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Abstract: The design of photoinitiating systems with excellent photochemical reactivities at 405nm
LED is one of the obstacles to efficiently promote free radical polymerization in mild conditions
(e.g., low light intensity, under air). Here, our actual search for new multicomponent photoinitiating
systems at 405nm LED prompts us to develop new dyes based on push–pull structures. In the
present paper, we chose two series of new dyes which possess indane-1,3-dione and 1H-cyclopenta
naphthalene-1,3-dione groups as the electron-withdrawing groups, since they have the great
potential to behave as sensitive and remarkable photoinitiators in vat photopolymerization/3D
printing. When incorporated with a tertiary amine (ethyl dimethylaminobenzoate EDB, used as
electron/hydrogen donor) and an iodonium salt (used as electron acceptor) as the three-component
photoinitiating systems (PISs), and among a series of 21 dyes, 10 of them could efficiently promote
the free radical photopolymerization of acrylates. Interestingly, steady state photolysis experiments
revealed different behaviors of the dyes. Fluorescence experiments and free energy change calculations
for redox processes were also carried out to investigate the relevant chemical mechanisms. Additionally,
the formation of radicals from the investigated PISs was clearly observed by electron spin resonance
(ESR) spin-trapping experiments. Finally, stereoscopic 3D patterns were successfully fabricated by
the laser writing technique. In this work, the use of push–pull dyes based on the naphthalene scaffold
as photoinitiators of polymerization is reported for the first time in a systematic study aiming at
investigating the structure–performance relationship for irradiation carried out at 405 nm. By carefully
selecting the electron donors used in the two series of push–pull dyes, novel and high-performance
photoinitiating systems operating at 405 nm are thus proposed.

Keywords: push–pull dye; free radical polymerization; three-component system; LED; 3D printing

1. Introduction

Photopolymerization under visible light and low light intensity is an active research field still
requiring the optimization of the chemical structures of photoinitiators [1–12]. With the aim of
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improving the polymerization efficiency, several parameters such as the light absorption properties
(i.e., the molar extinction coefficient), the excited state lifetime, the redox properties and the energy
levels, the photochemical stability or the easiness of synthesis have to be considered as the main
parameters governing the reactivity [13–17]. Notably, by increasing the molar extinction coefficients
of photoinitiators, the quantity of the compound introduced into the photocurable resin can be
drastically lowered while maintaining a constant absorption. This point is of crucial interest, as the
extractability and the migratability of photoinitiators within the polymer films can be a major issue
for numerous applications such as food packaging [18,19] or the design of biocompatible materials
or safety equipment [20–23]. Parallel to the absorption, the excited state lifetime is another point to
consider and an elongation of this latter is beneficial by providing more time for the photoinitiator to
react with the different additives [24–26]. For an improved reactivity, long-living excited state lifetimes
are not sufficient and redox properties adapted with those of the additives are also required in order
the redox reaction to proceed [27,28]. As abovementioned, visible light photopolymerization make
use of dyes strongly absorbing in the visible range, and the color resulting from the photoinitiator in
the polymer film can also be a major issue, especially when colorless coatings are desired. To date,
photoinitiators capable to bleach during light irradiation are still scarce so that a great deal of efforts
is currently developed by numerous research groups in order to access to these highly desired
structures [29–37]. To this end, the development of visible light photoinitiators is also highly researched
as the absorption of photoinitiators governs the choice of the irradiation sources and therefore the light
penetration [38]. By using long irradiation wavelengths, the polymerization of thick samples and the
access to composites is rendered possible, contrarily to the traditional UV photopolymerization for
which the polymerization of only thin samples is possible due to a limited light penetration at short
wavelength [39]. With regards to these different challenges (light penetration, excited state lifetimes,
bleaching properties, molar extinction coefficients), the development of visible light photoinitiators is
an active research field imposing new structures to be tested.

Concerning the enhancement of the light absorption properties, the most straightforward route
undoubtedly consists in developing dyes with a strong electronic delocalization resulting from the
separation of the electron donor from the electron acceptors [40]. This strategy can be easily developed
with push–pull dyes comprising an electron donor connected to an electron acceptor by mean of
a π-conjugated or a nonconjugated spacer [41,42]. By improving the electron-donating ability of
the electron releasing group or the electron-accepting ability of the electron withdrawing group,
the position of the charge transfer band located in the visible region can be efficiently tuned. Parallel
to this first tool, elongation of the π-conjugated spacer can red-shift the position of this band while
improving the molar extinction coefficient, offering another efficient tool to finely tune the absorption
of the push–pull dyes [43]. Benefiting from these different advantages, dyes with excellent visible
light absorption properties extending over the whole visible range and with high molar extinction
coefficients have been developed, attracting the attention of photopolymerists [44–47].

Even if a wide range of chromophores based on push–pull structures were already investigated in
photopolymerization [48–53], there is still a challenge to develop very reactive structures capable to
efficiently initiate a polymerization in mild conditions (low light intensity and under air). Considering
that for a given electron donor, the electron-withdrawing ability of the acceptor can be greatly improved
by extending the polyaromaticity of the electron-withdrawing moiety, the extended version of a
well-known electron acceptor, namely indane-1,3-dione, has been prepared and used to design a
series of push–pull dyes [43]. To evidence the benefits of this extension of aromaticity, a comparison
between dyes comprising 1H-cyclopentanaphthalene-1,3-dione or the well-known indane-1,3-dione
has been established.

In this work, two series of dyes with a broad absorption extending over the visible range have been
examined for the first time as photoinitiators of polymerization (Scheme 1). More specifically, their
polymerization initiating ability will be investigated @405 nm as this wavelength is the reference one
in 3D printing. Moreover, the dyes are characterized by different maximum absorption wavelengths,
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hence, the comparison of their efficiency for a same wavelength (405nm) will allow a comparison of
their performance.

Noticeably, examples of dyes based on 1H-cyclopentanaphthalene-1,3-dione are extremely scarce
in literature [42,54–57], evidencing the interest and the novelty of the structures proposed in this
work. Interestingly, their good light absorption properties @405 nm were anticipated by theoretical
calculations and molecular design. The twenty-one dyes reported in this work address several issues
concerning the design of photoinitiators. Notably, the different dyes could be prepared using one of the
simplest reactions known in organic chemistry, namely, the Knoevenagel reaction which was reported
for the first time in 1896 [58]. As for specificity, the concepts of Green chemistry could also be applied.
Thus, ethanol could be used as a safe solvent and no expensive transition metal complexes are required
to condense the aldehyde onto the activated methylene groups of the different electron acceptors.
Parallel to this, the different dyes 1–21 reported in this work could be prepared in high reaction
yields (ranging between 74 and 94% yields), without extensive purification processes since all dyes
precipitated in ethanol after reaction. A simple filtration was sufficient to get the different molecules
in pure form. This last point is of crucial importance as the filtration is the cheapest and the easiest
purification process existing to date, and this type of purification can be easily transposed in industry.
Parallel to this, the high reaction yields and the possibility to use Green solvents for the synthesis and
the subsequent workup make these dyes exceptional candidates for photoinitiation with regards to
the procedure used to access to these structures. The twenty-one dyes are also soluble in most of the
common organic solvents, ranging from apolar solvents such as alkanes to highly polar solvents such
as N,N-dimethylformamide (DMF), dimethylsulfoxide (DMSO), or N,N-dimethyacetamide (DMA).
Thus, a good solubility in resins is thus ensured. Indeed, the solubility of dyes within the photocurable
resins also governs their ability to initiate a polymerization process and numerous examples of dyes
with remarkable molar extinction coefficients, long-living excited state lifetime and appropriate redox
properties could never initiate a polymerization due to their insolubility in resins [59–68]. Interestingly,
the twenty-one dyes reported in this work are used for the first time in photoinitiating systems (PISs)
combining a tertiary amine, ethyl dimethylaminobenzoate (EDB), as the electronic donor and an
iodonium salt (acting as the electron acceptor) to promote the photopolymerization of benchmark
acrylate monomers (see Scheme 2). Among all dyes, some of them showed high final monomer
conversions and remarkable photoinitiating abilities. Parallel to the monitoring of the polymerization
kinetics, photolysis experiments were carried out to characterize the excited state reactivity of the
different dyes. Photochemical mechanism involved in the polymerization process was also studied
in detail by steady state fluorescence quenching and electron spin resonance (ESR) experiments.
The redox properties as well as the free radical generation are also discussed. Finally, to evidence the
interest of these new structures, 3D printing experiments were carried out with the newly proposed
photoinitiating systems, and some 3D patterns with gradient resolutions were successfully fabricated.
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Scheme 1. Chemical structures of dyes 1–21 examined in this study: (a) indane-1,3-dione and (b) 1H-
cyclopentanaphthalene-1,3-dione series. 
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Scheme 2. Chemical structures of the iodonium salt (Iod; Speedcure 938), the amine (ethyl 
dimethylaminobenzoate (EDB); Speedcure EDB) and the functional benchmark monomer (Ebecryl 
40). 

2. Results 

Photopolymerization Kinetics for the Proposed Dyes in Three-Component Photoinitiating Systems 

For the polymerization of the acrylate monomer Ebecryl 40, the photoinitiation abilities of the 
two series of dye-based PISs (from dye 1 to 21) were investigated using real-time Fourier transform 

Scheme 1. Chemical structures of dyes 1–21 examined in this study: (a) indane-1,3-dione and
(b) 1H-cyclopentanaphthalene-1,3-dione series.
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Scheme 2. Chemical structures of the iodonium salt (Iod; Speedcure 938), the amine (ethyl
dimethylaminobenzoate (EDB); Speedcure EDB) and the functional benchmark monomer (Ebecryl 40).

2. Results

Photopolymerization Kinetics for the Proposed Dyes in Three-Component Photoinitiating Systems

For the polymerization of the acrylate monomer Ebecryl 40, the photoinitiation abilities of the two
series of dye-based PISs (from dye 1 to 21) were investigated using real-time Fourier transform infrared
spectroscopy (RT-FTIR) within the same LED irradiation time (400s) at room temperature, as shown
in Figure 1. First, all dyes (1–21) were tested as photoinitiators in two-component systems dye/Iod
(0.1%/2%), but none of the resulting photoinitiating systems could provide final monomer conversions
exceeding 40%, which is extremely low for this acrylate monomer. Therefore, due to the lack of reactivity,
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the same dyes were tested in new conditions, in three component photoinitiating systems in which an
amine was added to the former dye/Iod systems. The specific polymerization of the two-component PIS
Iod/amine without dyes is also given in Figure 1 for comparison and defined as the curve 0. As depicted
in the Figure 1, typical acrylate function conversion vs irradiation time profiles indicate that the
presence of the dyes is essential to promote the free radical photopolymerization process, based on the
comparison established with the Iod/amine two-component systems. As exceptions, for dyes 6, 11 and
18, the three-component systems seem to be less efficient than the Iod/amine system (curve 0). In the
specific case of dyes 5 and 17, the two dyes proved to efficiently promote the photopolymerization of
Ebecryl 40 and the highest conversions and fastest polymerization processes were obtained with these
two dyes. Beyond 90% of final reactive function conversions were attained within 50 s. Interestingly,
the two dyes have similar chemical structures, except dye 17 possesses an additional aromatic ring
compared to dye 5. Additionally, an irreversible photobleaching process was evidenced with dye
5 during the photopolymerization process upon irradiation with the LED@405nm, which was not
observed for the elongated version of dye 5, namely dye 17.
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Figure 1. Photopolymerization profiles of Ebecryl 40 (conversion rate of C=C bonds vs irradiation time)
initiated by iodonium (Iod) and amine (EDB) upon exposure to LED@405nm under air in the presence
of dyes 1–21 for curves 1–10 (a) and 11–21 (b) at the same weight ratio: dye:Iod:amine = 0.1%:2%:2% in
Ebecryl 40; the curve number indicated the investigated dye. The reference curve without dye is curve
0 for Iod:amine = 2%:2%. The irradiation starts for t = 10 s.

On the other hand, for all the other dyes, several excellent polymerization profiles were also
obtained still upon irradiation with a LED@405nm. Among all dyes, ten of them including the two dyes
5 and 17 (gathered in Table 1) furnished high final conversions beyond 80% and short polymerization
times (the polymerization being ended within 50 s). All data concerning the polymerization of Ebecryl
40 are summarized in the Table 1. Compared to these 10 dyes, all the other dyes were less efficient to
initiate photopolymerization processes.

Table 1. Summary of the final acrylate function conversions (FCs) at 405 nm for Ebecryl 40 using
three-component photoinitiating systems: dyes (0.1%, w/w), iodonium salt (Speedcure 938, 2%, w/w)
and amine (Speedcure EDB, 2%, w/w).

Dye 5 9 10 14 15
FCs 93% 82% 84% 92% 90%

Dye 16 17 19 20 21
FCs 92% 95% 85% 91% 86%

Overall, in the course of our investigations, dyes 2, 5, 14, 16, 17 and 20 have been identified as
the most promising candidates in terms of final monomer conversions and polymerization rates. The
polymerization rates are especially remarkable for dyes 5, 14, 16, 17 and 20 for which the polymerization
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process was ended after ca. 20 s. Based on the reactivity of the 1H-cyclopentanaphthalene-1,3-dione-
based photoinitiators, the crucial importance of carefully selecting the right acceptor has been clearly
evidenced in this series of 21 dyes, since only 5 of them were remarkable photoinitiators. It also
demonstrates the extensive work that has still to be done in order to combine the right donor and
right electron acceptor to produce highly efficient photoinitiators. Therefore, to briefly conclude, the
appealing properties of dye 5 are the followings: (1) synthesis in high reaction yield, using a Green
synthesis and an easy workup, easiness of synthesis, (2) good solubility in monomers, (3) high molar
extinction coefficient (dye 5 is the third most absorbing dye of the series, positioning this dye in the
top 5), (4) low oxidation potential (except dyes 9, 10, 19 and 20 which possess a butadienyl spacer,
dye 5 exhibits the lowest oxidation potential) and (5) unique bleaching properties since only this dye is
capable to bleach during the polymerization process.

3. Discussion

To discuss the structure–reactivity–efficiency relationships of the dyes in these systems,
the chemical mechanisms involved in the polymerization process were studied.

3.1. Proposed Chemical Mechanisms

For the photopolymerization process initiated with the three-component PIS, the chemical
mechanisms can be divided into two parts: (1) dyes acting as electron donors with Iod; (2) amine (EDB)
acting as the electron donor and the dyes as the electron acceptors.

3.1.1. UV-Visible Absorption and Steady State Photolysis of the Selected Ten Dyes

In this part, the ten best dyes reported in the Table 1 were selected for the steady state photolysis
experiments. Their molar extinction coefficients were determined by UV-visible absorption spectroscopy
and the results are summarized in the Table 2. These dyes exhibit excellent visible light absorption
properties that can ensure their use in PISs upon visible LED light irradiation. For a better understanding
of these absorptions, dyes 5 and 17 were selected for molecular modeling. The frontier orbitals involved
in the lowest energy transition are depicted in the Figure 2. A charge transfer transition is found between
the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO)
localized on the electron donor (amine) or electron acceptor (indane-1,3-dione) moieties, respectively.

Table 2. Light absorption properties of the selected dyes in acetonitrile: maximum absorption
wavelengths λmax; molar extinction coefficients at λmax (εmax) and molar extinction coefficients at the
emission wavelength of the LED@405 nm (ε@405nm).

Dyes λmax (nm) εmax (M−1 cm−1) ε@405nm (M−1 cm−1)

Dye 5 498 19,900 6510
Dye 9 526 51,110 350
Dye 10 559 41,820 5520
Dye 14 449 23,180 10,930
Dye 15 504 56,620 3130
Dye 16 498 33,740 6790
Dye 17 522 106,650 2180
Dye 19 564 55,720 3790
Dye 20 598 56,280 1810
Dye 21 696 56,330 7210
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Photolysis of the ten best dyes shown in the Table 1, in the presence of the iodonium salt and
the amine were characterized by UV-visible spectroscopy. As previously mentioned, a high molar
extinction coefficient and a low oxidation potential are not sufficient for a dye to ensure the initiation
of a fast polymerization process. The yield of reaction between the dye and the additives governs
the reactivity as it determines at which speed the radicals will be formed. Therefore, photolysis
experiments are primordial to determine the kinetic of interaction.

As evidenced by the UV-visible absorption spectra depicted in Figure 3, obvious photolysis and
significant absorption decreases were observed for the photoinitiating systems comprising eight dyes
among the ten examined. Among them, dyes 5, 19, and 20 displayed a relatively rapid photolysis
process of decline, which only took 5 min, 25 min, 50 min in solution, respectively. Thus, we mainly
focused on discussing the photolysis of dyes 5 and 19 to investigate their chemical mechanisms.
To evidence the contribution of the additional aromatic ring on the photopolymerization process,
the performances of dyes 5 and 9 were compared to those of dyes 17 and 19 bearing an additional
aromatic ring. In addition, there is no obvious photolysis in the case of dyes 14, 15 and the photolysis
in the photoinitiating system with dye 16 showed an increasing process as shown in Figure 3d, i.e., the
formation of a colored photoproduct.

In the case of the dye 5-based photoinitiating system, the dye 5/Iod/amine combination exhibited
a rapid photolysis which was in agreement with the good initiating ability of this system. However,
the photolysis process of the dye 17/Iod/amine system in acetonitrile under irradiation with the LED at
405 nm is very slow as displayed in Figure 3e, due to its lower extinction coefficients (ε@405 = 2180 M−1

cm−1; see Table 2), which could hinder the photolysis efficiency, compared to dye 5 which exhibit a
higher extinction coefficient (ε@405 = 6510 M−1 cm−1; see Table 2). In fact, no clear contribution of the
additional aromatic ring on the photolysis process of dye 17 was evidenced.

The absorption peak of dye 19 (observed between 400 < λ < 650 nm) disappears within 25 min
while the very high photostability of the dye 9/Iod/amine combination can be clearly demonstrated.
Indeed, the photolysis experiment took more time, approaching 150 min for this system. Thus, it is in
accordance with the fact that a higher molar extinction coefficient is found at the emission wavelength
of the LED at 405 nm for dye 19 compared to dye 9 (ε@405 = 350 M−1 cm−1; ε@405 = 3790 M−1 cm−1 for
dyes 9 and 19, respectively, see Table 2). Interestingly, this trend is the opposite to that found for dyes
5, 17, for which the additional aromatic ring in dye 17 was considered to provide a lower extinction
coefficient at the emission wavelength of the LED at 405 nm. Thus, there is no clear evidence that the
additional aromatic ring governs the molar extinction coefficient or the polymerization performance in
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FRP. In fact, the main factor governing the absorption at 405 nm is definitely the electron-releasing
ability of the electron donor used for the design of the push–pull dyes, the electron acceptor being
maintained constant in the two series.
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Figure 3. UV-visible absorption spectra of different dyes with co-initiators: iodonium salt (Speedcure
938, 1.46 × 10−4 M) and amine (Speedcure EDB, 4.07 × 10−4 M) upon exposure to LED@405nm under
air in acetonitrile: (a) dye 5 (1.04 × 10−5 M), (b) dye 9 (1.30 × 10−5 M), (c) dye 10 (9.31 × 10−6 M), (d) dye
16 (6.46 × 10−6 M), (e) dye 17 (9.20 × 10−6 M), (f) dye 19 (1.11 × 10−5 M), (g) dye 20 (8.33 × 10−6 M),
(h) dye 21 (7.56 × 10−6 M).

Compared to the performances of dye 9, dye 10 exhibited a similar photolysis process to that
observed for dye 9 in the presence of the iodonium salt and the amine, resulting from their similarity
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in structures. Their respective performances in photopolymerization can be found in supplementary
information. Moreover, dyes 20 and 21 showed a similar photolysis process to that observed for dye 19
even though dye 20 possesses a lower extinction coefficient at 405 nm (ε@405 = 1810 M−1 cm−1; see
Table 2). Thus, we neglect the discussions on the photolyzes of dyes 20, 21 as well.

To investigate the chemical mechanisms of dye-based three-component PIS, two reactions can take
place: the photo-oxidation of the dye in combination with the iodonium salt or its photoreduction by
the amine. Therefore, these two latter processes were separately studied. In this part, dyes 5, 17 were
selected as representative dyes, and the photolysis process of the dye/Iod and the dye/amine systems
are depicted in the Figure 4. As shown in the UV-visible absorption spectra shown in Figure 4a,b
presented below, dye 5 exhibited a high reactivity in two-component photoinitiating systems (dye5/Iod
and dye 5/EDB) which was in agreement with the high initiating ability of the dye 5/Iod/EDB three
component PISs, i.e., both photo-oxidation and photoreduction processes are probably important for
dye 5.

 

2 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 4. UV-visible absorption spectra of dyes 5, 17 (1.04×10−5 M; 9.20×10−6 M, respectively.) (left) in
the presence of the iodonium salt (Speedcure 938, 1.46×10−4 M) upon exposure to LED@405nm under
air in the solvent of acetonitrile: (a) dye 5, (c) dye 17 and (right) in the presence of the amine (Speedcure
EDB, 4.07×10−4 M) upon exposure to LED@405nm under air in the solvent of acetonitrile: (c) dye 5,
(d) dye 17.

In the presence of dye/amine interactions, no photolysis can be observed for dye 17 (characterized
by a significant absorption between 400 and 600 nm in Figure 4d) in any case, for dye 17/Iod combination,
a slow photolysis is observed as shown in Figure 4c. This phenomenon can hardly be explained by
clear and obvious photolysis experiments done on the dye 17/Iod/EDB three-component PIS. The main
difference between dyes 5 and 17 can probably be ascribed to their different interaction behaviors with
the iodonium salt and the amine. Therefore, such speculation can be verified by investigating their
chemical mechanisms, which can be carried out by ESR-spin trapping experiments. On the other hand,
the photolysis process of dye 9/Iod or dye 9/amine in acetonitrile under irradiation of the 405nm LED
is rather slow, as displayed in Figure 5a,b. For the dye 19/EDB combination, a clear photolysis can be
found as shown in Figure 5d. Therefore, the dye 19/EDB based PIS exhibits a higher photosensitivity
than the dye 9/EDB system. For the interaction with Iod, a rather similar reactivity is found for dye 9
and dye 19, as can be seen when comparing Figure 5a,c.
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To sum up the photolysis experiments and with regards to the different experiments that have 
been done in this section, it can be easily seen from Figure 4a that the decoloration of the solutions of 
dye 5/Iod and dye 5/EDB can be observed within 5 minutes, contrarily to 150 minutes for dye 17/EDB 
and dye 17/Iod. Therefore a 30-fold reduction of the photolysis time is observed for dye 5, which is 
gigantesque. In terms of reactivity, no comparisons are possible between the two dyes (5 and 17) due 
to the dramatic difference of production of radicals. From these results, even polymerization tests 
were useless in the two-component system, since it could already be anticipated that dye 5 could 
initiate a faster polymerization than dye 17. The polymerization tests confirm the results obtained 
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component systems to get a deeper insight into the mechanism, which is developed in the next 
paragraph. 
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Figure 5. UV-visible absorption spectra of dyes 9, 19 (1.30× 10−5 M; 1.11× 10−5 M, respectively.) (left) in
the presence of iodonium salt (Speedcure 938, 1.46 × 10−4 M) upon exposure to LED@405nm under
air in the solvent of acetonitrile: (a) dye 9, (c) dye 19 and (right) in the presence of amine (Speedcure
EDB, 4.07×10−4 M) upon exposure to LED@405nm under air in the solvent of acetonitrile: (c) dye 9,
(d) dye 19.

To sum up the photolysis experiments and with regards to the different experiments that have
been done in this section, it can be easily seen from Figure 4a that the decoloration of the solutions
of dye 5/Iod and dye 5/EDB can be observed within 5 min, contrarily to 150 min for dye 17/EDB
and dye 17/Iod. Therefore a 30-fold reduction of the photolysis time is observed for dye 5, which is
gigantesque. In terms of reactivity, no comparisons are possible between the two dyes (5 and 17) due
to the dramatic difference of production of radicals. From these results, even polymerization tests were
useless in the two-component system, since it could already be anticipated that dye 5 could initiate
a faster polymerization than dye 17. The polymerization tests confirm the results obtained during
photolysis experiments. However, the polymerization tests have also demonstrated the limitation of
the two-component system since final monomer conversions not exceeding 40% were determined.
In contrast, the three-components systems could provide the best dyes’ final monomer conversions
higher than 90%. Considering that a two-fold enhancement of the monomer conversions could be
obtained with a few dyes, photolysis experiments were carried out with the three-component systems
to get a deeper insight into the mechanism, which is developed in the next paragraph.

3.1.2. Consumption of Dyes in Photolysis Reactions

The consumption of dyes 5, 9, 17, 19 in percentage vs. irradiation time is illustrated in Figure 6.
In details, the consumption of dye in percentage is calculated from changes of photolysis process
in the UV-visible absorption spectra. Particularly, chemical mechanisms can also be investigated by
comparing the three-component PISs (dye/Iod/amine) with the two-component PIS ones (dye/Iod or
dye/amine). Interestingly, it is obvious that the percentages of consumption profiles for all dyes (dye 5,
9, 17, 19) achieved by the three-component PIS (dye/Iod/amine) are higher than that reached when using
the two-component PISs (dye/Iod or dye/amine), e.g., consumption of dye 5 = ~60% for dye 5/Iod/amine
vs. ~50% for dye 5/Iod or ~30% for dye 5/amine, as shown in Figure 6a. A faster consumption of
dye 5 is also observed with the three-component system compared to the two-component system, the
consumption being ended after 4 min contrarily to 5 min for the two-component system. Therefore, it
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can be concluded that the higher monomer conversions obtained with the three-component system can
be confidently assigned to a faster consumption of dye 5, corresponding a faster production of radicals.
With more radicals being produced simultaneously, a higher monomer conversion can be achieved.

Thus, we propose a plausible mechanism to support the formation of radicals according to the
reactions depicted in the Scheme 3: r1, r2 and r3 are supposed to occur in the dye-based three-component
PISs. As the generated radicals shown in Scheme 3, dye•+ radical is proposed to be generated by
electron transfer from *dye to iodonium salt (r2) upon irradiation @405 nm, while dye-H• can be formed
from *dye in the presence of EDB (r3). The consumption of dyes is accelerated by the simultaneity
of r2 and r3 in three-component systems. Additionally, as shown in other systems, dye•+ can react
with EDB (r4) or dye-H• with Iod (r5). Similarly, the dye 9/Iod/amine combination seems to follow the
same chemical mechanism to the dye 5/Iod/amine PIS. Indeed, the consumption changes for all PISs
comprising dye 9 (dye 9/Iod/amine, dye 9/Iod, or dye 9/amine) were quite similar to that observed for
the dye 5/Iod/amine combinations, as shown in Figure 6a,b.
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Especially, compared to benchmark photoinitiators such as phenylbis(2,4,6-trimethylbenzoyl)-
phosphine oxide (BAPO), camphorquinone or isopropylthioxanthone (ITX) for which percentages of 
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Scheme 3. Proposed photoinitiation step mechanisms of dyes/Iodonium/amine redox combinations.

However, despite the mechanism mentioned above, there is a dissimilar process observed in the
case of the dye 19-based PIS. Compared to the dye 9/amine system, a slower consumption of dye 19 in
the dye/Iod two-component PIS was observed during the same irradiation time, e.g., the consumption
of dye 19 = ~7.3% for the dye 19/Iod PIS vs. ~50% for the dye 9/amine PIS, as shown in Figure 6b,d.
Therefore, for dye 19, r3 is probably favored over r2.

Interestingly, as shown in the Figure 6c, for the same irradiation time, the dye 17/Iod/amine system
led to a high consumption of the dye (~72%), whereas no obvious consumption of the dye in dye 17/Iod
or dye 17/amine can be observed. The chemical mechanism will be discussed in the part concerning
the ESR spin-trapping experiments.
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Figure 6. Consumption of dyes vs. irradiation time upon irradiation with a LED@405 nm (a) dye
5/Iod/amine(�); dye 5/Iod(•); dye 5/amine(N). (b) dye 9/Iod/amine(�); dye 9/Iod(•); dye 9/amine(N).
(c) dye 17/Iod/amine(�); dye 17/Iod(•); dye 17/amine(N). (d) dye 19/Iod/amine(�); dye 19/Iod(•);
dye 19/amine(N).

On the basis of the proposed mechanism depicted in the Scheme 3, the dye is partly regenerated
during (r4) and (r5), enabling to introduce the dyes in catalytic amount (see the reductive cycle in
Figure 7). In fact, the existence of reactions occurring in equations r2 and r3 is well established by ESR
spin trapping, fluorescence quenching and ∆G experiments. These two routes certainly predominate as
the consumption of the dye is a key factor governing the reactivity (see dye 5 photolysis). Concerning
r4 and r5, these two additional routes can be proposed as participating in a lesser extent to the
polymerization process, without clear proof of their existence.
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Especially, compared to benchmark photoinitiators such as phenylbis(2,4,6-trimethylbenzoyl)-
phosphine oxide (BAPO), camphorquinone or isopropylthioxanthone (ITX) for which percentages of
0.5–1 wt % are needed in order the polymerization process to be initiated [69,70] in the present case, an
amount as low as 0.1 wt % could be used while maintaining exceptional final monomer conversions



Catalysts 2020, 10, 463 13 of 22

such as with the dyes 5, 14, 16, 17, 19 and 20, for which final monomer conversions higher than 90%
could be obtained within 10–20 s.

3.1.3. Chemical Mechanisms in Electron Transfer Reactions for Dyes

The theoretical feasibility of the interactions between dye/Iod (or dye/amine) was investigated
by calculations of the free energy changes (∆GIod or ∆GEDB, respectively) for the electron transfer
reactions. According to the equations (Equation (1) or Equation (2)), ∆GIod or ∆GEDB were determined
from the oxidation potential Eox (or from the reduction potential or Ered, respectively) and the first
singlet excited state energy (ES1). The oxidation potentials (or reduction potentials) of dyes 5, 9, 17, 19
have been reported by literature [43] and their first singlet excited state energies (ES1) can be calculated
from the crossing point of the UV-visible absorption and the fluorescence spectra, as shown in Figure 8.
The results are gathered in the Table 3.

Fluorescence quenching experiments were carried out to evaluate the efficiency of the dye/Iod
interaction. Interestingly, Iod was determined as acting as a relatively good quencher for dyes 5 and
16, as displayed in Figure 9 and Figure S2, respectively. As shown in the Stern–Volmer treatment data,
a linear quenching for dye 5 was found, whereas there was only a weak decrease for dyes 9 and 19.
The Stern–Volmer constants (Ksv) and the electron transfer quantum yields (φet (S1)) for dyes 5, 9, 16
and 19 with Iod were also calculated, as shown in Table 3. Moreover, obvious fluorescence quenching
was not for both the dye 17/Iod and the dyes/amine combinations.
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Table 3. Parameters characterizing the chemical mechanisms associated with dyes 5, 9, 16, 17, 19 in
acetonitrile a.

Dye 5 Dye 9 Dye 16 Dye 17 Dye 19

Eox (eV) 0.54 0.49 0.79 0.79 0.49
Ered (eV) −1.30 −1.30 −1.31 −1.31 −1.22
ES1 (eV) b 2.32 2.02 2.29 2.29 2.12
ET1 (eV) c 2.1 1.6 1.9 2.0 1.6

∆GS1
Iod (eV) −1.08 −0.83 −0.80 −0.80 −0.93

∆GS1
EDB (eV) −0.02 0.29 0.02 0.02 0.10

∆GetT1
Iod (eV) −0.86 −0.41 −0.41 −0.51 −0.41

∆GetT1
EDB (eV) 0.21 0.7 0.41 0.31 0.62

Ksv
Iod(M−1) 359 2.62 64 - 1.86

φet(S1)
Iod

d 0.939 0.101 0.732 - 0.074
a A re-evaluated value of reduction potential of −0.7 V is used according to ref. [71]; b From the values presented in
ref. [43]; c Calculated triplet state energy level at DFT level; d From the equation presented in ref. [45].
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Figure 9. (a) Fluorescence quenching of dye 5 by iodonium salts; (b) Stern–Volmer treatment for the
dye 5/Iodonium salts fluorescence quenching.

The calculated triplet state energies (density functional theory level) for a series of representative
dyes are gathered in the Table 3. A triplet state pathway cannot be ruled out for dye/Iod interaction
(∆G < 0; Table 3). In contrast, such a triplet state interaction is not favorable for the dye/amine
combination (∆G > 0; Table 3).

3.1.4. ESR Spin-Trapping Experiments

For a better understanding of the dye/Iod/amine interaction, ESR-spin trapping experiments were
carried out on dye 5/Iod/amine (or dye 17/Iod/amine) and dye 5/Iod solution under N2 in presence
of PBN as the spin trap agent (Figure 10 for dye 5, see Figure S3 for dye 17 in the supplementary
materials). The simulation gave the following hyperfine coupling constants (hfc) constants for the
PBN spin adducts: aN = 14.4 G; aH = 2.1 G for the dye 5/Iod PISs (aN = 14.7 G; aH = 2.8 G for the
dye 17/Iod/amine PISs) which suggests the generation of the radical (CH3)3C6H4• fully matching to
literature data [72]. It also suggests that the redox reaction (r2) between dye 5 and Iod takes place
where Iod acts as an oxidizing agent leading to the formation of aryl radicals.
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Figure 10. Electron spin resonance (ESR) spectra obtained from ESR-spin trapping experiment
using PBN = 2 mg/mL (as spin trap agent); iodonium salt (Iod) or amine (EDB) = 12.6 mg/mL and
dye 5 = 0.8 mg/mL in tert-butylbenzene under N2.: (a) dye 5/Iod, irradiation time = 0 s (black) and = 10 s
(red) spectra; (b) dye 5/Iod, irradiation time =10 s (black) and simulated (red) spectra; (c) dye 5/amine,
irradiation time = 0 s (black) and = 30 s (red) spectra; (d) dye 5/amine, irradiation time = 30 s (black)
and simulated (red) spectra.

Additional ESR-spin trapping experiments carried out by irradiating the dye 5/amine solution were
carried out, and the results are presented in Figure 10c,d. Interestingly, a radical adduct corresponding
to PBN/ArNCH3CH2• adduct is detected and characterized by aN = 14.4 G; aH = 2.2 G in agreement
with literature data [73]. As expected, there is no radical observed for the dye 17/amine PISs. All these
data are in agreement with the chemical mechanisms presented above in the Scheme 3.

3.2. Laser Write Experiments Based on Dyes 5 and 19

Some laser writing experiments using different PISs (dye/Iod/amine) in Ebecryl 40 were performed
and tridimensional patterns (TSY) were fabricated successfully, as shown in Figure 11. Dyes 5 and 19
were selected due to their good performances for the FRP of Ebecryl 40. These two dyes were selected
as being the best candidates of the two series of dyes (for irradiation at 405 nm). The 3D patterns were
characterized by profilometric observations using numerical optical microscopy. As expected, efficient
photopolymerization processes occurred in the irradiated area, and the patterns clearly illustrated
excellent 3D profiles, smooth surfaces and excellent spatial resolution, as displayed in Figure 11b,d).
Laser writing experiments with the dye 17/Iod/amine PIS were also carried out. Other experiments
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were performed with the dyes 5 or 19 (see Figure S4 in the supplementary materials) but with a lower
spatial resolution.
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Figure 11. Free radical photopolymerization experiments for laser write experiments for different
dye-based three-component photoinitiating systems in Ebecryl 40. Characterization of the 3D patterns
by numerical optical microscopy: (left) top surface morphology (right) 3-D overall appearance of the
3D pattern using dye/Iod/amine (0.1%/2%/2% w/w/w) in Ebecryl 40: (a,b) for dye 5/Iod/EDB; (c,d) for
dye 19/Iod/EDB.

4. Materials and Methods

4.1. Dyes

Dyes 1–20 used as photoinitiators were prepared with the highest purity as reported in [43].
Their corresponding molecular structures are given in the Scheme 1 and marked by their real colors.

Synthesis of 2-(2-(3,3-bis(4-(dimethylamino)phenyl)allylidene)-3-oxo-2,3-dihydro-1H-cyclopenta[b]
naphthalen-1-ylidene)malononitrile (dye 21)

2-(3-oxo-2,3-dihydro-1H-cyclopenta[b]naphthalen-1-ylidene)malononitrile (0.5 g, 2.05 mmol,
M = 244.25 g/mol) and 3,3-bis(4-(dimethylamino)phenyl)acrylaldehyde (0.60 g, 2.05 mmol,
M = 294.40 g/mol) were dissolved in absolute ethanol (50 mL) and a few drops of piperidine
were added. The reaction mixture was introduced a preheated bath at 110 ◦C and progress of the
reaction was monitored by TLC. After cooling, a precipitate formed. It was filtered off, washed several
times with ethanol and dried under vacuum (0.96 g, 90% yield). 1H NMR (CDCl3) δ: 3.11 (s, 12H), 6.70
(d, 2H, J = 8.0 Hz), 6.79 (d, 2H, J = 7.6 Hz), 7.29 (d, 2H, J = 7.9 Hz), 7.54 (d, 2H, J = 8.0 Hz), 7.61–7.63 (m,
2H), 7.98–8.05 (m, 2H), 8.25 (s, 1H), 8.44 (d, 1H, J = 12.6 Hz), 8.78 (d, 1H, J = 12.6 Hz), 9.05 (s, 1H); 13C
NMR (CDCl3) δ: 40.1, 63.4, 111.5, 111.7, 115.8, 116.8, 121.1, 123.2, 123.7, 128.7, 128.9, 129.9, 130.4, 133.8,
134.0, 134.4, 135.1, 135.2, 136.0, 147.9, 152.7, 153.0, 160.9, 169.9, 189.6; Anal. Calc. for C35H28N4O: C,
80.7; H, 5.4; O, 3.1; Found: C, 80.8; H, 5.6; O, 3.2; HRMS (ESI MS) m/z: theor: 521.2336 found: 521.2335
[M + H]+ detected).
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4.2. Other Materials

The photopolymerizable monomer (Ebecryl 40) was obtained from Allnex (Bruxelles, Belgium).
The other chemicals, e.g., iodonium salt (Speedcure 938) and the amine (ethyl dimethylaminobenzoate
(EDB; also noted Speedcure EDB) were obtained from Lambson Ltd. (Wetherby, UK), and their
corresponding chemical structures are depicted in the Scheme 2. Particularly, to highlight the potential
applications in Green chemistry, polymerization experiments were carried out in solvent-free conditions
in mild conditions.

4.3. Free Radical Polymerization (FRP) Process Monitored by Real Time Fourier Transformed Infrared
Spectroscopy (RT-FTIR)

The different three-component systems were prepared with a dye/iodonium salts (Iod also noted
Speedcure 938) /ethyl dimethylaminobenzoate (amine = EDB, also noted Speedcure EDB) combination
and exposed to a LED emitting at 405 nm (I0 = 110 mW cm−2) under air, at room temperature, and
all samples were dropped between two polypropylene films with two drops of resin deposited in
laminate for the FRP. Moreover, their weight contents were calculated from the monomer (Ebecryl 40)
content and kept at 0.1%/2%/2% (w/w/w), respectively.

To monitor the FRP process, the conversion of the C=C double bond of the monomer was
continuously followed by real time FTIR spectroscopy (JASCO FTIR 4100) and focused on the stretching
vibration peak of acrylate C=C double bond at ~1630 cm−1 versus irradiation time [74–76].

4.4. UV-Visible Absorption, Photolysis and Fluorescent Properties

The UV-Visible absorption properties and the steady state photolysis experiments of the
three-component PISs were studied by JASCO V730 UV-visible spectrometer (Tokyo Japan).
The fluorescence properties were studied using a JASCO FP-6200 spectrofluorimeter (Tokyo, Japan).

4.5. Redox Potentials

The redox potentials for dye 5, 9, 16, 17, 19 (oxidation potential Eox and reduction potential
Ered) were determined in acetonitrile while using tetrabutylammonium hexafluorophosphate as the
supporting electrolyte (potential vs. saturated calomel electrode, SCE), the procedure was reported
in [43]. Furthermore, the free energy change of singlet state ∆GS1

Iod or ∆GS1
EDB for electron transfer

reaction was calculated from Equation (1) or Equation (2) [77] determined by Eox, Ered, and E*(Es1).
Here, Eox, Ered, and E*(Es1) are the oxidation potential of the electron donor (EDB), the reduction
potential of the electron acceptor (Iod), the excited state energy level (calculated from the crossing
point of UV-visible and fluorescence spectra), respectively. Similarly, the free energy change of triplet
state ∆Get was calculated from Equations 3 and 4 [42] where the triplet state energy level is noted
E*(ET1). Particularly, E*(ET1) was extracted from molecular energy level calculations (Gaussian 03 suite
of programs). The reduction potential of iodonium was −0.7V and the oxidation potential of EDB was
1.0V according to literature data [45,71].

∆GS1
Iod = Eox − (−0.7) − E* (ES1) (1)

∆GS1
EDB = 1 − (Ered) − E* (ES1) (2)

∆Get
Iod = Eox − (−0.7) − E*(ET1) (3)

∆Get
EDB = 1 − (Ered) − E* (ET1) (4)

4.6. 3D Printing Experiments

The photosensitive formulations (Ebecryl 40, PISs included) was deposited onto a homemade
tank (2mm thickness) and polymerized under air by 3D printing to produce specific tridimensional
patterns upon spatially controlled irradiation by a laser diode @405 nm with spot size around 50 µm.
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The printed 3D patterns were characterized through a numerical optical microscope (DSX-HRSU,
OLYMPUS corporation, Tokyo Japan) [78,79].

4.7. Electron Spin Resonance (ESR) Spin Trapping (ESR-ST)

Electron spin resonance-spin trapping experiments were carried out using an X-band spectrometer
(Bruker EMXplus, Karlruhe Germany). The radicals were observed under a nitrogen saturated
atmosphere at room temperature. N-tert-Butyl-phenylnitrone (PBN) was used as a spin trap agent in
tert-butylbenzene [75,76]. ESR spectra simulations were carried out using PEST WINSIM software.

4.8. Computational Procedure

Geometry optimizations were carried out at the UB3LYP/6-31G* level. Geometries were frequency
checked. The molecular orbitals (MOs) involved in these transitions were extracted [80,81].

5. Conclusions

In this research, a series of 21 new dyes was used for the elaboration of new photoinitiating
systems capable of initiating high performance photopolymerization. Specifically, two series of
indane-1,3-dione and 1H-cyclopentanaphthalene-1,3-dione derivatives appeared as being efficient
photoinitiators for 405 nm LED light induced photopolymerization accompanied with an iodonium
salt and an amine. The results on polymerization kinetics of monomer (Ebecryl 40) in the presence of
new dye-contained photoinitiating systems were systematically investigated and dye 5 and 17 were
evaluated as reliable photoinitiators. Moreover, the steady state photolysis of dye-based photoinitiating
systems was found and their proposed chemical mechanisms have been discussed by consumption
profiles of dyes. The electron transfer between dyes, iodonium salt and amine in the FRP process are
confirmed by both free energy change calculations and ESR experiments. Interestingly, very good
photobleaching properties and fluorescence quenching of dye 5 were detected.

It was also found that both good light absorption properties and excellent photochemical
reactivity in the excited state processes (redox reactions) are required for the dyes to reach efficient
photoinitiating systems.

Finally, some 3D patterns were written using these three-component photoinitiating systems.
To conclude, our research contributes to improve the knowledge of photopolymerization carried out at
405 nm with LEDs by the development of new PISs comprising push–pull chromophores. By improving
the electron accepting ability of the naphthalene-based electron acceptor, PISs operating in the near
infrared region could be developed and the synthesis of such dyes is currently under progress.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/10/4/463/s1,
Figure S1: UV-vis absorption spectra of dye 10, 16; Figure S2: Fluorescence quenching of dye 16 by Iodonium salt;
Figure S3: ESR spectra obtained from ESR-spin trapping experiment; Figure S4: Free radical photopolymerization
experiments for laser write experiments for dye 17/Iod/amine; Figure S5: 1H and 13C NMR of dye 21.
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