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Adaptive approximation control of biped robots: a low-level tracking control layer

The adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matrices are obtained by the Lyapunov-like design. However, one of the inherent limitations of this category of approximation is curse dimensionality associated with the approximation of uncertain matrix. There are three possible representations for the approximation of the uncertain matrix: Kronecker product, sparse matrices, and GL operator. Both Kronecker product and sparse matrices can grow exponentially with the dimension of the target matrix, whereas GL operator can grow linearly but without the use of conventional operations of matrices. In light of the above, this report proposes a simple representation for the approximation of the uncertain matrix. The proposed representation is directly linear with respect to the dimension of the target matrix using the conventional operations of matrices. Two case studies are simulated which are two-link manipulator and 6-link biped robots during the complete gait cycles (single support phase and double support phase). The results show that for low dimension robotic manipulators, all representations can be conducted equivalently. There is no large difference in view of simulation time, whereas for higher degrees of freedom robots the GL operator and the proposed representation are superior in view of simulation time.

Dynamic modeling

Humans have perfect mobility with amazing control systems; they are extremely versatile with smooth locomotion. However, comprehensive understanding of the human locomotion is still not entirely analyzed. Please see [Hay19, Hay18/1, Hay18/2, Hay18/3,Hay18/4, Hay17/1, Hay17/2, Hay16, Hay15, Hay14, Hay14/1, Hay14/2, Hay14/3, Hay14/4, Hay13/1, Hay13/2, Hay13/3, Sam08] for more details on dynamics, walking pattern generators and control of biped locomotion (biped robots, lower-extremity exoskeletons, prosthetics, etc.). To dynamically model the ZMP-based biped mechanisms, the following points should be taken into consideration:  As mentioned earlier, biped robots are kinematically varying mechanisms such that they could be fully actuated during the SSP and over-actuated during the DSP. If we assume the biped robot as fixed-base mechanism, the dynamic modeling and control strategies of fixed-base manipulators can be used efficiently.

 Dealing with unilateral contact of the foot-ground interaction as a passive joint (rigidto-rigid contact) or as compliant model (penalty-based approach).

 Reducing the number of links/joints of the target biped as possible. But, they can still have more than 6 DOFs resulting in computational problems of advanced control systems.

 Reducing the walking phases as much as possible. In general, the designer could select one or more of the walking patterns, e.g., most conventional ZMP-based biped robots can walk with two substantial walking phases: the SSP and the DSP. Adjustments of the walking patterns are possible by modification of foot design as described in [START_REF] Sato | Trajectory planning and control for biped robot with toe and heel joint[END_REF].

 Most ZMP-based biped robots walks with flat swing /stance feet all the time; this can facilitate the analysis of biped locomotion by reducing walking phases to exactly two phases: the SSP and the DSP (see [START_REF] Vanderborght | Overview of the Lucy project: Dynamic stabilization of a biped powered by pneumatic artificial muscles[END_REF]). However, heel-off/toe-off sub-phases can offer better characteristics but with careful analysis.

Consequently, this chapter deals with modeling of the ZMP-based biped robot as a fixed-base robot with rigid foot-ground interaction. Euler-Lagrange E-L equations are described in some details for dynamic modeling of the biped during different walking phases. Problems of overactuation and discontinuous behavior due to locomotion phase transitions are resolved.

The remainder of this chapter is organized as follows. Selection of the walking patterns suggested throughout the current report is presented in Section 1.1. Section 1.2 deals with detailed modeling of biped robot using the E-L equations.

Selection of walking patterns

Despite different walking patterns can be constructed according to point view of the designer; generally, two walking patterns will be investigated throughout the current report. This chapter is interested in dynamic modeling of these walking patterns. The details of the DOFs for the referred walking patterns are as follows.

(i) According to Fig. 1-1 (a), the walking pattern 1 has six generalized coordinates without constraints; the biped behaves as an open-chain mechanism. Consequently, the biped has 6 DOFs in this walking phase with six links (neglecting the stance-foot link).

Whereas, it has seven generalized coordinates with seven links during the DSP due to the rotation of the front foot, but with two constraints equations; the tips of the front and rear feet are fixed(see Fig. 1-1). Consequently, the biped has 5 DOFs during this constrained walking phase, DSP, with 6 actuators (over-actuated system). (ii) The walking pattern 2 has also 6 DOFs with six links during the SSP; it has the same configuration of walking pattern 1. The first sub-phase of DSP (henceforth called DSP1) has 6 generalized coordinates with two constraint equations; therefore, the biped has 4 DOFs with 6 actuators (over-actuated system). During the second sub-phase of DSP (henceforth called DSP2), similar configurations of that of DSP1 appear and consequently the biped has 4 DOFs and 6 actuators. Both DSP1 and DSP2 have 6 links as shown in Fig. 1-2 (a) and (b) respectively. 

Dynamic modeling

Two approaches are commonly used to obtain the differential equations of motions: E-L and N-E formulations. Depending on the purpose of the analyzer/designer, various forms of modified formulations have been conducted such as recursive E-L equations [START_REF] Hollerbach | A recursive lagrangian formulation of manipulator dynamics and comparative study of dynamics formulation complexity[END_REF], recursive N-E formulation [START_REF] Featherstone | The calculation of robot dynamics using articulated-body inertias[END_REF], and generalized D'Alembert (G-D) formulation [START_REF] Lee | Development of the generalized d'Alembert equations of motions for mechanical manipulators[END_REF]. This chapter concentrates on formulating the dynamic equations that are suitable for adaptive control purposes. Throughout the current analysis, the following assumptions have been proposed.

Assumption 1-1. The stance foot, link (1), is in full contact with the ground during the SSP; therefore, its dynamics could be neglected in such case [START_REF] Chevallereau | Bipedal Robots, Modeling , design and building walking robots[END_REF].

Assumption 1-2. The foot-ground contact is rigid-to-rigid contact. Accordingly, the tips of the feet (in case of foot rotation) are assumed passive joints.

Assumption 1-3.There are only two substantial walking phases, the SSP and the DSP, with possibly sub-phases during the DSP. The instantaneous impact event is avoided by making the swing foot contact the ground with zero velocity (disadvantage of zero end velocity at impact is the higher energy consumption due to need for braking in swing leg.

In biped systems, three important aspects should be taken into consideration [START_REF] Chen | Optimal force distribution for the legs of a quadruped robot[END_REF] (i) Preventing the biped legs from slippage.

(ii) Avoiding discontinuities of the ground reaction forces which can result in discontinuities of the actuator torques as detailed in Section 1.2.3 (iii) Concentrating on the adaptive control of the biped robot associated with less computational complexity.

Although the E-L equations can provide closed-form state equations suitable to advanced control strategies, their computational complexity, unless it is simplified, could be inefficient for analysis/control of complex robotic system (more than 6 DOFs) [START_REF] Zhu | Virtual decomposition control: towards hyper degrees of freedom[END_REF]. In fact, E-L formulation could be used recursively [START_REF] Hollerbach | A recursive lagrangian formulation of manipulator dynamics and comparative study of dynamics formulation complexity[END_REF]; it has been equivalent to recursive N-E formulation in most all aspects [Spo89]. In general, the computational complexity of E-L, N-E and G-D are ( ) ( ), ( ) and ( ) respectively. Below we present modeling of biped robot during the two phases: the SSP and the DSP with two different kinds of Lagrange equations.

E-L equations of the second kind (the SSP)

The E-L equations for open chain mechanism (biped robot during the SSP) can be expressed as

̇ - = ( = 1, 2, … … , )
Eq. 1-1

where is Lagrangian function which is equal to the kinetic energy of the robotic system ( ) minus its potential energy ( ), denotes the generalized coordinates of link (i), and ̇ is the derivative of the generalized coordinates.

The generalized coordinates are a set of coordinates that completely describes the location (configuration) of the dynamic systems relative to some reference configuration [Fu87]. There are many choices to select these generalized coordinates; however, the joint/link displacements are proved being suitable in case of robotic systems. If the number of these generalized coordinates is equal to the degrees of freedom of the target system, then Eq. 1-1 is valid; Eq. 1-1 is called Lagrange equations of the second kind and it suitable for open-chain mechanism. Solution of Eq. 1-1 can result in the following second order differential equations. where ∈ ℝ × is the mass matrix, , ̇ and ̈∈ ℝ are the absolute angular displacement, velocity and acceleration of the robot links, ∈ ℝ × represents the Coriolis and centripetal robot matrix, ∈ ℝ × is the gravity vector, ∈ ℝ × is a mapping matrix derived by the principle of the virtual work [START_REF] Hamon | Cross four-bar linkage for the knees of a planar bipedal robot[END_REF], ∈ ℝ × is the actuating torque vector, represents the number of actuators, and ∈ ℝ × represents the dissipative torques resulted from joint friction.

In the following, some details are presented to determine the dynamic coefficient matrices of Eq. 1-2.

(i) Inertia matrix

The derivation, structure and properties of the mass matrix ( ) can be obtained from the total kinetic energy of the biped system. The velocity wrench, ∈ ℝ × , of link ( ) can be expressed in term of Jacobian matrices as follows [Spo89, Fu87]. The total kinetic energy of -DOF robotic system can be expressed as

= + = 1 2 ̇ ( ) ̇+ 1 2 ̇ ( ) ̇= 1 2 ̇ ̇ Eq. 1-4
where is the inertia tensor of link ( ) relative to the inertial coordinate frame; it is a configuration-dependent parameter. Using similarity transformation [Spo89], it is necessary to express the inertia tensor in terms of body frame to get the configuration-free inertia tensor, , as follows

= ( ) ( ) Eq. 1-5
Thus, the mass matrix of the biped mechanism can be defined as

= + ( ) ( )
Eq. 1-6

(ii) Coriolis and centripetal terms

Following the detailed derivation of [Spo89, Fu87], without showing the details here, the ( , ) element of the Coriolis and centripetal matrix can be defined as

= ∑ + - ̇ ( , = 1,2, … . , ) Eq. 1-7
with denotes an element of mass matrix with row index, , and column index, .

(iii)Gravity term This term can be derived from the total potential energy of the biped system as follows.

= Eq. 1-8

where denotes the gravitational acceleration vector of link ( ); for plane system it is equal to [ 0 -9.81 0 ] . Every element of the gravitational term of Eq. 1-2 can be expressed as

= - ( = 1,2, … … . , )
Eq. 1-9

(iv) The mapping matrix This mapping (coordinates transformation) matrix can be determined by the principle of the virtual work. The virtual work, , of the generalized link torques acting on the biped system can be expressed in terms of generalized link coordinates as [START_REF] Shabana | Computational dynamics[END_REF] = + + ⋯ + Eq. 1-10

with denote the generalized torque of link ( ) associated with its generalized coordinate, .

Eq. 1-10 can be re-written in a vector form as

= Eq. 1-11
Let ∈ ℝ be the generalized joint coordinates; thus, we can get a linear relationship between links and joint coordinates as follows.

= Eq. 1-12

Substituting Eq. 1-12 into Eq. 1-11, we have = Eq. 1-13 = Eq. 1-14

Remark 1-1. Alternatively, the matrix can be found simply according to the principle of freebody diagram as done in [START_REF] Vanderborght | Overview of the Lucy project: Dynamic stabilization of a biped powered by pneumatic artificial muscles[END_REF].

(v) Friction torques and other disturbance sources

In effect, the friction terms are complex and may be modeled approximately using the following form [START_REF] Zhu | Virtual decomposition control: towards hyper degrees of freedom[END_REF] = + + + Eq. 1-15

= ̇ + ̇ + ̇ exp(- ̇ ) + ( = 1,2, … )
where ̇ represents the angular joint velocity of each link, , and denote the Coulomb friction coefficient, viscous friction coefficient, and Stribeck friction effect respectively, and is the friction offset term.

As we see from Eq. 1-15, friction has a local effect; the vector of friction torque is uncoupled.

In the light of the above formulae, Eq. 1-2 can be re-written as

( ) ̈ + ( ) ̇ + ( ) + = ( = 1,2, … , )
Eq. 1-16 with represents the friction torque affecting each link.

Remark 1-2.

There are several fundamental properties of the dynamic coefficient matrices, the mass matrix and the Coriolis and centripetal terms, which could be exploited in controller design of adaptive control; for more details on other properties, refer to [Li13, Spo89].

Property 1-1. The mass matrix ( ) is symmetric and positive definite. This can be deduced from Eq. 1-4 and the property of the kinetic energy.

Property 1-2. The matrix ̇( ) -( , ̇) is skew matrix, if the ( , ̇) matrix is described in terms of Christoffel symbols, Eq. 1-7. Proof of this property can be found in [Spo89].

Property 1-3. The dynamic equations described in Eq. 1-2 are dependent linearly on certain parameters such as link masses, moment of inertia, friction coefficients etc.; consequently

( ) ̈+ ( , ̇) ̇+ ( ) + = ( , ̇, ̈) Eq. 1-17
where ( , ̇, ̈) ∈ ℝ × is called the regressor matrix, a function of the known generalized coordinates and their first two derivatives, and ∈ ℝ denotes the vector of unknown biped parameters.

Selection of is not unique, and it is difficult to find minimal set of these parameters [Spo89].

Eq. 1-17 is very important to adaptive control.

The E-L equations of the first kind (the DSP)

As mentioned earlier, the biped mechanism constitutes a closed chain with over-actuation during the DSP. Therefore, the Lagrange formulation of the 1 st kind, which can deals with constraints, is needed for dynamic modeling of the constrained biped. In such case, the motion equations are represented by redundant coordinates resulting in differential algebraic equations DAEs. The algebraic equations result from the constraints derived from the kinematics [START_REF] Tsai | Robot analysis: the mechanics of serial and parallel manipulators[END_REF]. The constraints can be easily incorporated into the main equations using Lagrange multipliers. The Lagrange equations of the biped robot during the DSP can be defined as

̇ - = + ∑ ( = 1, 2, … … . . , ) Eq. 1-18
where denotes the constraint function of each closed loop, is the number of these constraints, is the Lagrange multipliers associated with each constraint. Here is the number of redundant generalized coordinates and equal to the number DOFs ( ) of the biped systems plus the number of constraints( ).

Eq. 1-18 can be solved using two well-known techniques [START_REF] Pennestri | Coordinate reduction strategies in multibody dynamics: a review[END_REF]: the redundant coordinatesbased techniques that are used mainly in commercial software such as MSC ADAMS, and the minimum coordinates-based techniques which could be, to some extent, suitable for control strategies and real-time applications. Many researchers have preferred the former technique due to its simplicity and ease of derivation at the expense of difficulties of numerical methods encountered in the solution. Consequently, this motivates the researchers to investigate the second technique that includes eliminating the constraint equations (Lagrange multipliers) from Eq. 1-18 to result in constraint-free differential equations. This can be implemented using one of the orthogonalization methods that are: coordinate partitioning method, zero-eigenvalue method, singular value decomposition (SVD), QR decomposition, Udwadia-Kabala formulation, PUTD method, and Schur decomposition. For more details, see [START_REF] Pennestri | Coordinate reduction strategies in multibody dynamics: a review[END_REF].

Solution of Eq. 1-18 results in

( ) ̈+ ( , ̇) ̇+ ( ) + = + Eq. 1-19 ( ) = Eq. 1-20
with ∈ ℝ is the constraint vector, and ∈ ℝ × = ( ) denotes the Jacobian matrix.

Remark 1-3. The coefficient dynamic matrices (mass matrix, Coriolis and centripetal matrix etc.) of Eq. 1-19 could be determined by the same mathematical formulae defined in the openchain mechanism as in Eq. 1-6 to Eq. 1-8

To reduce the dimension size of Eq. 1-19 (to eliminate ), a relationship between the redundant generalized coordinates ( )and the independent coordinates ( ∈ ℝ ) should be found. In this report, the coordinate partitioning is used for size reduction of the equation of motion [START_REF] Mitobe | Control of a biped walking robot during the double support phase[END_REF].

Twice differentiating Eq. 1-20 can result in ( ) ̇=

Eq. 1-21

( ) ̈+ ( , ̇) ̇= Eq. 1-22
Due to the redundancy of coordinates in Eq. 1-19, it is possible to express the dependent generalized coordinates in terms of the independent ones as in Eq. 1-23.

= ( )

Eq. 1-23

Twice differentiating Eq. 1-23 yields

̇ = ( ) ̇
Eq. 1-24

with ( ) ∈ ℝ × = ( ) ̈ = ( ) ̈+ ̇ ( ) ̇ Eq. 1-25
Blocking together Eq. 1-21 and Eq. 1-24 to get

( ) ( ) ̇= ̇ Eq. 1-26
Thus, it is possible to get the following important relations

̇= ( ) ( ) ̇ = [ ] ̇ = ( ) ̇ Eq. 1-27
The matrix ∈ ℝ × plays an important role in eliminating ; the following orthogonality condition holds

( ) ( ) = Eq. 1-28
Differentiating Eq. 1-27 to obtain

̈= ( ) ̈ + ̇( , ̇) ̇ Eq. 1-29
Substituting Eq. 1-27 and Eq. 1-29 into Eq. 1-19 to get

( ) ( ) ̈ + ̇( , ̇) ̇ + ( , ̇) ( ) ̇ + ( ) + = + ( )
Eq. 1-30

Alternatively, Eq. 1-30 can be re-written as

( ) ̈ + ( , ̇) ̇ + ( ) + = + ( ) Eq. 1-31 with ( ) = ( ) ( ), ( , ̇) = ( ) ̇( , ̇) + ( , ̇) ( ) Eq. 1-32
Using Eq. 1-27 and Eq. 1-30 can yield

= ( ) ( ( ) ̈ + ( , ̇) ̇ + ( ) + -)
Eq. 1-33

Exploiting Eq. 1-28 and pre-multiplying Eq. 1-31 by ( ) to obtain

( ) ( ) ̈ + ( ) ( , ̇) ̇ + ( ) ( ) + ( ) = ( ) Eq. 1-34
Remark 1-4. Although most researchers have written the matrices, ( ), ( ), and ( , ̇), in terms of the independent coordinates ( ), these matrices still contain the dependent coordinates ( ). Therefore, we have expressed the mentioned matrices in terms of the last coordinates.

Remark 1-5. The matrix ( ) is not unique; the orthogonalization methods mentioned at the beginning of this subsection are used to get the matrix ( ). Pennesri and Valentini [START_REF] Pennestri | Coordinate reduction strategies in multibody dynamics: a review[END_REF] simulated simple pendulum to compare the computational complexity of these orthogonalization methods. QR decomposition ranked best among the other methods. However, all these techniques could be computationally unsuitable to deal with the advanced adaptive control.

Remark 1-6. Eq. 1-31 has the same properties of that of Eq. 1-2 as follows [START_REF] Su | Adaptive control of robot manipulators under constrained motion[END_REF].

Property 1-4. Let ( ) = ( ) ( ), ( , ̇) = ( ) ( , ̇), then the matrix

( , ̇) = ̇( , ̇) - ( , ̇) is skew-matrix. Proof. Let = ̇-2
Eq. 1-35

By substituting Eq. 1-32 into Eq. 1-35 we get

= ̇ + ̇ + ̇-2 ̇- = ̇-2 + ̇ - ̇= ̇-2
Eq. 1-36

Since ̇-2 is skew-matrix according to Property 1-1, then is also skew-matrix.

Property 1-5. The orthogonality condition is satisfied by the matrix ( ) such that Eq. 1-28 holds.

Proof. From Eq. 1-21 and substituting Eq. 1-27, we have

̇ = Eq. 1-37
Since ̇ is linearly independent, then

= =0 Eq. 1-38
Property 1-6. If ( ) is known, then the left hand side of Eq. 1-31 are linearly dependent on the unknown biped parameters (the same Property 1-3).

Continuous dynamic response

One of the inherent problems of legged locomotion (bipeds, quadrupeds, etc.) is the discontinuity at the transition instances due to: (i) impact events; these can be avoided by setting the foot velocity equal to zero at the instance of contact, and (ii) varying configurations of the biped from the SSP to the DSP and vice versa. As said previously in Section 1.1, the number of actuators is more than the DOFs of the biped during the constrained DSP. This means that there are infinity combinations of actuator torques to drive the biped systems as explained below.

In Chapter 5, we will use the optimal control to generate suboptimal walking patterns for the biped. We dealt with DAEs to solve Eq. 1-19 and Eq. 1-20; the details will be clear in the mentioned chapter. One of the methods for determining the actuating torques and the ground reaction forces is the pseudo-inverse matrix as follows.

Eq. 1-19 can be re-arranged to yield

( ) ̈+ ( , ̇) ̇+ ( ) + = [ ( ) ]
Eq. 1-39

One of the possible solutions to get the actuating torques and Lagrange multipliers are

= [ ] ( ( ) ̈+ ( , ̇) ̇+ ( ) + ) Eq. 1-40
where the notation [. ] denotes the pseudo-inverse of the referred matrix.

As seen from Eq. 1-40, there is no guarantee that and have the same values at the start/end of the SSP due to this optimization solution. Therefore, the following assumption is proposed to resolve this dilemma.

Assumption 1-4. Because the biped robot does not have a unique solution during the DSP, a linear transition function could be proposed for the ground reaction forces [START_REF] Koopman | An inverse dynamics model for the analysis, reconstruction and prediction of bipedal walking[END_REF]. Thus, for the front foot

= - - ( ̈ + [0, , 0] ) Eq. 1-41
where , and are time parameter, the time of SSP, and the DSP time. Meanwhile, the ground reaction forces, , of the rear foot are

= ( ̈ + [0, , 0] ) -

Eq. 1-42

Accordingly, at the initial instance of DSP, = , and the full ground reaction forces are supported by the rear foot, whereas, at the end of the DSP, the full support appears to be in the front foot with = . On the other hand, because COG acceleration of the biped is nonlinear, the resulted ground reaction forces from Eq. 1-41 can generate nonlinear profile despite of multiplication of the latter equation with linear scaling function.

Adaptive approximation control: low-level control layer

In effect, there are two essential control techniques dealing with plants where their parameters are uncertain (unknown): (1) robust control, and (2) adaptive control [START_REF] Farrell | Adaptive approximation based control: Unifying neural, fuzzy and traditional adaptive approximation approach[END_REF]. The robust control deals with bounded uncertainty, and is designed to stabilize the target system for any uncertainty within the assumed bounds. In contrast to robust control, adaptive control attempts to estimate the uncertain parameters, and design control law depending on the estimated parameters [START_REF] Farrell | Adaptive approximation based control: Unifying neural, fuzzy and traditional adaptive approximation approach[END_REF]. In general, adaptive control can be viewed as being composed of two parts [START_REF] Craig | Adaptive control of mechanical manipulators[END_REF]:

(1) An identification portion, which identifies parameters of the plant.

(2) A control law portion, which implements a control law that is in some way a function of the parameters indentified.

For brief history on adaptive control, refer to [START_REF] Craig | Adaptive control of mechanical manipulators[END_REF]. This chapter is concerned with adaptive control of biped robot during complete gait cycle taking friction and external disturbances into consideration.

Most researchers adopt regressor approach as a basis to design their adaptive control law [Spo89]. It should be pointed out that the regressor approach may pose difficulty in practical implementation due to computational complexity of the regressor matrix that embodies full dynamics of the robotic system [START_REF] Song | Adaptive motion tracking control of robot manipulators-non-regressor based approach[END_REF]. Therefore, much attention has been focused to evade the regressor computations, see [START_REF] Song | Adaptive motion tracking control of robot manipulators-non-regressor based approach[END_REF] and the references therein. The function approximation technique (FAT) is an essential tool for approximating the uncertain parameters of the dynamic system without using regressor matrix. It has been used successfully for low dimensional robotic systems without considering computational complexity of the proposed algorithms [START_REF] Huang | Adaptive control of robot manipulators: a unified regressor-free approach[END_REF]. In general, there are two essential techniques used for approximation purposes: global approximation [START_REF] Lewis | Multilayer neural net robot controller with guaranteed tracking performance[END_REF][START_REF] Liu | Radial basis function (RBF) neural network control for mechanical systems: Design, analysis and Matlab simulation[END_REF], and local approximation techniques [START_REF] Liu | Radial basis function (RBF) neural network control for mechanical systems: Design, analysis and Matlab simulation[END_REF]. The former approximation technique suggests collecting all uncertain parameters in one vector term. Then this vector can easily be approximated using miscellaneous approximators (splines, orthogonal functions etc.). Its main drawback is the need for nominal model. On the other hand, local approximation technique tries to approximate each dynamic matrix and vector (mass and Coriolis matrices, gravity vector, friction vector etc.) separately. However, approximation of the dynamic matrices using the product of transpose of the weighting and the basis function matrices poses some computational difficulty. [START_REF] Lewis | Multilayer neural net robot controller with guaranteed tracking performance[END_REF] have suggested to use Kronecker product to solve the above problem, while Ge and Lee [START_REF] Ge | Adaptive neural network control of robotic manipulators[END_REF] have proposed their own matrix called G-L matrix having special properties. Huang and Chien [START_REF] Huang | Adaptive control of robot manipulators: a unified regressor-free approach[END_REF] have used sparse matrices to deal with approximation of the target matrices. Fortunately, we have found that there is no need to all above representations (Kronecker product etc.) if the analyst intends to use equal number of basis functions for each element of the dynamic matrices; the approximation can be made by conventional product of the transpose of the weighting and basis matrices. The details will be introduced in details in this chapter with proofs.

The organization of this chapter is as follows. Section 2.1 introduces a review of regressor-based adaptive control for robot manipulators. Whereas, FAT-based adaptive control of biped robot is presented in Section 2.2. Simulation results and discussions are described in Section 2.3. Section 2.4 concludes.

Review of regressor-based adaptive control

This section introduces briefly some non-adaptive and adaptive techniques based on regressor matrix. An open-chain mechanism will be adopted as an example to design the required control law. A detailed study of our target biped will be presented in the next section considering all walking phases.

Computed torque control

The computed torque control, a special case of feedback linearization, relies on cancellation of nonlinearities of robotic systems by using linear control law which could be easy in case of robotic systems [Spo89]. Below we will describe controller structure and stability analysis for this approach assuming all robot parameters are known (non-adaptive case).

 Controller

Let us consider the non-adaptive case in which the robot parameters are available; the controller structure can be selected as

= ̈ + ( ̇ -̇) + ( -) + ̇+ + Eq. 2-1
with , ∈ ℝ × are diagonal gain matrix (positive definite matrix). As noted from Eq. 2-1, the controller structure is defined as PD controller.

 Stability

Controller structure of Eq. 2-1 is obtained by manipulating the angular link acceleration as

̈= ̈ + ( ̇ -̇) + ( -) Eq. 2-2
which can result in ̈+ ̇+ = Eq. 2-3 with = -. Eq. 2-3 is a linear closed loop control systems that is asymptotically stable depending on selection of the suitable gain matrices.

The disadvantage of the above controller is that it needs knowledge of system parameters that could be difficult to be evaluated especially the friction term.

Adaptive computed torque control

As indicated in Property 1-3 (Eq. 1-17), the left hand side of the dynamic equation of motion (Eq. 1-2) can be linearly parameterized as a known regressor matrix ( , , ̇ ̈) multiplied by unknown parameter vector , see Eq. 1-17. This property is important in formulation of regressor-based adaptive control.

 Controller.

Depending on the computed torque control mentioned previously, the controller structure can be designed as

= ̈ + ( ̇ -̇) + ( -) + ̇+ + Eq. 2-4
where , , , are estimates of the referred matrices respectively.

 Parameter estimation.

Substituting Eq. 2-4 into Eq. 1-2 results in

̈+ ̇+ = ( ̈+ ̇+ + ) Eq. 2-5
where , , , are error matrices of the corresponding matrices due to estimation.

The right hand side of Eq. 2-5 can be linearly parameterized using Property 1-3 as

̈+ ̇+ = ( , ̇, ̈) Eq. 2-6 with = -
The latter equation can be written in state space form as

̇= + ( , ̇, ̈) Eq. 2-7 with = [ ̇ ] ∈ ℝ × , = - - ∈ ℝ × , = ∈ ℝ ×
Let us select the following update adaptive law for the unknown parameter vector

̇= [ ( , ̇, ̈)] Eq. 2-8
where is a symmetric positive definite matrix satisfying the Lyapunov equation

+ = - Eq. 2-9
where is also a symmetric positive definite matrix, for details on the above equation see [Spo89] The update law of Eq. 2-9 should ensure convergence of the estimated parameter vector to the actual one such that Eq. 2-7 converges to Eq. 2-3.

 Stability analysis

It is necessary to prove the convergence stability of tracking errors using Lyapunov theory; let us select the following Lyapunov-like function

= 1 2 + 1 2 Eq. 2-10
Its time derivatives is

̇= - 1 2 - 1 2 ( , ̇, ̈) -̇ Eq. 2-11
Substituting Eq. 2-8, we can get

̇= - 1 2 ≤ 0 Eq. 2-12
Integrating both sides of the above equation

( ) -(0) = - 1 2 < ∞ Eq. 2-13
The tracking error is called square integrable function which, according to Barbalat's Lemma, could tend to zero as → ∞.

Lemma 2-1. (Barbalat's Lemma).

[Spo89] Suppose : ℝ → ℝ is a square integrable function and further suppose that its derivative ̇ is bounded. Then ( ) → 0 as t → ∞.

Consequently Eq. 2-8 to Eq. 2-13, imply that is positive nonincreasing function (bounded function); and are bounded.

 Regressor matrix.

To take insight into the structure of the regressor matrix, let us represent it for 2-link manipulator [Spo89, Hua10] neglecting friction term; see Fig. 2-1 for the used notations. For the same 2-link manipulator, another derivation is possible as shown in [spo89]; consequently, the following points could be concluded:

(i) Derivation of regressor matrix is not unique. (ii)

It embodies the full dynamics of the target system; it is complex for high DOF robotic system. (iii) In real time implementation, the regressor matrix must be recomputed in every control cycle because it depends on position, velocity and acceleration. (iv) All elements of parameter vector are unknown constants and most of them could be determined. (v)

The property of (linear-in-the-parameter) means that each individual robot has its own regression matrix [START_REF] Lewis | Multilayer neural net robot controller with guaranteed tracking performance[END_REF].

Remark 2-1.Two disadvantages can be noted for adaptive computed torque control which are:

(1) the regressor matrix depends on angular link acceleration, and (2) the update adaptive law of parameter vector require inversion of mass matrix which could be subject to singularity and computationally intense. These shortcomings will be resolved by using passivity-based adaptive control mentioned in the next subsection.

Passivity-based adaptive control

Although this approach does not linearize the motion equation of the target system, it has two distinct advantages: (1) it does not require measurement/estimation of manipulator acceleration, and (2) calculation of mass matrix inverse is not needed [Spo89]. In effect, this technique has been invented by Slotine and Li [START_REF] Slotine | Applied nonlinear control[END_REF] and it entirely depends on sliding mode theory; for details, we refer to the last reference.

 Controller.

The control law can be designed as Using the linear parameterization property, we can obtain

̇+ + = ( , ̇, , ̇) Eq. 2-20
As noted in Eq. 2-20, the regressor matrix is independent to the joint acceleration.

Let us select the following update law of parameter vector that can ensure convergence of tracking errors

̇=

Eq. 2-21

 Stability analysis.

To ensure the validity of the update adaptive law of Eq. 2-21, we can select Lyapunov-like function as

= 1 2 + 1 2 Eq. 2-22
Substituting Eq. 2-20 and Eq. 2-21 into Eq. 2-22, and exploiting the passivity property (Property 1-2), the time derivative of Eq. 2-22 can be simplified to

̇= -≤ 0 Eq. 2-23

This is stable in the sense of Lyapunov theory [Spo89]; see Lemma 2-1.

Remark 2-2. Due to complexity of the regressor matrix mentioned previously, the approximation technique will be used alternatively as adaptive control.

Approximation technique-based adaptive control of biped robot

Review of the FAT

The FAT is an essential tool for approximation of the unknown parameters of the dynamic system for adaptive control purposes. In general, the procedure employed in constructing the FAT-based adaptive control includes selection of a suitable approximator for the uncertain parameters of the dynamic system, choosing an appropriate update adaptation law for the weighting coefficient and designing the controller structure [START_REF] Farrell | Adaptive approximation based control: Unifying neural, fuzzy and traditional adaptive approximation approach[END_REF]. In this section we will explain briefly the notion of the FAT, but the adaptation law and the controller are discussed later in the next section.

There are different classes of approximators such as polynomials, splines, radial basis functions, Cerebellar Model Articulation Controller (CMAC), multilayer perceptron, fuzzy approximation and wavelets [START_REF] Farrell | Adaptive approximation based control: Unifying neural, fuzzy and traditional adaptive approximation approach[END_REF]. In this paper, we will focus on the orthogonal polynomial functions due to its simplicity and capability of achieving minimum approximation errors as shown in the following theorem. 

( ) ≅ ( ) = ∑ ( ) Eq. 2-24
We can rewrite Eq. 2-24 in a vector form as

( ) ≅ Eq. 2-25
where is the weighting vector and is the orthogonal basis vector.

The dynamic equation of Lagrangian system (robotic system) consists of dynamic matrices, which are required to be approximated by FAT for adaptive control purposes. This requires separation of the dynamic matrices into two matrices representing the weighting constant matrix and the basis function matrix. Thus, the curse of dimensionality could be faced [START_REF] Farrell | Adaptive approximation based control: Unifying neural, fuzzy and traditional adaptive approximation approach[END_REF]. There are four representations of approximating the dynamic matrices; the last one is invented by us that shows simplicity on all.

Representation 1 (Kronecker product)

To linearly parameterize a matrix (to represent it as in Eq. 2-25), the Kronecker operator can be used to separate the target matrix into weighting and basis function matrices. Let's consider approximation of the matrix

∈ ℝ × = … … ⋮ ⋮ ⋱ ⋮ …

Eq. 2-26

Alternatively, Eq. 7-26 can be represented in column vectors as

= [ … ]
Eq. 2-27

According to Theorem 1 and Eq. 2-25, Eq. 2-27 can be approximated as follows. with ∈ ℝ × and ∈ ℝ × (Assuming equal number of basis functions for each element of column vector). Now it is important to represent the matrix in linear parameterization, namely transpose of weighting and basis matrices; so further manipulation is needed. In effect, to apply the technique of Kronecker product, it is necessary to approximate both the target matrix (e.g. the mass matrix) and the reference acceleration vector together. Thus,

̇= ∑ ̇ =[ … ][ ̇⊗ ] = Eq. 2-30
with ∈ ℝ × and ∈ ℝ × , and = = , and the vector ̇ will be defined later.

This notation has been used in [START_REF] Lewis | Multilayer neural net robot controller with guaranteed tracking performance[END_REF] to facilitate design of update adaptive law of weighting matrices. The following points should be noted:

 The weighting matrices are sparse matrices.

 The computational complexity of approximation grows exponentially with dimension of the target matrix.  It assumes that the every column vector of the basis matrix has the same number of basis functions, i.e. = = .

Remark 2-3. Approximation of a vector can easily be dealt as shown in Eq. 2-29. Therefore, no problem could be found for vector approximation.

Representation 2 (Sparse matrix)

This representation relies on conventional operations of matrix multiplication to separate the target matrix into two sparse weighting and basis matrices. In the following, we will assume that all the matrix elements are approximated using the same number of basis function, say .

Eq. 2-26 can be approximated as follows.

= Eq. 2-31

where

∈ ℝ × = ⎣ ⎢ ⎢ ⎢ ⎡ ⋮ ⋮ … … ⋱ … ⋮ ⃓ ⃓ ⃓ ⃓ ⋮ ⋮ … … ⋱ … ⋮ ⃓ ⃓ ⃓ ⃓ … … … … ⃓ ⃓ ⃓ ⃓ ⋮ ⋮ … … ⋱ … ⋮ ⎦ ⎥ ⎥ ⎥ ⎤ ∈ ℝ × = ⎣ ⎢ ⎢ ⎢ ⎡ ⋮ ⋮ … … ⋱ … ⋮ ⃓ ⃓ ⃓ ⃓ ⋮ ⋮ … … ⋱ … ⋮ ⃓ ⃓ ⃓ ⃓ … … … … ⃓ ⃓ ⃓ ⃓ ⋮ ⋮ … … ⋱ … ⋮ ⎦ ⎥ ⎥ ⎥ ⎤
Despite the useful form of Eq. 2-31, the following points should be noticed:

 The weighting and basis matrices are sparse.

 This representation is valid for equal number of basis function for each element of the target matrix. A modification has been made in [START_REF] Huang | Adaptive control of robot manipulators: a unified regressor-free approach[END_REF] to deal with different number of basis function but it does not correspond to linear parameterization technique that is necessary for adaptive control.

 The computation complexity of the approximation grows exponentially with the matrix dimension.

Representation 3 (GL operator)

To reduce computational complexity of the latter representations, Ge et al. [START_REF] Ge | Adaptive neural network control of robotic manipulators[END_REF] have proposed a representation based on the entries of the inertia matrix. These authors build a linear transformation by means of a new operator called Ge-Lee operator (GL), which can be considered as an extension of the Hadamard product [START_REF] Ignacio | A proof of the Ge-Lee statement on the inertia regressor of robot manipulators[END_REF]. According to their representation, the transpose of the weighting matrix is equal to the transpose of each element without changing its location; both the weighting matrix and basis operator are represented by intense matrix. In effect, they invented their own matrix without derivation; the derivation is performed recently by [START_REF] Ignacio | A proof of the Ge-Lee statement on the inertia regressor of robot manipulators[END_REF]. Thus, according to GL operator, {. }, the matrix of Eq.1-26 can linearly be parameterized as [START_REF] Ge | Adaptive neural network control of robotic manipulators[END_REF] M=

[{ } * { }] = ⎣ ⎢ ⎢ ⎢ ⎡ { } * { } { } * { } ⋮ * ⎦ ⎥ ⎥ ⎥ ⎤ = ⎣ ⎢ ⎢ ⎢ ⎡ ⋮ ⋮ … … ⋱ … ⋮ ⎦ ⎥ ⎥ ⎥ ⎤
Eq.

2-32

with

{ } = ⎩ ⎪ ⎨ ⎪ ⎧ { } { } ⋮ ⎭ ⎪ ⎬ ⎪ ⎫ ∈ ℝ × , { } = ⎩ ⎪ ⎨ ⎪ ⎧ { } { } ⋮ ⎭ ⎪ ⎬ ⎪ ⎫ ∈ ℝ ×
(Assuming equal number of basis functions for each element)

{ } = … , { } = … { } * { } = { … }, = 1,2, … ,
Remark 2-4. To recognize the conventional multiplication of matrices from that of GL operator, the symbol * has been used to refer to multiplication operation of two GL matrices or vectors etc.

The GL operator has the following properties [START_REF] Ge | Adaptive neural network control of robotic manipulators[END_REF]:

 The transpose of GL matrix is the transpose of elementary vector locally, see Eq. 2-32.

 The GL product of two GL matrices results in conventional matrix, see Eq. 2-32.

 It can use different number of basis functions for each element of the target matrix.

 The computational complexity of approximation grows linearly with dimension of the target matrix.

 As we see, the GL matrix does not depend on conventional matrix operation.

Representation 4 (a novel representation).

In effect, GL matrix motivates us to investigate the reason of its non conventional operations. We will prove below that there is no need to all above three representations, if we intend to use equal number of basis functions for all elements of the target matrix. To motivate our representation, let us assume that matrix can linearly be parameterized into two matrices using conventional matrix multiplication without sparse matrices. Let us consider two cases depending on the dimension of the target matrix whether it is square matrix (encountered in most fully actuated system) or not (encountered in most constrained system).

(i) The matrix ∈ ℝ × is square Let the weighting matrix be represented as

= ⎣ ⎢ ⎢ ⎢ ⎡ ⋮ ⋮ … … ⋱ … ⋮ ⎦ ⎥ ⎥ ⎥ ⎤ ∈ ℝ ×

Eq. 2-33

And the basis functions matrix is

= ⎣ ⎢ ⎢ ⎢ ⎡ ⋮ ⋮ … … ⋱ … ⋮ ⎦ ⎥ ⎥ ⎥ ⎤ ∈ ℝ ×

Eq. 2-34

Let us consider 2-dimensional space matrix ; by multiplication of Eq. 2-33 and Eq. 2-34, we can get

= + + + + Eq. 2-35
If we consider equal number of basis functions, Eq. 2-35 can be simplified as

= ( + ) ( + ) ( + ) ( + ) Eq. 2-36
But every element of weighting vector is constant; consequently, Eq. 2-36 can be further simplified to

= ́ ́ ́ ́ Eq. 2-37
So there is no need to all complications of other mentioned representations if we use equal number of basis functions.

(ii) The matrix ∈ ℝ × is non-square This case is always encountered in the constrained systems (over-actuated system). To apply our method, some modifications should be used. Let us consider the transpose of the weighting

matrix ∈ ℝ × is = ⎣ ⎢ ⎢ ⎢ ⎡ ⋮ ⋮ … … ⋱ … ⋮ ⎦ ⎥ ⎥ ⎥ ⎤ ∈ ℝ ×

Eq. 2-38

If we assume the basis matrix as

= ⎣ ⎢ ⎢ ⎢ ⎡ ⋮ ⋮ … … ⋱ … ⋮ ⎦ ⎥ ⎥ ⎥ ⎤ ∈ ℝ ×

Eq. 2-39

The conventional operation of matrix multiplication cannot be used, and we should come back to Kronecker product (representation 1). Therefore, a new expression of the basis matrix is necessary. To achieve the above object, let consider the basis function as

= ⎣ ⎢ ⎢ ⎢ ⎡ ⋮ ⋮ … … ⋱ … ⋮ ⎦ ⎥ ⎥ ⎥ ⎤ ∈ ℝ ×

Eq. 2-40

Thus if we multiply Eq. Consequently, the matrix can be represented as

= = + + + + + +

Eq. 2-43

By assuming equal number of basis functions, we can get

= ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) = Eq. 2-44
Thus, the target mass matrix can be easily approximated by the proposed expression. This representation has the following characteristics:

 The weighting and basis matrices are non-sparse.

 The computational complexity grows linearly with dimension of the target matrix.

 It depends on conventional matrix operations.

 It is only valid for equal number of basis functions.

Control of biped robot during the SSP

As mentioned previously, the biped robot during the SSP can be dealt as open chain mechanism; for details refer to Chapter 4. In case of uncertain parameters of the target system, the adaptive controller should be used to track the desired trajectory and estimate these unknown parameters.

 Controller structure

The adaptive controller structure for Eq. 1-2 can be written as

= ̇+ + + + Eq. 2-45
Substituting Eq. 2-17 and Eq. 2-45 into Eq. 4-2 to get

̇+ + = ̇+ + + Eq. 2-46 where = -, = -, = -, = -
The objective of the adaptive control is to estimate , , , such that , , , →0 which results in position and approximation errors converge to zero. In the FAT-based adaptive approach, we will treat every element of the matrices , , , as functions of time. Thus, each element of , , , can be approximated by orthogonal functions that have a sufficient number of terms to give an accurate representation of the estimated parameters. In this study, Chebyshev polynomials are used for approximation of the system matrices. We will use the presentation of the FAT described before to approximate the matrices and vectors of the dynamic subsystem equation. Thus, Taking the time derivative of Eq. 2-51 to obtain

̇= ̇+ 1 2 ̇ -( ̇ + ̇ + ̇ + ̇ )
Eq. 2-52

Substituting Eq. 2-50 into above equation, we can get

̇= - + 1 2 ̇-2 - - ̇ + ̇ - - + ̇ - - + ̇ - - + ̇

Eq. 2-53

Using the passivity property and substituting Eq. 2-50 into above equation to get

̇= - ≤ 0 Eq. 2-54
Thus, the latter equation is stable in the sense of Lyapunov theory; see Lemma 7.1. In effect, there is no need to approximate the gravity vector and the friction (disturbance) vector separately; they could be collected in one term and approximate it directly.

Control of biped robot during the DSP

The biped robot moves in constrained space during the DSP; the details of dynamics of the biped during this walking phase have been presented in Chapter 4. Therefore, the control law should ensure tracking of the desired trajectory and controlling/tracking constraint forces (ground reaction forces). In the following, we will introduce adaptive approximation based control without need for feedback force sensor that could result in potential instability due to algebraic loop [START_REF] Su | Adaptive control of robot manipulators under constrained motion[END_REF].

 Control law. Let us design control law as

= ( ) ̇+ ( , ̇) + ( ) + + -( ) Eq. 2-55
Eq. 2-25 Eq. 1-2

Eq. 2-17

Eq. 2-18

Derivative of Eq. 2-18

Eq. 2-50

Where , are estimated matrices of the corresponding matrices; whereas and estimated vectors for the gravity and disturbance vectors respectively; all other notations are defined in Chapter 4, and the sliding tracking error and are defined in Eq. 2-17. In similar manner to the previous section, we can approximate each element of the uncertain matrices and vectors using the FAT. Thus,

= + , = ̅ ̅ + ̅ , = + , = + Eq. 2-56
where ∈ ℝ × , ̅ ∈ ℝ × , ∈ ℝ × , and ∈ ℝ × are the constant weighting matrices of the mass matrix, Coriolis and centripetal matrix and the gravity vector respectively, while ∈ ℝ × , ̅ ∈ ℝ × , ∈ ℝ × , and ∈ ℝ × represent the corresponding basis function matrices. , ̅ , and are the approximation errors.

The estimated matrices of , , , can be approximated as The above equation can be further simplified using Eq. 2-17

( ) ̇+ ( , ̇) + + ( ) ( -) = -( ( ) ̇+ ( , ̇) + ( ) + ) Eq. 2-59
As seen in the above equation, to get a stable closed loop system it is necessary to select a suitable update adaptive law that can estimate every term of the right hand side. Let us select the following update adaptive laws

̇ = ̇ , ̇ ̅ = ̅ ̅ , ̇ = ̇ = Eq. 2-60

 Stability analysis

To prove the validity the controller structure (Eq. 2-55) and the update law for estimation of weighting matrices, let us define the Lyapunov-like function as Differentiating the last equation, we can get

̇= ̇+ 1 2 ̇ -( ̇ + ̅ ̅ ̇ ̅ + ̇ + ̇ )

Eq. 2-62

By pre-multiplying both sides of Eq. 2-59 by and exploiting the Property 1-5, we can obtain

̇+ + = -( ( ) ̇+ ( , ̇) + ( ) + ) Eq. 2-63
Substituting the above equation into Eq. 2-62 and using the passivity Property 1-4, we can obtain

̇= - - - ̇ + ̇ - ̅ -̅ + ̅ ̇ ̅ - - + ̇ - - + ̇

Eq. 2-64

Inserting the update adaptive laws of Eq. 2-60 into above, we can get

̇= -Eq. 2-65

The latter equation is stable in the sense of Lyapunov theory; see Lemma 2-1. Fig. 23shows schematic diagram of the proposed controller.

Remark 2-6. In similar manner to previous control system of the SSP, we can collect the gravity and disturbance vectors in one term for approximation purposes. Eq. 2-66

We have assumed that we do not have priori information for the weighting matrices; therefore, all values of their elements initially are set to zero. In effect, selection of feedback gains ( , ) and adaptation gains ( , , ) is performed by trial and error. However, literature proves that it suitable to select high feedback gain. In addition, it is noted that adaptation gain of gravity and disturbance vector should be selected larger than other adaptation gains for the mass and Coriolis From Tab. 2-1, the simulation time of Representation 4 is lower than Representation 2; there is no large difference in simulation time because it is a 2-DOF manipulator. The superiority of Representation 4 will be clear with simulation of the biped robot in which the DOFs is 6 or more.

In addition, the dimension of weighting matrices reduces to half. From Fig. 2-4 to Fig. 23456, the estimated mass and Coriolis matrices, gravity and friction vector have approximate values for both representations. In addition, both representations have the same torques and position errors as show in Fig. 2-8.

Feedback and adaptation gains

As mentioned previously, feedback and adaptation gains should be tuned very well to evade potential instability of the target system. Consequently, we should expect some oscillation at beginning of manipulator motion. From Fig. 2-8 we can see oscillations of torques until time (≅ 0.06 [ ] ) then the response will be steady. High oscillations could be a sign of instability; therefore, a care should be paid to tune the target gains in order to ensure low oscillation of input controls and low position errors.

Convergence of parameters

Because the input of the robotic system is the result of feedback and cannot be designed to be sufficiently rich; therefore, the objective of adaptive control is to follow desired trajectory rather than convergence of unknown parameters of system to their actual values [START_REF] Loannou | Adaptive control tutorial[END_REF]. It is observed that the end-effector of the robot can converge very well although most parameters do not converge to their actual values. , it has been selected as desired reference trajectory for our control system. Thus, it has three walking phases: the SSP, and two DSP sub-phases. Detailed adaptive controller structure of the biped during the SSP has been introduced in Subsection 7.2.2. It is assumed that the six joints are actuated with direct drive (gear ratio=1). We have assumed that we do not have priori information for the weighting matrices; therefore, all values of their elements initially are set to zero. This can make zero torque at the beginning of biped motion, which is not preferable as we will discuss it later. In effect, tuning of the biped mechanism shows some difference from our previous example in that the adaptation gains should be very low to evade high oscillations of the actuator torques. Tab. 2-2 shows the adaptation and feedback gains used, as well as simulation time used for representations 

Fig

The effect of large disturbance (rather than friction) on biped locomotion

In this study, we assume that the biped is subjected to external disturbance of (50 N) at the swing foot. Using Jacobian relationships, this force can be converted into torques at each link using the following relationships:

=

Eq.

2-67

This force has been applied only during the SSP. FAT-based adaptive control has been used to track the desired trajectory in the presence of the mentioned force. The same controller structure has been used (see Subsection 7.2.2) but with known dynamic matrices and vectors. It should be noted that this disturbance vector could lead to increase in the values of input control torques (one of these torques is the stance ankle joint). According to Eq. 2-18, this can result in deviation of ZMP trajectory and instable motion will result. Consequently, the expected disturbances should be compensated by high level control that modify the trajectory of the biped to absorb this perturbations. 

Conclusions

In this chapter adaptive approximation based control of biped robot has been introduced with novel representation for the dynamic matrices. This representation can be used successfully for high DOF robotic system such biped robot because the size of the weighting matrices of the dynamic matrices is proportionally linear with DOFs, while sparse -base representation is proportional exponentially with DOFs of the target system. However, the controller structure has the following limitations  Dynamic modeling of the biped mechanism depends on Lagrangian formulation which encounters computational complexity for higher DOFs. As a result, the recursive dynamic modeling associated with our controller structure can achieve good performance.  Optimal strategy is needed to tune the feedback and adaptation gains to ensure stable system and achieve some balance between actuator torque oscillation and precision tracking of desired reference trajectory.

 Further work might be needed to find a unified method to incorporate the high level control with the low-level control to get better biped performance.
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 1112 Fig. 1-1: Walking pattern 1 with description of generalized coordinates. (a) Intermediate configuration of biped locomotion during the SSP. (b) Intermediate configuration of biped locomotion during the DSP.

  and ∈ ℝ × are the translational and angular velocity components of link ( ), ∈ ℝ × and ∈ ℝ × denote the Jacobian matrices associated with translation and rotation components respectively.
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 21 Fig. 2-1: Two-link manipulator

Fig. 2 - 2

 22 Fig. 2-2 shows schematic diagram for adaptive approximation-based control for open-chain manipulators considering the above representations.
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 22 Fig. 2-2: Schematic diagram of conventional FAT-based adaptive control of the biped robot during the SSP Remark 2-5.In effect, there is no need to approximate the gravity vector and the friction (disturbance) vector separately; they could be collected in one term and approximate it directly.



  Parameter estimation. Substituting Eq. 2-55-into Eq. 1-31 to get the following closed loop control system ( ) ̈ + ( , ̇) ̇ + (

  are diagonal positive definite gain matrices which are important in tracking problem.

Remark 2 - 7 .

 27 In the previous Subsections (2.2.2 and 2.2.3), the adaptive control has been described based on representation 4. For detailed study on the adaptive control considering all four representations, see [Hay18/3].
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 232 Fig. 2-3: Schematic diagram of FAT-based adaptive control of the biped robot during the DSP

matrices. Tab. 2 - 1 Tab. 2 - 1 : 2 =

 21212 shows the proposed values of the gains used in simulation, as well as the simulation time for representations 2 and 4. From simulation results we can discuss the following points: Feedback and adaptation gains for 2-link manipulator Representation
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 2728 Fig. 2-7: Position errors of 2-link manipulator for adaptive control

2 and 4 .Remark 2 - 8 .Remark 2 - 9 .Tab. 2 - 2 : 2 =Fig. 2 - 9 :Fig. 2 -Fig. 2 -Fig. 2 - 12 :

 428292222922212 Fig. 2-9: Position errors of the biped during the SSP

Fig. 2 -

 2 Fig. 2-14: Torque response of the biped during the DSP2 Remark 2-11. As noted from Fig. 2-10, Fig. 2-12, Fig. 2-14, the torque values at the beginning of each phase could be zero due to assumption of zero weighting matrices which are responsible for generation of torque response. Thus using adaptive control based on local approximation could result in discontinuity at switch instances. Global approximation technique could resolve this problem; however, a nominal model of biped plant should be known.

Fig. 2 Fig. 2 -

 22 Fig.2-17 show estimated disturbance vector, position errors and input control torques. It should be noted that this disturbance vector could lead to increase in the values of input control torques (one of these torques is the stance ankle joint). According to Eq. 2-18, this can result in deviation of ZMP trajectory and instable motion will result. Consequently, the expected disturbances should be compensated by high level control that modify the trajectory of the biped to absorb this perturbations.
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 222 Fig. 2-15: Estimated of disturbance vector
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  Estimation of mass matrix for both Representations 2 and 4.
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	Fig. 2-6: Estimation of gravity and disturbance vectors for both Representations 2 and 4.
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× Fig. 2-13: Position errors of independent coordinates ( , , , ) of the biped
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[N.m]

=

+ , = + , = + , = + Eq. 2-47 where ∈ ℝ × , ∈ ℝ × , ∈ ℝ × , and ∈ ℝ × are the constant weighting matrices of the mass matrix, Coriolis and centripetal matrix, the gravity vector and the disturbance vector respectively, while ∈ ℝ × , ∈ ℝ × , ∈ ℝ × , and ∈ ℝ × represent the corresponding basis function matrices. , , and are the approximation errors.

The estimated matrices of , , , can be approximated as

Thus , we can rewrite Eq. 2-46 as follows

We will assume that a sufficient number of basis functions is used in the approximation. Consequently, the approximation errors may be neglected in Eq. 2-49 [START_REF] Huang | Adaptive control of robot manipulators: a unified regressor-free approach[END_REF].

 Parameter estimation To ensure a stable closed loop system of Eq. 2-46, it is necessary to select a suitable update adaptive law. Thus, let us select the following adaptive laws for estimation of the dynamic matrices and vectors.

 Stability analysis To prove validity of the proposed controller and the update adaptive laws (Eq. 2-45 and Eq. 2-50 respectively), the Lyapunov-like function of the biped system could be selected as where ∈ ℝ × , ∈ ℝ × , ∈ ℝ × and ∈ ℝ × are positive definite weighting matrices of the mass matrix, Coriolis and centripetal matrix, the gravity and the disturbance vectors respectively. These matrices represent the adaptation gain matrices that are responsible for speeding up the adaptation and convergence procedure.

Control of the biped robot during the DSP

This constrained phase consists of two walking sub-phases; therefore, every walking sub-phase has its own controller. The same control structure will be used for both the sub-phases, as presented in Subsection 7.2.3. We apply only representation 4 for our control system. In addition, we have assumed that we do not have information for estimation of weighting matrices; therefore, all elements have been set zero. Trial and error technique has been used to tune feedback and adaptation gains. Tab. 2-3 and Tab. 2-4. show these gains with simulation time for representations 4, and for DSP1 and DSP2 respectively. Remark 2-10: As mentioned previously, the biped robot has redundant generalized coordinates during the DSP. For DSP1, we have selected the generalized coordinates ( , , , ) as independent coordinates. In effect, they are selected such that the singularity condition at the knee joints should be avoided. Whereas, for DSP2, we have selected ( , , , ) as independent generalized coordinates.

Tab. 2-3: Feedback and adaptation gains for the biped during the DSP1