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We investigate attosecond charge migration (CM) in model carbon chains by employing tools from
nonlinear dynamics. We show that mean-field interactions drive synchronization of the electron
motion and give rise to a variety of CM dynamics. Notably, we find that a molecule can support
several current-like CM modes, depending on the initial conditions, with periods varying by several
hundred attoseconds. We also show that functionalization and hybridization can play an important
role in synchronizing CM dynamics. Our results pave the way to understanding the mechanisms
that regulates CM dynamics in complex molecules using nonlinear collective effects.

Electron and hole motions in matter are central to
physical and chemical processes. For instance, they can
induce chemical reactions, photosynthesis and photo-
voltaics, and charge transfer [1, 2]. At the natural length
and time scales of electron motion in molecules – the
Angstrom and the attosecond – these coherent ultrafast
dynamics are often called charge migration (CM) [3–
8]. In this context, CM is understood as the purely-
electronic-driven dynamics that unfolds before nuclei
have time to move. It can be the precursor for many
of the down-stream processes mentioned above [2, 9–11],
and therefore a means of understanding and ultimately
steering them. The study of molecular CM is currently an
active field of research [12–15], however, it is a formidable
endeavor. Experimentally it requires the development of
multi-dimensional coherent probes with attosecond reso-
lution [2]. Theoretically, it necessitates models with mul-
tiple interacting electrons, even when nuclear motion is
ignored.

Systematic studies of the mechanisms underlying, and
responsible for regulating, CM can appear beyond reach
since they involve the analysis of systems with a large
number of coupled degrees of freedom. One approach to
such large-scale problems is provided by nonlinear dy-
namics, which has developed general-purpose methods
for tackling and understanding the structure of high-
dimensional phase spaces. For instance, nonlinear dy-
namical analyses have been instrumental in many ar-
eas of atomic, molecular and optical science, including
understanding the bunching mechanism responsible for
lasing in free-electron lasers [16], in transition-state the-
ory of chemical reactions [17–19], and for strong-field
physics [20–23].

In this Letter, we study the field-free dynamics of a lo-
calized hole suddenly introduced into a one-dimensional
carbon chain, as a paradigm for CM following ionization.
Figure 1 introduces an example of CM within our model.
Strikingly, the foreground colormap in the figure reveals
a nearly smooth, current-like migration of the hole, which

FIG. 1: (color online) Charge-migration dynamics in (C2)4

following a sudden ionization perturbation localized on the
left end of the chain. The graphs at the top show the electron
densities of the end C2 center alone, in the neutral ground
state, and in the cation immediately after the ionization per-
turbation. The foreground colormap corresponds to the sub-
sequent electron-hole-density dynamics, defined as the differ-
ence between the neutral ground-state and time-dependent
cation densities.

moves through the entire chain in about 1.7 fs. The ap-
parent sustained coherence of a particle-like hole, which
remains localized both in space and time, naturally raises
the questions: (i) How common is this? (ii) Are there
other types of coherent dynamics? If so, what are they?
(iii) What are the physical mechanisms that organize and
regulate those CM motions? In what follows, we an-
swer these questions by employing tools from nonlinear
dynamics. In doing so, we highlight the central role of
dynamical electron-coupling and synchronization as the
engine for CM dynamics in our models, as an alternative
to, e.g., few-orbital beating mechanisms that have pre-
viously been employed [6, 9, 12]. We also demonstrate
the importance of functionalization and hybridization in
synchronizing the dynamics, which would open the way
for chemically controlling CM in the future.
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We focus on generic mechanisms that regulate CM
in molecules with multiple interacting electrons. To do
so, we consider dimensionally- and functionally-reduced
models that reproduce the key elements of the coupled
dynamics. More specifically, we systematically consider
one-dimensional carbon chains, denoted (C2)n, with n
the number of pairs of “C” centers. These chains are the
one-dimensional chemical analogs to three-dimensional
alkenes, without the hydrogen centers. We functional-
ize the chain by adding an electron-heavy “X” center at
one end of the molecule, meant to emulate a halogen
group. Building on previous successes of time-dependent
density-functional theory (TDDFT) in modeling CM in
various molecules [12, 13], we likewise consider a mean-
field approach. Specifically, we use an average-density
self-interaction corrected [24] time-dependent Hartree
potential, i.e., TDDFT without an exchange or corre-
lation potential. This allows us to unambiguously de-
termine the role of dynamical mean-field interactions in
CM. We describe the electronic structure and dynam-
ics with an orthonormal family of non-interacting one-
electron Kohn-Sham (KS) orbitals {φk (x; t)}k [25] such
that, in atomic units,

i∂tφk = Ĥeff [ρ]φk with ρ =
∑
k≥1

nk |φk|2 (1)

where the one-body electron density ρ is an explicit non-
linear variable in the mean-field Hamiltonian Ĥeff . Here
0 ≤ nk ≤ 2 is the number of electrons in each spin-
restricted KS channel. Numerically, we spatially dis-
cretize the KS orbitals on a Cartesian grid. For CM-
dynamics computations, we propagate the KS Eq. (1) in
a basis of molecular orbitals of the corresponding singly-
ionized cation using a Crank-Nicholson scheme. We have
checked that nearly identical results are obtained by di-
rectly integrating Eq. (1) on the grid with a split-operator
method. Further details about the X–(C2)n molecules’
parameters and the mean-field model can be found in the
supplemental material section I [26].

We begin by studying the CM dynamics in a (C2)n
chain. The bare chain, without functionalization, is
highly symmetric and therefore an impractical system
for generating a localized ionization-hole in a realistic
experimental scenario. However, since the chain is the
backbone for the migration dynamics we will consider, it
is appropriate to study its dynamics first. Below we will
discuss the effects of adding an X center to one end of the
chain, as a handle for introducing a localized ionization
hole or for steering the CM dynamics.

In Fig. 1 we show an example of CM dynamics in (C2)4.
We create the initial ionization perturbation by suddenly
removing a full electron localized on the left end of the
chain – see the curves at the top of Fig. 1. As mentioned
above, the subsequent field-free evolution, shown on the
foreground colormap, reveals an alternating current-like

motion of the hole with a 1.7-fs half period. We have ob-
served similar current-like migration motions when vary-
ing the length of the chain (not shown), demonstrating
its robustness across the (C2)n family. We model ion-
ization from the highest-occupied KS channel, in which
we construct the initial localized hole with a linear com-
bination of a few occupied and unoccupied orbitals of
the corresponding cation. Note that this linear combina-
tion solely reflects the spatial configuration of the elec-
tron density right after ionization and does not infer any
orbital-beating process in the subsequent dynamics. Ad-
ditional details about the method we use to create the ini-
tially localized hole and how we integrate the subsequent
dynamics of Eq. (1) can be found in the supplemental
material section II [26].

Aside from the computational cost of integrating the
mean-field system of Eqs. (1), one of the main obstacles
to systematic studies of CM in molecules is the very large
dimension of phase space associated with the many ac-
tive electrons in the target. These analyses are further
complicated by the structure of the TDDFT formalism:
The KS-orbitals dynamical variables{φk}k represent fic-
titious electrons interacting via the mean field. As such,
they hold very limited physical or chemical meaning for
dynamics far from equilibrium, including CM (see dis-
cussion below). The physical one-body density ρ, on
the other hand, hides the organization of the dynam-
ics by incoherently adding the KS-orbital contributions.
In the following, we reveal this organization using fre-
quency map analysis (FMA) and explain the mechanisms
that regulate coupled multi-electron motions like the al-
ternating current-like migration of Fig. 1.

Generally speaking, FMA follows the main frequency
components associated with a dynamical process as a
function of a continuously-varied initial condition [27,
28]. In doing so, it can discriminate chaotic regions of
phase space – with strong sensitivity to the initial condi-
tion – from regular ones. We show an example of FMA
for (C2)4 in Fig. 2. Here we continuously vary the de-
gree of localization of the initial one-electron-hole labeled
by ε on Fig. 2: ε = 0 corresponds to the delocalized
ground state of the cation while ε = 1 corresponds to
the initial hole being fully localized on one end of the
chain (similar to the top curves of Fig. 1). In order to
highlight migration motions through the entire chain, the
complex-valued signal we use in the FMA tracks the time-
dependent electron density around one or the other end
of the molecule in its real or imaginary part. Further
details about the FMA and its implementation can be
found in the supplemental material section III [26].

In the region of phase space around the ground state of
the cation, roughly 0 ≤ ε . 0.2 on the FMA of Fig. 2, we
observe frequency components with no or very weak in-
tensity. This is expected given that, by construction, the
ground-state electronic configuration leads to a density
that does not evolve in time in Eq. (1). In the interme-
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FIG. 2: (color online) Frequency-map analysis of the charge-
migration dynamic in (C2)4. The horizontal axis labels the
degree of localization for the initial ionization perturbation:
ε = 0 corresponds to the ground state of the cation while ε = 1
is associated with a fully localized hole on one end of the chain.
The frequency colormap is obtained with a windowed-Fourier
transform, with 100-fs total duration, of a signal tracking mi-
gration motions through the entire chain (see text). Dashed
horizontal lines label the frequency components in the linear
approximation Ĥeff [ρ (t)] ≈ Ĥeff [ρε=0] in Eq. (1), with the
transparency encoding the intensity of those frequency lines.

diate region 0.2 . ε . 0.7 of the map we observe sev-
eral frequency curves evolving from 2.1 eV and 3.3 eV,
respectively, where the ratio of their frequencies is ir-
rational (the frequency curve evolving from 4.2 eV is a
harmonic of the 2.1 eV one). These are associated with
aperiodic CM dynamics, as discussed below. Finally, for
0.7 . ε ≤ 1, we observe a succession of plateaus, between
1 and 1.7 eV for their lowest-frequency component – also
labeled with their corresponding periods on the right
margin of Fig. 2. This stair-like structure is duplicated
at integer multiples of this lowest frequency. Such a fre-
quency composition, with a unique fundamental compo-
nent plus its harmonics, is consistent with quasi-periodic
migration of electron densities through the molecule. In-
deed, each of these plateaus is associated with a current-
like migration of charge similar to the one displayed in
Fig. 1 (ε = 0.95).

The plateau structures observed in the higher part of
the FMA of Fig. 2 are significant for several key aspects of
CM studies: (i) dynamical stability – plateaus like these
are signatures of stable regions of phase space, like the
islands surrounding elliptic periodic orbits [27]. In turn,
this explains the sustained particle-like hole migration
observed in Fig. 1 and discussed above. (ii) parametric
stability – within each plateau of the FMA of Fig. 2, irre-
spective of the details for the initial ionization perturba-

tion, all current-like motions have the same period. This
is essential for experimental applications as it provides a
robustness of the migration dynamics against uncertain-
ties in the way the hole might be created. (iii) multiple
migration modes – the multiplicity of plateaus shows that
the same molecule can support several modes of alternat-
ing current-like migration, each with a different period
varying with as much as 700 as in the FMA of Fig. 2 –
see right margin. When varying the length of the chain,
we systematically observe similar multiple plateaus, each
associated with a current-like CM, therefore demonstrat-
ing their robustness across the (C2)n family.

As a first attempt to identify the mechanisms respon-
sible for the migration dynamics in (C2)n chains, we
consider a linearization of the mean-field Hamiltonian
of Eq. (1) by fixing Ĥeff [ρ (t)] ≈ Ĥeff [ρε=0] , with ρε=0

the time-independent ground-state density of the cation.
The linearization reduces the KS-orbital dynamics to the
beating between the ground-state molecular orbitals of
the cation. In Fig. 2, we plot the frequency components
of the FMA, for the linear approximation, with dashed
horizontal lines. While, at first glance, the plateaus in
the FMA of the full time-dependent mean-field system
(colormap) seem to gravitate around some of the linear-
approximation frequencies, a closer comparison between
the two reveals qualitatively different dynamical struc-
tures: over the entire range of phase space we investi-
gate, nowhere does the linear approximation manage to
accurately predict the electron/hole dynamics. Instead,
we have found that the orbital-beating picture associated
with the linear approximation is only valid in the neigh-
borhood of the ground state of the cation, where there is
barely any electron dynamics – see supplemental material
section III. B [26]. Our analysis therefore highlights the
central role played by time-dependent mean-field corre-
lations between electrons in regulating the observed CM,
since these correlations are removed in the linear approx-
imation, which differs essentially from the full analysis.

Globally, the FMA of Fig. 2 shows that, in the part
of phase space we investigate here, the density dy-
namics associated with Eq. (1) has at most a hand-
ful of well-defined contributing fundamental frequen-
cies. This fully correlated dynamics also has notice-
ably fewer frequency components than its linear ap-
proximation (compare dashed horizontal lines and the
colormap), which seems consistent with observations in
full-dimensional simulations performed in various organic
molecules [6, 12]. Both findings are rather unexpected for
a dynamical system with many coupled degrees of free-
dom. Instead, our analysis suggests that CM motions in
(C2)n are regulated by synchronization-type dynamics.
Here, synchronization refers to the self-organization and
coalescence of several degrees of freedom around an ef-
fective dynamics in reduced dimension [29]. Synchroniza-
tion phenomena have been identified throughout physics,
engineering and biology [30–32].
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FIG. 3: (color online) Evolution of the contribution to the to-
tal electron density from the ionized KS channel. Panels (a,b)
correspond to the (C2)4-chain model, with initial ionization
localization ε = 0.2 and ε = 0.95, respectively. Panel (c)
corresponds to the functionalized X–(C2)4 system. Details
about the molecular models and parameters can be found in
the supplemental material section I. B [26].

The synchronized CM dynamics is most clearly appar-
ent in the contribution to the total electron density from
the ionized KS channel. To illustrate this, in Fig. 3 (a),
we show the density in the intermediate part of phase-
space, with ε = 0.2. Because of the two irrational fun-
damental frequency components in the dynamics – see
discussion above – the density exhibits a succession of
oscillations around each C2 center, with no apparent
global period or pattern. Accordingly, we observe a sim-
ilar aperiodic dynamics in the hole density (not shown).
Looking back at Fig. 2, we see that these two funda-
mental frequencies ν1 ≈ 2.1 eV and ν2 ≈ 3.3 eV shift
in energy with increasing localization of the initial ion-
ization perturbation (increasing ε). This shift is driven
by the nonlinear electronic coupling in Eq. (1). Eventu-
ally, around ε ≈ 0.7, the higher fundamental frequency
merges with the first harmonic of the other component
ν2 = 2 × ν1 ≈ 3.2 eV. As a result, the overall electron-
density dynamics gets locked in a global quasi-periodic
motion, which leads to the current-type migration mo-
tions discussed above. This locked dynamics is clearly
visible in Fig. 3 (b), where the density in the ionized KS
channel remains localized both in space and time while
it migrates through the chain.

Comparing Fig. 3 (b) and Fig. 1, we see that the syn-
chronized particle-like density in the ionized KS chan-
nel follows the migration of the total hole density in
the target. This similarity is not accidental and stems
from (i) the synchronized one-electron KS orbital asso-
ciated with the ionized channel, and (ii) the orthogonal-
ity requirement for the other fully occupied KS chan-
nels. More broadly, this suggests that, while they cannot
be measured experimentally, looking at partial contribu-
tions from ionized/perturbed KS orbitals can be illumi-
nating for theoretical CM studies.

As discussed above, the experimental relevance of the
(C2)4 chain on its own is limited by the impracticality

of inducing a localized hole at one end of a symmetric
target. To circumvent this issue, we can break the chain
symmetry by attaching a suitable functional group at
one end of the chain, and leverage this to generate the
initially-localized electron-hole, for instance using strong-
field ionization [7]. To model functionalization, we add
an electron-heavy “X” atomic center to the (C2)n chain,
meant to emulate a halogen – see supplemental material
section I. B [26] for details about the X–(C2)4 model and
parameters.

In Fig. 3 (c), we show a successful example of X–(C2)4

functionalization where the X center is used to create
the initial localized electron perturbation in the ionized
KS channel, which then migrates back and forth through
the entire molecule. Here as well, we have confirmed
that the total hole density in the molecule follows the
same current-like motion as that of the density in that
KS channel. Importantly, with varying the parameters of
the X center, e.g., as would be obtained by using differ-
ent functional groups, we have found that not all man-
age to transmit their initial X-localized hole in to the
chain, as in Fig. 3 (c). For that to happen, the X-atomic
and (C2)4-molecular orbitals need to hybridize in forming
the X–(C2)4 compound. Intuitively, such delocalized hy-
bridized orbitals provide a bridge for the electron density
to move between the two parts of the molecule.

Through the phase-space analysis of X–(C2)n systems,
we have identified an additional potential use of function-
alization for controlling CM. Specifically, we compared
the dynamics when starting the localized ionization-
perturbation on the chain side of the molecule and us-
ing various X effective potentials. Even when the migra-
tion remains confined to the (C2)n part of the molecule,
the attached X function can alter the properties of the
chain, including its ability to support current-like migra-
tions. We provide an example of this point by compar-
ing FMA and sample CM dynamics in the supplemental
material Fig. S3 [26]. Clearly, this demonstrates the po-
tential for chemically tailoring CM in molecules.

In conclusion, using nonlinear dynamical tools, we have
performed systematic analyses of charge migration in
carbon-chain-like molecules. Our analyses reveal that
the same molecule can support several types of ultra-
fast electron motions, including regular aperiodic and
quasi-periodic dynamics, each identified with their char-
acteristic signatures in their frequency maps. Driven
by nonlinear coupling between the time-dependent mul-
tiple interacting electrons, we have identified apparent
synchronization-like mechanisms that ultimately lead to
current-like CM modes in the molecule. Notably, qual-
itatively similar current-like modes with periods vary-
ing by several hundred attoseconds can be found in the
same compound. Finally, we have shown the potential
for chemical control of migration motions with molecular
functionalization, both in creating the initially localized
electron hole and for its subsequent time evolution.
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In this Letter, we elected for simplified molecular mod-
els to demonstrate our analysis tools and highlight the
mechanisms that regulate CM motions in them. Criti-
cally, these emerge as a result of the dynamical mean-
field interaction alone. It suggests that synchronization
effects are sufficient to organize the electrons into CM
modes, even without explicit exchange or correlation in-
teractions. While it would likely alter their period and
synchronization condition, we expect these mechanisms
to subsist when adding exchange-correlation interactions.
Moreover, this synchronization gives stability to the CM
improving the likelihood that these will be the modes
that can be realized in real systems and observed in ex-
periments. The results presented in this paper, along
with the analysis tools that we employed, can help pro-
vide important perspectives for the design of future CM
studies.
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U.S. Department of Energy, Office of Science, Office of
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