.

8 Theoretical and algorithmic details

8.1 Lemma 1 and its proof

Lemma 1. For all p¥., p% and for any continuous class-conditional density distribution plg and plj"«
such that for all z and k, we have ps(z|ly = k) > 0 and ps(y = k) > 0. the following inequality
holds.

suplw(2)Sk(2)] > 1

g9 — y=k
with Si(z) = % and w(z) = Zg:k, if z is of class k.
S Lo S

k
Proof. Let first show that for any k the ratio sup, —{ > 1. Suppose that there does not exist a z such

that p L > 1. This means that : Vz pT < pk &. By integrating those positive and continuous functions
on thelr domains lead to the contrad1ct10n that the integral of one of them i 1s not equal to 1. Hence,

there must exists a z such that ;% > 1. Hence, we indeed have ratio sup, z—f > 1.
S S

y=k
Using a similar reasoning, we can show that sup, % > 1. For a sake of completeness, we
Ps

provide it here. Assume that Vk, p%,ﬁzk < pg:k. We thus have ), p%’p:k <> pg=’€. Since noth
sums should be equal to 1 leads to a contradiction.

By exploiting these two inequalities, we have :

sup[w(z)Sk(2)] = stllp {w(z) sup Sk(z)] >supw(z) > 1

k,z k

12



8.2 Theorem 1 and its proof

Theorem 1. Under the assumption of Lemma |l| and assuming that any function h € H is K-
Lipschitz and g is a continuous function then for every function h and g, we have

er(hog, ) < es(hog, f)+2K-W D1 (pE, p5)+ |1 + supw(z)Sk(z))

k,z

ES(h*og7f)+E§1(fga f’jq“)

where Si(z) and w(z) are as defined in Lemma h* = argming,c, es(hog; f) and e%.(f2, f4) =
E.mps [l f7(2) = £5(2)]]

Proof. At first, let us remind the following result due to|Shen et al|(2018). Given two probability
distributions p% and p7., we have

es(h,h') —5(h,h') < 2K - WD (p§, p7)
for every hypothesis h, A’ in H. Then, we have the following bound for the target error

er(hog, f) <er(hog,h*)+er(h*og,f) 5)
<er(hog,h*)+es(hog,h*) —eg(hog,h*)+er(h*og,f) (6)
<es(hog,h*) +er(h*og, f)+2K - WDi(p§,p7) @)
= e5(h, ") +e(h*, f7) + 2K - WDy (p§, p7) ()
<eg(h, f&) +es(h*, £§) + &5 (h*, f1) + 2K - WD1(p§, p7) ©))
<eg(h, f§) +es(h*, £§) + 7 (h*, &) + e7(f§, [7) + 2K - WD1(pg, p7) (10)

where the lines (8), @), (I0) have been obtained using triangle inequality, Line (7) by applying
Shen’s et al. above inequality, Line (§) by using e7(h o g, f) = €f,(h, f{}). Now, let us analyze the
term e (h*, f&) + €%(h*, f%). Denote as r5(z) = |h*(z) — f&(z)|. Hence, we have

S0 D + <0 8) = [ rs()h:) + pha))ds (a1
=S rstr=b) [ rsCGlr =B+ =S ) a2)

k
< <1 + s;p[w(z)SMz)]) es(h*, f3) (13)

where Line (I2) has been obtaine by expanding marginal distriutions. Merging the last inequality
into Equation concludes the proof. O

8.3 Proposition 1 and its proof

Proposition 1. Denote as v = é ch:l (5p_g and = % ZJC:1 Pl representing respectively the
class-conditional probabilities in source and target domain. Given D a distance over probability
distributions, Assume that for any permutation o of C' elements, the following assumption, known
as the D-cyclical monotonicity relation, holds

ZDpstpT <ZD "p;(J)

then solving the optimal transport problem between v and 1 as defined in equation (3) using D as
the ground cost matches correctly class-conditional probabilities.

Proof. The solution P* of the OT problem lies on an extremal point of II-. Birkhoff’s theorem
Birkhoff (1946)) states that the set of extremal points of I is the set of permutation matrices so that
there exists an optimal solution of the form ¢* : [1,---,C] — [1,---,C]. The support of P* i

D- cychcally monotone (Ambros10 & Gigli, 2013; Santambrog1o 2015) (Theorem 1.38), rneamng

that Z D(pl, p5 9y < Z D(pl, p79),Yo # o*. Then, by hypothesis, o* can be identified

to the 1dent1ty permutation, and solving the optimal assignment problem matches correctly class-
conditional probabilities. O
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8.4 Proposition 2 and its proof

Proposition 2. Denote as v the optimal coupling plan for distributions v and p with balanced
iti — 1y¢ . _ 1 xC _ . . .

class-conditionals such that v = & =1 5pys and p = & =1 5pJT under assumptions given in

Proposition || Assume that the classes are ordered so that we have v = %diag(]l) then v =

diag(a) is also optimal for the transportation problem with marginals V' = Zle

Zf:1 a;6,;, with a; > 0,Vj. In addition, if the Wasserstein distance between v and i is 0, it
T

implies that the distance between class-conditionals are all 0.

ajépé and @' =

Proof. By assumption and without loss of generality, the class-conditionals are arranged so that vy =
%diag(]l). Because the weights in the marginals are not uniform anymore, -y is not a feasible solution
for the OT problem with v/ and p/ but v/ = diag(a) is. Let us now show that any feasible non-
diagonal plan T" has higher cost than +' and thus is not optimal. At first, consider any permutation
o of C' elements and its corresponding permutation matrix P,, because v = édiag(]l) is optimal,
the cyclical monotonicity relation ) 3, D; ; < >, D; ,(;y holds true Vo. Starting from v = diag(a),
any direction A, = —I+ P, is a feasible direction (it does not violate the marginal constraints) and
due to the cyclical monotonicity, any move in this direction will increase the cost. Since any non-
diagonal v, € II(a,a) can be reached with a sum of displacements A, (property of the Birkhoff
polytope) it means that the transport cost induced by ~, will always be greater or equal to the cost
for the diagonal +' implying that ' is the solution of the OT problem with marginals a.

As a corollary, it is straightforward to show that W (v/, /) = Zil D;a;, =0 = D;; =0as
a; > 0 by hypothesis. O

8.5 Algorithm for training the full MARS model

We present here the algorithm we have used for training the full model. It is based on a standard
backpropagation strategy using stochatic gradient descent. We estimate the label proportion using
Algorithmand then uses this proportion for computing the importance weights w(-). The first part
of the algorithm consists then in computing the weighted Wassertein distance using gradient penalty
(Gulrajani et al.l [2017). Once this distance is computed, we backpropagated the error through the
parameters of the feature extractor g and the classifier f.

In practice, we first train the model without adaptation (hence only based on the classification loss
with uniform weights, until reaching O training errors and then start adapting as detailed in Algorithm

M

Algorithm 1 Training the full MARS model

Require: {z7,y}, {z!}, number of classes C, batch size B, number of critic iterations n
Ensure: p : label proportion
1: Initialize feature extractor g, the classifier h and the domain critic v(-), with parameters 6y, g,
0
2: repeat
3:  estimate py from {z!} using Algorithm 2] {done every 10 iterations}
4:  sample minibatches {z%, y% }, {z%; } from {z¢, vy} and {z!}
5. compute {w;}<_, based on the source proportion in the batch samples and pr
6
7
8

fort=1,--- ;ndo
zg  g(ag), v < g(a)) ‘ _
sample random points =’ from the lines between z¢ and z! pairs.

9: compute gradient penalty Lorq using x5, 2%, and 2’/
10 compute empirical Wasserstein dual loss L,q = >, w(x§)v(z5) — 5 >, v(zl)
11: HU — (91; + OévVQ,U [de - £grad]
12:  end for

13:  compute the weighted classification loss £,, = >,
14: 0, < 05, + ahVQth

15: 99 — 0g + OngQQ [ﬁw + Lwd]

16: until fdf

w(@i) Ly, )
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9 Experimental Results

9.1 Dataset details

We have considered 4 family of domain adaptation problems based on the digits, Visda, Office-31
and Office-Home dataset. For all these datasets, we have not considered the natural train/test number
of examples, in order to be able to build different label distributions at constant number of examples
(suppose one class has at most 800 examples, if we want that class to represent 80% of the samples,
then we are limited to 1000 samples).

For the digits problem, We have used the MNIST, USPS and the MNITSM datasets. we have
learned the feature extractor from scratch and considered the following train-test number of exam-
ples setting. For MNIST-USPS, USPS-MNIST and MNIST-MNISTM, we have respectively used
60000-3000, 7291-10000, 10000-10000.

The VisDA 2017 problem is a 12-class classification problem with source and target domain being
simulated and real images. We have considerd two sets of problem, a 3-class one (based on the
classes aeroplane, horse and truck) and the full 12-class problem.

The Office-31 is an object categorization problem involving 31 classes with a total of 4652 samples.
There exists 3 domains in the problem based on the source of the images : Amazon (A), DSLR (D)
and WebCam (W). We have considered all possible pairwise source-target domains.

The Office-Home is another object categorization problem involving 65 classes with a total of 15500
samples. There exists 4 domains in the problem based on the source of the images : Art, Product,
Clipart (Clip), Realworld (Real).

For the Visda and Office datasets, we have considered Imagenet pre-trained ResNet-50 features and
our feature extractor (which is a fully-connected feedforword networks) aims at adapting those fea-
tures. We have used pre-trained features freely available at https://github.com/jindongwang/
transferlearning/blob/master/data/dataset .md.

9.2 Architecture details

Toy The feature extractor is a 2 layer fully connected network with 200 units and ReLU activation
function. The classifier is also a 2 layer fully connected network with same number of units and
activation function. Discriminators have 3 layers with same number of units.

Digits For the MNIST-USPS problem, the architecture of our feature extractor is composed of
the two CNN layers with 32 and 20 filters of size 5 x 5 and 2-layer fully connected networks as
discriminators with 100 and 10 units. The feature extractor uses a ReL.U activation function and a
max pooling. For he MNIST-MNISTM adaptation problem we have used the same feature extractor
network and discriminators as in|Ganin & Lempitsky| (2015).

VisDA For the VisDA dataset, we have considered pre-trained 2048 features obtained from a
ResNet-50 followed by 2 fully connected networks with 100 units and ReLU activations. The latent
space is thus of dimension 100. Discriminators and classifiers are also a 2 layer Fully connected
networks with 100 and respectively 1 and “number of class” units.

Office For the office datasets, we have considered pre-trained 2048 features obtained from a
ResNet-50 followed by two fully connected networks with output of 100 and 50 units and ReLU
activations. The latent space is thus of dimension 50. Discriminators and classifiers are also a 2
layer fully connected networks with 50 and respectively 1 and “number of class” units.

For Digits and VisDA and Office applications, all models have been trained using ADAM for 100
iterations with validated learning rate, while for the toy problem, we have used a SGD.
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Table 2: Comparing Source-Only model and GMM+OT approach on the VisDA-3-mode problems.
We can note that for these problems where the latent space is of dimension 100, the GMM+OT
compares poorly to Source-Only. In addition, we can note that there is very high variability in the

performance.

Configuration Source GMM+OT
Setting 1 79.2844.3  81.224+4.7
Setting 4 80.15£5.3  76.28+9.8
Setting 2 81.47+£3.5 74.79+10.4
Setting 3 78.35+43.2  69.97+10.8
Setting 5 83.52+ 3.5 76.95+104
Setting 6 80.84+4.2 72.86+10.2
Setting 7 79.22+£3.7  69.484+9.8

Table 3: Table of the dataset experimental settings. We have considered different domain adaptation
problems and different configurations of the label shift in the source and target domain. For the digits
and VisDA problem, we provide the ratio of samples of classes for each problem (e.g., for the third
setting of VisDA-3 problem, the second class accounts for the 70% of the samples in target domain).
For Office datasets, because of large amount of classes, we have changed percent of samples of that
class in the source or target (e.g., the 10-class in Office Home uses respectively 20% and 100% of
its sample for the source and target domain).

Configuration Proportion Source Proportion Target

MNIST-USPS balanced 516t

MNIST-USPS mid {0,---,3,6} =0.02,{4,5} = 0.02,{7,8,9} = 0.1
MNIST-USPS high {0} =0.3665, {1} = 0.3651,{2,---} = 0.0335

USPS-MNIST balanced
USPS-MNIST mid
USPS-MNIST high

A | o Ay

-5 l-5|-5 5151
SESRSE RSB
e [ e ]

| =}

;
’
)
)
s
5

1

10 710
{0,-++,3,6} = 0.02,{4,5} = 0.02,{7,8,9} = 0.1
{0} = 0.3665, {1} = 0.3651, {2, --- } = 0.0335

MNIST-MNISTM (1)
MNIST-MNISTM (2)
MNIST-MNISTM (3)

fo—4r= 0.0.5', '{5 —9y=0.15
{0—2}=0.26,{3 -9} =0.03
{0— 5} =0.05,{6 — 9} = 0.175

{0,--,3,6] = 0.02,{4,5] = 0.02,{7,8,9} = 0.1
{0—-6} =0.03,{7—9} =0.26
{0—3}=0.175,{4 — 9} = 0.05

VisDA-3 (1) {0.33,0.33,0.34} {0.33,0.33,0.34}
VisDA-3 (2) {0.4,0.2,0.4} {0.2,0.6,0.2}

VisDA-3 (3) {0.4,0.2,0.4} {0.15,0.7,0.15}

VisDA-3 (4) {0.4,0.2,0.4} {0.1,0.8,0.1}

VisDA-3 (5) {0.6,0.2,0.2} {0.2,0.2,0.6}

VisDA-3 (6) {0.6,0.2,0.2} {0.15,0.2,0.65}

VisDA-3 (7) {0.6,0.2,0.2} {0.2,0.65,0.15}
VisDA-12 (1) 55t {5, 5
VisDA-12 (2) S5t {0-3}=0.15,{4— 11} = 0.05
VisDA-12 (3) 5,15t {0-1}=02,{2 -5} =0.1,{6 — 11} = 0.03
Office-31 {0 =15} : 30% {15 — 31} : 80% {0—15} : 80% {15 — 31} : 30%
Office-Home {0 — 32} : 20% {33 — 65} : 100% {0 — 32} : 100% {33 — 65} : 20%
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Figure 3: Examples of source and target domain examples. For each domain, data are composed
of three Gaussians defining each class. In the source domain, classes are balanced whereas in the
target domain, we have a ratio of 0.8,0.1, 0.1. The three configurations presented here vary in their
covariance matrices. From left to right, we have Gaussians that are larger and larger making them
difficult to classify. In the most right examples, the second class of the source domain and the third
one of the target domain are mixed. This region becomes indecidable for our model as the source
loss want to classify it as ”Class 2” while the Wasserstein distance want to match it with ”Class 3”
of the source domain.

Table 4: Table of averaged balanced accuracy for the compared models and different domain adap-
tation models. Number of runs used 20. Reported in bold are the best performances as well as other
methods which achieves performance that are statistically similar according to a Wilcoxon signrank
test with p = 0.01.

Setting Source DANN WDg—o WDg— WDg—2 WDg—3 WDg—4 IW-WD MARSg MARSc
MNIST-USPS 10 modes
Balanced 76.89+£3.7  79.74£35 9371£0.7 7427143 51.33£40  76.61£33 71.90£57  9528+£04  95.61£0.7  95.64£1.0
Mid 80.4143.1  78.65+3.0  94.30+£0.7 75.36+3.4  55.55+4.3 78.9843.1 7232442 95.60+0.5  89.70+23  90.39+2.6
High 78.13+49  81.79+4.0 93.86+1.1 87.44+1.7 83.83+5.2  85.65+2.5 83.65+3.0  94.08+1.0  88.30+1.5  89.65+2.3
USPS-MNIST 10 modes
Balanced 77.04+£2.6  80.49+£22  73.35428 66.70+£29  49.86+2.8 55.83+2.9 5212435 80.52+2.2  84.59+1.7  85.50+2.1
Mid 79.54+2.8 78.88+1.8 75.85+1.6 63.33+2.3 5322428  47.20+24 4829429  7836+3.5  79.73+3.6  78.49+2.5
High 78.48+24  77.79+£2.0  76.144+2.7 63.00+33  57.56+4.8 51.194+4.4 4931433 71.53+4.7  75.62+1.8  77.14+2.4
MNIST-MNISTM 10 modes
Setting 1 5834+1.3  61.22+1.1 57.44+1.7 5020+44 47.01+20  57.85+£l1.1 55.95+1.3 63.10+3.1  58.08+23  56.58+4.6
Setting 2 59.94+1.1  61.09+£1.0 58.08+1.4 53.39+3.5 48.61+24  59.74+£0.7  58.14+0.8  65.03+3.5  57.69+£2.3  55.6442.1
Setting 3 58.14+£1.2  60.39+14 57.68+1.2 47.72+49 42.15+7.3 57.09£1.0  53.524+1.1 52.46+14.8 53.6847.2  53.72+3.3
VisdDA 3 modes
setting 1 79.28+43  78.83+9.1 91.83+0.7 73.78£2.0 61.65£22  65.62+27  58.58+2.6  94.11+0.6 92.47+12 92.13%+1.8
setting 4 80.154+53 7546493  7275+£1.2 86.86+7.5 86.82+12  80.16£6.9  7571+2.0  85.88+5.7  87.69+3.0  91.29+4.8
setting 2 81.474£3.5 68.46+14.7 6881+1.3 8445+£1.2 93.15+04 73.65£142 60.67+£0.9 78.73+10.8 84.04+4.3  91.80+3.4
setting 3 7835432 5893+15.9 64.13£1.9 79.17+£0.8 77.12+10.3  89.93+0.5 94.384+0.3  77.96+9.3  75.68+4.1 73.81+13.2
setting 5 83.5243.5 80.83+14.5 63.82+0.6 73.70+7.3  50.91£1.1 76.52+6.7 59.2841.0  90.40+3.6  89.01+0.9  89.03+3.5
setting 6 80.84+4.2 54.76+19.8 4527424 63.70£5.1 67.05£6.1 42.86+10.8 62.21+14  94.36+1.0 93.70+0.4  93.86+1.0
setting 7 79.2243.7 4294425 57.51+1.5 5539+42.0 50.22443  43.6648.3 6247408  88.52+4.9 7856432  82.33+7.5
VisdDA 12 modes
setting 1 41.90+1.5  5279+2.1 4581443 4423430 3545+4.6  40.96+3.0 3759434  5035+2.3 5331409  55.05+1.6
setting 2 41.75+£15  50.82+£1.6  45.72489 40.49+4.8  36.21+£5.0  36.12+4.6  31.86£57  48.59+1.8  53.09+1.6  55.33+1.6
setting 3 40.644+4.3  49.17+1.3  47.12+1.6  42.10+3.0 3632444  37.26+3.5 34.96+£54  46.59+13  50.78+1.6  52.08+1.2
Office 31
A-D 7373£14  7426%+18  77.2240.7 65.10£2.0 62.65+2.6 T1.47£1.2 63.89+1.1 75.74£1.6 76.07£0.9 78.20+1.3
D-wW 83.64+1.1  81.89+1.5 82.61+0.6 83.53+0.8  82.80+0.7 80.10+0.5 87.09+0.9  78.93+1.5  86.32+0.6  86.20+0.8
W-A 54.05£0.9  52.16+£1.0 48.94+04 56.81£04  53.02+0.5 58.83+0.4  54.93+0.5 5223407  60.68+0.8  55.18+0.8
W-D 9276+0.9  87.64+1.4  9507+0.3 93.13+£0.5 87.60+0.9  94.69+0.6  91.18+0.6  97.04+0.9  95.14+0.8  93.80+0.6
D-A 52.51+£0.9 48.06+12  49.78+04 48.75+0.5 50.13+£0.4  50.28+0.7  50.75+0.5 41.39+1.8  54.65+0.9  54.95+0.9
A-W 674515 70.15£1.0 67.07+0.6 60.62+2.1 52.92+14  63.98+1.3 59.73£0.8  68.76+1.6  73.09+1.5 71.90+1.2
Office Home
Art - Clip 37.66£0.7 36.85+£0.6 33.42+1.2 31.43£1.6 27.13£1.6 31.63£52 29.30+6.6 37.65£0.6 37.58+£0.5  38.65+0.5
Art-Product  49.724+0.9  49.98+0.9  39.43+3.6 38.82+2.3  35.05+2.3 35.0943.4  32.85+£3.6  48.98+0.3  55.27+0.7  52.18+0.4
Art - Real 5822+1.0 53.68+0.5 51.09+2.3 50.35+£1.8 46.40+2.4  51.52+4.5 45.34411.0 57.74+0.7  63.88+£0.5  58.75+0.7
Clip - Art 3529+1.4  3570+15 2892429 23.13+£2.0 18.37%1.5 21.9543.1 20.4442.3 28.74+12  41.15+0.6  40.73+0.8
Clip - Product ~ 51.94+1.3  52.06+0.8  39.17+£7.9 39.26+£2.6 34.73+19  39.58+2.8  39.46+29  34.464+2.1 51.69+0.5 52.12+0.5
Clip - Real 50.65+£1.2  51.42+1.0 4324422 40.06+£2.1 32.71+14 3922424  35.78+28 35.72+1.1  53.97+£03  56.631+0.5
Product - Art  39.59+1.6  39.47+1.5 39.17+£1.0 36.11+£1.0 38.77+1.1 39.504+0.6  38.24+0.6  33.95+1.4  37.77+1.1  39.31+1.3
Product-Clip  32.71£0.9  37.18+1.0  33.82+£0.5 28.38+0.7 28.40+0.6  29.72+0.5 31.76+£0.8  24.89+1.0  30.86+0.8  29.25+0.9
Product - Real ~ 62.12+1.3  62.52+1.2  62.56+0.7 58.09+0.5 57.58+0.6  59.33£0.6  57.114+0.8  59.224+09  60.48+£0.6  62.20+0.7
Real - Product  68.30£1.0  70.39+0.8  70.19+0.5 61.72+0.8 63.40+09  61.51£1.0 6545+0.6  64.47+15 64.79+£3.6  66.49+1.1
Real - Art 40.25+0.9  41.31+£1.0  39.16+0.7 33.46+13 31.61£l.5 36.90+0.9  36.14+0.9  36.93+£1.9  39.90+1.4  39.17+1.6
Real - Clip 42.74+1.1  40.86+1.0 4042405 35.594+0.8 34.90+0.9  40.4240.5 35.644+0.8  35.60+2.0  38.6942.1 38.82+2.5
#Wins (/34) 7 9 5 0 1 0 2 9 2 21
Aver. Rank 4.16 4.73 5.32 6.97 8.38 6.59 7.57 4.95 3.38 2.95
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Figure 4: Example of geometrical arrangments of the source and target class-conditional distribu-
tions that allows correct and incorrect matching of classes by optimal transport of empirical means
(assuming correct estimation of these means). Blue lines denote the matching. (top-left) In this
setting, the displacements of each class-conditionals is so that for each class i ||m} — mk |2 <
[m% — m? |2, for all j. We are thus in the first example that we gave as satisfying Proposition
1. (top-right) Class-conditionals have been displaced such that the “nearness” hypothesis is not re-
spected anymore. However, they have been mapped through an operator such that optimal transport
allows their matchings (based on their means). (middle) We have illustrated two other examples of
distribution arrangments that allow class matching. (right) Two examples that break our assump-
tion. In both cases, one target class-conditional is “near” another source class, without the global
displacements of all target class-conditionals being uniform in direction.
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Figure 5: Performance of the compared algorithms in different label shift setting and for increasing
shift between means of class-conditionals. In source domain, label distributions are uniform and
shift occurs due to change only in the target domain. (left) pr(y = 1) = 0.33, pr(y = 2) = 0.33,
pr(y = 3) = 0.34. (middle) pr(y = 1) = 0.5, pr(y = 2) = 0.2, pr(y = 3) = 0.2, (right)
pr(y = 1) = 0.8, pr(y = 2) = 0.1, pr(y = 3) = 0.1. For balanced problems, we note
that best methods are WDg_,1}, DANN and our approaches either using GMM or clustering for
estimating label proportion. As expected, a too heavy reweighting yields to poor performance for
WDg_2,3.4). Then for a mild imbalance, WDg_; 5} performs better than the other competitors
while for higher imbalance, WDg_(3 43 works better. For all settings, our methods are competitive
as they are adaptive to the imbalance through the estimation fo pr(y). The IW-WD of
performs well until the distance between class-conditionals is too large. This is justified by
theory as their estimator of the ratio pr(y)/ps(y) is tailored for situations where class-conditionals
are equal.
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Figure 6: Performance of the compared algorithms, including GMM+OT for three different covari-
ance matrices of the Gaussians composing the toy dataset with respect to the imbalance. The shift
between the class-conditionals has been fixed and yields to samples similar to those presented in
Figure[3] Our method is referred as MARS. The x-axis is given with respect to the ratio of majority
class which is the class 1. (left) Low-error setting. (middle) mid-error setting. (right) high-error
setting. material. We note that this toy problem can be easily solved using a GMM and a optimal
transport-based label assignment. We can also remark that again as soon as the class-conditionals

do not match anymore, the IW-WD of [Combes et al] (2020) fails due to its inability to estimate
correctly the importance weight w. .
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Figure 7: t-sne embeddings of the target sample for the VisDA-3 problem and imbalance setting 2
(ps = [0.4,0.2,0.4] and py = [0.2,0.6,0.2]). The columns depict the embeddings obtained (left)
after training on the source data without adaptation for about 10 iterations, which is sufficient for
0 training error. (right) after adaptation by minimizing the appropriate discrepancy loss between
marginal distributions. From top to bottom, we have : (first-row) DANN, (second-row) WDg_1,
(third-row), IW-WD (last row) MARSc. From the right column, we note how DANN and WDg_
struggles in aligning the class conditionals, especially those of Class 1, which is the class that varies
the most in term of label proportion. IW-WD manages to aligns the classes “0” and “2” but is not
able to correctly match the class “1”. Instead, our MARSc approach achieves high performance
and correctly aligns the class conditionals, although some few examples seem to be mis-classified.
Importantly, we can remark from the left column that for this example, before alignment, the em-
beddings seem to satisfy our Proposition 1 hypothesis. At the contrary, the assumption needed for
correctly estimating pr for IW-WD is not satisfied, justifying thus the good and poor performance
of those models.
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