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Power consumption constitutes a major challenge for electronics circuits. One possible way to deal with this issue is to consider it very soon in the design process in order to explore various design choices. A typical design flow often starts with a high-level description of a full system, which imposes to provide accurate models. Power modelling techniques can be employed, providing a way to find a relationship between power and other metrics. Furthermore, it is also important to consider efficient power characterization techniques. The role of this paper is, first, to provide an overview of RTL to transistor level power modelling and estimation techniques for FPGAs and ASICs devices. Second, it aims at proposing a classification of all approaches according to defined metrics, which should help designers in finding a particular method for their specific situation, even if no common reference is defined among the considered works.

I. INTRODUCTION

W ITH the imminent arrival of 5G and Internet of Things (IoT), a lot of electronic devices will be able to communicate and share data between them, involving machine to machine or machine to vehicular communications for example. All sectors are concerned, starting from the industries to the agriculture, telecommunication, health, etc. . Human activities and technologies have a significant impact of the worldwide carbon footprint. It has been shown that cities cover 2% of Earth's surface but consume up to 78% of the world's energy [START_REF] Khatoun | Smart cities: Concepts, architectures, research opportunities[END_REF]. In the same time, it has been shown that developing smart and energy-efficient technologies may be an efficient solution to drastically reduce the energy cost and the environmental impact. These electronic devices are generally designed using a Very-Large-Scale Integration (VLSI) process that consists in building an integrated circuit (IC) by linking millions of transistors on a chip. All complex systems and communication devices are based on VLSI, including analog ICs such as sensors and operational amplifiers as well as digital ICs, such as microprocessors, Digital Signal Processors (DSPs), micro-controllers. In addition to this, VLSI design covers the development of Application Specific Integrated Circuits (ASIC) and Programmable Logic (PL) Devices.

In this paper, we propose a taxonomy that is illustrated in Fig. 1. This classification tends to facilitate the comparison of many circuits according to their hardware architectures. Two main VLSI categories have been identified: hardware-defined and programmable hardware devices.

Hardware-defined devices can be then divided into application-specific (e.g. ASIC) and non-application specific ICs. We further divide the non-application specific devices into hardware-optimized for which GPU is an illustrative example and general ICs including General Purpose Processor (GPP) or micro-controllers. Regarding programmable hardware ICs, two categories have been defined depending on if the device is built from homogeneous hardware e.g. Field Programmable Gate Array (FPGA) or heterogeneous resources. A System on Chip (SoC) is a typical example of heterogeneous hardware ICs that contain a hard processor in combination with logic into the same chip. Nowadays, FPGAs are used in many applications, from data-centers to low-power smart embedded devices. Depending on the application requirements, such devices can now support complex designs, allowing fast prototyping and reducing time-to-market. FPGAs are popular in many sectors such as telecommunications, robotics, automotive, etc. . A major feature of FPGAs is reconfiguration. As a consequence, FPGAs consume much more power than their ASIC counterparts as additional transistors are used to maintain the reconfiguration plan. Note that several FPGA technologies exist such as SRAM or FLASH. The Flash technology is dedicated to low-power applications for specific segments of the market whereas SRAM technology is most common.

In this paper, we tackle the issues related to power modelling and estimation of both FPGAs and ASICs. In particular, we focus on CMOS and SRAM technologies, and do not consider the flash technology that is specific. Several surveys have already reviewed associated works [START_REF] Najm | A survey of power estimation techniques in vlsi circuits[END_REF], [START_REF] Landman | High-level power estimation[END_REF], [START_REF] Macii | High-level power modeling, estimation, and optimization[END_REF], [START_REF] Reda | Power modeling and characterization of computing devices[END_REF] but none of them provides a way to compare power estimation and modelling techniques between them. This prevents designers to rapidly identify the appropriate methods according to their constraints. Moreover, this paper focuses on RTL to transistor level power modelling and estimation techniques, rather than system-level. Interested readers could refer to [START_REF] Darwish | Power Modeling and Characterization[END_REF] for higher level techniques as Transaction-level power modelling.

The objectives of this survey are:

• to deliver a comparative study, including power measurement methods, commercial power estimation tools and power modelling techniques. The comparison is performed based on custom selected metrics. • to help designers in identifying the most appropriate technique to estimate/measure the power consumption of their FPGA or ASIC design.

The paper is organized as follows: we first propose a background on ASIC and FPGA devices in section II. Then, related works on power measurement techniques are given in section VI. Section VI presents various power modelling approaches. We finally present a comparison between them and conclude.

II. HARDWARE PLATFORMS

Before addressing the power issue for ASICs and FPGAs, the following subsections provide an overview of the hardware architecture of each devices.

A. ASIC Architecture

ASICs consist of integrated circuits that are specifically built for predefined functions. They can be classified into two categories: full-Custom and semi-custom ASICs.

Full-Custom ASICs are customized and optimized circuits that offer the highest performance and the smallest die size. The design time is thus very long (up to several years for production) and the development costs are very high. An alternative to full-custom ASICs is denoted semicustom ASICs and helps designers to shorten the design time, to reduce costs and to automate the design process. This technology is based on a regular organisation of homogeneous cells or the integration of standard cells already defined in a library.

B. FPGA Architecture

An FPGA architecture consists of a two dimensional array of configurable logic cells, inputs/outputs and interconnection between them, as illustrated by Fig. 2. The basic internal structure of a logic cell generally consists of look-up tables (LUT) implemented as memories. Each n-input LUT can implement any function with up to n variables and consists of 2 n SRAM bits that store the required boolean truth table. In addition, there is at least a multiplexer and a flip-flop within each cell. Each FPGA vendor proposes its own implementation of logic cells.They also may differ regarding the layout of their interconnect and the architecture of their configurable elements. FPGA devices can also integrate specific elements, such as Digital Signal Processors (DSP) blocks, RAM memories, frequency synthesizers (PLL), as well as more sophisticated elements such as PCIe hardware controller, high speed communication transceivers etc. .

Look-Up Tables

The way logic functions are implemented in a FPGA is another key feature. Logic blocks that carry out logical functions are look-up tables (LUTs), implemented as memory, or multiplexer and memory. Figure 9.19 shows these alternatives, together with an example of memory contents for some basic operations. A 2 n  1 ROM can implement any n-bit function. Typical sizes for n are 2, 3, 4, or 5.

In Figure 9.19a, an n-bit LUT is implemented as a 2 n Â1 memory; the input address selects one of 2 n memory locations. The memory locations (latches) are normally loaded with values from the user's configuration bit-stream. In Figure 9.19b, Power consumption can be estimated using dedicated tools or simulations at different steps along the design flow as indicated by Fig. 3. Right after design synthesis, power can be estimated using the resource number information coming from the synthesis tool and by taking into account the estimated timing. The Post-P&R power estimation takes into account the physical implementation details, including routing delays, [START_REF] Xilinx | About Post-Synthesis and Post-Implementation Timing Simulation[END_REF] so that timing information is more realistic. Finally, power measurements can be realized either on FPGAs or ASICs after implementation.

In this regard, the gap between FPGA and ASIC in terms of power consumption becomes narrow [START_REF] Kuon | Measuring the gap between fpgas and asics[END_REF]. More specifically, it is possible to deal with the dynamic power consumption on both platforms using the same methods, as demonstrated in [START_REF] Nasser | Neupow: Artificial neural networks for power and behavioral modeling of arithmetic components in 45nm asics technology[END_REF]. As for the static power in ASICs and in FPGAs, it is design dependent, as partially shown in [START_REF] Bellizia | Novel measurements setup for attacks exploiting static power using dc pico-ammeter[END_REF] for the FPGA case.

III. POWER CONSUMPTION IN DIGITAL CIRCUITS

A. Static Power

Static or leakage power consumption corresponds to the power that is consumed when the circuit is powered but not active, meaning that transistors are not switching. As technology advances, this power is becoming non negligible due to the shrinking of transistors' size as well as the thickness of the oxides. Three fundamental currents contribute to static power. The first one is the gate-oxide leakage current that occurs between the transistor's channel and gate. The second is the sub-threshold leakage current that occurs between the transistor's source and drain. The last contributor is the reverse bias current, which is located between the transistor's drain and the substrate. When considering high-k dielectric devices, the main source of static power remains the sub-threshold leakage current I leakage [START_REF] Gaillardon | A survey on low-power techniques with emerging technologies: From devices to systems[END_REF] and it can be expressed as:

I leakage = I 0 e -qV th βk B T (1)
where -I 0 denotes a constant that depends on the dimension and the fabrication technology of the transistor; -β is a technology-dependent factor; -k B stands for the Boltzmann constant; -T represents the temperature; -q represents the charge of the electrical carrier; -V th represents the threshold voltage.

Depending on a given technology, temperature and threshold voltage have an exponential impact on leakage currents and thus on static power since P static = V dd I leakage , where V dd represents the supply voltage.

B. Dynamic Power

In current digital circuits, dynamic power remains the main source of power consumption. This source of power consumption is generated by the transistors' switching activity when the circuit is active. When considering a basic CMOS cell, each logic gate is made of two types of transistors i.e. N-MOS and P-MOS. The total power P t consumed for charging and discharging the load capacitance C L within a cycle can be computed using

P t = C L V 2 dd t
where C L denotes the load capacitance, V dd represents the supply voltage, t denotes the total time, which equals to k.T clock , k corresponds to the number of cycles, T clock = 1/F clock . For a transistor that toggles N times over a time interval t, the corresponding power consumption can be hence modeled as in (2)

P dynamic = N P t = N C L V 2 dd t = N C L V 2 dd k.T clock = αC L V 2 dd F clock (2 
) where α denotes the average number of switching per cycle. It is also called the activity factor, and can be expressed as α = N k . A small amount of P dynamic is due to a short circuit current that appears during the switching of both P-MOS and N-MOS transistors, due to the fact that input data stimuli signals typically are not sharp signals. Consequently, during a small period of time, both N-MOS and P-MOS transistors are turned on simultaneously. This current flows between the supply voltage and the ground, leading to a short-circuit, that can contribute to up to 10% of the total dynamic power consumption [START_REF] Gupta | Quantifying error in dynamic power estimation of cmos circuits[END_REF]. This short circuit power, P sc , can be evaluated using [START_REF] Landman | High-level power estimation[END_REF].

P sc = Kτ F clock (V dd -2V th ) 3 (3) 
with K, a technology-dependent parameter, τ the charge/discharge duration, F clock the clock frequency, V dd the voltage supply and V th the threshold voltage [START_REF] Kang | CMOS Digital Integrated Circuits Analysis &Amp; Design[END_REF]. Finally, the total dynamic power, P Dyn , can be estimated using the following equation:

P Dyn = P sw + P sc (4) 
As a summary, the main parameters of both static and dynamic powers are now known. In the next section, we review the existing methods allowing to physically measure power using either on-board measurements or an external setup.

IV. POWER MEASUREMENT ISSUES

The most intuitive way to evaluate power of devices consists in performing real measurements on the circuit directly. However, this requires to perform all design steps before obtaining any power consumption profiles [START_REF] Shang | Dynamic power consumption in virtex TM -ii fpga family[END_REF]. Either on-board or onchip sensors may be used to monitor metrics such as the supply voltage and the current drawn by the FPGA or ASIC circuit. An external instrumentation setup has then be defined to properly evaluate power consumption. The on-board power measurement solution is a portable solution that can help the digital designers to evaluate their designs as shown in Fig. 4. This can be achieved using the available on-board components, like current sensors, and voltage regulators. In the following, we review the existing works that are related to this solution.

A. On-board and on-chip Solutions

Recently, some development boards permit to perform voltage and current measurements at specific circuits locations. FPGAs manufacturers like Xilinx and Intel offered such solutions for real power measurements. For instance, Xilinx provides a solution with Texas Instruments (TI) that helps designers in performing real power measurements on Xilinx boards [START_REF]TI Power Solutions for measuring power on Xilinx Evaluation Kits[END_REF]. This solution was based on several elements: 1) the built-in current sensors, 2) the power regulators with a JTAG to USB adapter that connects the board to the host PC to monitor the current and the supply voltage. However, this solution was considered as limited due to some hardware noise caused by the built-in regulators and sensors, by the sampling frequency limitation and by the low bit resolution of the onboard Analog to Digital Converters (ADCs).

This leads to real problems in terms of measurement accuracy and measurement bench flexibility. These limitations are presented in the works of [START_REF] Nafkha | Accurate measurement of power consumption overhead during fpga dynamic partial reconfiguration[END_REF] and [START_REF] Rihani | Dynamic and partial reconfiguration power consumption runtime measurements analysis for zynq soc devices[END_REF] that study the power consumption overhead of Dynamic Partial Reconfiguration. To obtain more accurate power measures, an external power measurement setup is often considered as depicted in Fig. 5. A stable low-noise power source is usually required to supply the FPGA core power pins. External instrumentation is also needed to measure the current across a shunt resistor connected in series with the FPGA core. Some approaches use an additional control board that provides custom data to the FPGA so that users may have a full control of the input stimuli, and thus the input switching activity. This is used to perform an efficient characterization of power according to given data as in [START_REF] Jevtic | Power measurement methodology for fpga devices[END_REF]. In this work, the authors isolate different power sources of the FPGAs (logic, clock and interconnect) and perform measurements for 10000 different vectors applied to the module under characterization. Unfortunately, measures are performed during a small time window due to the limited memory size of the FPGA platform used as data source.

B. External Measurement Setup

The authors in [START_REF] Oliver | A low cost system for self measurements of power consumption in field programmable gate arrays[END_REF] propose a system that is based on a current-frequency conversion block that measures the power consumption of a running application in real-time. However, the authors present the power measurement methodology without mentioning the different types of noise that can be induced by the different electronic blocks and their effects on the accuracy and the accuracy of the physical measurements.

The work in [START_REF] Najem | Method for dynamic power monitoring on FPGAs[END_REF] studied the switching activities of a set of internal signals and the corresponding power values to obtain a model with an external runtime computation. With the same idea, the work in [START_REF] Davis | KAPow: High-accuracy, low-overhead online per-module power estimation for FPGA designs[END_REF] applied an online adjustment process and obtained higher accuracy. The hardware implementation of the signal monitoring in these works led to a resource overhead of 7% as well as an additional workload of 5% of CPU time.

Recently, authors in [START_REF] Lin | An Ensemble Learning Approach for In-Situ Monitoring of FPGA Dynamic Power[END_REF] introduce a novel and specialized ensemble model for runtime dynamic power monitoring in FPGAs. Their design provides accurate dynamic power within an error margin of 1.90% of a commercial gate-level power estimation tool.

In addition, [START_REF] Oliver | A framework to compare estimated and measured power consumption on fpgas[END_REF] presents a framework to compare power values either given by a power estimation tool or by real measurements in a formal way. This work helps in identifying the power estimation tool accuracy rather than comparing the estimation techniques themselves.

V. POWER ESTIMATION TECHNIQUES

Power estimation techniques are very efficient alternatives to measurement-based methods as they do not necessary need a characterization phase allowing a fast design exploration. In fact, such techniques can be considered at different levels of abstraction of the design, leveraging the time needed before having power estimates. Three methods can be identified: simulation-based, probabilistic-based, and statistical-based. In this paper, we focus on low level power modelling and estimation techniques, ranging from RTL to lower implementation levels.

A. Probabilistic-based methods

Historically, many proposals have contributed to the probabilistic analysis of digital circuits. Probabilistic power estimation methods use data characteristics instead of the real data. They generally rely on the static probability and the transition probability of given signals. The static probability P (s i ) of a signal s i can be defined as the probability of this signal to have a HIGH logic value. The transition probability T P (s i ) of a signal represents the probability that this signal changes its state from a logic HIGH to a logic LOW or vice versa. Probabilistic-based methods propagate these values throughout the nodes and gates of a given circuit (or netlist) to obtain a global power estimation. This bypasses the use of simulator.

Authors in [START_REF] Tsui | Exact and approximate methods for calculating signal and transition probabilities in fsms[END_REF], [START_REF] Marculescu | Stochastic sequential machine synthesis targeting constrained sequence generation[END_REF], [START_REF] Monteiro | A methodology for efficient estimation of switching activity in sequential logic circuits[END_REF] and [START_REF] Najm | Transition density: A new measure of activity in digital circuits[END_REF] make use of these probabilistic methods. These are characterized by a good estimation speed, which makes them faster than simulation-based methods. Although the estimation speed is very important, the estimation accuracy is also crucial.

Authors in [START_REF] Tsui | Efficient estimation of dynamic power consumption under a real delay model[END_REF] and [START_REF] Marculescu | Switching activity analysis considering spatiotemporal correlations[END_REF] propose additional metrics to be taken into account in order to improve the accuracy of the probabilistic techniques, such as the temporal and spatial signal correlations. The signal spatial correlation takes place when a bit value of an input depends on another input bit. A signal temporal correlation occurs when the bit value of an input bit depends on the previous bit value of the same input. The authors in [START_REF] Schneider | Effects of correlations on accuracy of power analysis-an experimental study[END_REF] show that the signal correlations may affect estimation results. For instance, neglecting the temporal correlation increases the estimation error from 15% to 50%. Discarding spatial correlation also degrades the error from 8% to 120%. Note that power estimation focuses on the propagation of transition density and static probability. In this regard, the discussed techniques assume that there is no more than one transition at the same time. In other words, glitches are not taken into account. Generally, these techniques only use deterministic delay models, meaning that gates are modeled with simple constant delays. This is a severe limitation since delay fluctuations and uncertainties may occur and have a significant impact on power consumption.

To counteract this issue, authors in [START_REF] Garg | Static transition probability analysis under uncertainty[END_REF] suggested an improvement to propagate the transition density of data signals and to take into account the uncertainty of the delay models. The probability of the data signals is then described as a continuous function of time, which provides more accurate results compared to the fixed delay models.

Although, there are no current work dealing with probabilistic-based approaches, these solutions are still in use and integrated in significant power estimation tools [START_REF] Lavagno | Electronic design automation for IC implementation, circuit design, and process technology[END_REF].

B. Simulation-based methods

Simulation-based power estimation is used by most of the computer-aided design tools. This type of technique consists in applying data stimuli to the inputs of the design under test and to perform a simulation to determine the corresponding outputs. Depending on the abstraction level, the type of information that is required to obtain power estimation is different, going from current and voltage values, capacitance, clock frequency to the switching activities of all signals.

Many simulators can be used to obtain the required information. A famous transistor-level simulator is SPICE. It uses large matrix solutions of Kirchhoff current law (KCL) equations to determine nodal currents at transistor level [START_REF] Nagel | Spice2: A computer program to simulate semiconductor circuits[END_REF]. In this work, basic elements such as resistors, capacitors, inductors, current sources, voltage sources, and higher-level diode and transistor device designs are used to correctly predict the current and voltage drop. Although highly precise, these tools become quickly unpractical as the size of the circuits increases.

Another transistor level simulator called PowerMill [START_REF] Huang | The design and implementation of powermill[END_REF] uses linear piece-by-piece transistor modelling to store transistor characteristics in lookup tables. It also uses an eventdriven timing algorithm to reach speeds comparable to logic simulators. The difference with other approaches is that it does not consider logic transitions but rather changes in node voltages. Using lookup tables leads to inaccuracy, but results are provided 2 to 3 times faster compared to SPICE. Although, PowerMill was introduced more than 2 decades ago, there are still some works that make use of it [START_REF] Piguet | Low-Power CMOS Circuits[END_REF].

Gate level simulation includes the use of logic parts such as NAND / NOR gates, latches, flip flops and interconnection networks. The most popular technique of assessment includes an event-driven model [START_REF] Bushnell | Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits[END_REF]. When an event occurs at a gate input, it may generate an output event after a simulated time delay. Power consumption is predicted by computing the charging/discharging capacitance at the gate and by evaluating the activity of this node [START_REF] Alipour | Circuit level, static power, and logic level power analyses[END_REF].

The main advantages of simulation-based power estimation techniques are their precision and their genericity. However, these methods also have some drawbacks. First, they generally require large memory resources to store all signals' information. Second, they often need a very long simulation time. Third, it is a size-dependent technique since the estimation depends on the size of the simulated circuit (number of gates, inputs, outputs etc. ).

C. Statistical-based methods

Statistical power estimation techniques are used to obtain the power consumption of a given design, after defining random input stimuli that are applied to the primary inputs of a given circuit. Then, the design is simulated using a power simulator until a desired precision is achieved.

One of the first study can be found in [START_REF] Burch | Mcpower: A monte carlo approach to power estimation[END_REF]. Authors present McPower, a Monte Carlo power estimator, in which the simulation is stopped when sufficient precision is achieved according to a specific level of confidence. Note that this technique is also time consuming but delivers faster results in comparison to simulation-based methods.

In [START_REF] Xakellis | Statistical estimation of the switching activity in digital circuitsy[END_REF], authors introduce an effective statistical sampling technique to estimate individual node transition densities. They also classify nodes into two categories: regular and low transition density node. Regular-density nodes are certified with user-specified percentage error and confidence levels whereas low-density nodes are certified with an absolute error, with the same confidence. This speeds convergence while sacrificing accuracy only on nodes which have a small contribution to power. This technique has been enhanced in [START_REF] Park | Statistical power estimation of cmos logic circuits with variable errors[END_REF] by using distinct error values for distinct nodes. For nodes that often switch, error levels are evaluated more accurately.

More recently, in [START_REF] Durrani | Efficient power analysis approach and its application to system-on-chip design[END_REF], the meta-modeling approach is adopted. In this work, two different statistical models are extracted to estimate power dissipation for individual IP core and bus in the design. For an entire SoC, the average power is extracted by a simple addition of all power estimation results of these two models.In experiments,the average error is 11.42%. In [START_REF] Verma | Clustering based power optimization of digital circuits for FPGAs[END_REF], authors apply statistical methods to estimate power of low-power embedded systems. Around 30 digital circuits are synthesized using Xilinx Synthesis Tool and power is visualized using Xpower Analyzer.

D. Power estimation tools

Power estimation tools are built on methods that have been described in the previous sections. For instance, Synopsys offers tools such as PrimePower [START_REF]Delivers accurate dynamic and leakage power analysis[END_REF] that aims at accurately analyzing the power of a full-chip of cell-based designs, at various stages of the design process.

Cadence proposes Genus as a power estimation tool working at both Register Transfer Level (RTL) and gate-level [START_REF] Cadence | Genus synthesis solution[END_REF]. The Genus RTL power tool provides time-based RTL power profiles with a system-level runtime, along with high-quality estimates of gates and wires. Note that both tools offer vector-free (or also called probabilistic-based) peak power and average power analysis. They also both deal with vector-based (or also called simulation-based) analysis.Power estimation is then based on a detailed power profile of the design that takes the interconnect, the signals' switching activity, the nets' capacitance, and the cell-level power behavior data into account.

In FPGAs, power estimation is usually evaluated at high level using spreadsheets which are usually specific to a device. An example of a vendor's tool is Xilinx Power Estimator (XPE) [START_REF] Xilinx | Xilinx power estimator user guide: Ug440[END_REF]. These tools typically aim at providing power and thermal estimates at an early stage of the design flow. In addition, Xilinx has developed the Xpower analyzer [START_REF]XPower Analyzer Overview[END_REF] to analyze power consumption at different levels of abstraction. Vectorfree and vector-based power estimation are also supported for these devices [START_REF] Sultania | Power Analysis and Optimization[END_REF]. In parallel, Intel provides PowerPlay [START_REF] Estimators | Power analyzer[END_REF] that include early power estimators. The Intel Quartus Prime software power analyzer also gives the opportunity to estimate power consumption at various design stages.

A typical FPGA power estimation flow requires simulation at RTL using a dedicated simulator. The outputs generally consist of a (VCD) file to be provided to the power estimation tool. If vectors are not available, switching activities may be assigned to the inputs and propagated using an activity estimator such as ACE [START_REF] Lamoureux | Activity estimation for fieldprogrammable gate arrays[END_REF]. Academic FPGA tool flows such as VTR also has its own power estimator (VersaPower) [START_REF] Goeders | Versapower: Power estimation for diverse fpga architectures[END_REF] which relies on activities generated by ACE to perform power estimation.

Recently, a SPICE based power estimation tool called FPGA-SPICE which is integrated with the tool versatile placement and routing (VPR) framework was presented by [START_REF] Tang | FPGA-SPICE: A simulation-based architecture evaluation framework for FPGAs[END_REF]. This tool can run SPICE level simulations for a given design mapped to an FPGA and provides cell-level power values or total full chip power as specified by users. The power values obtained using FPGA SPICE are more accurate as compared to VersaPower but the runtime is significantly longer and it is not scalable for large designs.

E. Summary

In this section, a summary of different power estimation techniques is proposed. TABLE I classifies the works of the state of the art and discusses their advantages and limitations. First, simulation-based techniques have two important advantages: high accuracy [START_REF] Najm | A survey of power estimation techniques in vlsi circuits[END_REF] and generality [START_REF] Arslan | Low power design for dsp: methodologies and techniques[END_REF]. Nevertheless, the simulation time is an important limitation of such technique since power estimation needs to wait until all current node waveforms are generated. In addition to this, significant memory resources are also required.

Probabilistic-based approaches deliver fast estimation. On one hand, they do not require waveforms generation since only signals and transition probabilities are used to estimate power. On the other hand, lower accurate results are usually obtained due to the use of simplified delay models for circuit components [START_REF] Najm | A survey of power estimation techniques in vlsi circuits[END_REF] and average signal probabilities (as compared to real input stimulus using simulations).

The statistical-based power estimation technique consists of a trade-off between the accuracy of the simulation-based approach and the estimation speed of the probabilistic-based techniques [START_REF] Burch | A monte carlo approach for power estimation[END_REF]. To this purpose the estimation speed and accuracy is considered as moderate in the table.

TABLE I ESTIMATION TECHNIQUES ADVANTAGES AND LIMITATIONS

Estimation Techniques State of the art Advantages Limitations

Probabilistic-based [START_REF] Tsui | Exact and approximate methods for calculating signal and transition probabilities in fsms[END_REF], [START_REF] Marculescu | Stochastic sequential machine synthesis targeting constrained sequence generation[END_REF], [START_REF] Monteiro | A methodology for efficient estimation of switching activity in sequential logic circuits[END_REF], [START_REF] Najm | Transition density: A new measure of activity in digital circuits[END_REF], [START_REF] Tsui | Efficient estimation of dynamic power consumption under a real delay model[END_REF], [START_REF] Marculescu | Switching activity analysis considering spatiotemporal correlations[END_REF], [START_REF] Schneider | Effects of correlations on accuracy of power analysis-an experimental study[END_REF], [START_REF] Garg | Static transition probability analysis under uncertainty[END_REF].

high estimation speed. low accuracy.

Simulation-based [START_REF] Nagel | Spice2: A computer program to simulate semiconductor circuits[END_REF], [START_REF] Huang | The design and implementation of powermill[END_REF], [START_REF] Piguet | Low-Power CMOS Circuits[END_REF], [START_REF] Bushnell | Essentials of electronic testing for digital, memory and mixed-signal VLSI circuits[END_REF], [START_REF] Alipour | Circuit level, static power, and logic level power analyses[END_REF]. 1) high accuracy; 2) generic.

1) large amount of memory resources;

2) low estimation speed.

Statistical-based [START_REF] Burch | Mcpower: A monte carlo approach to power estimation[END_REF], [START_REF] Xakellis | Statistical estimation of the switching activity in digital circuitsy[END_REF], [START_REF] Park | Statistical power estimation of cmos logic circuits with variable errors[END_REF], [START_REF] Durrani | Efficient power analysis approach and its application to system-on-chip design[END_REF], [START_REF] Verma | Clustering based power optimization of digital circuits for FPGAs[END_REF] moderate accuracy. moderate estimation speed.

VI. POWER MODELLING TECHNIQUES

In this section, we review the power modelling approaches and classify them into four categories. These categories, illustrated in Fig. 6, can be summarized as follows: analytical, table-based, polynomial-based and Neural Networks.

From our analysis, some parameters that are common to all modelling techniques were identified and selected as important qualitative metrics for modelling.

1) The modelling level represents the level at which the model is intended to be used. More specifically, power consumption can be modeled for either a circuit or a component within a circuit. 

A. Analytic modelling

Analytic techniques attempt to relate power consumption to the switching activity and the capacitance of a design [START_REF] Reda | Power modeling and characterization of computing devices[END_REF]. More specifically, these techniques are based on the theoretical equation of the power dissipation for a CMOS transistor expressed in [START_REF] Najm | A survey of power estimation techniques in vlsi circuits[END_REF]. In [START_REF] Landman | High-level power estimation[END_REF], authors divide this modelling type into activity-based and complexity-based techniques.

Complexity-based techniques tend to roughly estimate the capacitance from the design architecture. The major drawback of these techniques is that input patterns are not considered. Nevertheless, it is clear that these patterns have a strong effect on dynamic power since they are directly related to the number of transitions per clock cycle.

Concerning the estimation of the total capacitance C L of a design, the Rent's rule [START_REF] Landman | On a pin versus block relationship for partitions of logic graphs[END_REF] has been massively used. The rule expresses a relationship between the number of pin/signals and the number of hardware blocks. When going up in abstraction, i.e., at the gate-level, another solution consists in evaluating the hardware complexity through the number of equivalent gates used in a design [START_REF] Landman | High-level power estimation[END_REF]. An estimation of the overall power is then possible if the average power consumption of an equivalent gate (e.g., 2-input NAND) is known. However, such techniques suffer from poor accuracy because switching activity is not generally considered.

Activity-based models address the power modelling issue analytically from the entropy concept. This concept, borrowed from information theory, is used to evaluate the average activity of a circuit. It consists in finding a relationship between power and the amount of computational work that is performed. Note here that this technique does not consider any timing information, which is a significant limitation.

In [START_REF] Najm | A survey of power estimation techniques in vlsi circuits[END_REF], a relationship between capacitance and activity has been proposed. In this work, the area is used as a metric to estimate the physical capacitance. This work shows that the power consumption of a circuit heavily depends on the primary input probabilities and activities.

Probabilistic techniques are usually preferred for switching activity and power estimation because of their computational efficiency. In [START_REF] Najm | Transition density: a new measure of activity in digital circuits[END_REF], [START_REF] Xakellis | Statistical estimation of the switching activity in digital circuitsy[END_REF], a Transition Density Model (TDM) is proposed to estimate the switching activity of a node by considering the number of its signals' transitions.

It was demonstrated in [START_REF] Hassan | Total power modeling in fpgas under spatial correlation[END_REF] that, in order to improve accuracy, spatial and temporal correlations should be taken into account when estimating switching activity using probabilities. This approach considers signal statistics such as transition probabilities to model the transition densities of the outputs. Based on this, word-level signal statistics are used to model the power consumption of several operators (e.g., adders). An accuracy of around 10% against XPA (the Xilinx power estimation tool) has been reached [START_REF] Clarke | Parameterized logic power consumption models for fpga-based arithmetic[END_REF]. A limitation of TDM is that it does not consider glitches which significantly contributes to dynamic power.

Another interesting approach was proposed in [START_REF] Chen | A power macromodeling technique based on power sensitivity[END_REF], [START_REF] Chen | Estimation of power sensitivity in sequential circuits with power macromodeling application[END_REF], in which an effective power model based on Markov chains is used to accurately estimate the power sensitivity to the primary inputs. This power sensitivity represents the variations of power dissipation induced by signal inputs. In this work, an average error less than 5% is achieved.

Some works focused on the power modelling of specific FPGA elements (reconfigurable routing resources) by using the equations which are related to the charge/discharge capacitance [START_REF] Tang | An accurate dynamic power model on fpga routing resources[END_REF]. Their fine-grain models achieve an accuracy of about 5%. Another work focusing on the modelling of dividers was also proposed in [START_REF] Jevtic | Power estimation of dividers implemented in fpgas[END_REF]. The authors estimate the power from the divider structure and input signal statistics such as mean, variance, auto-correlation. Their model achieves a mean relative error lower than 10% against real measurements.

In addition, the analytical model proposed in [START_REF] Das | An analytical model relating fpga architecture to logic density and depth[END_REF] allows to evaluate the area-efficiency and logic depth of designs implemented on FPGAs by determining the relationship between the logic blocks and the cluster parameters. By combining such models with a delay model, this approach can be used to quickly evaluate a wide variety of lookup-table/cluster architectures, but still without taking power into consideration.

So far, many approaches have focused on dynamic power modelling, which has represented the main power dissipation source for the last decades. Authors in [START_REF] Poon | A detailed power model for field-programmable gate arrays[END_REF] present additional models of short-circuit and leakage powers for FPGA devices. Whereas switching activity is estimated using transition density of every node, dynamic power is also estimated. Their models achieved an error of 4.8% for routing segments up to 20% for other resources.

More recently, analytical approach models area, delay and power, allowing both static and dynamic power evaluation during design exploration [START_REF] Leow | An analytical model for evaluating static power of homogeneous fpga architectures[END_REF], [START_REF] Mehri | Analytical performance model for fpgabased reconfigurable computing[END_REF]. This allows designers to explore the impact of FPGA architecture parameters, including the number of logic cells and the associated switch boxes, wire lengths, and clock frequency [START_REF] Soni | Post-routing analytical wirelength model for homogeneous fpga architectures[END_REF]. For instance, the authors in [START_REF] Leow | An analytical model for evaluating static power of homogeneous fpga architectures[END_REF] improved the Poon's model [START_REF] Poon | A detailed power model for field-programmable gate arrays[END_REF] accuracy by integrating the width (W ) and length (L) of wires, delivering a static energy model that takes into account logic and routing architecture parameters.

As a summary, TABLE II presents the main aforementioned analytic models along with their corresponding inputs that enable power estimation. The error and modelling effort are also indicated as well as the model granularity and the modelling level.

Many advantages can be offered by analytical power models, which achieve a relatively good accuracy against lowlevel simulation tools. However, most of approaches models power for single components.Since analytical power models are generally used at high-level of abstraction, they make it possible to obtain results very fast, and to enable fast design exploration, especially if the number of hardware resources is a parameter of the power model. Regarding FPGA or even ASIC, technology keeps on evolving by modifying the size of the logic cells, making the generalization of the power model very difficult.

The analytical power modelling technique presents also many disadvantages. More specifically, it is very hard to take into account the effect of glitches. This is of further importance when the model is developed for a component (and not for an entire circuit), destined to be connected to other elements. It is complicated to analytically derive the power consumption of more complex digital systems, and to take efficiently low level information into consideration. Here appears the importance of adopting new techniques, like the approaches detailed in the following sub-sections.

B. Table-based power modelling technique

The look-up table based or table-based power modelling technique is the tabulation process of power values [START_REF] Raghunathan | Register-transfer level estimation techniques for switching activity and power consumption[END_REF]. Each cell of the table is addressed from inputs that have to be carefully chosen, depending on the characterization process. In addition, when power values are missing in the table, an interpolation method can be used. Note here that it does not require any mathematical model compared to the analytical approach. The look-up table based power modelling technique gained a lot of attention from researchers.

Authors in [START_REF] Raghunathan | Register-transfer level estimation techniques for switching activity and power consumption[END_REF] present a modelling technique to estimate the switching activity and the power consumption of components at Register-Transfer Level (RTL).In this work, glitches are taken into account, in order to increase the accuracy of the estimated power. This done using piece-wise linear models that consider the fluctuation of the output glitching activity and power consumption according to word-level parameters. These parameters may be the mean, the standard deviation, the spatial and temporal correlations and glitching activity at the component's inputs. The authors consider more than six factors as input entries that correspond to the present and previous input values of the component (see TABLE III). The authors claim that the obtained power estimation accuracy is around 7%. Authors in [START_REF] Gupta | Power macromodeling for high level power estimation[END_REF] present a modelling method that evaluates the power consumption of a combination circuit. This method quantifies the effect of I/O signals' switching activity. The studied parameters are the average input signal probability, the average input transition density and the average output zero-delay transition density. They use the resulting power values to build a three dimensional look-up table for any given I/O signal statistics. This method has been implemented and verified for many benchmark circuits and achieves an accuracy around 6%. Contrary to [START_REF] Raghunathan | Register-transfer level estimation techniques for switching activity and power consumption[END_REF], this work deals with a table dimension which is independent of the number of inputs component. This constitutes an advantage to reduce the table size.

Moreover, authors in [START_REF] Barocci | Lookup table power macro-models for behavioral library components[END_REF] analyzed the work proposed in [START_REF] Gupta | Power macromodeling for high level power estimation[END_REF], that can be used in the behavioral simulation, and recognized its drawbacks. They propose a new solution based on the interpolation method, which can be helpful if a given entry is not available in the look-up table. This method is based on the two closest neighboring entries of the missed entry value, and the power is calculated by linear interpolation between the respective closest power values; Furthermore, authors in [START_REF] Gupta | Power modeling for high-level power estimation[END_REF] added a new attribute to represent the average spatial correlation coefficient. Although, this method showed an RMS error of about 4% and an average error of about 6%, it still ignores the glitch power, which make this model not accurate.

Finally, authors in [START_REF] Durrani | Statistical power estimation for register transfer level[END_REF] also proposed a power estimation technique at the register transfer level. The proposed approach enables designers to estimate the power dissipation of intellectual property (IP) components. To model power dissipation, several metrics are used, such as the average input signal probability P in, the average input transition density Din, the input spatial correlation Sin, the input temporal correlation T in, the average output signal probability P out, the average output transition density Dout, the output spatial correlation Sout and the output temporal correlation T out. The results show an average error of 1.84%. Although this is a very good improvement in terms of estimation accuracy, additional attributes and computations are required. The authors in [START_REF] Durrani | Power estimation for intellectual property-based digital systems at the architectural level[END_REF] extended the work of [START_REF] Durrani | Statistical power estimation for register transfer level[END_REF]. They demonstrated the use of the table-based method for a full system power estimation and proved the scalability of the method. The method allows system-level assessment of the power consumption based on earlier characterized components' models.

TABLE III summarizes the works that use look-up tables as a modelling method. It is possible to compare the different approaches according to 4 metrics: accuracy, modelling effort, modelling level and modelling granularity. Among all these works, the most significant improvement in terms of accuracy at component level appears in [START_REF] Durrani | Statistical power estimation for register transfer level[END_REF].

Although these techniques have demonstrated their feasibility and performance, they also present some limitations. First, they often require to store a lot of data, which is memory consuming. Second, the modelling effort is considered as moderate since it depends on the number of attributes to consider, which may be significant. Finally the computational effort increases as tables grow, because of the search performed to get the proper value for a given input entry.

C. Polynomial-based power models

Long simulations and lots of parameters often limit design space exploration. To overcome this problem, regression-based power modelling may be used to predict power. It is possible to define linear regression analysis as a statistical inference method, where the relationship between dependent variables (power consumption) and one or more independent variables (i.e., the design parameters) is established [START_REF] Reda | Power modeling and characterization of computing devices[END_REF].

To overcome this problem, polynomial models can be developed to determine the linear relationship between power and one or more independent variables (i.e., the design parameters) using a fitting analysis [START_REF] Reda | Power modeling and characterization of computing devices[END_REF]. This category does not include any non-linear approach that will be discussed later. These techniques deal with power values that are obtained from simulations or measurements according to specific parameters (e.g., capacitance, switching activity, and clock frequency). They are generally bottom-up approaches that usually require a characterization phase performed at low level.

In [START_REF] Gupta | Power macro-models for dsp blocks with application to high-level synthesis[END_REF], power models for Digital Signal Processing (DSP) blocks were developed and achieved an accuracy of 20% against a gate-level simulator. In [START_REF] Bernacchia | Analytical macromodeling for high-level power estimation[END_REF], the work of [START_REF] Gupta | Power macro-models for dsp blocks with application to high-level synthesis[END_REF] is extended by considering spatial and temporal correlations of input signals when estimating switching activity using probabilities. Their regression-based approach demonstrated an improvement of the models, with an error lower than 2%.

Besides, the authors in [START_REF] Shang | High-level power modeling of cplds and fpgas[END_REF] achieved a better accuracy by defining subsets of signals depending on their nature e.g., control or data signals. An adaptive regression method was employed to build a model considering statistical parameters. This provides a good trade-off between accuracy and simulation time. Their approach for FPGA and CPLD achieved an average relative error of 3.1%.

The authors in [START_REF] Bogliolo | Regression-based rtl power modeling[END_REF] proposed an advanced regression technique for VLSI circuits. This technique is presented to boost the accuracy of linear models using regression trees algorithm. In fact, if the golden model is strongly non-linear, a linear approximation may lead to unacceptable large errors. As a consequence, control variables are defined to choose the most appropriate regression equations among different ones. An online power characterization is also proposed to improve the power modelling accuracy of small combination circuits from 34.6% to 6.1%.

As previously mentioned in the paper, FPGAs integrate multiple elements such as embedded DSP blocks, RAM blocks, look-up-tables, and D flip-flops. Some approaches go further by taking into account the number of specific hardware resources in their modelling approach. In [START_REF] Lakshminarayana | High level power estimation models for fpgas[END_REF], a linear relationship between the amount of hardware resources, capacitance, I/Os switching activity and power is determined to build a general model of IPs. Low-level simulations are performed to obtain signal activities whereas XPower Analyzer delivers power estimates. For a given number of IPs and training sequences (for building the model), the average error is about 6%. When introducing new IPs and patterns, the power estimation error increases up to 35%. In [START_REF] Jevtic | Power estimation of embedded multiplier blocks in fpgas[END_REF], the proposed power model focuses on embedded DSP blocks of FPGAs. It takes into account various signal statistics and multiplier sizes. The model is built using a multi-variable regression over different power measurements, achieving an accuracy of 7.9%.

Rather than considering the architectural elements of FPGA devices, another solution consists in creating power models for basic arithmetic operators, such as adders or multipliers [START_REF] Jiang | Macro-models for high level area and power estimation on fpgas[END_REF], [START_REF] Deng | Accurate area, time and power models for fpga-based implementations[END_REF], [START_REF] Chalbi Najoua | Accurate dynamic power model for fpga based implementations[END_REF]. By taking into account switching activity, operating frequency, auto-correlation coefficients and words length, a power model can be elaborated as shown in [START_REF] Chalbi Najoua | Accurate dynamic power model for fpga based implementations[END_REF]. This model leads to an average of 10% on a Virtex-2 Pro FPGA. However, such approach does not consider the interconnection between elements when estimating the power consumption of complex designs.

Deng's [START_REF] Deng | Accurate area, time and power models for fpga-based implementations[END_REF] area and power models were recently improved in [START_REF] Verma | More precise fpga power estimation and validation tool (fpev tool) for low power applications[END_REF] by considering power optimization technique such as clock gating. The average error obtained for a set of several IPs is decreased to around 3%.

As complexity of hardware systems is growing, a solution could be to automatically identify signals that are the main contributor to power consumption and guide power estimation tools [START_REF] Davis | Stripe: Signal selection for runtime power estimation[END_REF], [START_REF] Kim | Simmani: Runtime power modeling for arbitrary rtl with automatic signal selection[END_REF]. Another solution could be to directly make use of High-level Synthesis to create power models based on resource utilization and real measurements, in order to explore impact of HLS directives on both power and area [START_REF] Makni | Hape: A highlevel area-power estimation framework for fpga-based accelerators[END_REF].

A complete framework for FPGA is presented in [START_REF] Abdelli | High-level power estimation of fpga[END_REF]. This methodology, called Functional Level Power Analysis (FLPA), aims at decomposing the system into functional blocks. The components, that are activated in the same function, are clustered and real power measurements are performed. Then power models are computed using regression according to both system and architectural parameters.

As for dynamic power, leakage power models can also be developed using regression. In [START_REF] Helms | Leakage models for high level power estimation[END_REF], more than one hundred parameters are used to describe the static power, including channel length and doping, temperature, etc. . The accuracy of the macro-model for CMOS technology is very good, up to 2.1% for the 16nm technology node.

Finally, we summarize the main power modelling approaches based on polynomial linear regression in TABLE IV.

According to the table, developing power models with a coarse granularity produces good results with an error lower than 13%. We may note that most of the approaches propose power models for specific hardware component, such as operators (dividers, adder, DSP) or interconnection elements (multiplexers). Unfortunately, such approaches do not consider complex digital circuits made of different components. Hence, the exploration of the design space of possible configurations is not always feasible.

Moreover, polynomial-based approaches are limited regarding the number of input variables to consider during modelling. They allow to find a linear relationship between a few number of variables but are not adapted for solving non-linear problems.

D. Neural Networks based techniques

Approaches based on polynomials have a much simpler form than neural networks, and can be characterized in particular as a linear function of features. Nonetheless, model based on neural networks can perform linear and nonlinear regression. This approach is also much more effective because of its hierarchical architecture, which makes it much more efficient in model generalization.

Artificial Neural Networks (ANNs) are based on connected neurons which propagate information among them, similarly to synapses in the biological brain. As illustrated in Fig. 7 and observed in the literature, ANNs can be used to model power of digital circuits. Existing works have proved the capability of ANNs to approximate generic classes of functions [START_REF] Scarselli | Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results[END_REF].

Authors in [START_REF] Hsieh | A novel approach for highlevel power modeling of sequential circuits using recurrent neural networks[END_REF] propose a new power modelling technique for CMOS sequential circuits based on recurrent neural networks (RNN). The main goal consists in learning the relationship between I/O signal statistics and the corresponding power consumption. The work in [START_REF] Hsieh | A novel approach for highlevel power modeling of sequential circuits using recurrent neural networks[END_REF] also considers nonlinear characteristics of power consumption distributions, as well as the temporal correlation of input data. The results show that estimations are accurate with an error range of 4.19%. In fact, this work is limited by two constraints. First, the number of parameters that are needed to estimate the power consumption is large (about 8). Second, the approach is not scalable. Other works model power consumption of CMOS digital circuits using other types of neural networks such as the backpropagation neural network (BPNN), as in [START_REF] Gao | Neural network macromodel for high-level power estimation of cmos circuits[END_REF]. In this work, the authors model the relationship between power consumption and the circuit's primary I/O statistics. The main difference with [START_REF] Hsieh | A novel approach for highlevel power modeling of sequential circuits using recurrent neural networks[END_REF] is that it does not require a behavioral simulation to obtain output features. The experiments conducted on the ISCAS-85 circuits showed an average absolute relative error below 5.0% for most circuits. Both previous works show the same estimation accuracy, but [START_REF] Gao | Neural network macromodel for high-level power estimation of cmos circuits[END_REF] requires less modelling effort and provides faster estimation.

The importance of using neural networks was also demonstrated in [START_REF] Roy | Neural network based macromodels for high level power estimation[END_REF], especially for the high-level power estimation of logic circuits. In this work, a simple BPNN is used and a comparison is provided with other modelling methods. In comparison to [START_REF] Hsieh | A novel approach for highlevel power modeling of sequential circuits using recurrent neural networks[END_REF] and [START_REF] Gao | Neural network macromodel for high-level power estimation of cmos circuits[END_REF], the proposed neural network performs better. However, the main limitation of this work is related to the number of the inputs of the model, since it is highly dependent on every input's width of the components to model.

Neural networks were also used to model the power consumption of a chip as presented in [START_REF] Hou | Neural network based power estimation on chip specification[END_REF]. In this work, the power consumption was modeled using different parameters, such as the frequency and the flash, ROM, and RAM capacity. However, this work has several limitations. First, it does not take into account the inputs' activity. Second, it is only valid for a given chip and cannot be generalized easily. Finally, there is no information regarding the estimation time.

Other works consider other types of neural networks. For instance, authors in [START_REF] Sagahyroon | Dynamic and leakage power estimation in register files using neural networks[END_REF] presented a Radial Base Function (RBF) neural network to estimate the energy and the leakage power in standard cell register files. This NN model uses the number of words in the file (D), the number of bits in one word (W) and the total number of read and write ports (P). However, this limits the power model to specific registers and to a specific technology.

Authors in [START_REF] Ramanathan | Power estimation of benchmark circuits using artificial neural networks[END_REF] present a method for power estimation of ISCAS'89 Benchmark circuits that exploit both BPNN and RBF. The number of inputs and outputs and the number of logic gates are used as predictors in VLSI circuits. There is no need of detailed architecture description and no interconnection information is required to deliver power consumption as an output. However, the use of neural networks is not well motivated in this work. Moreover, the presented example ignores the fact that power consumption is data dependent.

Authors in [START_REF] Lorandel | Efficient modelling of fpga-based ip blocks using neural networks[END_REF] use neural networks as a powerful modelling tool to perform both power and signal activities modelling of an IP (intellectual property) FPGA-based component. They use simulated data that can be obtained from low-level simulations and evaluate the estimation time. The results showed that the minimum speedup factor achieved by neural models is about 11500. This demonstrates that neural networks are able to estimate power consumption very fast, and with a good accuracy.

In the same context, authors in [START_REF] Tripathi | Fast and efficient power estimation model for fpga based designs[END_REF] provide power estimate using artificial neural networks. As a result, an average relative error of 3.97% is obtained. Also, a remarkable increase in the estimation speed is observed since its magnitude order is greater than the one for the commercial power estimation tools. Despite these important results, the use of the neural networks is not well derived in this work. In addition, the data-set used to train the neural network is limited (about 74 samples only).

In the literature, more accurate results are achieved when data switching activities are modeled at the circuit level. The work presented in [START_REF] Zhou | Primal: Power inference using machine learning[END_REF] delivers very accurate results that are less than 1%. The main difference between [START_REF] Zhou | Primal: Power inference using machine learning[END_REF] and [START_REF] Dhotre | Machine learning-based prediction of test power[END_REF] is that Convolutional Neural Networks (CNN) are used in the former, and the Multi-Layer Perceptron (MLP) in the latter.

Finally, the authors in [START_REF] Nasser | NeuPow: A CAD Methodology for High Level Power Estimation Based on Machine Learning[END_REF] present NeuPow, a neural-based power estimation method that counts the signals characteristics propagation throughout connected neural models. This method also considers the switching activities of the input patterns but operating frequencies as well. It is thus possible to estimate power consumption for various circuits at different frequencies. However, this comes at the cost of an average relative error of 9%, which is relatively big. A summary of all the aforementioned works that adopt neural networks as a power modelling technique can be found in TABLE V. This table shows that the works presented in [START_REF] Roy | Neural network based macromodels for high level power estimation[END_REF], [START_REF] Suissa | Empirical method based on neural networks for analog power modeling[END_REF] and [START_REF] Lorandel | Efficient modelling of fpga-based ip blocks using neural networks[END_REF] (performed at component level) exhibit the most accurate results with an estimation error less than 3%. Note here that these works consider MLP neural networks, but more promising results can be achieved using CNNs, as demonstrated in [START_REF] Zhou | Primal: Power inference using machine learning[END_REF].

E. Analysis and Discussion

1) Problem statement: In this section, we provide a detailed analysis and discussion on all aforementioned power modelling techniques. A main issue when comparing several works in terms of estimation accuracy is the lack of a common reference. Moreover, many factors have to be considered such as the power measurement setup, the design and power estimation tools, etc. .To circumvent this issue, we propose dedicated metrics as detailed in the next section.

2) Metrics: The six following metrics were proposed to compare modelling techniques:

modelling effort: it corresponds to the quantity of information and time that is required to build the model. For example, a high modelling effort may require either a long characterization phase or a significant time to obtain data. For moderate and low modelling effort, less data points and time are needed to build the model. Regarding table-based techniques, the modelling effort is considered as moderate in average. Recall that this metric depends on two factors: the number of used attributes/predictors to build the table/model and the number of points to prepare the table. According to the literature (cf. section VI-B), the number of predictors depends on the number of inputs of the component/circuit.Polynomialbased power models may be built with a moderate modelling effort, depending the amount of data to gather. Finally, neural networks need a high modelling effort since the training time could be significant and a large number of data may be needed to obtain accurate results.

Memory resources: This metric corresponds to the memory footprint of the technique. For example, table-based technique consumes a lot of memory resources as compared to an analytic model. Table-based techniques can be considered as memory consuming because of the large number of data points required to store the model. The use of regression in polynomial-based techniques does not require a large amount of memory resources as they do not need to store data. Regarding neural networks, few memory resources are required. In fact, a memory is only used to store weights and biases. However, the memory footprint increases along with the size of the network to implement.

Computational effort: it represents the computational resources and time needed to perform estimation. We respec-tively associate a high, moderate and low computational effort to the weights. For Table-based approaches, the computational effort increases with table dimensions. This is because of dense search that is required to obtain the correct value for a given entry. Consequently, we can consider it as moderate. For polynomial and analytic models, the estimation time and the computational resources required are low. Regarding NN, the estimation is also low but the computational resources depends on the size of the network. Polynomial models do not imply a significant computation effort, as does not need to perform any additional operation to estimate power. Regarding the computational effort for neural networks, it is considered low due to the time needed to perform the computation of the output with respect to a given input. One can note that this metric is directly related to the network size.

Power characterization: It indicates if power characterization has to be performed before modelling or not. On the contrary to analytical techniques, table-based, neural networks and polynomial-based technique do require power characterization.

Accuracy: it represents the fitting capability of a given modelling technique. Regarding neural networks, it was previously remarked that such approach is able to solve complex non linear problem whereas the complexity of an equivalent analytical model or a table would be too important [START_REF] Scarselli | Universal approximation using feedforward neural networks: A survey of some existing methods, and some new results[END_REF]. Neural networks are also able to interpolate better than other modelling approaches. Analytic models are not as efficient and generally lead to a lower accuracy. The same conclusion can be made for table-based approaches, except if the size of the table becomes very significant. Polynomial-based solutions constitute a good trade-off among other approaches.

modelling expandability: it corresponds to the capability of a power model to provide power estimation of a composite system. Modelling expandability has been shown in [START_REF] Durrani | Power estimation for intellectual property-based digital systems at the architectural level[END_REF], where the table-based power models of IP-based modules were extended and connected together to get the power consumption of a composite system, such as a System-on-Chip device. The same conclusion can be drawn for neural networks [START_REF] Nasser | Power modeling on fpga: A neural model for rt-level power estimation[END_REF], [START_REF] Nasser | Neupow: Artificial neural networks for power and behavioral modeling of arithmetic components in 45nm asics technology[END_REF].

3) Comparison of modelling techniques: From the previous definition, Fig. 8 illustrates the result of different power modelling techniques according to defined metrics.

Even if quantitative results are provided, some general trends can be identified, giving designers the capability to identify the most appropriate modelling technique. At a first glance, the biggest surface highlights the best modelling technique according to a given metric. First, if designers want to quickly obtain power estimations, analytic models deliver a reasonable fitting accuracy with low computational and modelling efforts as no power characterization is required. However, from our knowledge, the main issue remains how to efficiently generalize an analytical model to a global system, without prohibiting efforts.

Regarding modelling accuracy, scalability/expandability and the use of memory resources, neural networks outperform other modelling techniques, especially table-based and analytic approaches. This is of further importance when designers want to estimate the power of a system composed of several IPs. However, neural networks necessitate a modelling effort that 

VII. LITERATURE CLASSIFICATION

In this section, we present a detailed analysis of the existing works with respect to two approaches: the modelling approach and the characterization technique. Thereby, Fig. 9 illustrates the resulting classification of all works in a matrix. Each column of the matrix identifies a characterization technique whereas a row represents a modelling technique. The following properties are then evaluated for each cell : modelling accuracy, modelling effort, model complexity and model genericity. A value, represented with a number of stars, is assigned to each cell so that works can easily be compared.

First, we reuse the modelling accuracy, corresponding to the fitting capability of a model. Then, the modelling effort metrics represent the representative amount of time needed for a possible characterization step and the time required to build the model. As a third metric, the model complexity represents the quantitative amount of resources needed to create the model (e.g. memory resources) as well as the computational effort to provide a power estimation. Finally, the model genericity corresponds to the capability of a model to be independent from a CAD tool or technology and the expandability feature (as previously defined). For each work described in TABLE III, IV, V, their position in the matrix is indicated with (i, j) where i stands for the row index (modelling technique) and j represents the column index (characterization technique). This makes it possible to identify the properties of each work very easily. Finally, the more the stars, the better the approach is (according to the defined metrics).

By analyzing Fig. 9, all works based on analytic modelling, see cells (3,1) and (3,2), deliver a relatively low fitting accuracy, whereas the model complexity and genericity are satisfying. This is because they do not necessitate too many resources, and do not depend on specific CAD tools. The model complexity is a little lower than (3,1) due to the power characterization needed for the probabilistic-based approach [START_REF] Landman | High-level power estimation[END_REF][START_REF] Najm | A survey of power estimation techniques in vlsi circuits[END_REF]. The model genericity is also lower because of the need of more low-level information.

Works making use of look-up tables are either based on statistical or simulation estimation techniques. They have roughly the same level for all considered metrics, but approaches based on statistics are more expandable. The modelling effort is also satisfying, but the model complexity may rapidly increase due to the size of the table, that grows exponentially with the number of inputs.

When comparing neural networks and polynomial based approaches, the modelling accuracy is generally better for neural networks even if measurements are realized. However, they achieve the same level of modelling effort. This is because neural networks use few memory resources but require a learning phase. Moreover, designers must take into account that the size of networks may have a significant impact on the time that is required to create the model, particularly when real measurements have to be performed.

From Fig. 9, a comparison of the works can also be performed according to the columns. When considering probabilistic-based techniques, analytic and polynomial models are less complex than neural networks to the detriment of a relative loss of accuracy. Moreover, we can see that there is no significant gain by selecting a specific modelling technique when using a statistical estimation technique. For power estimation techniques, neural networks are the most appropriate when accuracy and model genericity are the main objectives.

Fig. 9 also reveals potential areas of research. In fact, the complexity of neural network models and the modelling effort are some of the main limitations of this type of technique. New innovations have to be proposed to make this technique more suitable. Data pre-processing could leverage the training phase by lowering the number of samples, weighting the most significant inputs. New issues arise, such as the way to properly define the network parameters e.g. the size, number of neurons, number of hidden layers, etc. . Another scientific question remains open and deals with the capability of a model to cover many ASIC/FPGA families. In most cases, custom libraries are made for particular types of devices and models are not necessarily expandable to other devices. This is a clear limitation that is common to many approaches. Even if technologies are different, some scaling factors could be proposed in order to obtain models that are compatible between several device families.

As design methodologies have evolved towards SoC design, current systems are composed of many IPs that are interconnected together. As previously mentioned, it may be interesting to take into account the real activity of these IPs by propagating activities from one model to another. An issue remains, related to the definition of the model interface that is not common to all models. A solution could be the use of the AXI (Advanced extensible Interface) standard in order to ensure the interoperability between the models.

VIII. CONCLUSION

The power consumption issue in FPGAs and ASICs digital circuits implies a deep understanding of different power measurement, estimation and modelling approaches. This is very crucial in order to have more efficient computer-aided design strategies and to help designers in making correct design choices. In this paper, a review of the works dealing with FPGA and ASIC power modelling is performed and a classification is proposed according to four modelling techniques.

We further define different metrics to perform a fair and relative comparison between them. According to the study, it is shown that polynomial-based and neural networks modelling approaches are superior to analytical and table-based in terms of estimation accuracy and estimation speed. After comparing the modelling techniques, the studied works are then classified and compared along with power characterization techniques. This simplifies the comparison of the multiple works by simply considering specific metrics of interest e.g. modelling accuracy and effort or model complexity. We also identify potential areas of research to improve some limitations of existing techniques.
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TABLE II CLASSIFICATION

 II OF THE MAIN ANALYTICAL MODELLING TECHNIQUES.

				Metrics				
	References	Inputs	Outputs	modelling level	Error (%)	modelling effort	Model granularity	Year	Labels
	[59]	r xx0 , r yy0 , r xx1 , r xy1 , r yx1 , r yy1	Power	Component	10%(Avg)	**	Fine	2005	(3,2)
	[65]	C(y),D(y),f , V supply,V swing	Power	Circuit	20-4.8%(Avg)	**	Fine	2005	(3,2)
	[62]	C, V max in , V max out , τ	Power	Component	5%(Avg)	**	Fine	2012	(3,1)
	[66]	F C in ,F C out ,F s ,L,W,I,K	Static P.	Component	15%(Avg)	**	Fine	2013	(3,1)

TABLE III CLASSIFICATION

 III OF TABLE-BASED MODELLING TECHNIQUES

				Metrics					
	References	Inputs	Characterization Technique	modelling level	Error (%)	modelling effort	Model granularity	Year	Label
	[69]	A(t), A(t -1), B(t), B(t -1)...,	Statistical	Component	7% (Avg)	***	Fine	1996	(2,3)
	[70]	Pin, Din & Dout	Statistical	Circuit	6% (RMS)	**	Fine	1997	(2,3)
	[71]	[70]	Simulation	Component	< 10% (Avg)	**	Fine	1999	(2,4)
	[72]	[70] + SCin	Statistical	Circuit	4% (RMS) or 6% (Avg)	***	Fine	2000	(2,3)
	[73] & [74]	[72] + Tin, Pout, Dout, Sout & Tout	Statistical	Component/Circuit	1.84% (Avg) /15% (Avg)	***	Fine	2006/2014	(2,3)

  P in , D in , SC in , Dout

					TABLE IV				
				CLASSIFICATION OF POLYNOMIAL-BASED TECHNIQUES		
					Metrics			
	References		Fitting		Characterization	modelling	Error	modelling	Model	Year	Label
		Parameters	Technique	level	(%)	effort	granularity
	[75]				Statistical	Component	20%(Avg)	**	Fine	1999	(4,3)
	[76]	[75]+S in , T in	Simulation	Component	1.8%(Avg)	***	Fine	1999	(4,4)
	[78]	I/Os switching activities	Simulation	Component	6.1% (Avg)	**	Fine	2000	(4,4)
	[77]	same as in [75]	Simulation	Component	3.1%(Avg)	**	Fine	2001	(4,4)
	[81]	SC in ,D in , bitwidth	Simulation	Component	2% (Avg)	**	Fine	2004	(4,4)
	[82]	T Slice ,T M ult ,T BRAM	Statistical	Component	7% (Avg)	*	Coarse	2008	(4,3)
	[80]	SW CV f		Measure	Component	3%(Avg)	**	Coarse	2010	(4,5)
	[79]	SW C ef f		Statistical	Component	6%(Avg)	**	Coarse	2011	(4,3)
	[83]	F, ρ, w, SW, N I/O , N Slices	Simulation	Component	10% (Avg)	**	Coarse	2012	(4,4)
	[90]	bitwidth, N I/O , N LE	Statistical	Component	4%(Avg)	**	Coarse	2016	(4,3)
	[89]	T emp, channel length, etc.	Simulation	Component	2.1-6.8%(Avg)	***	Fine	2017	(4,4)
	[87]	n F F,LU T,BRAM,DSP , C F F,LU T,BRAM,DSP	Measure	Component	5% (Avg)	*	Coarse	2018	(4,5)
	[84]	same as in [82]	Statistical	Component	3% (Avg)	**	Coarse	2019	(4,3)
			Hidden						
		Input	layer	Output					
		layer		layer					
				Output power					
		Inputs parameters