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Di�usion limit for a stochastic kinetic problem with

unbounded driving process

Shmuel Rakotonirina--Ricquebourg∗

June 12, 2020

Abstract This paper studies the limit of a kinetic evolution equation involving a small
parameter and driven by a random process which also scales with the small parameter.
In order to prove the convergence in distribution to the solution of a stochastic di�usion
equation while removing a boundedness assumption on the driving random process, we
adapt the method of perturbed test functions to work with stopped martingales problems.
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1 Introduction

Our aim in this work is to study the scaling limit of a stochastic kinetic equation in
the di�usion approximation regime, both in Partial Di�erential Equation (PDE) and
probabilistic senses. For deterministic problems, this is a thoroughly studied �eld in
the literature, starting historically with [26, 1]. Kinetic models with small parameters
appear in various situations, for example when studying semi-conductors [18] and discrete
velocity models [27] or as a limit of a particle system, either with a single particle [19]
or multiple ones [32]. It is important to understand the limiting equations, which are in
general much easier to simulate numerically. For instance, in the asymptotic regime we
study, the velocity variable disappears at the limit.

When a random term with the correct scaling (here t{ε2) is added to a di�erential
equation, it is classical that, when εÑ 0, the solution may converge in distribution to a
di�usion process, which solves a Stochastic Di�erential Equation (SDE) driven by a white
noise in time. This is a di�usive limit in the probabilistic sense. Such convergence has
been proved initially by Has'minskii [20, 21] and then, using the martingale approach and
perturbed test functions, in the classical article [29] (see also [25, 14, 17, 31, 6]). The use of
perturbed test functions in the context of PDEs with di�usive limits also concerns various
situations, for instance in the context of viscosity solutions [15], nonlinear Schrödinger
equations [28, 7, 9, 6], a parabolic PDE [30] or� as in this paper, kinetic SPDEs [10, 11, 8].
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In this article, we consider the following equation

Btf ε � 1

ε
apvq �∇xf ε � 1

ε2
Lf ε � 1

ε
f εmε, (1)

f εp0q � f ε0 . (2)

where f ε is de�ned on R� � Td � V , L is a linear operator (see (3) below) and the
source term mε is a random process de�ned on R��Td (satisfying assumptions given in
Section 2.1). The goal of this article is to study the limit ε Ñ 0 of its solution f ε, and
to generalize previous results of [10].

The solution f εpt, x, vq is interpreted as a probability distribution function of parti-
cles, having position x and velocity apvq at time t. The variable v belongs to a measure
space pV, µq, where µ is a probability measure. The function a models the velocity.

The Bhatnagar-Gross-Krook operator L expresses the particle interactions, de�ned
on L1pV, µq by

Lf � ρM� f, (3)

where ρ
.� ³

V fdµ andM P L1pV q.
The source term mε is de�ned as

mεpt, xq � mpt{ε2, xq, (4)

where m is a random process, not depending on ε.
In the deterministic case mε � 0, such a problem occurs in various physical situations

[12]. The density ρε
.� ³

V f
εdµ converges to the solution of the linear parabolic equation

Btρ� divpK∇ρq � 0, (5)

on R� � Td. This is a di�usive limit in the PDE sense, since the limit equation is a
di�usion equation.

In this article, the di�usion limit of (1) is considered simultaneously in the PDE and in
the probabilistic sense. The main result, Theorem 2.1, establishes that, under appropriate
assumptions, the density ρε � ³

V f
εdµ converges in distribution in Cpr0, T s, H�σpTdqq

for any σ ¡ 0 and in L2pr0, T s, L2pTdqq to the solution of the stochastic linear di�usion
equation

dρ � divpK∇ρqdt� ρ �Q1{2dW ptq,
with K as in (5). The equation is written in Stratonovitch form and is driven by a
cylindrical Wiener process W , the covariance operator Q being trace-class. As usual in
the context of di�usion limit, the stochastic equation involves a Stratonovitch product.
The di�usive limit in the stochastic case has been �rst proved in [10], under a restrictive
condition on the driving random term: m is bounded almost surely. The boundedness
of m is a strong assumption, which is not satis�ed by an Ornstein-Ulhenbeck process
for instance. The contribution of this article is to relax this assumption: we prove the
convergence under a moment bound assumption for the driving process.
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The main tools of [10] are the perturbed test function method and the concept of
solution in the martingale sense. Our general strategy for the proof is similar, there-
fore those tools are also used here. The main novelty is the introduction of stopping
times to obtain the estimates required to establish tightness and convergence. Indeed,
relaxing the conditions on m implies that moments of the solutions are not controlled
(exponential moments for m would be necessary). The strategy from [10] needs to be
substantially modi�ed: the martingale problem approach is combined with the use of
stopping times. At the limit, the stopping times persist, thus the limit processes solves
the limit martingale problem only up to a stopping time. We manage to identify them
nonetheless as a stopped version of the global solution.

This article is organized as follows: in Section 2, we set some notation, the assump-
tions on the driving random term and the main result, Theorem 2.1. Section 3 states
some auxiliary results that are used in the later sections. In Section 4, we introduce the
notion of martingale problem and the perturbed test function method that are used to
prove the convergence. In Section 6, we prove the tightness of the family of processes�pρε,τεΛ , ζε,τεΛq�

ε
stopped at the random time τ εΛ. Section 7 takes the limit when εÑ 0 in

the martingale problems and establishes the convergence of ρε in Cpr0, T s, H�σpTdqq . In
Section 8, we prove the convergence in a stronger sense, namely in L2pr0, T s, L2pTdqq),
using an additional assumption and an averaging lemma.

2 Assumptions and main result

Assumption 1. The operator L is de�ned on L1pV, µq by (3), withM P L1pV, µq such
that infV M ¡ 0 and

³
V Mdµ � 1.

Let us de�ne the spaces L2pM�1q and L2
x and the associated inner products:

L2pM�1q .� L2pTd � V, dxM�1pvqdµpvqq, pf, gqL2pM�1q
.�
»
Td

»
V

fpx, vqgpx, vq
Mpvq dµpvqdx,

L2
x
.� L2pTd, dxq, pf, gqL2

x

.�
»
Td
fpxqgpxqdx.

We also de�ne the norms }�}L2pM�1q and }�}L2
x
associated with these inner products.

Note that L is an orthogonal projection in L2pM�1q, hence

@f P L2pM�1q, }Lf}L2pM�1q ¤ }f}L2pM�1q .

Assumption 2. The function a is bounded (a P L8pV, µ;Rdq), centered for Mdµ,
namely »

V
apvqMpvqdµpvq � 0, (6)

and the following matrix is symmetric and positive de�nite

K
.�
»
V
apvq b apvqMpvqdµpvq ¡ 0. (7)
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The following assumption is not required to get the convergence in Cpr0, T s, H�σ
x q

but is used in Section 8 to retrieve a stronger convergence (in L2pr0, T s, L2
x). It is exactly

the assumption of Theorem 2.3 in [3].

Assumption 3. We have pV, dµq � pRn, ψpvqdvq for some function ψ P H1pRnq, a P
LiplocpRn;Rdq and there exists C ¥ 0 and σ� P p0, 1s such that

@u P Sd�1,@λ P R,@δ ¡ 0,

»
λ apvq�u λ�δ

p|ψpvq|2 � |∇ψpvq|2qdv ¤ Cδσ
�
.

If ψ is not compactly supported, assume moreover that ∇a is globally bounded.

Assumption 4. We have

sup
εPp0,1q

E
�
}f ε0}24

L2pM�1q

�
  8. (8)

and ρε0 converges in distribution in L2
x to ρ0.

Remark. The moments of order 24 in Assumption 4 are useful in Sections 4.1 and 4.2.

2.1 Driving random term

Consider the normed space
E

.� C2td{2u�4pTdq,
where the norm is given by

}�}E �
¸

|β|¤2td{2u�4

sup
xPTd

�����B|β|�Bxβ

����� ,
where β P Nd, |β| � °d

i�1 βi and

B|β|
Bxβ �

B|β|
Bxβ1

1 ...Bxβdd
.

Assumption 5. The family of process pmp�, nqqnPE is a E-valued, càdlàg, stochastically
continuous and homogeneous Markov process with initial condition mp0, nq � n. It
admits a unique centered stationary distribution ν»

E
}n}E dνpnq   8 and

»
E
ndνpnq � 0.

The driving process m is the stationnary Markov process associated with pmp�, nqqnPE ,
meaning that for all t P R�, the distribution of mptq is ν. It is adapted to a �ltration
pFtqtPR� satisfying the usual conditions (complete and right-continuous).
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For θ P L1pEq .� L1pE, νq, set

〈θ〉 .�
»
E
θdν.

Note that most of the arguments below only require mptq P C1pTdq. However, in
Section 6, we use the compact embedding H td{2u�2pTdq � C1pTdq and in Section 3.2, we
need mptq P C2spTdq with HspTdq � C1pTdq, hence s � td{2u� 2.

De�nition 1. For ε ¡ 0, the random process mε is de�ned by (4) where m is de�ned
by Assumption 5. Let Fεt � Ft{ε2 so that mε is adapted to the �ltration pFεt qtPR� .

2.1.1 Assumption on moments

From now on, we depart from the setting of [10]. In the previous works [10, 11], it is
assumed that there exists C� P R� such that, almost surely,

@t P R�, }mptq}E ¤ C�.

The main novelty of this article is that we relax this assumption into Assumptions 6
and 7 concerning moments.

Assumption 6. There exists γ P p4,8q such that

E

�
sup
tPr0,1s

}mptq}γE
�
  8.

The condition γ ¡ 4 is required below in Assumption 7, where we also assume that
the moments on mpt, nq depend polynomially on n.

Assumption 7. There exists b P r0, γ2 � 2q such that

sup
nPE

sup
tPR�

E
�
}mpt, nq}2E

� 1
2

1� }n}bE
  8,

and such that ν has a �nite 8pb� 2q-order moment, namely»
E
}n}8pb�2q

E dνpnq   8.

For instance, if m is an Ornstein-Uhlenbeck process

dmptq � �θmptqdt� σdW ptq,

with W a E-valued Wiener process, then m satis�es Assumptions 6 and 7.
Moreover, any process satisfying the boundedness assumption in [10] also satis�es

Assumptions 6 and 7.
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2.1.2 Mixing property

Assumption 8 (Mixing property). There exists a nonnegative integrable function γmix P
L1pR�q such that, for all n1, n2 P E, there exists a coupling pm�p�, n1q,m�p�, n2qq of
pmp�, n1q,mp�, n2qq such that

@t P R�,E
�
}m�pt, n1q �m�pt, n2q}2E

�1{2
¤ γmixptq }n1 � n2}E .

Typically, γmix is expected to be of the form γmixptq � Cmixe
�βmixt for some βmix ¡

0. In the example where m is an Ornstein-Uhlenbeck process, consider m�p�, n1q and
m�p�, n2q driven by the same Wiener process W . Owing to Gronwall's Lemma, it is
straightforward to prove that this coupling satis�es Assumption 8 and that γmix decays
exponentially fast.

We also need Assumptions 9 and 10 concerning the transition semi-group associated
to the homogeneous Markov process pmp�, nqqnPE . Since those assumptions are quite
technical, we postpone their statement in Section 3.1.1.

2.2 Main result

For x, y P Td, de�ne the kernel

kpx, yq � E
�»

R
mp0qpxqmptqpyqdt

�
, (9)

and for f P L2
x and x P Td, let us recall from [10]

Qfpxq �
»
Td
kpx, yqfpyqdy. (10)

Theorem 2.1. Let Assumptions 1, 2 and 4 to 10 be satis�ed. Let W be a cylindrical
Wiener process on L2

x, ρ0 be a random variable in L2
x and ρ be the weak solution of the

linear stochastic di�usion equation

dρ � divpK∇ρqdt� ρQ1{2 � dW ptq, (11)

with initial condition ρp0q � ρ0, in the sense of De�nition 5. Also assume that ρεp0q
converges in distribution to ρ0 in L2

x. Then, for all σ ¡ 0 and T ¡ 0, the density ρε

converges in distribution in Cpr0, T s, H�σ
x q to ρ.

Let Assumptions 1 to 10 be satis�ed. Then ρε also converges in distribution in
L2pr0, T s, L2

xq to ρ.
The noise in (11) involves a Stratonovitch product, which is usual in the context of

di�usion limit. Written with a Itô product, the limit becomes

dρ � divpK∇ρqdt� 1

2
Fρdt� ρQ1{2dW ptq, (12)
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where F is the trace of Q, namely

F pxq � kpx, xq. (13)

This equation is well-posed, as discussed after De�nition 5.
This is the same limit than in [10]. Compared with [10], we obtain a stronger con-

vergence result, namely a convergence in L2pr0, T s, L2
xq under additional assumptions.

2.3 Strategy of the proof of Theorem 2.1

A standard strategy to prove the convergence of ρε when εÑ 0 (see [10, 11, 8]) is �rst to
establish the tightness of the family pρεqε¡0, and then the uniqueness of the limit point of
this family and solves (18). The tightness usually comes from estimates on moments of
trajectories. It is the case in [10], where the boundedness of m is used to get an estimate

on E
�
suptPr0,T s }f εptq}pL2

�
for all T ¡ 0 and p ¥ 1. However, without an almost sure

bound on m, we do not manage to get this estimate. Instead, we introduce a stopping
time τ εΛ depending on a parameter Λ such that the estimate holds for f ε,τ

ε
Λ
.� f εpt^ τ εΛq.

More precisely, de�ne a �rst stopping time

τ ε
.� inf

 
t P R� | }mεptq}E ¡ ε�α

(
, (14)

for some parameter α. Let C1
x
.� C1pTdq and de�ne the hitting time of a threshold Λ by

z P Cpr0, T s, C1
xq

τΛpzq .� inf
!
t P R� | }zptq}C1

x
¥ Λ

)
. (15)

Then, de�ne the auxiliary process

ζεptq � 1

ε

» t
0
mεpsqds � ε

» t{ε2
0

mpsqds P E � C1
x. (16)

Observe that 1
εm

ε � Btζε.
We can now de�ne

τ εΛ
.� τ ε ^ τΛpζεq. (17)

The times τ ε and τΛpζεq have di�erent asymptotic behaviors. On the one hand, Lemma 3.4
states that τ ε Ñ 8 in probability. On the other hand, Section 7.1 establishes that ζε

converges in distribution, when ε Ñ 0, to a Wiener process ζ. Thus, we prove that, for
all Λ outside of a countable set, τΛpζεq converges in distribution to τΛpζq. Hence, τ εΛ
converges in distribution to τΛpζq.

In Section 3.5, we prove an estimate on f ε,τ
ε
Λ depending only on T , Λ and f ε0 . This

estimate leads to prove the tightness of the family of stopped processes
�
ρε,τ

ε
Λ

�
ε¡0

. Then,
we identify the limit points of this family using the notions of martingale problems and
perturbed test functions, and we deduce the convergence of the stopped process to a
limit ρΛ.

Since τ ε Ñ τΛpζq and we expect ρε Ñ ρ, it is convenient to study the process
pρε, ζεq to be able to write the limit of ρε,τ

ε
Λ as ρτΛpζq. Moreover, to prove that ρε indeed
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converges to ρ and that ρ satis�es (11), we need τΛpζq to be a stopping time for the limit
process. Thus, we need to consider the convergence in distribution of the couple pρε, ζεq
in Cpr0, T s, H�σ

x q � Cpr0, T s, C1
xq to the solution pρ, ζq of$&%dρ � divpK∇ρqdt� 1

2
Fρdt� ρQ1{2dW ptq

dζ � Q1{2dW ptq,
(18)

with initial condition ρp0q � ρ0 and ζp0q � 0. In this framework, τΛpζεq is a stopping
time for pρε, ζεq and τΛpζq is a stopping time for the limit pρ, ζq.

We �rst state in Section 3 some consequences of our assumptions in Section 2.1 and
introduce the stopping times. In Section 4, we de�ne the martingale problem solved by
the process pρε, ζεq and set up the perturbed test functions strategy.

In Section 6, we prove the tightness of the stopped process in Cpr0, T s, H�σ
x q �

Cpr0, T s, C1
xq, using the perturbed test functions of Section 4. Then, in Section 7, we

establish the convergence of the martingale problems when εÑ 0 to identify the limit as
a solution of a stopped martingale problem, and deduce the convergence of the original
process pρε, ζεq in Cpr0, T s, H�σ

x q � Cpr0, T s, C1
xq.

In Section 8, we prove the tightness of the stopped process in L2pr0, T s, L2
xq under the

assumptions of Theorem 2.1, using an averaging lemma. Combined with the previous
results, we deduce the convergence of the original process ρε in L2pr0, T s, L2

xq.

3 Preliminary results

3.1 Resolvent operator

3.1.1 Additional assumptions

Denote by pPtqtPR� the transition semi-group on E associated to the homogeneous
Markov process m and let B denote its in�nitesimal generator

@n P E,Bθpnq � lim
tÑ0

Ptθpnq � θpnq
t

.

The usual framework for Markov processes and their transition semi-groups is to
consider continuous bounded test functions θ P CbpEq, so that Ptθ is a contraction semi-
group (see [14]). Here, we need unbounded test functions (see Section 4.2), thus consider
the action of the semi-group on CpEq X L1pEq. We also consider the domain of B

DpBq .�  
θ P CpEq X L1pEq | @n P E,Bθpnq exists and Bθ P CpEq X L1pEq( .

We need a continuity property for the semi-group pPtqtPR� . De�ne �rst the resolvent
operator.

De�nition 2. For λ P r0,8q and θ P CpEq XL1pEq such that
³8
0 |Ptθpnq| dt   8 for all

n P E, de�ne the resolvent: for all n P E

Rλθpnq .�
» 8

0
e�λtPtθpnqdt.
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Assumption 9. The family pPtqtPR� is a semi-group on CpEq X L1pEq. Moreover, for
all pλiq1¤i¤4 P r0,8q4 and pθiq1¤i¤4 P CpEq X L1pEq4 such that Rλiθi are well-de�ned
by De�nition 2, we have

@j P J1, 4K,Πj
i�1Rλiθi P DpBq.

In addition, we assume that for λ P r0,8q and θ such that Rλθ P DpBq, the commutation
formula holds

B

» 8

0
e�λtPtθp�qdt �

» 8

0
e�λtBPtθp�qdt.

The second part of Assumption 9 is satis�ed under a continuity property for the
semi-group pPtqtPR� . Indeed, consider the following computations

lim
sÑ0

Ps � id

s

» 8

0
e�λtPtθp�qdt � lim

sÑ0

» 8

0
e�λt

Ps�t � Pt
s

θp�qdt

�
» 8

0
e�λt lim

sÑ0

Ps�t � Pt
s

θp�qdt

To justify the �rst equality, it is su�cient to assume point-wise continuity of Pt for all
t on the space CpEq X L1pEq. The second equality is a consequence of the bounded
convergence theorem.

Note that by means of Assumption 9, �R0 is the inverse of B. Indeed, for θ such
that R0θ P DpBq, we have

B

» 8

0
Ptθp�qdt �

» 8

0
BPtθp�qdt �

» 8

0
BtPtθp�qdt � �θ.

We sometimes use functions having at most polynomial growth. Our last assumption
is that B preserves this property.

Assumption 10. If θ P DpBq has at most polynomial growth, then Bθ has at most
polynomial growth with the same degree. Namely, there exists CB P p0,8q such that,
for any θ P DpBq and k P N,

sup
nPE

|Bθpnq|
1� }n}kE

¤ CB sup
nPE

|θpnq|
1� }n}kE

3.1.2 Results on the resolvent operator

We introduce a class of pseudo-linear (respectively pseudo-quadratic) functions, which
behave like linear (respectively quadratic) functions for our purposes.

De�nition 3. A function θ P LippEq such that 〈θ〉 � 0, is called pseudo-linear. Denote
by rθsLip its Lipschitz constant.

A function θ : E Ñ R is called pseudo-quadratic if there exists a function bθ : E2 Ñ R
satisfying

• for all n P E, θpnq � bθpn, nq,
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• for all n P E, bθpn, �q and bθp�, nq are Lipschitz continuous,
• the mappings n ÞÑ rbθpn, �qsLip and n ÞÑ rbθp�, nqsLip have at most linear growth.

If θ is a pseudo-quadratic function, then let

rθsquad
.� sup
n1�n2PE

|θpn2q � θpn1q|
p1� }n1}E � }n2}Eq }n2 � n1}E

  8.

Let E� denote the dual space of E. Any element θ P E� is pseudo-linear.
A consequence of the mixing property (Assumption 8) is that the pseudo-linear and

the pseudo-quadratic functions introduced in De�nition 3 satisfy the conditions of De�-
nition 2.

Lemma 3.1. Let θ be a pseudo-linear function. Then, for all λ ¥ 0, Rλθ is well-de�ned
and is pseudo-linear. Moreover, let

Cλ �
» 8

0
e�λtγmixptqdt and C 1

λ �
�

1_
»
}n2}E dνpn2q



Cλ.

Then, we have
rRλθsLip ¤ rθsLipCλ,

and for n P E,
|Rλθpnq| ¤ C 1

λ rθsLip p1� }n}Eq. (19)

Let θ be a pseudo-quadratic function. Then, for λ ¥ 0, Rλ rθ � 〈θ〉s is well-de�ned.
Moreover, there exists C2

λ P p0,8q depending only on Cλ and b such that, for n P E,

|Rλ rθ � 〈θ〉s pnq| ¤ C2
λ rθsquad p1� }n}b�1

E q

where b is de�ned in Assumption 7.

Proof. Let n1, n2 P E and denote by pm�p�, n1q,m�p�, n2qq the coupling introduced in
Assumption 8. If θ is Lipschitz continuous, then for all t P R�, Assumption 8 leads to

|Ptθpn1q � Ptθpn2q| ¤ rθsLip γmixptq }n1 � n2}E . (20)

Recall that Pt is ν-invariant, i.e. νPt � ν, hence we have

|Ptθpn1q � 〈θ〉| �
����»
E
pPtθpn1q � Ptθpn2qq dνpn2q

����
¤ γmixptq rθsLip

»
E
}n1 � n2}E dνpn2q

¤
�

1_
»
}n2}E dνpn2q



γmixptq rθsLip p1� }n1}Eq. (21)
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Assume that θ is pseudo-linear. Since 〈θ〉 � 0, (21) implies that Rλθ is well-de�ned for

all λ P r0,8q, and (20) implies that Rλθ is
�
rθsLipCλ

	
-Lipschitz continuous. Moreover,

by means of Fubini's Theorem,»
E
Rλθpnqdνpnq �

»
E

» 8

0
e�λtPtθpnqdtdνpnq

�
» 8

0
e�λt

»
E
Ptθpnqdνpnqdt

�
» 8

0
e�λt

»
E
θpnqdνpnqdt

� 0.

This concludes the proof that Rλθ is pseudo-linear. Finally, (19) is a straightforward
consequence of (21).

Now assume that θ is a pseudo-quadratic function: using Assumptions 7 and 8 and
Cauchy-Schwarz inequality, we have for all n1, n2 P E

|Ptθpn1q � Ptθpn2q| ¤ C rθsquad

�
1� }n1}bE � }n2}bE

	
γmixptq }n1 � n2}E ,

for some constant C depending on b. Since Pt is ν-invariant and ν has a �nite moment
of order b� 1 by Assumption 7, we get

|Ptθpnq � 〈θ〉| ¤ C 1 rθsquad γmixptqp1� }n}b�1
E q,

for some constant C 1 depending on b. Integrating with respect to t gives the announced
result.

Let us recall notation from [10]. For ρ, ρ1 P L2
x, denote by ψρ,ρ1 P E� the continuous

linear form
@n P E,ψρ,ρ1pnq .� pρn, ρ1qL2

x

The linear form ψρ,ρ1 is pseudo-linear and�
ψρ,ρ1

�
Lip

� ��ψρ,ρ1��E� ¤ }ρ}L2
x

��ρ1��
L2
x
.

Hence, by Lemma 3.1, we have for ρ, ρ1 P L2
x, λ ¥ 0 and n P E��Rλψρ,ρ1pnq�� ¤ C 1

λ }ρ}L2
x

��ρ1��
L2
x
p1� }n}Eq.

Thus, for all n P E, pρ, ρ1q ÞÑ Rλψρ,ρ1pnq is a continuous bilinear form on L2
x. By

means of Riesz Representation Theorem, there exists a continuous linear map rRλpnq :
L2
x Ñ L2

x such that

@ρ, ρ1 P L2
x,@n P E,Rλψρ,ρ1pnq � p rRλpnqρ, ρ1qL2

x
.

12



By a slight abuse of notation, denote Rλpnq � rRλpnq. For ϕ P C1pL2
xq, the linear mapping

Dϕpρq can also be identi�ed as an element of L2
x:

@ρ, h P L2
x, Dϕpρqphq � ph,DϕpρqqL2

x
,

so that we can de�ne DϕpρqpRλpnqhq for ρ, h P L2
x.

Now consider ρ and ρ1 in dual Sobolev spaces Hk
x and H�k

x (for k P N such that
E � Ckx , namely k ¤ 2 td{2u� 2). We also may de�ne Rλpnq : Hk

x Ñ Hk
x in a compatible

way.

3.2 Properties of the covariance operator

Recall that k, F and Q are de�ned by equations (9), (10) and (13).

Lemma 3.2. The kernel k is symmetric and in L8pTd�Tdq. Moreover, Q is a bounded,
self-adjoint, compact and non-negative operator on L2

x.

Proof. Since m is stationary, we have the identity

kpx, yq �
»
E
ψxpnqR0ψypnqdνpnq �

»
E
R0ψxpnqψypnqdνpnq, (22)

with ψxpnq � npxq for all n P E and x P Td. The functions ψx and ψy are continuous
linear forms, thus we have

sup
x,yPTd,nPE

|ψxR0ψypnq|
1� }n}2E

  8.

Owing to Assumption 6,
³
E }n}2E dνpnq   8, thus k is well-de�ned, bounded and sym-

metric. It implies that Q is a bounded operator on L2
x and is self-adjoint and compact

(see for instance [13] XI.6).
The proof of non-negativity of Q is given in [10].

By means of Lemma 3.2, the operator Q1{2 can be de�ned (L2
x Ñ L2

x). Note that Q
is trace-class, that Q1{2 is Hilbert-Schmidt on L2

x and that���Q1{2
���2

L2

� TrQ �
»
Td
F pxqdx.

Let pFiqi be a orthonormal and complete system of eigenvectors of Q1{2, and
�?
qi
�
i

their associated eigenvalues.

Lemma 3.3. For all i, Fi P C1
x and¸

i

qi }Fi}2C1
x
  8.
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Proof. Let s � X
d
2

\� 2, so that we have the continuous embeddings Hs
x � C1

x. It is thus

su�cient to prove that
°
i qi }Fi}2Hs

x
  8.

Since mptq P E � C2s
x and is mixing, is it straightforward to prove that k P H2s

x using
a di�erentiation under the integral sign in (9).

For |β| ¤ s, we multiply the identity qiFi � QFi by
B2|β|Fi
Bx2β and integrate by parts

both sides of the equality to get

p�1q|β|qi
�����B|β|FiBxβ

�����
2

L2
x

�
» » B2|β|kpx, yq

Bx2β
FipxqFipyqdxdy.

Using (22), we have»
Td

»
Td

B2|β|kpx, yq
Bx2β

FipxqFipyqdxdy �»
E

»
Td

B2|β|n

Bx2β
pxqFipxqdx

»
Td
R0ψypnqFipyqdydνpnq

�
»
E

»
Td

B2|β|pR0ψxpnqq
Bx2β

Fipxqdx
»
Td
npyqFipyqdydνpnq.

We sum with respect to i, use the Parseval identity and the Cauchy-Schwarz inequality
to get

¸
i

qi

�����B|β|FiBxβ

�����
2

L2
x

¤ 2

»
E
}R0ψxpnq}H2|β|

x
}n}

H
2|β|
x

dνpnq

¤ C

»
E
p1� }n}2Eqdνpnq,

for some constant C, using Lemma 3.1. This upper bound is �nite by Assumption 7.
Summing with respect to β concludes the proof.

3.3 Behavior of the stopping time for the driving process

Recall that τ ε is de�ned by (14): τ ε
.� inf tt P R� | }mεptq}E ¡ ε�αu.

In this section, we establish Lemma 3.4 below. Its objectives are twofold. On the
one hand, it shows that mε is almost surely bounded on any interval r0, T s, which is
useful to justify the well-posedness of (1). On the other hand, it gives us an estimate for
εα

��mε,τεptq��
E
uniform in t and ε for some small α. This estimate will prove useful for

Sections 4.1, 6 and 7. Therefore, it is a key result of this paper.

Lemma 3.4. Let Assumptions 5 and 6 be satis�ed and let T ¡ 0. Then almost surely

sup
tPr0,T s

}mεptq}E   8.

Moreover, let α ¡ 2
γ and de�ne the pFεt qt-stopping time τ ε by (14). Then, we have

@T ¡ 0,P pτ ε   T q ÝÝÝÑ
εÑ0

0.
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Remark. Equation (14) implies that for t P R�,��mε,τεptq��
E
� }mεpt^ τ εq}E ¤ ε�α _ }mp0q}E . (23)

In particular, on the event t}mp0q}E ¡ ε�αu, we have τ ε � 0 and mε,τεptq � mp0q. Thus,
one does not necessarily have the estimate

��mε,τεptq��
E
¤ ε�α.

Proof. Let pSkqk be the identically distributed random variables de�ned by

@k P N0, Sk
.� sup
tPrk,k�1s

}mptq}E .

By means of Assumptions 5 to 7, for all k P N, E
�
Sγk

� � E rSγ0 s   8. Thus, almost
surely, Sk   8 for all k P N0. This yields the �rst result:

P-a.s.,@T ¡ 0, sup
tPr0,T s

}mεptq}E ¤ sup
k¤Tε�2�1

Sk   8.

Since α ¡ 2
γ , there exists δ such that α

2 ¡ δ ¡ 1
γ . Then, the Markov inequality yields

¸
kPN

P
�
Sk ¥ kδ

	
¤

¸
kPN

E
�
Sγk

�
kδγ

� E rSγ0 s
¸
kPN

1

kδγ
  8.

By means of the Borel-Cantelli Lemma, almost surely, there exists a random integer
k0 P N such that

P-a.s.,@k ¡ k0, Sk   kδ.

De�ne the random variable Z
.� supk¤k0

Sk. Then Z is almost surely �nite and

P-a.s.,@t P R�, }mptq}E ¤ Sttu ¤ Z � ttuδ ¤ Z � tδ.

Finally, for T ¡ 0, using that α ¡ 2δ, we get

P pτ ε   T q � P

�
sup
tPr0,T s

}mεptq}E ¡ ε�α

�
¤ P

�
Z � pTε�2qδ ¡ ε�α

	
ÝÝÝÑ
εÑ0

0.

In the sequel, α will be required to satisfy the constraint

α   1

b� 2
. (24)

Combined with the condition α ¡ 2
γ appearing in Lemma 3.4, this motivates the condition

γ ¡ 2pb� 2q in Assumption 7.
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3.4 Pathwise solutions

By means of Lemma 3.4, we are in position to prove the existence and uniqueness of
pathwise solutions of (1) and (2) (namely solutions when ω is �xed).

Proposition 3.5. Let Assumptions 5 and 6 be satis�ed. Let T ¡ 0 and ε ¡ 0. Then
for any f ε0 P L2pM�1q, there exists, almost surely, a unique solution f ε of (1) in
Cpr0, T s;L2pM�1qq, in the sense that

P-a.s.,@t P r0, T s, fεptq � e�
t
ε
Af ε0 �

» t
0
e�

t�s
ε
A

�
1

ε2
Lf εpsq � 1

ε
f εpsqmεpsq



ds

where A is the operator de�ned by

DpAq .�  
f P L2pM�1q | px, vq ÞÑ apvq �∇xfpx, vq P L2pM�1q(

Afpx, vq .� apvq �∇xfpx, vq.
Note that here ε is �xed. Thus, the proof is standard, based on a �xed-point theorem.

Proof. Let ω P Ω and ε ¡ 0. For f P Cpr0, T s, L2pM�1qq, let

Φpfq � e�
t
ε
Af ε0 �

» t
0
e�

t�s
ε
A

�
1

ε2
Lfpsq � 1

ε
fpsqmεpsq



ds.

Owing to the Banach �xed-point theorem, it is su�cient to prove that Φ is a contraction
for some Banach norm on Cpr0, T s, L2pM�1qq. For r P r0,8q, we consider the following
Banach norm

@f P Cpr0, T s, L2pM�1qq, }f}r � sup
tPr0,T s

e�rt }fptq}L2pM�1q .

Since the semi-group associated to A is given by

@f P L2pM�1q,@x P Td,@v P V, etAfpx, vq � fpx� tapvq, vq,
for f P L2pM�1q, we have for all t P R and f P L2pM�1q,��etAf��

L2pM�1q
� }f}L2pM�1q .

Thus, for t P r0, T s, and f, g P Cpr0, T s, L2pM�1qq, we get

}Φpfqptq � Φpgqptq}L2pM�1q ¤
1

ε2

» t
0
}Lpf � gqpsq}L2pM�1q ds

� 1

ε

» t
0
}pf � gqpsqmεpsq}L2pM�1q ds.

By Lemma 3.4, since ω is �xed, mε is bounded in E on r0, T s. Since }Lh}L2pM�1q ¤
}h}L2pM�1q for h P L2pM�1q, we get

}Φpfqptq � Φpgqptq}L2pM�1q ¤
�

1

ε2
� 1

ε
sup
tPr0,T s

}mεptq}E
�» t

0
ers }f � g}r ds.
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Hence, we have

e�rt }Φpfqptq � Φpgqptq}L2pM�1q ¤
�

1

ε2
� 1

ε
sup
tPr0,T s

}mεptq}E
�

1� e�rt

r
}f � g}r ,

and

}Φpfq � Φpgq}r ¤
1

r

�
1

ε2
� 1

ε
sup
tPr0,T s

}mεptq}E
�
}f � g}r .

By taking r large enough, we get that Φ is contracting, which concludes the proof.

3.5 Estimate in L2pM�1q

In this section, we obtain an upper bound on
��f ε,τεΛ��

L2pM�1q
. Note that in the case

where the driving process m is bounded, [10] establishes a similar upper bound without
introducing a stopping time. Here, the unboundedness of the stopped process mε,τε

requires more intricate arguments and an additional stopping time τΛpζεq. One of these
arguments is the introduction of a weightMε that depends on ε.

Proposition 3.6. Assume that f ε0 P L2pM�1q. For Λ ¡ 0 and ε ¡ 0, de�ne ζε by (16)
and τΛpζεq by (15).

Then almost surely, for all t P r0, T s and ε P p0, p4 }a}L8 Λq�1s,���f ε,τΛpζεqptq���2

L2pM�1q
� 1

ε2

» t^τΛpζεq
0

���Lf ε,τΛpζεqpsq���2

L2pM�1q
ds ¤ CΛpT q }f ε0}2L2pM�1q ,

(25)
for some CΛpT q ¡ 0 depending only on Λ, }a}L8 and T .

Note that τΛpζεq ¡ 0 almost surely since ζεp0q � 0.

Remark. The condition ε P p0, p4 }a}L8 Λq�1s only reads: we �x Λ, then take ε small
enough (ε Ñ 0) depending on the �xed Λ. From now on, we always assume ε ¤
p4 }a}L8 Λq�1   1. In particular, we denote by supε the supremum with respect to
ε P p0, p4 }a}L8 Λq�1s � p0, 1q.

In most of the paper, we neglect the integral term of the left-hand side of (25) and
we only use ���f ε,τΛpζεqptq���2

L2pM�1q
¤ CΛpT q }f ε0}2L2pM�1q .

Equation (25) will prove useful in Section 8.
Let us introduce some notation. For any variable u, x Àu y means that there exists

C such that x ¤ Cy where C depends only on u, a,M, B, ν, γ, α, γmix, b and Pfε0 the
distribution of f ε0 . With this notation, (25) yields���f ε,τΛpζεqptq���2

L2pM�1q
ÀΛ }f ε0}2L2pM�1q .

and
1

ε2

» t^τΛpζεq
0

���Lf ε,τΛpζεqpsq���2

L2pM�1q
ds ÀΛ }f ε0}2L2pM�1q .
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Proof. De�ne the time-dependent weight

Mεpt, x, vq � e2ζεpt,xqMpvq,
and the associate weighted norm

}f}L2pMεptq�1q
.�
�» » |f εpx, vq|2

Mεpt, x, vqdxdµpvq
� 1

2

.

We have, for t P R�,

1

2
Bt }f εptq}2L2pMεptq�1q �

» » �
f εpt, x, vq
Mεpt, x, vq

�
�1

ε
Af ε � 1

ε2
Lf ε � 1

ε
f εmε



pt, x, vq

� |f εpt, x, vq|2
2 |Mεpt, x, vq|2 BtM

εpt, x, vq
�
dxdµpvq

� Aε � Bε
with

Aε � 1

ε2

» »
f εpt, x, vq
Mεpt, x, vq

�
Lf ε � εf εmε � ε2

2

f ε

Mε
BtMε



pt, x, vqdxdµpvq

Bε � �1

ε

» »
f εpt, x, vq
Mεpt, x, vqAf

εpt, x, vqdxdµpvq.

On the one hand, the weightMε has been chosen in order to satisfy εmε� ε2

2
BtMε

Mε � 0.
Moreover, since f ε � ρεM� Lf ε and

³
V Lf

εdµ � 0, we get

Aε � 1

ε2

» »
f εpt, x, vq
Mεpt, x, vqLf

εpt, x, vqdxdµpvq

� 1

ε2

»
Td
e�2ζεpt,xqρεpt, xq

»
V
Lf εpt, x, vqdµpvqdx

� 1

ε2

» » |Lf εpt, x, vq|2
Mεpt, x, vq dµpvqdx

� � 1

ε2

» » |Lf εpt, x, vq|2
Mεpt, x, vq dµpvqdx � � 1

ε2
}Lf εptq}2L2pMεptq�1q .

On the other hand, by means of an integration by parts (we take a primitive of
f εBxif ε and a derivative of 1

Mε ), we write

Bε � �1

ε

» »
apvq � f

εpt, x, vq∇xf εpt, x, vq
Mεpt, x, vq dxdµpvq

� �1

ε

» »
apvq �

1
2 |f εpt, x, vq|2∇xMεpt, x, vq

|Mεpt, x, vq|2 dxdµpvq

� � 1

2ε

» » ���� f εpt, x, vqMεpt, x, vq
����2AMεpt, x, vqdxdµpvq.
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Then, by de�nition ofMε and A, we have

Bε � �1

ε

»
Td
∇xζεpt, xq �

»
V

|f εpt, x, vq|2
Mεpt, x, vq apvqdµpvqdx.

Using once again the identity f ε � ρεM� Lf ε, we get

Bε � �1

ε

»
Td
e�2ζεpt,xq |ρεpt, xq|2∇xζεpt, xq �

»
V
apvqMpvqdµpvqdx

� 1

ε

»
Td
∇xζεpt, xq �

»
V

|Lf εpt, x, vq|2
Mεpt, x, vq apvqdµpvqdx

� 2

ε

» »
e�2ζεpt,xq∇xζεpt, xq � apvqρεpt, xqLf εpt, x, vqdµpvqdx

� B1
ε � B2

ε � B3
ε .

• Since a is centered forMµ, B1
ε � 0.

• For t ¤ τΛpζεq, we have }ζεptq}C1
x
¤ Λ and we assumed Λ ¤ p4 }a}L8 εq�1. Thus,

we get

@t ¤ τΛpζεq,
��B2
ε

�� ¤ 1

4ε2
}Lf εptq}2L2pMεptq�1q .

• Using the Young inequality, we have

��B3
ε

�� ¤ 1

4ε2
}Lf εptq}2L2pMεptq�1q

� 4 }a}2L2pMq }∇xζεptq}2CpTdq
»
Td
e�2ζεpt,xq |ρεpt, xq|2 dx,

with }a}2L2pMq
.� ³

V |apvq|2Mpvqdµpvq. Now using the Cauchy-Schwarz inequality

and the identity
³
V Mpvqdµpvq � 1, we have

|ρεpt, xq|2 ¤
»
V

|f εpt, x, vq|2
Mεpt, x, vq dµpvq

»
V
Mεpt, x, vqdµpvq � }f εptq}2L2pMεptq�1q e

2ζεpt,xq,

hence��B3
ε

�� ¤ 1

4ε2
}Lf εptq}2L2pMεptq�1q � 4 }a}2L2pMq }∇xζεptq}2CpTdq }f εptq}2L2pMεptq�1q .

We �nally get, for t ¤ τΛpζεq,

Bt }f εptq}2L2pMεptq�1q ¤ � 1

2ε2
}Lf εptq}2L2pMεptq�1q

� 4 }a}2L2pMq }∇xζεptq}2CpTdq }f εptq}2L2pMεptq�1q .
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For t ¤ τΛpζεq, Gronwall's Lemma implies

}f εptq}2L2pMεptq�1q �
» t

0

1

2ε2
}Lf εptq}2L2pMεptq�1q dt

¤ }f ε0}2L2pM�1q e
4}a}2

L2pMq

³t
0}∇xζ

εpsq}2
CpTdqds.

Since, for t P R�, we have

}�}2L2pMεptq�1q ¥ }�}2L2pM�1q e
�2}ζεptq}

CpTdq ,

we get, for t ¤ τΛpζεq,

}f εptq}2L2pM�1q �
» t

0

1

2ε2
}Lf εptq}2L2pM�1q dt

¤ }f ε0}2L2pM�1q exp

�
2 sup
sPr0,ts

}ζεpsq}CpTdq � 4 }a}2L2pMq

» t
0
}∇xζεpsq}2CpTdq ds

�
.

To conclude, it is su�cient to recall that for t ¤ τΛpζεq, we have }ζεptq}C1
x
¤ Λ.

4 Martingale problems and perturbed test functions

The proof of Theorem 2.1 heavily relies on the notion of martingale problems as intro-
duced in [34]. To identify a limit point of pPρεqε¡0, we characterize it by a family of
martingales and take the limit when εÑ 0 in their martingale properties.

The characterization of the distribution of a solution of a SPDE in terms of martin-
gales is based on the Markov property satis�ed by this solution. However, we expect a
limit point ρΛ of the stopped process ρε,τ

ε
Λ to be stopped at some τΛpζq, as mentioned

in Section 3.5. Since τΛpζq is not a stopping time for the �ltration generated by ρΛ, this
latter process should not be Markov. Thus, we need to consider the convergence of the
couple pρε, ζεq instead of just ρε. We will see more precisely in Section 7 at which point
this matter occurs.

4.1 Generator and martingales

Also note that pf ε, ζεq is not a Markov process. As in [10], we consider the coupled
process with mε and thus consider the L2pM�1q �C1

x �E-valued Markov process Xε .�
pf ε, ζε,mεq.

Denote by Lε the in�nitesimal generator of Xε. Since f ε is solution of (1) and since
Btζε � 1

εm
ε, the in�nitesimal generator has an expression of the type

Lε � 1

ε
L1 � 1

ε2
L2 (26)
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with

L1ϕpf, z, nq � Dfϕpf, z, nqp�Af � nfq �Dzϕpf, z, nqpnq
L2ϕpf, z, nq � Dfϕpf, z, nqpLfq �Bϕpf, z, nq,

where B is the in�nitesimal generator of m. The domain of this generator contains the
class of good test functions de�ned below. The terminology of "good test function" is
inherited from [10], although our de�nition is a little more restrictive.

De�nition 4. A function ϕ : L2pM�1q � C1
x � E Ñ R is called a good test function if

• It is continuously di�erentiable on L2pM�1q�C1
x�E with respect to the �rst and

second variables.

• For ` P t1, 2u, Bpϕpf, z, �q`q is de�ned for all pf, zq P L2pM�1q � C1
x, and

Bpϕ`q : L2pM�1q � C1
x � E Ñ R

is continuous.

• If we identify the di�erential Df with the gradient, then for f P L2pM�1q, z P C1
x

and n P E, we have
Dfϕpf, z, nq P H1pTd � V, dxM�1pvqdµpvqq. (27)

• The functions ϕ, Dzϕ, Dfϕ and ADfϕ have at most polynomial growth in the
following sense: there exists Cϕ ¡ 0 such that for f, h P L2pM�1q, z P C1

x and
n1, n2 P E, we have

|ϕpf, z, n1q| ¤ Cϕ
�
1� S3

1

� �
1� Sb�2

2

	
|Dfϕpf, z, n1qpAhq| ¤ Cϕ

�
1� S3

1

� �
1� Sb�2

2

	
|Dfϕpf, z, n1qpn2hq| ¤ Cϕ

�
1� S3

1

� �
1� Sb�2

2

	
|Dfϕpf, z, n1qpLhq| ¤ Cϕ

�
1� S3

1

� �
1� Sb�2

2

	
|Dzϕpf, z, n1qpn2q| ¤ Cϕ

�
1� S3

1

� �
1� Sb�2

2

	
,

(28)

where S1 � }f}L2pM�1q _ }h}L2pM�1q and S2 � }n1}E _ }n2}E .
See Section 4.2 for a justi�cation of the need to consider growth as appearing in (28).
A consequence of (27) is that ADfϕ is well-de�ned. Thus, for f, h P L2pM�1q, z P C1

x

and n P E, we can de�ne

Dfϕpf, z, nqpAhq .� �pADfϕpf, z, nq, hqL2pM�1q,

even though Ah is not necessarily de�ned in L2pM�1q.
The class of test-function introduced in De�nition 4 is chosen such that the Proposi-

tion 4.1 holds.
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Proposition 4.1. Let ϕ be a good test function in the sense of De�nition 4. De�ne for
all t ¥ 0

M ε
ϕptq .� ϕpXεptqq � ϕpXεp0qq �

» t
0
LεϕpXεpsqqds, (29)

and consider the stopping time τ εΛ de�ned by (17).

Then M
ε,τεΛ
ϕ is a càdlàg pFεt qt-martingale and

@t P R�,E
����M ε,τεΛ

ϕ ptq
���2� � E

�» t^τεΛ
0

�
Lεpϕ2q � 2ϕLεϕ

� pXεpsqqds
�

� 1

ε2
E
�» t^τεΛ

0

�
Bpϕ2q � 2ϕBϕ

� pXεpsqqds
�
.

This result is expected to holds as in the standard framework [11]. However, due to
the presence of stopping times, the proof is very technical.

Proof. Note that in this section, ε is �xed, it is therefore not required to prove bounds
which are uniform with respect to ε.

Let ϕ be a good test function. Observe that ϕ and ϕ2 are in the domain of Lε, by
means of De�nition 4.

Let s, t P R�, δ ¡ 0 and let s � t1   ...   tn � t be a subdivision of rs, ts such
that maxi |ti�1 � ti| � δ. Let g be a Fεs -measurable and bounded function. To simplify
notation, let

fi
.� f ε,τ

ε
Λptiq, ζi .� ζε,τ

ε
Λptiq,mi

.� mε,τεΛptiq.
Then, we have

E
��
M

ε,τεΛ
ϕ ptq �M

ε,τεΛ
ϕ psq

	
g
�

� E

��
ϕpXε,τεΛptqq � ϕpXε,τεΛpsqq �

» t^τεΛ
s^τεΛ

LεϕpXεpuqqdu
�
g

�
� rf � rz � rn,

where

rf �
n�1̧

i�1

E

��
ϕpfi�1, ζi�1,mi�1q � ϕpfi, ζi�1,mi�1q

�
» ti�1^τ

ε
Λ

ti^τεΛ

DfϕpXεpuqqp�1

ε
Af εpuq � 1

ε2
Lf εpuq � 1

ε
f εpuqmεpuqqdu

�
g

�
,

rz �
n�1̧

i�1

E

��
ϕpfi, ζi�1,mi�1q � ϕpfi, ζi,mi�1q

�
» ti�1^τ

ε
Λ

ti^τεΛ

DzϕpXεpuqqp1
ε
mεpuqqdu

�
g

�
,
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and

rn �
n�1̧

i�1

E

��
ϕpfi, ζi,mi�1q � ϕpfi, ζi,miq �

» ti�1^τ
ε
Λ

ti^τεΛ

1

ε2
BϕpXεpuqqdu

�
g

�
.

Straightforward computations lead to

rf � E
��» t

s
r1f puqdu



g

�
, rz � E

��» t
s
r1zpuqdu



g

�
with

r1f puq �
n�1̧

i�1

1rti^τεΛ,ti�1^τεΛs
puq �Dfϕpf ε,τεΛpuq, ζi�1,mi�1q �DfϕpXε,τεΛpuqq� pBtf ε,τεΛpuqq,

r1zpuq �
n�1̧

i�1

1rti^τεΛ,ti�1^τεΛs
puq �Dzϕpfi, ζε,τεΛpuq,mi�1q �DzϕpXε,τεΛpuqq� pBtζε,τεΛpuqq.

Let us now check that rn � E
��³t

s r
1
npuqdu

	
g
�
with

r1npuq �
1

ε2

n�1̧

i�1

1trti^τεΛ,ti�1^τεΛsupuq
�
Bϕpfi, ζi,mε,τεΛpuqq �BϕpXε,τεΛpuqq� .

For θ P CpEq X L1pEq, the Markov property for m yields

E rθpmptqq | Fss � Pt�sθpmpsqq.
Usually, this property is written for θ deterministic, continuous and bounded, but it is
straightforward to check that it is still satis�ed when θ P CpEq X L1pEq Fs-measurable.
The standard proof to show that m solves the martingale problem associated to B (see
for example [11], Theorem B.3) can be applied, and we get that, for θ P DpBq,

t ÞÑ θpmptqq � θpmp0qq �
» t

0
Bθpmpuqqdu

is an integrable Ft-martingale. By rescaling the time to retrieve mε, stopping the mar-
tingale at τ εΛ and using a conditioning argument (g, fi and ζi are Fti-measurable), we
get

E rpϕpfi, ζi,mi�1q � ϕpfi, ζi,miqq gs � E

�
g

» ti�1^τ
ε
Λ

ti^τεΛ

1

ε2
BϕpXεpuqqdu

�
.

Hence, we can write rn � E
��³t

s r
1
npuqdu

	
g
�
as claimed above.

Since the estimates given by (23) and Proposition 3.6 are uniform for t P r0, T s, we
can use (28) with S1 ÀΛ }f ε0}L2pM�1q and S2 ¤ ε�α _ }mp0q}E . This leads to

sup
uPr0,T s

��r1�puq��2 Àϕ,Λ,ε �1� }f ε0}6L2pM�1q

	�
1� }mp0q}2pb�2q

E

	
, (30)
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where r1� P
!
r1f , r

1
z, r

1
n

)
. Hence, the Cauchy-Schwarz inequality, Assumptions 4 and 7

yield

E

�
sup

uPr0,T s

��r1�puq��2
�
Àϕ,Λ,ε E

��
1� }f ε0}12

L2pM�1q

	� 1
2 E

��
1� }mp0q}4pb�2q

E

	� 1
2

  8. (31)

Thus, the terms r1� are uniformly integrable with respect to pu, ωq. Recall that f ε,τεΛ and
ζε,τ

ε
Λ are almost surely continuous and that mε,τεΛ is stochastically continuous. Then,

the terms r1� converge to 0 in probability when δ Ñ 0. By uniform integrability, the

terms r� converge to 0, which proves that M
ε,τεΛ
ϕ is a pFεt qt-martingale. Note that we

only used moments of order 12 and 4pb � 2q, instead of 24 and 8pb � 2q as assumed in

Assumptions 4 and 7. Hence, this proof can be adapted to establish that M
ε,τεΛ
ϕ2 is also a

pFεt qt-martingale.
It remains to prove the formulas for the variance. This is done in several steps,

following Appendix B of [11]. Since ϕ and ϕ2 belong to the domain of Lε, the process

N εptq �
» t

0

�
Lεpϕ2q � 2ϕLεϕ

� pXεpsqqds � 1

ε2

» t
0

�
Bpϕ2q � 2ϕBϕ

� pXεpsqqds,

is well-de�ned.
The proof of the second equality is straightforward: since D � Lε � 1

ε2
B is a �rst

order di�erential operator, we have Dpϕ2q � 2ϕDϕ � 0.
Let 0 � t0   t1   ...   tn � T be a subdivision of r0, T s of step max |ti�1 � ti| � δ.

Step 1: We claim that the following convergence is satis�ed in L2 .� L2pΩq

N ε,τεΛptq � lim
δÑ0

¸
i

E
�
N ε,τεΛpt^ ti�1q �N ε,τεΛpt^ tiq | Fεti

�
. (32)

Let ∆i
.� N ε,τεΛpt^ ti�1q�N ε,τεΛpt^ tiq�E

�
N ε,τεΛpt^ ti�1q �N ε,τεΛpt^ tiq | Fεti

�
so that

(32) is equivalent to
°
i ∆i ÝÝÝÑ

δÑ0
0 in L2. Note that E r∆i∆js � 0 for i � j. Hence, we

have E
�
|°i ∆i|2

�
� E

�°
i |∆i|2

�
. Using that a conditional expectation is an orthogonal

projection in L2, we get

E
�
|∆i|2

�
¤ E

���N ε,τεΛpt^ ti�1q �N ε,τεΛpt^ tiq
��2�

Àε E
�������
» t^ti�1^τ

ε
Λ

t^ti^τεΛ

�
Bpϕ2q � 2ϕBϕ

� pXεpsqqds
�����
2
�� ,

By means of De�nition 4 and Assumption 10,���Bpϕ2q � 2ϕBϕ
� pXεpsqq��2 Àϕ �

1� }f εpsq}12
L2pM�1q

	�
1� }mεpsq}4pb�2q

E

	
.
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As in (30) and (31) (using moments of order 24 and 8pb� 2q instead of 12 and 4pb� 2q),
Proposition 3.6 and (23) lead to

E

�
sup
sPr0,T s

���Bpϕ2q � 2ϕBϕ
� pXε,τεΛpsqq��2� Àϕ,Λ,ε 1.

Since t^ ti ^ τ εΛ � t^ ti�1 ^ τ εΛ ¤ ti�1 � ti, we get

E
�
|∆i|2

�
Àϕ,Λ,ε pti�1 � tiq2,

which then yields E
�
|°i ∆i|2

�
Àϕ,Λ,ε Tδ ÝÝÝÑ

δÑ0
0, which proves (32).

Step 2: We claim that

E

�¸
i

��Rti,ti�1

��� Àϕ,Λ,ε δ1{2, (33)

where, for 0 ¤ t   t1 ¤ T ,

Rt,t1 �
���M ε,τεΛ

ϕ pt1q �M
ε,τεΛ
ϕ ptq

���2 � ��ϕpXε,τεΛpt1qq � ϕpXε,τεΛptqq��2 (34)

�
�����
» t1^τεΛ
t^τεΛ

LεϕpXεpsqqds
�����
2

� 2
�
ϕpXε,τεΛpt1qq � ϕpXε,τεΛptqq� » t1^τεΛ

t^τεΛ

LεϕpXεpsqqds.

We can write��ϕpXε,τεΛpt1qq � ϕpXε,τεΛptqq��2 �M
ε,τεΛ
ϕ2 pt1q �M

ε,τεΛ
ϕ2 ptq

� 2ϕpXε,τεΛptqq
�
M

ε,τεΛ
ϕ pt1q �M

ε,τεΛ
ϕ ptq

	
�
» t1^τεΛ
t^τεΛ

Lεpϕ2qpXεpsqqds

� 2ϕpXε,τεΛptqq
» t1^τεΛ
t^τεΛ

LεϕpXεpsqqds.

(35)

As established in the �rst part of the proof, M
ε,τεΛ
ϕ2 and M

ε,τεΛ
ϕ are pFεs qs-martingales.

Moreover, ϕpXε,τεΛ
t q is Fεt -measurable. Thus, taking the expectation in (35) yields

E
���ϕpXε,τεΛpt1qq � ϕpXε,τεΛptqq��2� �

E

�» t1^τεΛ
t^τεΛ

�
Lεpϕ2qpXεpsqqds� 2ϕpXε,τεΛptqqLεϕpXεpsqq� ds� .
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As in Step 1, by De�nition 4, Assumption 10, (23), and Proposition 3.6, the integrand

is bounded by
�

1� }f ε0}6L2pM�1q

	�
1� }mp0q}2pb�2q

E

	
(up to a constant depending on ϕ,

Λ and ε) and we get

E
���ϕpXε,τεΛpt1qq � ϕpXε,τεΛptqq��2� Àϕ,Λ,ε t1 � t, (36)

owing to the Cauchy-Schwarz inequality, Assumptions 4 and 7. Young's inequality with
a parameter η ¡ 0 yields

E
���Rt,t1 ��� Àϕ,Λ,ε p1� 1

η
qE

�������
» t1^τεΛ
t^τεΛ

LεϕpXεpsqqds
�����
2
��

� ηE
���ϕpXε,τεΛpt1qq � ϕpXε,τεΛptqq��2� .

Similarly, we get

E

�������
» t1^τεΛ
t^τεΛ

LεϕpXεpsqqds
�����
2
�� Àϕ,Λ,ε pt1 � tq2.

Choosing η � pt1 � tq1{2 yields E
���Rt,t1 ��� Àϕ,ε pt1 � tq3{2, which gives (33).

Step 3: We claim that E
����M ε,τεΛ

ϕ ptq
���2� � E

�
N ε,τεΛptq�.

Taking conditional expectation in (34) leads to

¸
i

E
����M ε,τεΛ

ϕ pt^ ti�1q �M
ε,τεΛ
ϕ pt^ tiq

���2 | Fεti� �¸
i

E
�
Rt^ti,t^ti�1 | Fεti

�
�
¸
i

E
���ϕpXε,τεΛpt^ ti�1qq � ϕpXε,τεΛpt^ tiqq

��2 | Fεti� .
Using (35) and the martingale property onM

ε,τεΛ
ϕ2 andM

ε,τεΛ
ϕ , the last term can be rewrit-

ten as¸
i

» t^ti�1^τ
ε
Λ

t^ti^τεΛ

Lεpϕ2qpXεpsqqds� 2
¸
i

ϕpXε,τεΛpt^ tiqq
» t^ti�1^τ

ε
Λ

t^ti^τεΛ

LεϕpXεpsqqds

Then, (32) yields¸
i

E
����M ε,τεΛ

ϕ pt^ ti�1q �M
ε,τεΛ
ϕ pt^ tiq

���2 | Fεti� � N ε,τεΛptq � r1 � r2
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where

r1 �
¸
i

E
�
Rt^ti,t^ti�1 | Fεti

�
r2 � 2

¸
i

E

�» t^ti�1^τ
ε
Λ

t^ti^τεΛ

�
ϕpXε,τεΛpsqq � ϕpXε,τεΛpt^ tiqq

�
LεϕpXεpsqqds | Fεti

�
.

By means of (33), r1 Ñ 0 in L1. For r2, we have

E r|r2|s ¤ 2E

�¸
i

» t^ti�1^τ
ε
Λ

t^ti^τεΛ

��ϕpXε,τεΛpsqq � ϕpXε,τεΛptiqq
�� |LεϕpXεpsqq| ds

�

¤ 2E

�¸
i

» ti�1

ti

��ϕpXε,τεΛpsqq � ϕpXε,τεΛptiqq
�� ��LεϕpXε,τεΛpsqq�� ds�

¤ 2
¸
i

» ti�1

ti

E
���ϕpXε,τεΛpsqq � ϕpXε,τεΛptiqq

�� ��LεϕpXε,τεΛpsqq��� ds
¤ 2

¸
i

» ti�1

ti

E
���ϕpXε,τεΛpsqq � ϕpXε,τεΛptiqq

��2�1{2
E
���LεϕpXε,τεΛpsqq��2�1{2

ds.

As above, one can show E
�
sups

��LεϕpXε,τεΛpsqq��2� Àϕ,Λ,ε 1. Thus, (36) yields

E r|r2|s Àϕ,Λ,ε
¸
i

» ti�1

ti

E
���ϕpXε,τεΛpsqq � ϕpXε,τεΛptiqq

��2�1{2
ds

Àϕ,Λ,ε
¸
i

» ti�1

ti

ps� tiq1{2 ds

Àϕ,Λ,ε
¸
i

pti�1 � tiq3{2 ds

Àϕ,Λ,ε Tδ1{2 ÝÝÝÑ
δÑ0

0.

Thus, in L1, we have

lim
δÑ0

¸
i

E
����M ε,τεΛ

ϕ pt^ ti�1q �M
ε,τεΛ
ϕ pt^ tiq

���2 | Fεti� � N ε,τεΛptq. (37)

In particular, the expectation converges. Then, the martingale property and the tower
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property E rE r� | Fsss � E r�s yield

E
�
N ε,τεΛptq� � lim

δÑ0
E

�¸
i

E
����M ε,τεΛ

ϕ pt^ ti�1q �M
ε,τεΛ
ϕ pt^ tiq

���2 | Fεti�
�

� lim
δÑ0

E

�¸
i

E
����M ε,τεΛ

ϕ pt^ ti�1q
���2 � ���M ε,τεΛ

ϕ pt^ tiq
���2 | Fεti�

�

� lim
δÑ0

¸
i

E
����M ε,τεΛ

ϕ pt^ ti�1q
���2 � ���M ε,τεΛ

ϕ pt^ tiq
���2�

� E
����M ε,τεΛ

ϕ ptq
���2� .

This conclude the proof that

@t P R�,E
����M ε,τεΛ

ϕ ptq
���2� � E

�» t^τεΛ
0

�
Lεpϕ2q � 2ϕLεϕ

� pXεpsqqds
�
.

and the proof of Proposition 4.1.

Remark. Note that ifm had continuous paths, thenM ε
ϕ would be a continuous martingale

and (37) would mean that N ε,τεΛ is the quadratic variation of M
ε,τεΛ
ϕ .

A similar proof leads to the following Proposition, where we take weaker stopping
times but add some conditions on ϕ. The proof is omitted.

Proposition 4.2. Let ϕ be a good test function. The conclusion of Proposition 4.1 holds
in the following cases.

• The function ϕ does not depend on f and τ εΛ is replaced by τ ε.

• The function ϕ is bounded uniformly in n and does not depend on z and τ εΛ is
replaced by τΛpζεq.
• The function ϕ is bounded and depends only on n and τ εΛ is replaced by �8.

4.2 The perturbed test functions method

We use the perturbed test functions method as in [29] to exhibit a generator L such that a
possible limit point pρΛ, ζΛq of

�pρε,τεΛ , ζε,τεΛq�
ε
solves the martingale problem associated

to L until some limit stopping time depending on Λ. Given a test function ϕ, two
corrector functions ϕ1 and ϕ2 are constructed, so that

@pf, z, nq P L2pM�1q �C1
x �E,ϕεpf, z, nq � ϕpρ, zq � εϕ1pf, z, nq � ε2ϕ2pf, z, nq, (38)

satis�es
Lεϕε � Lϕ� op1q, (39)
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when ε Ñ 0. Then, we prove that ϕε is a good test function and that we can take the
limit when εÑ 0 in the martingale problem associated to Lε (Proposition 4.1) to obtain
a stopped martingale problem solved by a limit point.

Based on the decomposition (26), a su�cient condition to prove (39) for ϕε of the
form (38) is to solve the following equations (40) to (42) and to check that (43) holds
when εÑ 0.

L2ϕ � 0 (40)

L1ϕ� L2ϕ1 � 0 (41)

L1ϕ1 � L2ϕ2 � Lϕ (42)

L1ϕ2 � Op1q. (43)

The properties of the resolvent operators Rλ are employed to invert L2.

4.2.1 Framework for the perturbed test functions method

For a martingale problem to be relevant, it is su�cient that the class of test functions
satisfying the martingale problem is separating, namely that if some random variables X

and X 1 satisfy E rϕpXqs � E rϕpX 1qs for all ϕ P Φ, then we have X
d� X 1. In this work,

we use the following class

Θ �  pρ, zq ÞÑ ψ
�pρ, ξqL2

x

�
χpzq | ψ P C3pRq, ψ2 P C1

b pRq, ξ P H3
x, χ P C3

b pC1
xq
(
,

where ρ � ³
V fdµ. The class Θ is indeed separating because it separates points (see [14],

Theorem 4.5).
Note that the test functions depend only on ρ and z, because we expect the limit

equation to be satis�ed by ρ and z. It is con�rmed by Section 4.2.2. To simplify the
notation, for ϕ P Θ, we sometimes write ϕpf, z, nq .� ϕpρ, zq and ϕpρ, zq � Ψpρqχpzq,
where Ψpρq � ψ

�pρ, ξqL2
x

�
.

Proposition 4.3. There exists an operator L whose domain contains Θ and, for all ϕ P
Θ, there exist two good test functions ϕ1 and ϕ2 such that, for all pf, z, nq P L2pM�1q �
C1
x � E, we have

|ϕ1pf, z, nq| Àϕ p1� }f}2L2pM�1qqp1� }n}Eq (44)

|ϕ2pf, z, nq| Àϕ p1� }f}2L2pM�1qqp1� }n}b�1
E q (45)

|Lεϕε � Lϕ| pf, z, nq À εp1� }f}3L2pM�1qqp1� }n}b�2
E q. (46)

Moreover, ϕε � ϕ� εϕ1 � ε2ϕ2 is a good test function.
Moreover, if ϕ depends only on z, then ϕ1, ϕ2 and ϕε depend only on z and n.

4.2.2 Consistency result

Since we already expect the limit equation to be satis�ed by ρ, equation (40) will not
give us extra information. Hence, this section only present a consistency result, namely
that (40) forces ϕ to depend on f through ρ.
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In fact, let ϕ depend on f and z but not on n. Since ϕ does not depend on n, Bϕ � 0.
Hence, (40) can be written, for all f P L2pM�1q and z P C1

x,

Dfϕpf, z, nqpLfq � 0. (47)

For t P R� and f P L2pM�1q, de�ne

gpt, fq � ρM� e�tpf � ρMq, (48)

and observe that Btgpt, fq � Lgpt, fq with gp0, fq � f . Owing to (47), the mapping t ÞÑ
ϕpgpt, fq, zq is constant. Since gpt, fq ÝÝÝÑ

tÑ8
ρM, by continuity of ϕ, we get ϕpf, z, nq �

ϕpρM, z, nq, which depends on f only through ρ.

4.2.3 Construction of the �rst corrector function ϕ1

The �rst corrector function ϕ1 is de�ned as the solution of (41): the formal solution to
Poisson equation will provide an expression for ϕ1, then we will check that this expression
indeed solves (41).

Let gpt, fq be de�ned by (48) and mpt, nq be de�ned in Section 2.1 (Markov process
of in�nitesimal generator B starting from n). The process ppgpt, fq, z,mpt, nqqqtPR� is a
L2pM�1q�C1

x�E-valued Markov process of generator L2 starting from pf, z, nq. Denote
by pQtqtPR� its transition semi-group. Note that this semi-group does not have a unique
invariant distribution, since for any ρ �xed, δρMbδzbν is an invariant distribution. How-
ever on every space

 pf 1, z1, nq P L2pM�1q � C1
x � E | ³V f 1dµ � ρ, z1 � z

(
, this measure

is the unique invariant distribution. Indeed, δρM, δz and ν are respectively the unique
invariant distributions of each marginal process (on the corresponding subspaces), and
δρM b δz b ν is the only coupling of these three marginal distributions.

For Φ : L2pM�1q � C1
x � E Ñ R, denote by

〈Φ〉ρ,z
.�
»
E

ΦpρM, z, nqdνpnq �
»
L2pM�1q�C1

x�E
ΦdpδρM b δz b νq

the integral against this invariant distribution. For ϕ P Θ, ϕpρ, zq � Ψpρqχpzq, let us
compute L1ϕ.

We have

L1ϕpf, z, nq � Dfϕpf, z, nqp�Af � nfq �Dzϕpf, z, nqpnq
� DΨpρqp�Af � nρqχpzq �ΨpρqDχpzqpnq,

where h � ³
Td hpxqdx.

Owing to (6), one can write, for all ρ P L2
x, ApρMq � 0. Moreover, since ν is

centered by Assumption 5, any term linear in n vanishes when integrating with respect
to ν. Hence, we have checked that

@ρ P L2
x,@z P C1

x, 〈L1ϕ〉ρ,z � 0.
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Using the expansion of L1ϕ, for all f, z, n, we have» 8

0
QtL1ϕpf, z, nqdt �

» 8

0
E rL1ϕ pgpt, fq, z,mpt, nqqs dt

�
» 8

0

�
�DΨpρqpAgpt, fqqχpzq

� E rDΨpρqpρmpt, nqqsχpzq
�ΨpρqDχpzqpmpt, nqq

	
dt,

owing to the identity gpt, fq � ρ. Equation (48) yields

Agpt, fq � e�tAf,

since AρM � 0. Thus, owing to De�nition 2, we de�ne

ϕ1pf, z, nq �
» 8

0
QtL1ϕpf, z, nqdt

� DΨpρqp�Af �R0pnqρqχpzq �ΨpρqR0 rDχpzqs pnq. (49)

It is straightforward to check that ϕ1 de�ned by (49) solves (41). Moreover, it satis�es
the condition (44). It remains to prove that ϕ1 is a good test function. Owing to
Assumption 9 and (49), ϕ1 P DpBq and ϕ2

1 P DpBq. For h P L2pM�1q, we have

Dfϕ1pf, z, nqphq � D2Ψpρqp�Af �R0pnqρ, hqχpzq �DΨpρqp�Ah�R0pnqhqχpzq
�DΨpρqphqR0 rDχpzqs pnq,

hence Dfϕ1pf, z, nqpAhq is well-de�ned (as in De�nition 4) and ϕ1, Dfϕ1pf, z, nqphq and
Dfϕ1pf, z, nqpAhq have at most polynomial growth in the sense of (28). For n2 P E, we
have

Dzϕ1pf, z, nqpn2q � DΨpρqp�Af �R0pnqρqDχpzqpn2q
�ΨpρqD �

z1 ÞÑ R0

�
Dχpz1q� pnq� pzqpn2q.

Using Lemma 3.1 and the assumption χ P C3
b pC1

xq, we write

D rR0 rDχp�qs pnqs pzqpn2q � D

�
z1 ÞÑ

» 8

0
PtDχpz1qpnqdt

�
pzqpn2q

�
» 8

0
Pt

�
D2χpzqp�, n2q

� pnq
� R0

�
D2χpzqp�, n2q

� pnq.
This leads to

Dzϕ1pf, z, nqpn2q � DΨpρqp�Af �R0pnqρqDχpzqpn2q �ΨpρqR0

�
D2χpzqp�, n2q

� pnq.
Once again using Lemma 3.1 and that χ P C3

b pC1
xq, one checks that Dzϕ1 has at most

polynomial growth in the sense of (28). Thus ϕ1 satis�es (28).
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4.2.4 Construction of the second corrector function ϕ2

The second corrector ϕ2 is de�ned as a solution of (42). To solve (42), we need the
centering condition 〈Lϕ� L1ϕ1〉ρ,z � 0. This identity will be the de�nition of Lϕ.

First, let us compute L1ϕ1. Using the derivative calculated in (49), L1ϕ1 can be
written as

L1ϕ1pf, z, nq � cpf, zq � `pf, z, nq � qpf, z, nq
where c, ` and q are de�ned by

cpf, zq � D2ΨpρqpAf,Afqχpzq �DΨpρqpA2fqχpzq (50)

`pf, z, nq � �D2ΨpρqpAf,R0pnqρ� nρqχpzq
�DΨpρqpApnfq �R0pnqpAfqqχpzq
�DΨpρqpAfq pR0 rDχpzqs pnq �Dχpzqpnqq

(51)

qpf, z, nq � D2Ψpρqpnρ,R0pnqρqχpzq �DΨpρqpR0pnqpnρqqχpzq
�DΨpρqpnρqR0 rDχpzqs pnq �DΨpρqpR0pnqρqDχpzqpnq
�ΨpρqR0

�
D2χpzqp�, nq� pnq. (52)

Note that, for �xed f and z, c does not depend on n, ` is pseudo-linear in n and q is
pseudo-quadratic in n as introduced in De�nition 3.

The function `pf, z, �q is indeed pseudo-linear as a sum of continuous linear and
pseudo-linear forms, yielding 〈`〉ρ,z � 0 for all ρ and z. Using also that AρM � 0,
we get an explicit de�nition of L:

Lϕpρ, zq .� 〈L1ϕ1〉ρ,z � DΨpρqpA2ρMqχpzq

�
»
D2Ψpρqpnρ,R0pnqρqdνpnqχpzq

�
»
DΨpρqpR0pnqpnρqqdνpnqχpzq

�
»
DΨpρqpnρqR0 rDχpzqs pnqdνpnq

�
»
DΨpρqpR0pnqρqDχpzqpnqdνpnq

�Ψpρq
»
R0

�
D2χpzqp�, nq� pnqdνpnq.

(53)

Note that by taking χ � 1, we obtain the same expression of L as in [10].
Since the centering condition for the Poisson equation (42) is satis�ed by construction
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of L, the second corrector function ϕ2 can be de�ned as follows: for all f, z, n,

ϕ2pf, z, nq .�
» 8

0
Qt

�
L1ϕ1 � 〈L1ϕ1〉ρ,z

	
pf, z, nqdt

�
» 8

0
Qt

�
c� 〈c〉ρ,z

	
pf, z, nqdt

�
» 8

0
Qt`pf, z, nqdt

�
» 8

0
Qt

�
q � 〈q〉ρ,z

	
pf, z, nqdt

.� ϕc2pf, z, nq � ϕ`2pf, z, nq � ϕq2pf, z, nq.

Once again, one can check that ϕ2 satis�es (42). It only remains to prove (45), (46) and
that ϕε is a good test function. Since

Lεϕε � Lϕ� εL1ϕ2, (54)

equation (46) comes from an estimate on L1ϕ2pf, nq in terms of f , n, and ϕ.

4.2.5 Controls on the second corrector function

The aim of this section is to prove some estimates for ϕ2pf, z, nq and its derivatives to
establish that (28), (45) and (46) are satis�ed. Let f, h P L2pM�1q, z P C1

x and n, n2 P E
and let S1 � }f}L2pM�1q _ }h}L2pM�1q and S2 � }n}E _ }n2}E .

Estimates on ϕc2 We have, using 〈c〉ρ,z � cpρM, zq,

cpf, zq � cpρM, zq � D2ΨpρqpAf,Afqχpzq �DΨpρqpA2pf � ρMqqχpzq.

Recall that Agpt, fq � e�tAf . Hence, using (48), we get

Qt

�
c� 〈c〉ρ,z

	
pf, z, nq � E rcpgpt, fq, zq � cpρM, zqs

� e�2tD2ΨpρqpAf,Afqχpzq
� e�tDΨpρqpA2pf � ρMqqχpzq.

By integration, we get

ϕc2pf, z, nq �
1

2
D2ΨpρqpAf,Afqχpzq �DΨpρqpA2pf � ρMqqχpzq. (55)
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Moreover, we obtain

Dfϕ
c
2pf, z, nqphq �

1

2
D3ΨpρqpAf,Af, hqχpzq

�D2ΨpρqpAf,Ahqχpzq
�D2ΨpρqpA2pf � ρMq, hqχpzq
�DΨpρqpA2ph� hMqqχpzq,

Dzϕ
c
2pf, z, nqpn2q � 1

2
DΨpρqpAf,AfqDχpzqpnq

�DΨpρqpA2pf � ρMqqDχpzqpnq.

Recall that }f � ρM}2L2pM�1q�}ρ}2L2
x
� }f}2L2pM�1q, hence }f � ρM}L2pM�1q ¤ }f}L2pM�1q.

Then, since Ψpρq � ψ
�pρ, ξqL2

x

�
and ψ2 P C1

b pRq, we get that ϕc2 satis�es (28). More
precisely, the following estimates hold:

|ϕc2pf, z, nq| Àϕ 1� }f}2L2pM�1q

|L1ϕ
c
2pf, z, nq| Àϕ p1� }f}3L2pM�1qqp1� }n}Eq.

Estimates on ϕ`2 Using (48), (51) and that AρM � ApnρqM � 0, we get

@pf, z, nq, `pgpt, fq, z, nq � e�t`pf, z, nq.

Thus, we have

Qt`pf, z, nq � E r`pgpt, fq, z,mpt, nqqs � e�tE r`pf, z,mpt, nqqs � e�tPt`pf, z, nq,

and by integrating with respect to t, we get

ϕ`2pf, z, nq � R1`pf, z, nq.

Moreover, from Lemma 3.1 and (51), it is straightforward to check that

r`pf, �qsLip Àϕ p1� }f}2L2pM�1qq.

Hence, Lemma 3.1 yields���ϕ`2pf, z, nq��� Àϕ p1� }f}2L2pM�1qqp1� }n}Eq.

Since the operator R1 acts only on the variable n, it commutes with the derivatives
Df and Dz in the following sense:

Df rR1`s pf, z, nqphq � R1 rDf `pf, z, �qphqs pnq
Dz rR1`s pf, z, nqpn2q � R1 rDz`pf, z, �qpn2qs pnq.
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Thus, after calculating the derivatives of `, we get estimates on the derivatives of ϕ`2 the
same way we got estimates on ϕ`2. This leads to���Dfϕ

`
2pf, z, nqpAhq

��� Àϕ p1� S3
1qp1� S2q���Dfϕ

`
2pf, z, nqpn2fq

��� Àϕ p1� S3
1qp1� S2

2q���Dzϕ
`
2pf, z, nqpn2q

��� Àϕ p1� S2
1qp1� S2

2q,

hence ϕ`2 satis�es (28). Finally, the following estimates hold���ϕ`2pf, z, nq��� Àϕ p1� }f}2L2pM�1qqp1� }n}Eq���L1ϕ
`
2pf, z, nq

��� Àϕ p1� }f}3L2pM�1qqp1� }n}2Eq.

Estimates on ϕq2 The function q depends of f only through ρ. Since gpt, fq � ρ does
not depend on t, we get Qtq � Ptq and

ϕq2pf, z, nq � R0

�
q � 〈q〉ρ,z

�
pf, z, nq

It is straightforward to compute the derivatives of q with respect to f and z from
(52). One can deduce estimates for rqpf, z, �qsquad and for the �rst order derivatives
rDfqpf, z, �qpn2fqsquad, rDfqpf, z, �qpAfqsquad and rDzqpf, z, �qpn2qsquad. Reasoning as
for R1, the resolvent R0 acts only on n, and thus commutes with Df and Dz. Thus,
Lemma 3.1 with λ � 0 proves that ϕq2 satis�es (28). Finally, the following estimates hold

|ϕq2pf, z, nq| Àϕ p1� }f}2L2pM�1qqp1� }n}b�1
E q

|L1ϕ
q
2pf, z, nq| Àϕ p1� }f}3L2pM�1qqp1� }n}b�2

E q.
This concludes the proof that ϕ2 satis�es (28) and the proof of the estimates of

Proposition 4.3 on ϕ2 and L1ϕ2.

4.2.6 Good test function property

It only remains to prove that ϕε is a good test function. The estimates (28) are satis�ed
by εϕ1 and ε2ϕ2, hence by their sum ϕε. Moreover, using the notation introduced in
Section 3.1.1, ϕε can be written as

ϕεpf, z, nq � ϕpρ, zq � εDΨpρqpAfqχpzq � εR0 rDΨpρqp�ρqs pnqχpzq
� εΨpρqR0 rDχpzqs pnq � ε2ϕc2pf, zq � ε2R1`pf, z, nq
� ε2R0

�
q � 〈q〉ρ,z

�
pf, z, nq.

Observe that each term either does not depend on n or can be written Rλθ with θ as in
De�nition 2. As a consequence, owing to Assumption 9, any product of at most two of
these terms belongs to DpBq. Thus, ϕε P DpBq and pϕεq2 P DpBq. This concludes the
proof that ϕε is a good test function, and the proof of Proposition 4.3.
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5 Dynamics associated with the limiting equation

In this section, we show that the operator L is the generator of the limit equation (18)
and that the martingale problem associated to L characterizes the solution of (18).

De�nition 5. Let ρ0 P L2
x and let σ ¡ 0. A process pρ, ζq is said to be a weak solution

to (18) in L2
x if the following assertions are satis�ed

(i) ρp0q � ρ0,

(ii) ρ P L8pr0, T s, L2
xq X Cpr0, T s, H�σ

x q a.s. and ζ P Cpr0, T s, C1
xq a.s.,

(iii) there exists pBiqi a sequence of independent standard Brownian motions such that
pρ, ζq is adapted to the �ltration generated by pBiqi and such that, for all ξ P L2

x

and t P r0, T s, we have a.s.

pρptq, ξqL2
x
� pρ0, ξqL2

x
�
» t

0
pρpsq,divpK∇ξqqL2

x
ds�

» t
0
p1
2
Fρpsq, ξqL2

x
ds

�
¸
i

?
qi

» t
0
pFiρpsq, ξqL2

x
dBipsq

(56)

ζptq �
¸
i

?
qiFiBiptq. (57)

Note that the sum in (57) does converge in Cpr0, T s, C1
xq owing to Lemma 3.3.

The solution to this equation exists and is unique in distribution. The existence
can be proved using energy estimates, Itô formula and regularization argument. The
uniqueness comes from pathwise uniqueness which derives from the same arguments. We
do not give details concerning existence and uniqueness, however, in the proof of the
following Proposition, we established the aforementioned energy estimate 59.

Proposition 5.1. Let σ ¡ 0 and let pρ, ζq P Cpr0, T s, H�σ
x q � Cpr0, T s, C1

xq.
If pρ, ζq is the weak solution to (18) in H�σ

x , then, for any test function ϕ P Θ, the
process

Mϕptq � ϕpρptq, ζptqq � ϕpρ0, 0q �
» t

0
Lϕpρpsq, ζpsqqds

is a martingale for the �ltration generated by pρ, ζq.
Conversely, if for all ϕ P Θ, Mϕ and Mϕ2 are martingales, then pρ, ζq is the weak

solution of (18) in H�σ
x .

Proof. Let us �rst prove that L is the generator associated to (18). The expression of
Lϕ is given by (53). First note that A2ρM � divpK∇ρq, which is the �rst term of (18).
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The third term of (53) is associated to the second term of (18):»
DΨpρqpR0pnqpnρqqdνpnq � E

�» 8

0
DΨpρqpρmp0qmptqqdt

�
� 1

2
E
�»

R
DΨpρqpρmp0qmptqqdt

�
� 1

2
DΨpρqpρF q.

To rewrite the second term of (53), assume �rst that the bilinear form D2Ψpρq on L2
x

admits a kernel kρ. Then, we have»
D2Ψpρqpnρ,R0pnqρqdνpnq � 1

2
E
�» 8

0
D2Ψpρqpρmp0q, ρmptqqdt

�
� 1

2
E
�» 8

0

» »
kρpx, yqρpxqmp0qpxqρpyqmptqpyqdxdydt

�
� 1

2

» »
kρpx, yqkpx, yqρpxqρpyqdxdy.

Owing to Mercer's Theorem (see [16]), the kernel k can be expressed in terms of the
eigenvectors and eigenvalues of Q:

@x, y, kpx, yq �
¸
i

qiFipxqFipyq.

It is straightforward to check that kp1{2qpx, yq � °
i q

1{2
i FipxqFipyq, x, y P Td, de�nes a

kernel for Q1{2 and satis�es kpx, yq � ³
kp1{2qpx, zqkp1{2qpy, zqdz. Thus, we have»

D2Ψpρqpnρ,R0pnqρqdνpnq � 1

2

» » »
kρpx, yqkp1{2qpx, zqρpxqkp1{2qpy, zqρpyqdxdydz

� 1

2
Tr

�
pρQ1{2qD2ΨpρqpρQ1{2q�

�
. (58)

By density of the functions whose second derivative admits a kernel kρ in C
2, this formula

holds for all test functions ϕ P Θ. Using similar reasoning for the three remaining terms,
we get

Lϕpρ, ζq � DΨpρqpdivpK∇ρq � 1

2
Fρqχpζq

� 1

2
Tr

�
pρQ1{2, Q1{2q

�
D2Ψpρqχpζq DΨpρq bDχpζq

DΨpρq bDχpζq ΨpρqD2χpζq


pρQ1{2, Q1{2q�

�
,

which is the generator of (18). Once moment estimates for ρ have been obtained in L2
x,

integrability of Mϕ is ensured. In addition, estimates on ϕpρptq, ζptqq and Lϕpρptq, ζptqq
(uniformly in t P r0, T s) are also obtained, since ϕ and Lϕ have at most quadratic growth.
Then, the proof that Mϕ is a martingale follows the same strategy as for the proof of
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Proposition 4.1. This proof is omitted. It thus remains to prove the moment estimates
for ρ.

We apply Itô's formula, equation (56) and we take the expectation (so that the
martingale part vanishes), to get

1

2
E
�
pρptq, ξq2L2

x

�
� 1

2
E
�
pρ0, ξq2L2

x

�
� E

» t
0
pρpsq,divpK∇ξqqL2

x
pρpsq, ξqL2

x
ds

� E
» t

0
p1
2
Fρpsq, ξqL2

x
pρpsq, ξqL2

x
ds� 1

2

¸
i

qiE
» t

0
pFiρpsq, ξq2L2

x
ds.

Then, we evaluate at ξ � e` with ` P Zd and e` the Fourier basis e`pxq � expp2iπ` � xq.
Let λ` � 4π2` �K` so that divpK∇e`q � �λ`e`. We sum this formula for |`| ¤ L. Let
PL be the orthogonal projector on the space generated by te` | |`| ¤ Lu. Since λ` ¥ 0,
we get

1

2
E
�
}PLρptq}2L2

x

�
¤ 1

2
E
�
}PLρ0}2L2

x

�
� E

» t
0

1

2
}PLpFρpsqq}L2

x
}PLρpsq}L2

x
ds

� 1

2

¸
i

E
» t

0
qi }PLpFiρpsqq}2L2

x
ds

¤ 1

2
E
�
}PLρ0}2L2

x

�
� 1

2

�
}F }L8 �

¸
i

qi }Fi}2L8
�
E
» t

0
}ρpsq}2L2

x
ds.

Taking LÑ8, using Lemma 3.3 and Gronwall's Lemma, we get

E
�
}ρptq}2L2

x

�
À E

�
}ρ0}2L2

x

�
. (59)

This concludes the proof of the moment estimates for ρ, hence the proof that Mϕ is a
martingale.

Conversely, assume that for all ϕ P Θ, Mϕ and Mϕ2 are martingales. It holds in
particular for regular and bounded test functions ϕ. It is then standard that a solution
to this martingale problem is the Markov process of generator L (see for example chapter
4 of [14]), based on Lévy's martingale representation theorem in Hilbert spaces (see [5],
Theorem 8.2). This concludes the proof since we already proved that L is the generator
associated to (18).

6 Tightness of the coupled stopped process

In this section, we prove the following Proposition.

Proposition 6.1. Let Λ P p0,8q. The family of processes
�pρε,τΛpζεq, ζε,τΛpζεqq�

ε
is tight

in the space Cpr0, T s, H�σ
x q � Cpr0, T s, C1

xq for any σ ¡ 0. Moreover, the family pζεqε is
tight in Cpr0, T s, C1

xq.
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To simplify the notation, we write CTH
�σ
x �CTC1

x for Cpr0, T s, H�σ
x q�Cpr0, T s, C1

xq.
Owing to Slutsky's Lemma (see [2], Theorem 4.1) and to Lemma 3.4, Proposition 6.1

is equivalent to the tightness of
�pρε,τεΛ , ζε,τεΛq�

ε
and

�
ζε,τ

ε�
ε
.

Since these processes are pathwise continuous, we have the following inequality be-
tween the modulus of continuity w for continuous functions and the modulus of continuity
w1 for càdlàg functions (see [2], equation 14.11):

wXpδq ¤ 2w1
Xpδq,

with, for a càdlàg function X,

wXpδq .� sup
0¤t¤s¤t�δ¤T

}Xpsq �Xptq}

w1
Xpδq .� sup

ptiqi

max
i

sup
ti¤t¤s ti�1

}Xpsq �Xptq} ,

where ptiqi is a subdivision of r0, T s. Therefore, the tightness in the Skorokhod space
DTH

�σ
x �DTC

1
x (respectively DTC

1
x) implies the tightness in CTH

�σ
x � CTC

1
x (respec-

tively in CTC
1
x).

Owing to Theorem 3.1. of [24], tightness in the Skorokhod space follows from the
following claims, which are proved in Sections 6.1 and 6.2 respectively.

(i) For all η ¡ 0, there exists some compact sets Kη � H�σ
x and K 1

η � C1
x such that

for all ε ¡ 0,

P
�@t P r0, T s, ρε,τεΛptq P Kη

� ¡ 1� η (60)

P
�@t P r0, T s, ζε,τεΛptq P K 1

η

� ¡ 1� η (61)

P
�@t P r0, T s, ζε,τεptq P K 1

η

� ¡ 1� η. (62)

(ii) If ϕ is a sum of a �nite number of bounded functions ϕi P Θ, then
�
ϕpρε,τεΛ , ζε,τεΛq�

ε
is tight in Dpr0, T s,Rq.
For any rϕ P Θ with ψ � 1,

�rϕpζε,τεq�
ε
is tight in Dpr0, T s,Rq.

We ask of ϕ to be a �nite sum of test functions because Theorem 3.1. of [24] requires
the class of test functions to separate points and to be closed under addition, but Θ does
not satis�es the latter condition.

6.1 Proof of the �rst claim (i)

Using Proposition 3.6 and the Markov inequality, we have for K ¡ 0,

P
�
Dt P r0, T s, ��ρε,τεΛptq��

L2
x
¡ K

	
¤

E
�
suptPr0,T s

��ρε,τεΛptq��
L2
x

�
K

ÀΛ

E
�
}f ε0}L2pM�1q

�
K

.

Note that stopping the processes at τΛpζεq is necessary at this point. Owing to the
compact embedding L2

x � H�σ
x for σ ¡ 0, we get (60).
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Since (61) is a consequence of (62), it remains to prove (62). Owing to Ascoli's

Theorem, we have a compact embedding of the Hölder space C1,δ
x � C1

x for any δ ¡ 0.
Moreover, with s � td{2u � 2, we have a continuous embedding Hs

x � C1,δ
x for any

δ P p0, s� d
2 �1s. Then (62) is a consequence of Proposition 6.2 below and of the Markov

inequality.

Proposition 6.2. Recall that τ ε is de�ned by (14). Then, for all T ¡ 0, we have

sup
ε

E

�
sup
tPr0,T s

��ζε,τεptq��2

H
td{2u�2
x

�
  8.

Proof. The idea of this proof is to express ζε (and its derivatives) as a sum of a small
term and a martingale, and then to estimate the martingale using Doob's Maximal
Inequality. This argument is used two times in a row, and the estimates heavily rely on
Assumptions 9 and 10.

Since ζεptq P E � C
2td{2u�4
x � H

td{2u�2
x , it is su�cient to prove that for all multi-

indices β of length |β| ¤ td{2u� 2, we have

sup
ε

E

�� sup
tPr0,T s

�����B|β|ζε,τ
εptq

Bxβ

�����
2

L2
x

��   8.

Fix such a β and let ε ¡ 0. First note that

E

�� sup
tPr0,T s

�����B|β|ζε,τ
εptq

Bxβ

�����
2

L2
x

�� ¤
»
E

�� sup
tPr0,T s

�����B|β|ζε,τ
εpt, xq

Bxβ

�����
2
�� dx. (63)

For x P Td, de�ne θx,β P E� by

@n P E, θx,βpnq � B|β|n
Bxβ pxq.

Since mε is almost surely an E-valued càdlàg function, the derivative and the integral
commute in the following computation:

B|β|ζεpt, xq
Bxβ � 1

ε

» t
0

B|β|mεps, xq
Bxβ ds � 1

ε

» t
0
θx,βpmεpsqqds.

Owing to the identity 〈θx,β〉 � 0, Lemma 3.1 and Assumption 9, the function ψx
.�

�R0θx,β is well-de�ned, is Lipschitz continuous with rψxsLip À rθx,βsLip � 1 and ψx, ψ
2
x P

DpBq. Therefore Proposition 4.2 states that

M ε
εψxptq � εψxpmεptqq � εψxpmp0qq � 1

ε2

» t
0
εBψxpmεpsqqds

� εψxpmεptqq � εψxpmp0qq � B|β|ζεpt, xq
Bxβ
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de�nes a square-integrable martingale such that

E
����M ε,τε

εψx
ptq

���2� � E
�» t^τε

0

�
Bpψ2

xq � 2ψxBψx
� pmεpsqqds

�
. (64)

Since rψxsLip À rθx,βsLip � 1 and α   1 in (24), we have

E

�
sup
tPr0,T s

��εψxpmε,τεptqq��2� À ε2E
�
ε�2α _ }mp0q}2E

�
À 1,

and by Doob's Maximal Inequality, we get

E

�� sup
tPr0,T s

�����B|β|ζε,τ
εpt, xq

Bxβ

�����
2
�� 1

2

À 1� E

�
sup
tPr0,T s

���M ε,τε

εψx
ptq

���2� 1
2

À 1� E
����M ε,τε

εψx
pT q

���2� 1
2

. (65)

Owing to Proposition 4.2, we have

E
����M ε,τε

εψx
pT q

���2� � E
�» T^τε

0

�
Bpψ2

xq � 2ψxBψx
� pmεpsqqds

�
,

For now, we only know that the right-hand side is of order ε�2α, by (14) and (64). To
retrieve an estimate uniform in ε, we use the same martingale argument as before. Let

rθx,β .� Bpψ2
xq � 2ψxBψx � BppR0θx,βq2q � 2θx,βR0θx,β,

so that

E
����M ε,τε

εψx
pT q

���2� � E
�» T^τε

0

rθx,βpmεpsqqds
�
. (66)

Since θx,β and R0θx,β are pseudo-linear functions, the function θx,βR0θx,β is pseudo-
quadratic. Thus, by Lemma 3.1 and Assumption 9, the function

rψx � pR0θx,βq2 � 2R0 rθx,βR0θx,β � 〈θx,βR0θx,β〉s ,

is well-de�ned and satis�es rψx, rψ2
x P DpBq and B rψx � rθx,β � 2 〈θx,βR0θx,β〉. As before,

introduce the martingale process

M ε
ε2 rψxptq � ε2 rψxpmεptqq � ε2 rψxpmp0qq � 1

ε2

» t
0
ε2B rψxpmεpsqqds

� ε2 rψxpmεptqq � ε2 rψxpmp0qq � » t
0

rθx,βpmεpsqqds� 2t 〈θx,βR0θx,β〉 .
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Owing to Lemma 3.1, we have

@n P E,
��� rψxpnq��� À p1� }n}b�1

E � }n}2Eq
〈θx,βR0θx,β〉 À 1.

Using the conditions αpb�1q   2 and α   1 in (24), and using the �niteness of moments
of order 2pb� 1q and 4 of mp0q in Assumption 7, we get

E
�» T^τε

0

rθx,βpmεpsqqds
�
ÀT 1� E

����M ε,τε

ε2 rψxpT q
���� , (67)

where, owing to Proposition 4.2,

E
����M ε,τε

ε2 rψxpT q
���2� � ε2E

�» T^τε
0

�
Bp rψ2

xq � 2 rψxB rψx	 pmεpsqqds
�
.

Owing to Assumption 10, we have

@n P E,
����Bp rψ2

xq � 2 rψxB rψx	 pnq��� À p1� }n}2pb�1q
E � }n}4Eq.

Since αpb�1q   1 and 2α   1 in (24) and since mp0q has �nite moments of order 2pb�1q
and 4 in Assumption 7, we get

E
����M ε,τε

ε2 rψxpT q
���2� ÀT 1. (68)

Gathering the estimates (65), (66), (67) and (68), we obtain the required result

sup
ε

sup
xPTd

E

�� sup
tPr0,T s

�����B|β|ζε,τ
εpt, xq

Bxβ

�����
2
�� ÀT 1.

This concludes the proof by (63).

Proposition 6.2, together with the compact embedding Hs
x � C1

x and the Markov
inequality, proves that (62) holds, hence (61). This concludes the proof of (i).

6.2 Proof of the second claim (ii)

As in [11], we prove (ii) using the Aldous criterion ([23], Theorem 4.5 p356).
Let ϕ � °

i ϕi be the sum of a �nite number of bounded functions ϕi P Θ. We set
Xε � pf ε, ζε,mεq and Xε � pρε, ζεq. Recall that if rϕ P Θ depends only on z, then the
perturbed test function rϕε de�ned by Proposition 4.3 depends only on n and z. Using
Proposition 4.2, this allows us to stop the processes only at τ ε instead of τ εΛ while keeping
the same estimates. Therefore, the proof of the tightness of

�rϕpζε,τεq�
ε
is the same as of�

ϕpXε,τεΛq
	
ε
, and is thus omitted. It only remains to prove

�
ϕpXε,τεΛq

	
ε
is tight.
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The Aldous criterion gives a su�cient condition for the tightness of the family�
ϕpXε,τεΛq

	
ε
in Dpr0, T s,Rq: since ϕ is bounded, is it su�cient to prove that

@η ¡ 0, lim
δÑ0

lim sup
εÑ0

sup
τ1,τ2¤T

τ1¤τ2¤τ1�δ

P
����ϕpXε,τεΛpτ2qq � ϕpXε,τεΛpτ1qq

��� ¡ η
	
� 0, (69)

where τ1, τ2 are any pFεt qtPR�-stopping times.
De�ne the perturbed test function ϕε � °

i ϕ
ε
i . This sum satis�es the estimates (44)

to (46). Then, de�ne

θεptq � ϕpXεp0qq � ϕεpXεptqq � ϕεpXεp0qq (70)

� ϕpXεp0qq �
» t

0
LεϕεpXεpsqqds�M ε

ϕεptq, (71)

where M ε
ϕε is de�ned by Proposition 4.1, so that

ϕpXε,τεΛpτ2qq � ϕpXε,τεΛpτ1qq �
�
θε,τ

ε
Λpτ2q � θε,τ

ε
Λpτ1q

�� �
ϕεpXε,τεΛpτ2qq � ϕpXε,τεΛpτ2qq

	
�
�
ϕεpXε,τεΛpτ1qq � ϕpXε,τεΛpτ1qq

	
.

Using (23), Propositions 3.6 and 4.3, we get���ϕεpXε,τεΛptqq � ϕpXε,τεΛptqq
���

Àϕ,Λ p1� }f ε0}2L2pM�1qqpεp1� ε�α _ }mp0q}q � ε2p1� ε�αpb�1q _ }mp0q}b�1qq.

Since α   1 and αpb� 1q   2 in (24), we get

E

�
sup
tPr0,T s

���ϕεpXε,τεΛptqq � ϕpXε,τεΛptqq
���� ÝÝÝÑ

εÑ0
0,

hence, when εÑ 0,

sup
τ1,τ2

E
����ϕpXε,τεΛpτ2qq � ϕpXε,τεΛpτ1qq

���� ¤ sup
τ1,τ2

E
���θε,τεΛpτ2q � θε,τ

ε
Λpτ1q

���� op1q.

Using the Markov inequality, we get

sup
τ1,τ2

P
����ϕpXε,τεΛpτ2qq � ϕpXε,τεΛpτ1qq

��� ¡ η
	
¤ sup

τ1,τ2

E
���θε,τεΛpτ2q � θε,τ

ε
Λpτ1q

���
η

� op1q.

Therefore, it is su�cient to prove that

sup
τ1,τ2,ε

E
���θε,τεΛpτ2q � θε,τ

ε
Λpτ1q

��� ÝÝÝÑ
δÑ0

0, (72)

to deduce (69) and then to use Aldous criterion.
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Owing to (71), we have

��θε,τεΛpτ2q � θε,τ
ε
Λpτ1q

�� ¤ » τ2^τεΛ
τ1^τεΛ

|LεϕεpXεpsqq| ds�
���M ε,τεΛ

ϕε pτ2q �M
ε,τεΛ
ϕε pτ1q

��� . (73)

Using once again (23), Propositions 3.6 and 4.3, we get��LεϕεpXε,τεΛptqq�� Àϕ,Λ ���LϕpXε,τεΛpsqq
���� εp1� }f ε0}3L2pM�1qqp1� ε�αpb�2q _ }mp0q}b�2q

Àϕ,Λ 1� }f ε0}2L2pM�1q � εp1� }f ε0}3L2pM�1qqp1� ε�αpb�2q _ }mp0q}b�2q.
Using the Cauchy-Schwarz inequality, the condition αpb� 2q   1 in (24), Assumptions 4
and 7, we get

E

�
sup
tPr0,T s

��LεϕεpXε,τεΛptqq��� Àϕ,Λ 1. (74)

Thus, we get

sup
ε

sup
τ1,τ2

E

�» τ2^τεΛ
τ1^τεΛ

|LεϕεpXεpsqq| ds
�
¤ sup

ε
sup
τ1,τ2

δE

�
sup
tPr0,T s

��LεϕεpXε,τεΛptqq��� ÝÝÝÑ
δÑ0

0.

The last term of (73) is controlled using martingale arguments. Owing to Proposition 4.1,

M
ε,τεΛ
ϕε is indeed a square-integrable martingale and

E
����M ε,τεΛ

ϕε pτ2q �M
ε,τεΛ
ϕε pτ1q

���2� � E
����M ε,τεΛ

ϕε pτ2q
���2 � ���M ε,τεΛ

ϕε pτ1q
���2�

� 1

ε2
E

�» τ2^τεΛ
τ1^τεΛ

�
Bppϕεq2q � 2ϕεBϕε

� pXεpsqqds
�

� E

�» τ2^τεΛ
τ1^τεΛ

2̧

i��2

εiripXεpsqqds
�

where the terms ri are obtained by writing ϕ
ε � ϕ�εϕ1�ε2ϕ2 and expanding Bppϕεq2q�

2ϕεBϕε. The terms containing ϕ vanish, using Bϕ � 0, Bpϕ2q � 0 and Bϕϕj � ϕBϕj
(since ϕ does not depend on n). Using Assumption 10, the remaining terms satisfy

r�2 � r�1 � 0,

r0pf, z, nq �
�
Bpϕ2

1q � 2ϕ1Bϕ1

� pf, z, nq Àϕ p1� }f}2L2pM�1qqp1� }n}2Eq,
r1pf, z, nq � r2Bpϕ1ϕ2q � ϕ1Bϕ2 � ϕ2Bϕ1s pf, z, nq Àϕ p1� }f}3L2pM�1qqp1� }n}b�2

E q,
r2pf, z, nq �

�
Bpϕ2

2q � 2ϕ2Bϕ2

� pf, z, nq Àϕ p1� }f}4L2pM�1qqp1� }n}2pb�1q
E q.

As for (74), using that αpb� 2q   1 in (24), we have for i P t1, 2u

E

�
sup
tPr0,T s

εiripXε,τεΛptqq
�
Àϕ,Λ 1,
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and

sup
ε

sup
τ1,τ2

E

�» τ2^τεΛ
τ1^τεΛ

εiripXεpsqqds
�
ÝÝÝÑ
δÑ0

0.

We need to be more cautious when dealing with r0, since there are no ε left to compensate
the ε�2α that would appear from bounding mε,τε from above using Proposition 3.6. The
idea is to use estimates for f ε,τ

ε
Λ and mε (instead of mε,τεΛ), using that for s ¤ τ εΛ,

mε,τεΛpsq � mεpsq. We write

E

�» τ2^τεΛ
τ1^τεΛ

r0pXεpsqqds
�
Àϕ E

�» τ2^τεΛ
τ1^τεΛ

p1� ��f ε,τεΛpsq��2

L2pM�1q
qp1� }mεpsq}2Eqds

�

Àϕ,Λ E
�» τ2

τ1

p1� }f ε0}2L2pM�1qqp1� }mεpsq}2Eqds
�

Àϕ,Λ
» T

0
E
�
1rτ1,τ2spsqp1� }f ε0}2L2pM�1qqp1� }mεpsq}2Eq

�
ds.

Then, we use the Hölder inequality to write

E

�» τ2^τεΛ
τ1^τεΛ

r0pXεpsqqds
�

Àϕ,Λ
» T

0
E
�
1rτ1,τ2spsq

� 1
3 E

�
1� }f ε0}6L2pM�1q

� 1
3 E

�
1� }mεpsq}6E

� 1
3
ds

Àϕ,Λ
» T

0
E
�
1rτ1,τ2spsq

� 1
3 dsE

�
1� }f ε0}6L2pM�1q

� 1
3 E

�
1� }mεp0q}6E

� 1
3
,

by stationarity of m. Using the Cauchy-Schwarz inequality, Assumptions 4 and 7, we get

E

�» τ2^τεΛ
τ1^τεΛ

r0pXεpsqqds
�
Àϕ,Λ

» T
0

E
�
1rτ1,τ2spsq

� 1
2 ds

Àϕ,Λ,T
�» T

0
E
�
1rτ1,τ2spsq

�
ds


 1
2

Àϕ,Λ,T δ
1
2 Ñ 0,

uniformly in ε, τ1 and τ2. This concludes the proof of (72).
We are now in position to apply Aldous' criterion, which proves that the family�pρε,τΛpζεq, ζε,τΛpζεqq�

ε
is tight in CTH

�σ
x � CTC

1
x. This concludes the proof of (ii), and

of Proposition 6.1.

7 Identi�cation of the limit points

In this section, we establish the �rst convergence result stated in Theorem 2.1.
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We start by proving the convergence of the auxiliary process ζε in Section 7.1, using
the convergence of a simpli�ed martingale problem. Then, in Section 7.2, we determine
the stopped martingale problem solved by a limit point of the stopped process. In
Section 7.3, we use this stopped martingale to identify the limit point of the stopped
process. We conclude on the convergence of the unstopped process in Section 7.4.

7.1 Convergence of the auxiliary process

Proving the convergence of ζε is much simpler than for the coupled process X
ε
. Indeed,

as seen in particular in Proposition 6.1, the only stopping time we need is τ ε, and
τ ε ÝÝÝÑ

εÑ0
�8. Therefore, the convergence of martingale problems is a little more intricate

than the proof used in [10], but it remains straightforward.

Proposition 7.1. The process ζε converges in distribution in CTC
1
x to a Wiener process

of covariance Q when εÑ 0.

Proof. Owing to the tightness established in Proposition 6.1, there exists a sequence
εi ÝÝÝÑ

iÑ8
0 and ζ P CTC1

x such that ζεi converges in distribution to ζ when i Ñ 8. We

start by proving that ζ solves the martingale problem associated with the generator L.
Let ϕ P Θ with ψ � 1. Let 0 ¤ s ¤ s1 ¤ ... ¤ sn ¤ t, let g be a continuous bounded

function and for z P CTC1
x, let Gpzq � gpzps1q, ..., zpsnqq and

Φpzq �
�
ϕpzptqq � ϕpzpsqq �

» t
s
Lϕpzpuqqdu



Gpzq.

Note that G and Φ are continuous and bounded on CTC
1
x, so E rΦpζεiqs ÝÝÝÑ

iÑ8
E rΦpζqs.

Let us establish that E rΦpζεiqs also converges to 0.
Let ϕεi be the perturbed test function introduced in Proposition 4.3 associated to ϕ.

Since ϕεi is a good test function, and since Gpζεi,τεi q is Fεis -measurable, Proposition 4.1
yields

E
��
ϕεipζεi,τεi ptqq � ϕεipζεi,τεi psqq �

» t^τεi
s^τεi

Lεiϕεipζεipuqqdu


Gpζεi,τεi q

�
� 0.

Owing to (38), this leads to ��E �
Φpζεi,τεi q��� Àg 4̧

j�1

E r|rj |s ,

with

r1 � εipϕ1pζεi,τεi ptq,mεi,τ
εi ptqq � ϕ1pζεi,τεi psq,mεi,τ

εi psqqq,
r2 � εi

2pϕ2pζεi,τεi ptq,mεi,τ
εi ptqq � ϕ2pζεi,τεi psq,mεi,τ

εi psqqq,

r3 � �
» t^τεi
s^τεi

pLεiϕεipζεipuqq � Lϕpζεipuqqq du,

r4 �
» t
t^τεi

Lϕpζεi,τεi puqqdu�
» s
s^τεi

Lϕpζεi,τεi puqqdu.
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Using (24), (44), (45), (46), Assumptions 4 and 7, we have for j P t1, 2, 3u, E r|rj |s ÝÝÝÑ
εÑ0

0.

It remains to prove that E r|r4|s Ñ 0. The term r4 does not appear in [10], but is simple
to manage since τ ε ÝÝÝÑ

εÑ0
8. The Cauchy-Schwarz inequality and Lemma 3.4 lead to

E r|r4|s2 Àϕ E
�
|t� t^ τ εi |2 � |s� s^ τ εi |2

�
Àϕ T 2P pτ εi   T q ÝÝÝÑ

iÑ8
0

Thus, we get E
�
Φpζεi,τεi q� ÝÝÝÑ

iÑ8
0, hence E rΦpζqs � 0. The same proof can be adapted

when replacing ϕ by ϕ2. Therefore, the processesMϕ andMϕ2 de�ned in Proposition 5.1
are martingales. Owing to Proposition 5.1, ζ satis�es (57) and is a Q-Wiener process.

This limit point being unique in distribution, ζε converges in distribution to this
Wiener process.

7.2 Convergence of the stopped martingale problems

In this section, we use Proposition 7.1 to establish the convergence of the stopped mar-
tingale problems satis�ed by Xε,τεΛ . The proof is similar to the proof of Proposition 7.1,
but this time the stopping time persists when εÑ 0 because of the �xed threshold Λ.

Let us introduce the path space Ω � CTH
�σ
x � CTC

1
x � CTC

1
x, equipped with its

Borel σ-algebra. We denote by pρ, ζ, ζ 1q the canonical process on Ω and by pF tqtPR� its
associated �ltration.

De�ne Pε,Λ the distribution of pρε,τεΛ , ζε,τεΛ , ζεq and Eε,Λ the expectation under this
distribution (on Ω). By Proposition 6.1, the family pPε,Λqε is tight. Thus, in this section,
we consider a sequence pεiqiPN such that εi Ñ 0 and Pεi,Λ Ñ P0,Λ weakly when iÑ8, for
some limit point P0,Λ. Note that under P0,Λ, owing to Proposition 7.1, ζ 1 is a Q-Wiener
process whose distribution PQ does not depend on Λ.

We now state two continuity lemmas.

Lemma 7.2. For any �xed Λ P R�, the mapping τΛp�q de�ned by (15) is lower semi-
continuous on CTC

1
x. Moreover, it is continuous at every z such that τ�pzq is continuous

at Λ.

Lemma 7.3. The set
 
Λ ¥ 0 | PQ

�
τ�pζ 1q is not continuous at Λ

� ¡ 0
(
is at most count-

able. Let L be its complementary.

We refer to [22] (Lemma 3.5, 3.6 and Appendix) for the proofs of Lemmas 7.2 and 7.3.
These results can be applied here since

��ζ 1��
C1
x
is a continuous �nite dimensional process

and its distribution PQ under P0,Λ does not depend on Λ.
Owing to Lemma 7.3, there exist arbitrarily large numbers Λ P L and for all Λ P

L, τ�pζ 1q is P0,Λ-almost surely continuous at Λ and by Lemma 7.2, τΛp�q is P0,Λ-a.s.
continuous at ζ 1. From now on, it is assumed that Λ P L.
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Proposition 7.4. Let Λ P L. For all ϕ P Θ, the process

t ÞÑ ϕpρptq, ζptqq � ϕpρp0q, ζp0qq �
» t^τΛpζ1q

0
Lϕpρpuq, ζpuqqdu

is a pF tqtPR�-martingale under P0,Λ.

Proof. Let ϕ P Θ. As for Proposition 7.1, let 0 ¤ s ¤ s1 ¤ ... ¤ sn ¤ t, let g be a
continuous bounded function, and let

Gpρ, ζ, ζ 1q � gpρps1q, ζps1q, ζ 1ps1q, ..., ρpsnq, ζpsnq, ζ 1psnqq,

and

Φpρ, ζ, ζ 1q �
�
ϕpρptq, ζptqq � ϕpρpsq, ζpsqq �

» t^τΛpζ1q
s^τΛpζ

1q
Lϕpρpuq, ζpuqqdu

�
Gpρ, ζ, ζ 1q.

As for Proposition 7.1, we establish that Eεi,Λ
�
Φpρ, ζ, ζ 1q� converges, when i Ñ 8, to

both E0,Λ

�
Φpρ, ζ, ζ 1q� and 0.

On the one hand, since Φ is continuous P0,Λ-almost everywhere, Pεi,Λ � Φ�1 Ñ
P0,Λ �Φ�1 weakly when iÑ8 (see [4] Proposition IX.5.7). Moreover,

�
Pεi,Λ � Φ�1

�
εi
is

uniformly integrable. Indeed, using (53), we have

sup
ε

Eε,Λ
���Φpρ, ζ, ζ 1q��2� ÀT,Λ,ϕ,g sup

ε
E
�
1� }f ε0}4L2pM�1q

�
  8.

Uniform integrability and convergence in distribution yield (see [2], Theorem 5.4)

Eεi,Λ
�
Φpρ, ζ, ζ 1q� ÝÝÝÑ

iÑ8
E0,Λ

�
Φpρ, ζ, ζ 1q� .

On the other hand, de�ne the perturbed test function ϕεi as in Proposition 4.3. As
for Proposition 7.1, we have

E

��
ϕεipXεi,τ

εi
Λ ptqq � ϕεipXεi,τ

εi
Λ psqq �

» t^τεiΛ

s^τ
εi
Λ

LεiϕεipXεipuqqdu
�

Gpρεi,τεiΛ , ζεi,τ
εi
Λ , ζεi,τ

εi q
�
� 0,

and ��Eεi,Λ�Φpρ, ζ, ζ 1q��� � ���E �
Φpρεi,τεiΛ , ζεi,τ

εi
Λ , ζεiq

���� Àg 4̧

j�1

E r|rj |s ,
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with

r1 � εipϕ1pXεi,τ
εi
Λ ptqq � ϕ1pXεi,τ

εi
Λ psqqq Ñ 0

r2 � εi
2pϕ2pXεi,τ

εi
Λ ptqq � ϕ2pXεi,τ

εi
Λ psqqq Ñ 0

r3 � �
» t^τεiΛ

s^τ
εi
Λ

�
LεiϕεipXεi,τ

εi
Λ puqq � LϕpXεi,τ

εi
Λ puqq



duÑ 0

r4 �
» t^τΛpζεi q
t^τ

εi
Λ

LϕpXεi,τ
εi puqqdu�

» s^τΛpζεi q
s^τ

εi
Λ

LϕpXεi,τ
εi puqqdu.

For the last term r4, we have

E r|r4|s2 Àϕ,Λ E
���t^ τΛpζεiq � t^ τ εiΛ

��2 � ��s^ τΛpζεiq � s^ τ εiΛ

��2�
Àϕ,Λ T 2P pτ εi   T ^ τΛpζεiqq using (17)

Àϕ,Λ T 2P pτ εi   T q ÝÝÝÑ
iÑ8

0.

Thus, we get Eεi,Λ
�
Φpρ, ζ, ζ 1q� ÝÝÝÑ

iÑ8
0, which concludes the proof of Proposition 7.4.

7.3 Identi�cation of the limit point

In Section 7.1, solving the martingale problem is su�cient to characterize the distribution
of the Markov process as a solution of a limit equation, under a uniqueness condition.
However, the limit point P0,Λ solves a martingale problem only until a stopping time
τΛpζ 1q. The goal of this section is to explain how to identify P0,Λ using this stopped
martingale problem.

Let us come back to the space Ω to state more precise results. Recall that the distribu-
tion of pρε,τεΛ , ζε,τεΛ , ζεq is Pε,Λ, and de�ne pρΛ, ζΛ, ζ

1q following the limit distribution P0,Λ

(we assume Ω is large enough to de�ne such a process). Recall that X
ε,τεΛ .� pρε,τεΛ , ζε,τεΛq.

De�ne XΛ
.� pρΛ, ζΛq and X a solution of (18).

In this section, we construct a process YΛ that extends XΛ after the stopping time
τΛpζ 1q (in distribution) and that solves the martingale problem associated to L. It is
similar to the proof of Theorem 6.1.2 in [34], but we adapt this proof to see precisely
how τΛpζ 1q is linked to the extended process.

Extension after a stopping time We �rst need a result to assert that τΛpζ 1q is a
hitting time for XΛ. Note that until here, we did not use ζ

ε when considering the coupled
process pρε, ζεq.But had we considered ρε alone, the stopping time τΛpζ 1q would not be
a hitting time for ρΛ (as a matter of fact, τΛpζ 1q is not even a stopping time for the
�ltration generated by ρΛ).

Lemma 7.5. Let Λ P L.
The processes ζΛ and pζ 1qτΛpζ1q are indistinguishable. In particular, τΛpζΛq � τΛpζ 1q.

Moreover, the processes ρΛ and ρ
τΛpζ

1q
Λ are indistinguishable.
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This result was expected, given the construction of the stopping times and the fact
that ζΛ and ζ 1 are the limit of the same process, respectively with and without a stopping
time. The choice Λ P L is here necessary to retrieve this result by taking the limit εÑ 0.

Proof. Since τ εi Ñ8 in probability by Lemma 3.4, Slutsky's Lemma yields the following
convergence in distribution

pζεi,τεiΛ , ζεi,τ
εi , ζεiq ÝÝÝÑ

iÑ8
pζΛ, ζ

1, ζ 1q

Now, for z1, z2, z3 P CTC1
x, let

Φpz1, z2, z3q �
���z1 � z

τΛpz3q
2

���
CTC1

x

.

Owing to Lemma 7.2, the mapping Φ is almost surely continuous at pζΛ, ζ
1, ζ 1q. Thus

Φpζεi,τεiΛ , ζεi,τ
εi , ζεiq � 0 converges in distribution to ΦpζΛ, ζ

1, ζ 1q. Hence, we have almost
surely ζΛ � pζ 1qτΛpζ1q.

The proof for ρΛ uses similar arguments with Φpρ, zq � ��ρ� ρτΛpzq
��
CTH

�σ
x
.

From now on, for any process Y � pρ, ζq, we write τΛpY q � τΛpζq so that τΛpXΛq �
τΛpζ 1q P r0,8s. We shorten the notation to τΛ

.� τΛpXΛq. Introduce the measurable
function SΛ that stops a process at the level Λ, namely SΛpY q � Y τΛpY q. Owing to
Lemma 7.5, we have SΛpXΛq � XΛ.

This section is devoted to extend XΛ after τΛ into a solution of the martingale problem

associated to L. Namely, we de�ne a process YΛ such that SΛpYΛq d� XΛ and such that
YΛ solves the aforementioned martingale problem.

Fix ω1 P Ω. De�ne the process XΛ,ω1 as follows:

• @ω P Ω,@t ¤ τΛ pω1q , XΛ,ω1ptq pωq � XΛptq pω1q. Note that τΛpXΛ,ω1q � τΛ pω1q
almost surely. In particular, the distribution of SΛpXΛ,ω1q is the Dirac distribution
at XΛ pω1q.
• On rτΛ pω1q , T s (this interval can be empty), XΛ,ω1 pωq is the solution of (18) start-
ing at time τΛ pω1q from the initial state XΛpτΛ pω1qq pω1q.

It is straightforward to check that

ω1 ÞÑ P
�
XΛ,ω1 P C

�
is measurable for C �  

Y P CTH�σ
x � CTC

1
x | Y pt1q P Γ1, ..., Y ptnq P Γn

(
with 0 ¤ t1  

...   tn ¤ T and Γi measurable. Since those sets generate the Borel σ-algebra of CTH
�σ
x �

CTC
1
x, and since a pointwise limit of measurable functions is measurable, we can take

the limit when the subdivision become thiner to get that the mapping is still measurable
for any measurable C. Thus, we can de�ne a mapping C ÞÑ E1P

�
XΛ,ω1 P C

�
, where E1

denotes the integration with respect to ω1. It is also straightforward to check that this
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mapping is a probability measure, thus we can de�ne on Ω a process YΛ following this
distribution, namely

P pYΛ P Cq � E1P
�
XΛ,ω1 P C

�
.

In particular, since S�1
Λ pCq is a measurable set, we have

P pSΛpYΛq P Cq � E1P
�
SΛpXΛ,ω1q P C

�
� E11tXΛpω1qPCu
� P

�
XΛ P C� ,

hence YΛ extends XΛ as announced beforehand, in the sense that SΛpYΛq d� XΛ. More-
over, for any measurable function Φ such that E1E

���ΦpXΛ,ω1q
���   8, we have

E rΦpYΛqs � E1E
�
ΦpXΛ,ω1q

�
. (75)

Identi�cation of the extended process It remains to prove that YΛ solves the
martingale problem associated to L.

For ϕ P Θ, and a process Y P CTH�σ
x � CTC

1
x, de�ne the process

MY ptq � ϕpY ptqq � ϕpY p0qq �
» t

0
LϕpY puqqdu.

Let 0 ¤ s1 ¤ ... ¤ sn ¤ s   t and g be a bounded measurable function. Let G : Y ÞÑ
gpY ps1q, ..., Y psnqq.

Owing to Proposition 5.1, for almost all ω1 P Ω, the process

NΛ,ω1ptq �MXΛ,ω1 ptq �MXΛ,ω1 pt^ τΛ

�
ω1
�q

satis�es the martingale property

E
�
NΛ,ω1ptqGpXΛ,ω1q

� � E
�
NΛ,ω1psqGpXΛ,ω1q

�
.

Indeed, for t P r0, τ pω1qs, NΛ,ω1ptq � 0 and after the time τ pω1q, this process solves the
martingale problem starting at time τ pω1q by construction. Using (59) and that ϕ and
Lϕ have at most quadratic growth, it is straightforward to establish

E1E
���NΛ,ω1ptqGpXΛ,ω1q

���   8.

Thus, (75) and the identity above yield

E
�pMYΛptq �MYΛpt^ τΛpYΛqqqGpYΛq

� � E
�pMYΛpsq �MYΛps^ τΛpYΛqqqGpYΛq

�
,

which can be rewritten as

E
�
MYΛptqGpYΛq

� �
E
�
MYΛpsq1tτΛpYΛq¤suGpYΛq

�� E
�
MYΛpt^ τΛpYΛqq1tτΛpYΛq¡suGpYΛq

�
. (76)
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Using that the process YΛ and SΛpYΛq are equal until the time τΛpYΛq � τΛpSΛpYΛqq,
and that SΛpYΛq and XΛ are equal in distribution, we get for the second term

E
�
MYΛpt^ τΛpYΛqq1tτΛpYΛq¡suGpYΛq

�
� E

�
MSΛpYΛqpt^ τΛpSΛpYΛqqq1tτΛpSΛpYΛqq¡suGpSΛpYΛqq

�
� E

�
MXΛpt^ τΛq1tτΛ¡suGpXΛq

�
.

Owing to Proposition 7.4, t ÞÑ MXΛpt ^ τΛq is a martingale for the �ltration FXΛ

generated by XΛ. Moreover 1tτΛ¡suGpXΛq is FXΛ
s -measurable, hence the martingale

property yields

E
�
MXΛpt^ τΛq1tτΛ¡suGpXΛq

�
� E

�
MXΛpsq1tτΛ¡suGpXΛq

�
.

Using again that SΛpYΛq d� XΛ, we get

E
�
MXΛpsq1tτΛ¡suGpXΛq

�
� E

�
MYΛpsq1tτΛpYΛq¡suGpYΛq

�
.

Finally, owing to (76), we have

E
�
MYΛptqGpYΛq

� � E
�
MYΛpsq1tτΛpYΛq¤suGpYΛq

�� E
�
MYΛpsq1tτΛpYΛq¡suGpYΛq

�
� E

�
MYΛpsqGpYΛq

�
,

which proves that YΛ solves the martingale associated to L. Owing to Proposition 5.1, it

solves (18) and since the solution is unique YΛ
d� X the solution of (18). Therefore, the

limit point is unique (and does not depend on Λ). This concludes the proof that Xε,τεΛ

converges in distribution to X.

7.4 Convergence of the unstopped process

This section is devoted to the proof that the process X
ε .� pρε, ζεq converges in distribu-

tion to X
.� pρ, ζq solution of (18), in CTH

�σ
x � CTC

1
x.

Let Φ be a continuous bounded mapping from CTH
�σ
x � CTC

1
x to R. There exists a

sequence εi such that εi Ñ 0 when iÑ8 and

lim sup
εÑ0

��E �
ΦpXεq�� E

�
ΦpXq��� � lim

iÑ8

��E �
ΦpXεiq�� E

�
ΦpXq��� .

Let Λ P L. Owing to Proposition 6.1, up to the extraction of another subsequence, we

can assume that pXεi,τ
εi
Λ , ζεiq converges in distribution to some pXΛ, ζq in pCTH�σ �

CTC
1
xq � CTC

1
x. Now we write��E �

ΦpXεiq�� E
�
ΦpXq��� ¤ ���E �

ΦpXεiq�� E
�
ΦpXεi,τΛpζ

εi qq
����

�
���E �

ΦpXεi,τΛpζ
εi qq

�
� E

�
ΦpXq���� .
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First, we have���E �
ΦpXεiq�� E

�
ΦpXεi,τΛpζ

εi qq
���� ÀΦ P pτΛpζεiq ¤ T q .

By Lemmas 7.2 and 7.3, since Λ P L, τΛpζεiq^2T converges in distribution to τΛpζ 1q^2T .
Then, by Portmanteau's Theorem for closed sets, we have

lim sup
i

P pτΛpζεiq ¤ T q ¤ P
�
τΛpζ 1q ¤ T

�
.

Since Φ is a continuous bounded function, we have

lim
i

���E �
ΦpXεi,τΛpζ

εi qq
�
� E

�
ΦpXq���� � ��E �

ΦpXΛq
�� E

�
ΦpXq��� .

Recall that XΛ
d� SΛpYΛq, and that YΛ

d� X (by Section 7.3). Thus, we get��E �
ΦpXΛq

�� E
�
ΦpXq��� � |E rΦpSΛpYΛqqs � E rΦpYΛqs|

ÀΦ P pτΛpYΛq ¤ T q .

Since τΛpYΛq d� τΛpXΛq � τΛpζ 1q by Lemma 7.5, we �nally get for Λ P L

lim sup
εÑ0

��E �
ΦpXεq�� E

�
ΦpXq��� ÀΦ P

�
τΛpζ 1q ¤ T

�
.

Since ζ 1 P CTC1
x, we have P pτΛpζ 1q ¤ T q ÝÝÝÑ

ΛÑ8
0. Recall that we can take this limit

since L contains arbitrarily large Λ's. Therefore, we have

E
�
ΦpXεq� ÝÝÝÑ

εÑ0
E
�
ΦpXq� .

This concludes the proof that X
ε
converges in distribution to X, and in particular that

ρε converges in distribution to ρ in CTH
�σ
x .

8 Strong convergence

In this section, we establish the second convergence result stated in Theorem 2.1, namely
the convergence in L2

TL
2
x. Given Section 7 and Proposition 6.1, it is su�cient to prove

that the sequence
�
ρε,τ

ε
Λ

�
ε¡0

is tight in L2
TL

2
x.

Recall that wρ denotes the modulus of continuity of a H�σ
x -valued continuous process

ρ. Then, using Theorem 5 in [33], the set

KR
.�
!
ρ P L2

TL
2
x | }ρ}L2

TH
σ1
x
¤ R and @δ ¡ 0, wρpδq   ηpδq

)
where R ¡ 0, σ1 ¡ 0 and ηpδq ÝÝÝÑ

δÑ0
0, is compact in L2

TL
2
x. Using Prokhorov's Theorem,

the tightness of
�
ρε,τ

ε
Λ

�
ε¡0

in L2
TL

2
x will follow if we prove that for all η ¡ 0, there exists

R ¡ 0 and σ1 ¡ 0 such that

lim
δÑ0

lim sup
εÑ0

P
�
w
ρ
ε,τε

Λ
pδq ¡ η

	
� 0, (77)
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and
sup
ε

P
���ρε,τεΛ��

L2
TH

σ1
x
¡ R

	
  η. (78)

Equation (77) is a direct consequence of (69). It remains to prove (78). Owing to
the Markov Inequality, it is su�cient to prove that, for some σ1 ¡ 0, we have

sup
ε

E
���ρε,τεΛ��

L2
TH

σ1
x

�
ÀΛ 1. (79)

Let gε � εBtf ε � apvq �∇xf ε. Owing to Assumption 3, we can use an averaging lemma
(Theorem 2.3 in [3] with fptq � f εpεtq, gptq � gεpεtq and h � 0 until the time T ^ τ εΛ)
and by rescaling the time, we get

��ρε,τεΛ��2

L2
TH

1{4
x

�
» T^τεΛ

0

��ρε,τεΛptq��2

H
σ�{4
x

dt

À ε }f ε0}2L2
x
�
» T^τεΛ

0

��f ε,τεΛptq��2

L2pM�1q
dt�

» T^τεΛ
0

��gε,τεΛptq��2

L2pM�1q
dt,

where, using the Cauchy-Schwarz inequality,

��gε,τεΛptq��
L2pM�1q

�
����f ε,τεΛptqmε,τεΛptq � 1

ε
Lf ε,τ

ε
Λptq

����
L2pM�1q

¤ ��f ε,τεΛptq��
L2pM�1q

��mε,τεΛptq��
L2
x
� 1

ε

��Lf ε,τεΛptq��
L2pM�1q

.

Then Assumption 4, (23), and Proposition 3.6 lead to (79) with σ1 � σ�

4 . Since the sets
KR are compacts, Prokhorov's Theorem yields, using (77) and (78), that

�
ρε,τ

ε
Λ

�
ε¡0

is
tight in L2

TL
2
x.

Given Section 7, this concludes the proof of the convergence in distribution of ρε in
L2
TL

2
x to ρ the solution of (18).
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