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Introduction

A central goal of algorithmic fairness is to ensure that sensitive information does not "unfairly" influence the outcomes of learning algorithms. For example, if we wish to predict the salary of an applicant or the grade of a university student, we would like the algorithm to not unfairly use additional sensitive information such as gender or race. Since today's real-life datasets often contain discriminatory bias, standard machine learning methods behave unfairly. Therefore, a substantial effort is being devoted in the field to designing methods that satisfy "fairness" requirements, while still optimizing prediction performance, see for example [START_REF] Barocas | Fairness and Machine Learning[END_REF][START_REF] Calmon | Optimized preprocessing for discrimination prevention[END_REF][START_REF] Chierichetti | Fair clustering through fairlets[END_REF][START_REF] Donini | Empirical risk minimization under fairness constraints[END_REF][START_REF] Dwork | Decoupled classifiers for group-fair and efficient machine learning[END_REF][START_REF] Hardt | Equality of opportunity in supervised learning[END_REF][START_REF] Jabbari | Fair learning in markovian environments[END_REF][START_REF] Joseph | Fairness in learning: Classic and contextual bandits[END_REF][START_REF] Kilbertus | Avoiding discrimination through causal reasoning[END_REF][START_REF] Kusner | Counterfactual fairness[END_REF][START_REF] Lum | A statistical framework for fair predictive algorithms[END_REF][START_REF] Yao | Beyond parity: Fairness objectives for collaborative filtering[END_REF][START_REF] Zafar | Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment[END_REF][START_REF] Zemel | Learning fair representations[END_REF][START_REF] Zliobaite | On the relation between accuracy and fairness in binary classification[END_REF] and references therein.

In this paper we study the problem of learning a real-valued regression function which among those complying with the Demographic Parity fairness constraint, minimizes the mean squared error. Demographic Parity requires the probability distribution of the predicted output to be independent of the sensitive attribute and has been used extensively in the literature, both in the context of classification and regression [START_REF] Agarwal | Fair regression: Quantitative definitions and reductionbased algorithms[END_REF][START_REF] Chiappa | A general approach to fairness with optimal transport[END_REF][START_REF] Gordaliza | Obtaining fairness using optimal transport theory[END_REF][START_REF] Jiang | Wasserstein fair classification[END_REF][START_REF] Oneto | General fair empirical risk minimization[END_REF]. In this paper we consider the case that the sensitive attribute is available for prediction. Our principal result is to show that the distribution of the optimal fair predictor is the solution of a Wasserstein barycenter problem between the distributions induced by the unfair regression function on the sensitive groups. This result builds a bridge between fair regression and optimal transport, [see e.g., [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF][START_REF] Villani | Topics in Optimal Transportation[END_REF].

We illustrate our result with an example. Assume that X represents a candidate's skills, S is a binary attribute representing two groups of the population (e.g., majority or minority), and Y is the current market salary. Let f * (x, s) = E[Y |X=x, S=s] be the regression function, that is, the optimal prediction of the salary currently in the market for candidate (x, s). Due to bias present in the underlying data distribution, the induced distribution of market salary predicted by f * varies across Preprint. Under review. the two groups. We show that the optimal fair prediction g * transforms the regression function f * as g * (x, s) = p s f * (x, s) + (1p s )t * (x, s) , where p s is the frequency of group s and the correction t * (x, s) is determined so that the ranking of f * (x, s) relative to the distribution of X|S = s for group s (e.g., minority) is the same as the ranking of t * (x, s) relative to the distribution of the group s = s (e.g., majority). We elaborate on this example after Theorem 2.3 and in Figure 1. The above expression of the optimal fair predictor naturally suggests a simple post-processing estimation procedure, where we first estimate f * and then transform it to get an estimator of g * . Importantly, the transformation step involves only unlabeled data since it requires estimation of cumulative distribution functions.

Contributions and organization. In summary we make the following contributions. First, in Section 2 we derive the expression for the optimal function which minimizes the squared risk under Demographic Parity constraints (Theorem 2.3). This result establishes a connection between fair regression and the problem of Wasserstein barycenters, which allows to develop an intuitive interpretation of the optimal fair predictor. Second, based on the above result, in Section 3 we propose a post-processing procedure that can be applied on top of any off-the-shelf estimator for the regression function, in order to transform it into a fair one. Third, in Section 4 we show that this post-processing procedure yields a fair prediction independently from the base estimator and the underlying distribution (Proposition 4.1). Moreover, finite sample risk guarantees are derived under additional assumptions on the data distribution provided that the base estimator is accurate (Theorem 4.4). Finally, Section 5 presents a numerical comparison of the proposed method w.r.t. the state-of-the-art.

Related work. Unlike the case of fair classification, fair regression has received limited attention to date; we are only aware of few works on this topic that are supported by learning bounds or consistency results for the proposed estimator [START_REF] Agarwal | Fair regression: Quantitative definitions and reductionbased algorithms[END_REF][START_REF] Oneto | General fair empirical risk minimization[END_REF]. Connections between algorithmic fairness and Optimal Transport, and in particular the problem of Wasserstein barycenters, has been studied in [START_REF] Chiappa | A general approach to fairness with optimal transport[END_REF][START_REF] Gordaliza | Obtaining fairness using optimal transport theory[END_REF][START_REF] Jiang | Wasserstein fair classification[END_REF][START_REF] Wang | Repairing without retraining: Avoiding disparate impact with counterfactual distributions[END_REF] but mainly in the context of classification. These works are distinct from ours, in that they do not show the link between the optimal fair regression function and Wasserstein barycenters. Moreover, learning bounds are not addressed therein. Our distribution-free fairness guarantees share similarities with contributions on prediction sets [START_REF] Lei | Distribution-free prediction bands for non-parametric regression[END_REF][START_REF] Lei | Distribution-free prediction sets[END_REF] and conformal prediction literature [START_REF] Vovk | Algorithmic learning in a random world[END_REF][START_REF] Zeni | Conformal prediction: a unified review of theory and new challenges[END_REF] as they also rely on results on rank statistics. Meanwhile, the risk guarantee that we derive, combines deviation results on Wasserstein distances in one dimension [START_REF] Bobkov | One-dimensional empirical measures, order statistics and kantorovich transport distances[END_REF] with peeling ideas developed in [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF], and classical theory of rank statistics [START_REF] Van Der | Asymptotic statistics[END_REF].

Notation. For any positive integer N ∈ N we denote by [N ] the set {1, . . . , N }. For a, b ∈ R we denote by a ∧ b (resp. a ∨ b) the minimum (resp. the maximum) between a and b. For two positive real sequences a n , b n we write a n b n to indicate that there exists a constant c such that a n ≤ cb n for all n. For a finite set S we denote by |S| its cardinality. The symbols E and P stand for generic expectation and probability. For any univariate probability measure µ, we denote by F µ its Cumulative Distribution Function (CDF) and by Q µ : [0, 1] → R its quantile function (a.k.a. generalized inverse of F µ ) defined for all t ∈ (0, 1] as

Q µ (t) = inf {y ∈ R : F µ (y)≥t} with Q µ (0) = Q µ (0+).
For a measurable set A ⊂ R we denote by U (A) the uniform distribution on A.

The problem

In this section we introduce the fair regression problem and present our derivation for the optimal fair regression function alongside its connection to Wasserstein barycenter problem. We consider the general regression model

Y = f * (X, S) + ξ , (1) 
where ξ ∈ R is a centered random variable, (X, S) ∼ P X,S on R d × S, with |S| < ∞, and f * : R d × S → R is the regression function minimizing the squared risk. Let P be the joint distribution of (X, S, Y ). For any prediction rule f : R d × S → R, we denote by ν f |s the distribution of f (X, S)|S = s, that is, the Cumulative Distribution Function (CDF) of ν f |s is given by

F ν f |s (t) = P(f (X, S) ≤ t|S = s) , (2) 
to shorten the notation we will write F f |s and Q f |s instead of F ν f |s and Q ν f |s respectively.

f * (x, 1)=t * (x, 2)

g * (x, 1)=g * (x, 2) t * (x, 1)=f * (x, 2)
Fair optimal prediction g * with p 1 = 2/5 and p 2 = 3/5 The final prediction g * (x, 1) is a convex combination of f * (x, 1) and t * (x, 1). The same is done for (x, 2).

density of f * |S=1 density of f * |S=2 density of g *
Definition 2.1 (Wasserstein-2 distance). Let µ and ν be two univariate probability measures. The squared Wasserstein-2 distance between µ and ν is defined as

W 2 2 (µ, ν) = inf γ∈Γµ,ν |x -y| 2 dγ(x, y) ,
where Γ µ,ν is the set of distributions (couplings) on R × R such that for all γ ∈ Γ µ,ν and all measurable sets

A, B ⊂ R it holds that γ(A × R) = µ(A) and γ(R × B) = ν(B).
In this work we use the following definition of (strong) Demographic Parity, which was previously used in the context of regression by [START_REF] Agarwal | Fair regression: Quantitative definitions and reductionbased algorithms[END_REF][START_REF] Chiappa | A general approach to fairness with optimal transport[END_REF][START_REF] Jiang | Wasserstein fair classification[END_REF]. Definition 2.2 (Demographic Parity). A prediction (possibly randomized) g : R d × S → R is fair if, for every s, s ∈ S sup t∈R P(g(X, S) ≤ t|S = s) -P(g(X, S) ≤ t|S = s ) = 0 .

Demographic Parity requires the Kolmogorov-Smirnov distance between ν g|s and ν g|s to vanish for all s, s . Thus, if g is fair, ν g|s does not depend on s and to simplify the notation we will write ν g .

Recall the model in Eq. [START_REF] Agarwal | Fair regression: Quantitative definitions and reductionbased algorithms[END_REF]. Since the noise has zero mean, the minimization of E(Yg(X, S)) 2 over g is equivalent to the minimization of E(f * (X, S)g(X, S)) 2 over g. The next theorem shows that the optimal fair predictor for an input (x, s) is obtained by a nonlinear transformation of the vector (f * (x, s))

|S| s=1 that is linked to a Wasserstein barycenter problem [START_REF] Agueh | Barycenters in the wasserstein space[END_REF]. Theorem 2.3 (Characterization of fair optimal prediction). Assume, for each s ∈ S, that the univariate measure ν f * |s has a density and let p s = P(S = s). Then,

min g is fair E(f * (X, S) -g(X, S)) 2 = min ν s∈S p s W 2 2 (ν f * |s , ν) .
Moreover, if g * and ν * solve the l.h.s. and the r.h.s. problems respectively, then ν * = ν g * and

g * (x, s) = s ∈S p s Q f * |s • F f * |s (f * (x, s)) . (3) 
The proof of Theorem 2.3 relies on the classical characterization of optimal coupling in one dimension (stated in Theorem A.1 in the appendix) of the Wasserstein-2 distance. We show that a minimizer g * of the L 2 -risk can be used to construct ν * and vice-versa, given ν * , we leverage a well-known expression for one dimensional Wasserstein barycenter (see e.g., [2, Section 6.1] and Lemma A.2 in the appendix) and construct g * .

The case of binary protected attribute. Let us unpack Eq. (3) in the case that S = {1, 2}, assuming w.l.o.g. that p 2 ≥ p 1 . Theorem 2.3 states that the fair optimal prediction g * is defined for all individuals x ∈ R d in the first group as g * (x, 1) = p 1 f * (x, 1) + p 2 t * (x, 1), with t * (x, 1) = inf t ∈ R :

F f * |2 (t) ≥ F f * |1 (f * (x, 1)) ,
and likewise for the second group. This form of the optimal fair predictor, and more generally Eq. ( 3), allows us to understand the decision made by g * at individual level. If we interpret (x, s) as the candidate's CV and candidate's group respectively, and f * (x, s) as the current market salary (which might be discriminatory), then the fair optimal salary g * (x, s) is a convex combination of the market salary f * (x, s) and the adjusted salary t * (x, s), which is computed as follows. ebgin If say s=1, we first compute the fraction of individuals from the first group whose market salary is at most f * (x, 1), that is, we compute P(f * (X, S) ≤ f * (x, 1)|S=1). Then, we find a candidate x in group 2, such that the fraction of individuals from the second group whose market salary is at most f * (x, 2) is the same, that is, x is chosen to satisfy P(f * (X, S) ≤ f * (x, 2)|S=2) = P(f * (X, S) ≤ f * (x, 1)|S=1).

Finally, the market salary of x is exactly the adjustment for x, that is, t * (x, 1) = f * (x, 2). This idea is illustrated in Figure 1 and leads to the following philosophy: if candidates (x, 1) and (x, 2) share the same group-wise market salary ranking, then they should receive the same salary determined by the fair prediction g * (x, 1) = g * (x, 2) = p 1 f * (x, 1) + p 2 f * (x, 2). At last, note that Eq. ( 3) allows to understand the (potential) amount of extra money that we need to pay in order to satisfy fairness. While the unfair decision made with f * costs f * (x, 1)+f * (x, 2) for the salary of (x, 1) and (x, 2), the fair decision g * costs 2(p 1 f * (x, 1)+p 2 f * (x, 2)). Thus, the extra (signed) salary that we pay is

∆ = (p 2 -p 1 )(f * (x, 2)-f * (x, 1 
)). Since, p 2 ≥p 1 , ∆ will be positive whenever the candidate x from the majority group gets higher salary according to f * , and negative otherwise. We believe that the expression Eq. ( 3) could be the starting point for further more applied work on algorithmic fairness.

General form of the estimator

In this section we propose an estimator of the optimal fair predictor g * that relies on the plug-in principle. The expression (3) of g * suggests that we only need estimators for the regression function f * , the proportions p s , as well as the CDF F f * |s and the quantile function Q f * |s , for all s ∈ S.

While the estimation of f * needs labeled data, all the other quantities rely only on P S , P X|S and f * , therefore unlabeled data with an estimator of f * suffices. Thus, given a base estimator of f * , our post-processing algorithm will require only unlabeled data.

For each s ∈ S let U s ={X s i } Ns i=1 i.i.d.

∼ P X|S=s be a group-wise unlabeled sample. In the following for simplicity we assume that N s are even for all s ∈ S 

ν0 f |s = 1 |I s 0 | i∈I s 0 δ f (X s i , s) + ε is -• and ν1 f |s = 1 |I s 1 | i∈I s 1 δ f (X s i , s) + ε is -• , ( 4 
)
where δ is the Dirac measure and all ε is i.i.d.

∼ U ([-σ, σ]), for some positive σ set by the user. Using the estimators in Eq. (4), we define for all f : R d ×S → R estimators of Q f |s and of F f |s as

Qf|s ≡ Q ν0 f |s and Ff|s ≡ F ν1 f |s . (5) 
That is, Ff|s and Qf|s are the empirical CDF and empirical quantiles of (f (X, S)+ε)|S=s based on {f (X s i , s)+ε is } i∈I s 1 and {f (X s i , s)+ε is } i∈I s 0 respectively. The noise ε is serves as a smoothing random variable, since for all s ∈ S and i ∈ [N s ] the random variables f (X s i , s)+ε is are i.i.d. continuous for any P and f . In contrast, f (X s i , s) might have atoms resulting in a non-zero probability to observe ties in {f (X s i , s)} i∈I s j . This step is also known as jittering, often used for data visualization [START_REF] Chambers | Graphical methods for data analysis[END_REF] for tie-breaking. It plays a crucial role in the distribution-free fairness guarantees that we derive in Proposition 4.1; see the discussion thereafter.

Finally, let A={S

i } N i=1 i.i.d.
∼ P S and for each s ∈ S let ps be the empirical frequency of S=s evaluated on A. Given a base estimator

f of f * constructed from n labeled samples L={(X i , S i , Y i )} n i=1 i.i.d.
∼ P, we define the final estimator ĝ of g * for all (x, s) ∈ R d ×S mimicking Eq. (3) as

ĝ(x, s) = s ∈S ps Q f |s • F f |s f (x, s) + ε , (6) 
Algorithm 1: Procedure to evaluate estimator in Eq. ( 6)

Input: new point: (x, s); base estimator f ; unlabeled data U 1 , . . . , U |S| ; jitter parameter σ; empirical frequencies p1 , . . . , p|S| Output :fair prediction ĝ(x, s) for the point (x, s) for s ∈ S do // data structure for Eq.( 4)

U s 0 , U s 1 ← split_in_two(U s )
// split unlabeled data into two equal parts

ar s 0 ← f (X, s )+U ([-σ, σ]) X∈U s 0 , ar s 1 ← f (X, s )+U ([-σ, σ]) X∈U s 1 ar s 0 ← sort ar s 0 , ar s 1 ← sort ar s 1
// for fast evaluation of Eq.( 5)

end

k s ← position f (x, s)+U ([-σ, σ]), ar s 1 // evaluate F f |s f (x, s) + ε in Eq.(6) ĝ(x, s) ← s ∈S ps × ar s 0 N s k s /N s
// evaluation of Eq.( 6)

where ε ∼ U ([-σ, σ]
) is assumed to be independent from every other random variables. Remark 3.1. In practice one should use a very small value for σ (e.g., σ=10 -5 ), which does not alter the statistical quality of the base estimator f as indicated in Theorem 4.4.

A pseudo-code implementation of ĝ in Eq. ( 6) is reported in Algorithm 1. It requires two primitives: sort(ar) sorts the array ar in an increasing order; position(a, ar) which outputs the index k such that the insertion of a into k'th position in ar preserves ordering (i.e., ar

[k-1] ≤ a < ar[k]).
Algorithm 1 consists of two for parts: in the for-loop we perform a preprocessing which takes s∈S O(N s log N s ) time2 since it involves sorting; then, the evaluation of ĝ on a new point (x, s) is performed in (max s∈S log N s ) time since it involves an element search in a sorted array. Note that the for-loop of Algorithm 1 needs to be performed only once as this step is shared for any new (x, s).

Statistical analysis

In this section we provide a statistical analysis of the proposed algorithm. We first present in Proposition 4.1 distribution-free finite sample fairness guarantees for post-processing of any base learner with unlabeled data and then we show in Theorem 4.4 that if the base estimator f is a good proxy for f * , then under mild assumptions on the distribution P, the processed estimator ĝ in Eq. ( 6) is a good estimator of g * in Eq. ( 3).

Distribution free post-processing fairness guarantees. We derive two distribution-free results in Proposition 4.1, the first in Eq. [START_REF] Bobkov | One-dimensional empirical measures, order statistics and kantorovich transport distances[END_REF] shows that the fairness definition is satisfied as long as we take the expectation over the data inside the supremum in Definition 2.2, while the second one in Eq. ( 8) bounds the expected violation of Definition 2.2. Proposition 4.1 (Fairness guarantees). For any joint distribution P of (X, S, Y ), any base estimator f constructed on labeled data, and for all s, s ∈ S, the estimator ĝ defined in Eq. (6) satisfies

sup t∈R |P(ĝ(X, S) ≤ t|S=s) -P(ĝ(X, S) ≤ t|S=s )| ≤ 2 (N s ∧N s + 2) -1 1 {Ns =N s } (7) E sup t∈R |P(ĝ(X, S) ≤ t|S=s, D) -P(ĝ(X, S) ≤ t|S=s , D)| ≤ 6 (N s ∧N s + 1) -1/2 . ( 8 
)
where D = L ∪ A ∪ s∈S U s is the union of all available datasets.

Let us point out that this result does not require any assumption on the distribution P as well as on the base estimator f . This is achieved thanks to the jittering step in the definition of ĝ in Eq. ( 6), which artificially introduces continuity. Continuity allows us to use results from the theory of rank statistics of exchangeable random variables to derive Eq. ( 7) as well as the classical inverse transform (see e.g., [START_REF] Van Der | Asymptotic statistics[END_REF]Sections 13 and 21]) combined with the Dvoretzky-Kiefer-Wolfowitz inequality [START_REF] Massart | The tight constant in the dvoretzky-kiefer-wolfowitz inequality[END_REF] to derive Eq. ( 8). Since basic results on rank statistics and inverse transform are distribution-free as long as the underlying random variable is continuous, the guarantees in Eqs. ( 7)-( 8) are also distribution-free and can be applied on top of any base estimator f . The bound in Eq. ( 7) might be surprising to the reader. Yet, let us emphasize that this bound holds because the expectation w.r.t. the data distribution is taken inside the supremum (since P stands for the joint distribution of all random variables involved in ĝ(X, S)). Similar proof techniques are also used in randomization inference via permutations [START_REF] Ronald | Design of experiments[END_REF][START_REF] Hoeffding | The large-sample power of tests based on permutations of observations[END_REF], conformal prediction [START_REF] Lei | Distribution-free prediction bands for non-parametric regression[END_REF][START_REF] Vovk | Algorithmic learning in a random world[END_REF], knockoff estimation [START_REF] Barber | A knockoff filter for high-dimensional selective inference[END_REF] to name a few. However, unlike the aforementioned contributions, the problem of fairness requires a non-trivial adaptation of these techniques. In contrast, Eq. ( 8) might be more appealing to the machine learning community as it controls the expected (over data) violation of the fairness constraint with standard parametric rate.

Estimation guarantee with accurate base estimator. In order to prove non-asymptotic risk bounds we require the following assumption on the distribution P of (X, S, Y

) ∈ R d × S × R. Assumption 4.2.
For each s ∈ S the univariate measure ν f * |s admits a density q s , which is lower bounded by λ s > 0 and upper-bounded by λ s ≥ λ s .

Although the lower bound on the density assumption is rather strong and might potentially be violated in practice, it is still reasonable in certain situations. We believe that it can be replaced by the assumption that f * (X, S) conditionally on S=s for all s∈S admits 2+ moments. We do not explore this relaxation in our work as it significantly complicates the proof of Theorem 4.4. At the same time, our empirical study suggests that the lower bound on the density is not intrinsic to the problem, since the estimator exhibits a good performance across various scenarios. In contrast, the milder assumption that the density is upper bounded is crucial for our proof and seems to be necessary.

Apart from the assumption on the density of ν f * |s , the actual rate of estimation depends on the quality of the base estimator f . We require the following assumption, which states that f approximates f * point-wise with rate b

-1/2 n
and a standard sub-Gaussian concentration for f can be derived. Assumption 4.3. There exist positive constants c and C independent from n, N , N 1 , . . . , N |S| , and a positive sequence b n : N → R + such that for all δ > 0 it holds that

P |f * (x, s) -f (x, s)| ≥ δ ≤ c exp -Cb n δ 2
for almost all (x, s) w.r.t. P X,S .

We refer to [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF][START_REF] Devroye | The uniform convergence of nearest neighbor regression function estimators and their application in optimization[END_REF][START_REF] Lei | Classification with confidence[END_REF][START_REF] Lei | Distribution-free prediction bands for non-parametric regression[END_REF][START_REF] Van De Geer | High-dimensional generalized linear models and the lasso[END_REF] for various examples of estimators and additional assumptions such that the bound in Assumption 4.3 is satisfied. It includes local polynomial estimators, k-nearest neighbours, and linear regression, to name just a few.

Under these assumptions we can prove the following finite-sample estimation bound. Theorem 4.4 (Estimation guarantee). Let Assumptions 4.2 and 4.3 be satisfied, and set σ

min s∈S N -1/2 s ∧b -1/2 n
, then the estimator ĝ defined in Eq. ( 6) satisfies

E |g * (X, S) -ĝ(X, S)| b -1/2 n s∈S p s N -1/2 s |S| N ,
where the leading constant depends only on λ s , λ s , C, c from Assumptions 4.2 and 4.3.

The proof of this result combines expected deviation of empirical measure from the real measure in terms of Wasserstein distance on real line [START_REF] Bobkov | One-dimensional empirical measures, order statistics and kantorovich transport distances[END_REF] with the already mentioned rank statistics and classical peeling argument of [START_REF] Audibert | Fast learning rates for plug-in classifiers[END_REF].

The first term of the derived bound corresponds to the estimation error of f * by f , the second term is the price to pay for not knowing conditional distributions X|S = s while the last term correspond to the price of unknown marginal probabilities of each protected attribute. Notice that if N s = p s N , which corresponds to the standard i.i.d. sampling from P X,S of unlabeled data, the second and the third term are of the same order. Moreover, if N is sufficiently large, which in most scenarios 3 is the minimax optimal estimation rate of f * , then it is also optimal for g * ≡ f * .

Empirical study

In this section, we present numerical experiments 4 with the proposed fair regression estimator defined in Section 3. In all experiments, we collect statistics on the test set T = {(X i , S i , Y i )} ntest i=1 . The empirical mean squared error (MSE) is defined as

MSE (g) = 1 n test (X,S,Y )∈T (Y -g(X, S)) 2 .
We also measure the violation of fairness constraint imposed by Definition 2.2 via the empirical Kolmogorov-Smirnov (KS) distance,

KS (g) = max s,s ∈S sup t∈R 1 |T s | (X,S,Y )∈T s 1 {g(X,S)≤t} - 1 |T s | (X,S,Y )∈T s 1 {g(X,S)≤t} ,
where for all s∈S we define the set T s = {(X, S, Y ) ∈ T : S=s}. For all datasets we split the data in two parts (70% train and 30% test), this procedure is repeated 30 times, and we report the average performance on the test set alongside its standard deviation. We employ the 2-steps 10-fold CV procedure considered by [START_REF] Donini | Empirical risk minimization under fairness constraints[END_REF] to select the best hyperparameters with the training set. In the first step, we shortlist all the hyperparameters with MSE close to the best one (in our case, the hyperparameters which lead to 10% larger MSE w.r.t. the best MSE). Then, from this list, we select the hyperparameters with the lowest KS.

Methods. We compare our method (see Section 3) to different fair regression approaches for both linear and non-linear regression. In the case of linear models we consider the following methods: Linear RLS plus [START_REF] Berk | A convex framework for fair regression[END_REF] (RLS+Berk), Linear RLS plus [START_REF] Oneto | General fair empirical risk minimization[END_REF] (RLS+Oneto), and Linear RLS plus Our Method (RLS+Ours), where RLS is the abbreviation of Regularized Least Squares. In the case of non-linear models we compare to the following methods. i) For Kernel RLS (KRLS): KRLS plus [START_REF] Oneto | General fair empirical risk minimization[END_REF] (KRLS+Oneto), KRLS plus [START_REF] Pérez-Suay | Fair kernel learning[END_REF] (KRLS+Perez), KRLS plus Our Method (KRLS+Ours); ii) For Random Forests (RF): RF plus [START_REF] Raff | Fair forests: Regularized tree induction to minimize model bias[END_REF] (RF+Raff), RF plus [1]5 (RF+Agar), and RF plus Our Method (RF+Ours). The hyperparameters of the methods are set as follows. For RLS we set the regularization hyperparameters λ ∈ 10 {-4.5,-3.5,••• ,3} and for KRLS we set λ ∈ 10 {-4.5,-3.5,••• ,3} and γ ∈ 10 {-4.5,-3.5,••• ,3} . Finally, for RF we set to 1000 the number of trees and for the number of features to select during the tree creation we search in {d

1 /4 , d 1 /2 , d 3 /4 }.
Datasets. In order to analyze the performance of our methods and test it against the state-of-the-art alternatives, we consider five benchmark datasets, CRIME, LAW, NLSY, STUD, and UNIV, which are briefly described below: Communities&Crime (CRIME) contains socio-economic, law enforcement, and crime data about communities in the US [START_REF] Redmond | A data-driven software tool for enabling cooperative information sharing among police departments[END_REF] with 1994 examples. The task is to predict the number of violent crimes per 10 5 population (normalized to [0, 1]) with race as the protected attribute. Following [START_REF] Calders | Controlling attribute effect in linear regression[END_REF], we made a binary sensitive attribute s as to the percentage of black population, which yielded 970 instances of s=1 with a mean crime rate 0. education of two Portuguese schools using 33 attributes [START_REF] Cortez | Using data mining to predict secondary school student performance[END_REF], with gender as the protected attribute. University Anonymous (UNIV) is a proprietary and highly sensitive dataset containing all the data about the past and present students enrolled at the University of Anonymous. In this study we take into consideration students who enrolled, in the academic year 2017-2018. The dataset contains 5000 instances, each one described by 35 attributes (both numeric and categorical) about ethnicity, gender, financial status, and previous school experience. The scope is to predict the average grades at the end of the first semester, with gender as the protected attribute.

Comparison w.r.t. state-of-the-art. In Table 1, we present the performance of different methods on various datasets described above. One can notice that LAW and UNIV datasets have a least amount of disciminatory bias (quantified by KS), since the fairness unaware methods perform reasonably well in terms of KS. Furthermore, on these two datasets, the difference in performance between all fairness aware methods is less noticeable. In contrast, on CRIME, NLSY, and STUD, fairness unaware methods perform poorly in terms of KS. More importantly, our findings indicate that the proposed method is competitive with state-of-the-art methods and is the most effective in imposing the fairness constraint. In particular, in all except two considered scenarios (CRIME+RLS, CRIME+RF) our method improves fairness by 50% (and up to 80% in some cases) over the closest fairness aware method. In contrast, the accuracy of our method decreases by 1% up to 30% when compared to the most accurate fairness aware method. However, let us emphasize that the relative decrease in accuracy is much smaller than the relative improvement in fairness across the considered scenarios. For example, on NLSY+RLS the most accurate fairness aware method is RLS+Oneto with mean MSE=.156 and mean KS=.50, while RLS+Ours yields mean MSE=.203 and mean KS=.09. That is, compared to RLS+Oneto our method drops about 30% in accuracy, while gains about 82% in fairness. With RF, which is a more powerful estimator, the average drop in accuracy across all datasets compared to RF+Agar is about 12% while the average improvement in fairness is about 53%.

Conclusion and perspectives

In this work we investigated the problem of fair regression with Demographic Parity constraint assuming that the sensitive attribute is available for prediction. We derived a closed form solution for the optimal fair predictor which offers a simple and intuitive interpretation. Relying on this expression, we devised a post-processing procedure, which transforms any base estimator of the regression function into a nearly fair one, independently of the underlying distribution. Moreover, if the base estimator is accurate, our post-processing method yields an accurate estimator of the optimal fair predictor as well. Finally, we conducted an empirical study indicating the effectiveness of our method in imposing fairness in practice. In the future it would be valuable to extend our methodology to the case when we are not allowed to use the sensitive feature as well as to other notions of fairness.
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Broader impact

This work investigates the problem of fair regression with multiple sensitive groups using tools from statistical learning theory and optimal transport theory. Our results lead to an efficient learning algorithm that we show empirically and theoretically to be very effective to impose fairness according to the notion of Demographic Parity. Our approach is directly designed to mitigate potential bias present in the data. Hence, even though the work is primarily theoretical, we anticipate that our results could be used in the future by practitioners in order to specialize our methodology to real-life scenarios involving individuals, and to potentially help making decision which help people with disadvantages or minority groups.

We believe that the most important positive impact of our work is the intuitive interpretation of the optimal fair prediction, which should help to reason as to why a given prediction was made for a given individual. At the same time, this interpretation allows to understand the weaknesses of the notion of Demographic Parity: if f * does not adequately reflect the group-wise ordering of individuals, the optimal fair prediction g * might not lead to a fair prediction from individuals' perspective. In other words, returning to the salary example considered above, the notion of Demographic Parity reflects the principle: more qualified individuals get higher salary within their respective groups.

Supplementary material

The supplementary material is organized as follows. In Appendix A we provide the proof of Theorem 2.3, in Appendix B we provide the proof of Proposition 4.1, and in Appendix C we prove Theorem 4.4. For reader's convenience all the results are repeated in this supplementary material and a short overview of classical results is provided.

A Characterization of the optimal

Before providing the proof of Theorem 2.3, let us give a brief overview of classical results in the Optimal transport theory with one dimensional measures; all the results can be found in [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF][START_REF] Villani | Topics in Optimal Transportation[END_REF] Definition 2.1 (Wasserstein-2 distance). Let µ and ν be two univariate probability measures. The squared Wasserstein-2 distance between µ and ν is defined as

W 2 2 (µ, ν) = inf γ∈Γµ,ν |x -y| 2 dγ(x, y) ,
where Γ µ,ν is the set of distributions (couplings) on R × R such that for all γ ∈ Γ µ,ν and all measurable sets

A, B ⊂ R it holds that γ(A × R) = µ(A) and γ(R × B) = ν(B).
The coupling γ which achieves the infimum in the definition of the Wasserstein-2 distance is called the optimal coupling. Also let us mention that the Wasserstein-2 distance between two univariate probability measures ν, µ, defined in Definition 2.1, can be expressed as

W 2 2 (µ, ν) = inf γ E (Zµ,Zν )∼γ (Z ν -Z µ ) 2 ,
where Z ν ∼ ν and Z µ ∼ µ and the infimum is taken over all joint distributions γ of (Z ν , Z µ ) which preserve marginals.

The next result establishes that as long as one of the measures in the definition of the Wasserstein-2 distance admits a density, then the optimal coupling in the infimum in Definition 2.1 is deterministic (see e.g., [START_REF] Villani | Topics in Optimal Transportation[END_REF]Theorem 2.18] or [38, Theorems 2.5 and 2.9]). Theorem A.1. Let ν, µ be two univariate measures such that ν has a density and let X ∼ ν. Then there exists a mapping T : R → R such

W 2 2 (µ, ν) = E(X -T (X)) 2 , that is (X, T (X)) ∼ γ ∈ Γ µ,ν
where γ is an optimal coupling. Moreover, the transport map is given by T

= Q µ • F ν .
By the abuse of notation, for an increasing real-valued univariate function F we will use F ← to denote its generalized inverse. For instance, if F : R → [0, 1] is a CDF, then F ← is the quantile function that was defined in the introduction.

The next result is standard and can be found for instance in [2, Section 6.1] or [START_REF] Santambrogio | Optimal transport for applied mathematicians[END_REF]Section 5.5.5]. It states that for one dimensional Wasserstein barycenter problem, the optimal measure admits a closed form solution. Lemma A.2. Let ν 1 , . . . , ν |S| be |S| univariate probability measures admitting densities, for all p 1 , . . . , p |S| ≥ 0 such that p 1 + . . .

+ p |S| = 1 define ν * ∈ arg min ν |S| s=1 p s W 2 2 (ν s , ν) .
Then, the cumulative distribution of ν * is given by

F ν * (•) =   |S| s=1 p s Q νs   ← (•) .
Theorem A.1 and Lemma A.2 are the two main ingredients that are used in the proof of Theorem 2.3.

Theorem 2.3 (Characterization of fair optimal prediction). Assume, for each s ∈ S, that the univariate measure ν f * |s has a density and let p s = P(S = s). Then,

min g is fair E(f * (X, S) -g(X, S)) 2 = min ν s∈S p s W 2 2 (ν f * |s , ν) .
Moreover, if g * and ν * solve the l.h.s. and the r.h.s. problems respectively, then ν * = ν g * and

g * (x, s) = s ∈S p s Q f * |s • F f * |s (f * (x, s)) . ( 3 
)
Proof of Theorem 2.3. We want to show that

min g is fair E(f * (X, S) -g(X, S)) 2 = min ν s∈S p s W 2 2 (ν f * |s , ν) .
Let ḡ : R d ×S → R be a minimizer of the l.h.s. of the above equation and define by ν ḡ the distribution of ḡ. Since ν f * |s admits density, using Theorem A.1 for each s ∈ S there exists

T s = Q νḡ • F f * |s such that s∈S p s W 2 2 (ν f * |s , ν ḡ ) = s∈S p s R (z -T s (z)) 2 dν f * |s (z) = s∈S p s R d (f * (x, s) -T s • f * (x, s)) 2 dP X|S=s (x) = s∈S p s E (f * (X, s) -(T s • f * ) (X, s)) 2 |S = s = E(f * (X, S) -g(X, S)) 2 ,
where we defined g for all (x, s) ∈ R d × S as

g(x, s) = (T s • f * ) (x, s) = Q νḡ • F f * |s • f * (x, s) .
The cumulative distribution of g can be expressed as

P(g(X, S) ≤ t) = s∈S p s P X|S=s Q νḡ • F f * |s • f * (X, s) ≤ t = s∈S p s P X|S=s f * (X, s) ≤ Q f * |s • F νḡ (t) = F νḡ (t) ,
where the last equality is due to the fact that ν f * |s admits a density for all s ∈ S. The above implies that g is fair, thus on the one hand by optimality of ḡ we have

E(f * (X, S) -g(X, S)) 2 ≥ E(f * (X, S) -ḡ(X, S)) 2 , on the other hand we have for each s ∈ S W 2 2 (ν f * |s , ν ḡ ) ≤ E (f * (X, S) -ḡ(X, S)) 2 |S = s .
Thus we showed that

s∈S p s W 2 2 (ν f * |s , ν ḡ ) = min g is fair E(f * (X, S) -g(X, S)) 2 . (9) 
This implies that

min ν s∈S p s W 2 2 (ν f * |s , ν) ≤ min g is fair E(f * (X, S) -g(X, S)) 2 . ( 10 
)
Now we want to show that the opposite inequality also holds. To this end define ν * as

ν * ∈ arg min ν s∈S p s W 2 2 (ν f * |s , ν) .
Set T * s as optimal transport maps from ν f * |s to ν * of the form T * s = Q ν * • F f * |s (provided by Theorem A.1 and our assumption on the density of ν f * |s ) and define g * for all (x, s) ∈ R d × S as

g * (x, s) = Q ν * • F f * |s • f * (x, s) . (11) 
By the definition of g * in Eq. ( 11) and Theorem A.1 we clearly have

min ν s∈S p s W 2 2 (ν f * |s , ν) = E(f * (X, S) -g * (X, S)) 2 . ( 12 
)
Moreover since ν * is independent from S, using similar argument as above one can show that g * satisfies the Demographic Parity constraint in Definition 2.2 and thus, Eq. ( 12) yields

min ν s∈S p s W 2 2 (ν f * |s , ν) ≥ min g is fair E(f * (X, S) -g(X, S)) 2 . (13) 
Eqs. ( 10) and ( 13) yield the first assertion of the result. Notice that thanks to Eq. ( 12) we have also shown that

E(f * (X, S) -g * (X, S)) 2 = E(f * (X, S) -ḡ(X, S)) 2
, and since g * is fair we can put ḡ = g * . Finally, using Lemma A.2 we derive an explicit form of ν * and conclude using Eq. ( 11).

B Proof of Proposition 4.1

Let us first recall the well-known Dvoretzky-Kiefer-Wolfowitz inequality [33, Corollary 1]. Theorem B.1 (Dvoretzky-Kiefer-Wolfowitz inequality). Let Z 1 , . . . , Z n be i.i.d. real valued random variables with cumulative distribution F . Let F be the empirical cumulative distribution of Z 1 , . . . , Z n , then

E F -F ∞ := E sup t∈R |F (t) -F (t)| ≤ π 2n .
Proposition 4.1 (Fairness guarantees). For any joint distribution P of (X, S, Y ), any base estimator f constructed on labeled data, and for all s, s ∈ S, the estimator ĝ defined in Eq. (6) satisfies

sup t∈R |P(ĝ(X, S) ≤ t|S=s) -P(ĝ(X, S) ≤ t|S=s )| ≤ 2 (N s ∧N s + 2) -1 1 {Ns =N s } (7) 
E sup t∈R |P(ĝ(X, S) ≤ t|S=s, D) -P(ĝ(X, S) ≤ t|S=s , D)| ≤ 6 (N s ∧N s + 1) -1/2 . ( 8 
)
where D = L ∪ A ∪ s∈S U s is the union of all available datasets.

Proof of Proposition 4.1. The proof of Eq. ( 7) is based on standard results in the theory of rank statistics (see e.g. [START_REF] Van Der | Asymptotic statistics[END_REF]Sec. 13]). Meanwhile, the proof of Eq. ( 8) is built upon the well-known Dvoretzky-Kiefer-Wolfowitz inequality [33, Corollary 1].

Notice that if X s ∼ P X|S=s and X s is independent from labeled, unlabeled data, and the noise variables ε is , ε, then it holds that

P(ĝ(X, S) ≤ t|S = s) = P(ĝ(X s , s) ≤ t), ∀t ∈ R .
Proof of Eq. (7): We have for all s, s ∈ S that

sup t∈R P(ĝ(X s , s) ≤ t) -P(ĝ(X s , s ) ≤ t) ≤ sup t∈(0,1) P F f |s f (X s , s) + ε ≤ t -P F f |s f (X s , s ) + ε ≤ t ,
where, thanks to the form of ĝ in Eq. ( 6), the inequality follows from the fact that for all s ∈ S

s∈S ps Q f |s • F f |s f (x, s) + ε ≤ t ⇔ F f |s f (x, s) + ε ≤ s∈S ps Q f |s ← (t) .
Fix some t ∈ (0, 1) and let k s (t) ∈ {1, . . . , |I s 1 |} be such that ks(t)-1

|I s 1 | ≤ t < ks(t) |I s 1 | , then by the definition of F f |s (•) we have F f |s f (x, s) + ε ≤ t ⇔ i∈I s 1 1 { f (X s i ,s)+εis≤ f (x,s)+ε} ≤ k s (t) -1 .
Notice that the random variables { f (X s , s) + ε} ∪ { f (X s i , s) + ε is } i∈I s 1 conditionally on labeled data L are i.i.d. and continuous. Thus, conditionally on L the random variable 

i∈I s 1 1 { f (X s i ,s)+εis≤ f (X s ,
k s (t) N s /2 + 1 - k s (t) N s /2 + 1 = 2 (N s ∧ N s + 2) -1 1 {Ns =N s } .
Proof of Eq. ( 8): Similarly, as in the proof of Eq. ( 7) we can write

( * ) = sup t∈R P(ĝ s (X s ) ≤ t D) -P(ĝ s (X s ) ≤ t D)
≤ sup t∈(0,1)

P F f |s f (X s , s) + ε ≤ t D -P F f |s f (X s , s ) + ε ≤ t D .
Moreover, thanks to the triangle inequality we have ( * ) ≤ sup t∈(0,1)

P F f |s f (X s , s) + ε ≤ t D -P F ν f |s f (X s , s) + ε ≤ t D + sup t∈(0,1) P F f |s f (X s , s ) + ε ≤ t D -P F ν f |s f (X s , s ) + ε ≤ t D = sup t∈(0,1)
A s (t) + sup t∈(0,1)

A s (t) , (14) 
where for all t ∈ R and all s ∈ S we defined

F ν f |s (t) = P f (X s , s) + ε ≤ t D ,
and we used the fact that f (X s , s) + ε is continuous conditionally on all the available data D, then the random variable F ν f |s f (X s , s) + ε is distributed uniformly on (0, 1) (see e.g., [START_REF] Van Der | Asymptotic statistics[END_REF]Lemma 21.1]), which means that for all t ∈ (0, 1) and all s, s ∈ S

t = P F ν f |s f (X s , s) + ε ≤ t D = P F ν f |s f (X s , s ) + ε ≤ t D .
We bound the first term in Eq. ( 14) and the bound for the second terms follows the same arguments. Fix some t ∈ (0, 1), then we can write

A s (t) ≤ P F ν f |s f (X s , s) + ε -t ≤ F ν f |s f (X s , s) + ε -F f |s f (X s , s) + ε D ≤ P F ν f |s f (X s , s) + ε -t ≤ F ν f |s -F f |s ∞ D ≤ 2 F ν f |s -F f |s ∞ .
Taking supremum on both sides and repeating the same argument for s , we get

( * ) ≤ 2E F ν f |s -F f |s ∞ + 2E F ν f |s -F f |s ∞ ,
we conclude applying Dvoretzky-Kiefer-Wolfowitz inequality, recalled in Theorem B. 

E |f * (X, S) -f (X, S)||S = s ≤ Ab -1/2 n , with A = c 2 π C .
Proof. Applying Fubini's theorem we can write We also need to define Wasserstein 1 and ∞ distances. Definition C.2. Let µ and ν be two univariate probability measures, then Wasserstein 1 and ∞ distance between µ and ν are defined as

E |f * (X, S) -f (X, S)||S = s = x∈R d E|f * (x, s) -f (x, s)|P X|S=s (dx) = x∈R d +∞ 0 P(|f * (x, s) -f (x, s)| > t)dt P X|S=s (dx) (a) 
W 1 (µ, ν) = 1 0 |Q µ (t) -Q ν (t)| dt and W ∞ (µ, ν) = sup t∈[0,1] |Q µ (t) -Q ν (t)| ,
respectively.

Remark C.3. The definitions of W 1 and W ∞ can be stated in terms of couplings as it is done in Definition 2.1. However, for our purposes it is more convenient to use their equivalent formulation stated in Definition C.2. We refer to [START_REF] Bobkov | One-dimensional empirical measures, order statistics and kantorovich transport distances[END_REF] and in particular to their Theorem 2.10 for further details.

The final ingredient is [START_REF] Bobkov | One-dimensional empirical measures, order statistics and kantorovich transport distances[END_REF]Theorem 5.11].

Theorem C.4. Let Z 1 , . . . , Z n be i.i.d. real valued random variables from some probability measure µ and let μ be the empirical measure based on Z 1 , . . . , Z n . Assume that µ admits density which is lower-bounded by some constant L > 0, then , then the estimator ĝ defined in Eq. ( 6) satisfies

E[W ∞ (µ, μ)] ≤ L -1 2π n .
E |g * (X, S) -ĝ(X, S)| b -1/2 n s∈S p s N -1/2 s |S| N ,
where the leading constant depends only on λ s , λ s , C, c from Assumptions 4.2 and 4.3.

Proof of Theorem 4.4. In the proof a > 0 is going to denote an absolute constant independent from the size of data, which can differ from line to line. First of all, define the random variable

∆(ĝ) = E |ĝ(X, S) -g * (X, S)| = s∈S p s E [|ĝ(X, s) -g * (X, s)| |S = s] ,
where E stands for the expectation w.r.t. the joint distribution of (X, S, Y ). Recall that

g * (x, s) = s ∈S p s Q f * |s F f * |s (f * (x, s)) and ĝ(x, s) = s ∈S ps Q f |s F f |s f (x, s) + ε .
Considering g * (x, s) first, we can state that

g * (x, s) - s ∈S ps Q f * |s F f * |s (f * (x, s)) ≤ s ∈S |p s -ps | × Q f * |s • F f * |s • f * (x, s) .
It 

∈ R d × S g * (x, s) - s ∈S ps Q f * |s F f * |s (f * (x, s)) ≤ 1 2 s ∈S λ -1 s |p s -ps | .
The above implies that

∆(ĝ) ≤ s∈S p s s ∈S ps E Q f * |s F f * |s (f * (X, S)) -Q f |s F f |s f (X, s) + ε |S = s + 1 2 s∈S λ -1 s |p s -ps | .
Taking the total expectation we arrive at

E[∆(ĝ)] ≤ s,s ∈S p s p s E Q f * |s F f * |s (f * (X, S)) -Q f |s F f |s f (X, S) + ε |S = s + 1 2 s∈S λ -1 s E |p s -ps | ,
where we used the fact that ps is an unbiased estimator of p s . For all s ∈ S let X s ∼ P X|S=s be independent from everything, for all s , s ∈ S set the shorthand notation

a ss = E Q f * |s F f * |s (f * (X s , s)) -Q f |s F f |s f (X s , s) + ε . Notice that a ss = E Q f * |s F f * |s (f * (X, S)) -Q f |s F f |s f (X, S) + ε |S = s ,
and therefore we can write

E |ĝ(X, S) -g * (X, S)| = E[∆(ĝ)] ≤ s,s ∈S p s p s a ss + 1 2 s∈S λ -1 s E |p s -ps | .
Notice that the term E |p sps | = N -1 E|N p s -V |, where V is the binomial random variable with parameters (N, p s ), thus using the Cauchy-Schwarz inequality we can write E |p sps | ≤ N -1 Var(V ) = p s (1p s )/N and the above bound reads as

E |ĝ(X, S) -g * (X, S)| ≤ s,s ∈S p s p s a ss + 1 2 s∈S λ -1 s p s (1 -p s ) N ≤ s,s ∈S p s p s a ss + N -1/2 2 max s∈S λ -1 s s∈S p s (1 -p s ) . (15) 
It remains to bound a ss for each s, s ∈ S. Fix some s, s ∈ S (they can be equal), then

a ss ≤ E Qf * |s F f |s f (X s , s) + ε -Q f |s F f |s f (X s , s) + ε a 1 ss + E Q f * |s F f |s f (X s , s) + ε -Qf * |s F f |s f (X s , s) + ε a 2 ss ( 16 
)

+ E Q f * |s F f * |s (f * (X s , s)) -Q f * |s F f |s f (X s , s) + ε a 3 ss .
We bound each of the three terms separately.

First term (a 

a 1 ss = 1 |I s 1 | + 1 |I s 1 | j=0 E Qf * |s j |I s 1 | -Q f |s j |I s 1 | . (17) 
Notice that for all j ∈ {1, . . . , |I s 1 |} and all α ∈ ((j -

1)/|I s 1 |, j/|I s 1 |] it holds that Qf * |s j |I s 1 | = Qf * |s (α) .
The above implies that

1 |I s 1 | Qf * |s j |I s 1 | = (j+1)/|I s 1 | j/|I s 1 | Qf * |s (α) dα , (18) 
and the same argument repeated for Q f |s implies that

1 |I s 1 | Q f |s j |I s 1 | = (j+1)/|I s 1 | j/|I s 1 | Q f |s (α) dα . (19) 
Substituting Eqs. ( 18)- [START_REF] Ronald | Design of experiments[END_REF] in Eq. ( 17) and using Definition C.2 we get

a 1 ss ≤ 2E 1 0 Qf * |s (α) -Q f |s (α) dα = 2EW 1 (ν 0 f * |s , ν0 f |s ) ,
where for j = 0 in Eq. ( 17) we used the fact that 1

|I s 1 | E| Qf * |s (0) -Q f |s (0)| ≤ E 1 0 | Qf * |s (α) - Q f |s (α)|dα.
Using the coupling definition of the Wasserstein distance and the way we have defined ν0

f |s , we can write 

W 1 (ν 0 f * |s , ν0 f |s ) ≤ 1 |I s 0 | i∈I s 0 f * (X s i , s ) + ε is -( f (X s i , s ) + ε is ) ,
≤ aλ -1 s N -1/2 s . ( 21 
)
where a is an absolute positive constant (a = 2 √ 2π is sufficient).

Third term (a 3 ss ): We can write, using Assumption 4.2 that

a 3 ss ≤λ -1 s E F f * |s (f * (X s , s)) -F f |s f (X s , s) + ε ≤λ -1 s E F f * |s (f * (X s , s)) -F ν f |s f (X s , s)+ε + λ -1 s E F ν f |s (t) -F f |s (t) ∞ , (22) 
with F ν f |s defined for all s ∈ S and all t ∈ R as

F ν f |s (t) = P f (X s , s) + ε ≤ t L . ( 23 
)
The second term in Eq. ( 22) is bounded by 2λ -1 s N -1/2 s thanks to the Dvoretzky-Kiefer-Wolfowitz inequality recalled in Theorem B.1. Thus, it remains to bound the first term in Eq. [START_REF] Hoeffding | The large-sample power of tests based on permutations of observations[END_REF]. We introduce the following shorthand notation for the first term in Eq. [START_REF] Hoeffding | The large-sample power of tests based on permutations of observations[END_REF] ( * ) = E F f * |s (f * (X s , s)) -F ν f |s f (X s , s) + ε .

Let Xs ∼ P X|S=s and ε ∼ U [-σ, σ] be independent from ε, X s , L and each other. Based on this notation we can write ( * )=E P f * ( Xs , s)-f * (X s , s)≤0 ε, X s , L H 0 -P f ( Xs , s)+ε≤ f (X s , s)+ε ε, X s , L

H 1 . (24) 
Furthermore, if ∆(X s ) = f * (X s , s) -f (X s , s), ∆( Xs ) = f * ( Xs , s) -f ( Xs , s), and ∆ ε = εε, then simple algebra yields

H 1 = P f * ( Xs , s) -f * (X s , s) ≤ ∆ ε + ∆( Xs ) -∆(X s ) ε, X s , L .
For all a, b ∈ R it holds that |1 {a≤0} -

1 {a≤b} | ≤ 1 {0∧b≤a≤0∨b} ≤ 1 {-|b|≤a≤|b|} = 1 {|a|≤|b|} .
Applying this fact to Eq. ( 24) with a = f * ( Xs , s)f * (X s , s) and b = ∆ ε + ∆( Xs ) -∆(X s ) we get ( * ) ≤P f * ( Xs , s)f * (X s , s) ≤ ∆ ε + ∆( Xs ) + ∆(X s ) ≤P f * ( Xs , s)f * (X s , s) ≤ 3 ∆ ε + P f * ( Xs , s)f * (X s , s) ≤ 3 ∆( Xs ) + P f * ( Xs , s)f * (X s , s) ≤ 3 ∆(X s ) .

By definition of Xs the random variables X s , Xs are exchangeable, hence P(|f * ( Xs , s)f * (X s , s)| ≤ 3|∆( Xs )|) = P(|f * ( Xs , s)f * (X s , s)| ≤ 3|∆(X s )|) .

Furthermore, using the fact that |ε -ε| ≤ 2σ almost surely we get ( * ) ≤ P f * ( Xs , s)-f * (X s , s) ≤ 6σ + 2P f * ( Xs , s)-f * (X s , s) ≤ 3 ∆(X s ) .

Thanks to Assumption 4.2 we have the following bound on the first term in Eq. ( 25)

P |f * ( Xs , s)f * (X s , s)| ≤ 6σ ≤ E P |f * ( Xs , s)f * (X s , s)| ≤ 6σ|X s ≤ 12λ s σ .

For the second term in Eq. ( 25), we observe that Assumption 4.2 yields almost surely P |f * ( Xs , s)f * (X s , s)| ≤ 3 ∆(X s ) L, X s ≤ 6λ s ∆(X s ) .

Thus, taking the total expectation on both sides of this inequality we get . Substituting this bound into Eq. ( 22), we derive that

P
a 3 ss λ -1 s λ s b -1/2 n + λ -1 s N -1/2 s . ( 26 
)
Gathering three terms together: Finally, substituting Eqs. ( 20), ( 21), [START_REF] Kilbertus | Avoiding discrimination through causal reasoning[END_REF] into Eq. ( 16) we get

a ss b -1/2 n + λ -1 s λ s b -1/2 n + λ -1 s N -1/2 s + λ -1 s N -1/2 s .
Finally, substituting the bound above into Eq. ( 15) we arrive at This ends the proof.

Remark C.5. Notice that the exact constant in front of the rate of convergence in Theorem 4.4 can be recovered following the proof. Furthermore, this proof can be extended to control L p norm (E|g * (X, S)ĝ(X, S)| p ) 1/p , for all p ∈ [1, ∞) (the current proof deals only with p = 1). To achieve it one only needs to extend Lemma C.1 while the rest of the proof follows line-by-line using deviation results on Wasserstein-p distance on the real line [START_REF] Bobkov | One-dimensional empirical measures, order statistics and kantorovich transport distances[END_REF]. Finally, it is possible to extend this result under the same assumptions to control E g *ĝ ∞ , which induces an extra multiplicative polylogarithmic factor in b -1/2 n .

Figure 1 :

 1 Figure1: For a new point (x, 1), the value t * (x, 1) is chosen such that the shaded Green Area (//) = P(f * (X, S) ≤ t * (x, 1)|S = 2) equals to the shaded Blue Area (\\) = P(f * (X, S) ≤ f * (x, 1)|S = 1). The final prediction g * (x, 1) is a convex combination of f * (x, 1) and t * (x, 1). The same is done for (x, 2).

c 2 +∞ 0 exp -t 2

 202 exp -Cb n t 2 dt P X|S=s (dx) = c +∞ 0 exp -Cb n t 2 dt . where (a) follows from Assumption 4.3. Making change of variables we getc +∞ 0 exp -Cb n t 2 dt = c(Cb n ) -1/dt = c(Cb n ) -1/2 √ π 2 .

Theorem 4 . 4 (

 44 Estimation guarantee). Let Assumptions 4.2 and 4.3 be satisfied, and set σ min s∈S N

,

  |f * ( Xs , s)f * (X s , s)| ≤ 3 ∆(X s ) ≤ 6λ s E ∆(X s ) then we have demonstrated that ( * ) λ s b -1/2 n

E 2 s+

 2 |ĝ(X, S)g * (X, S)| b -1|S|N -1/2 ,where in the last inequality we used the fact thats∈S p s (1p s ) ≤ s∈S √ p s ≤ |S| s∈S p s = |S| .

  ×S → R and each s ∈ S, we estimate ν f |s by

	1 . Let I s 0 , I s 1 ⊂ [N s ] be any fixed partition of [N s ] 1 =[N s ]. For each j ∈ {0, 1} we let U s 0 ∪I s 1 |=N s /2 and I s 0 |=|I s such that |I s j = X s i ∈ U s : i ∈ I s j be the restriction of U s to I s j . We use U s 0 to estimate Q f |s and U s 1 to estimate F f |s . For each f : R d

  is w.l.o.g., then the rate is dominated by b

	-1/2 n

. Notice that one can find a collection of joint distributions P, such that f * satisfies demographic parity. Hence, if b -1/2 n

Table 1 :

 1 [START_REF] Pérez-Suay | Fair kernel learning[END_REF] and 1024 instances of s=-1 with a mean crime rate 0.13. Law School (LAW) refers to the Law School Admissions Councils National Longitudinal Bar Passage Study[START_REF] Wightman | LSAC national longitudinal bar passage study[END_REF] and has 20649 examples. The task is to predict a students GPA (normalized to [0, 1]) with race as the protected attribute (white versus non-white). National Longitudinal Survey of Youth (NLSY) involves survey results by the U.S. Bureau of Labor Statistics that is intended to gather information on the labor market activities and other life events of several groups[START_REF]National longitudinal surveys of youth data set[END_REF]. Analogously to[START_REF] Komiyama | Comparing fairness criteria based on social outcome[END_REF] we model a virtual company's hiring decision assuming that 55±.06 .107±.010 .15±.02 .153±.016 .73±.07 4.77±.49 .50±.05 2.24±.22 .14±.01 RLS+Berk .037±.004 .16±.02 .121±.013 .10±.01 .189±.019 .49±.05 5.28±.57 .32±.03 2.43±.23 .05±.01 RLS+Oneto .037±.004 .14±.01 .112±.012 .07±.01 .156±.016 .50±.05 5.02±.54 .23±.02 2.44±.26 .05±.01 Results for all the datasets and all the methods concerning MSE and KS.

		CRIME		LAW		NLSY		STUD		UNIV	
	Method	MSE	KS	MSE	KS	MSE	KS	MSE	KS	MSE	KS
	RLS .033±.003 .RLS+Ours .041±.004 .12±.01 .141±.014 .02±.01 .203±.019 .09±.01 5.62±.52 .04±.01 2.98±.32 .02±.01
	KRLS	.024±.003 .52±.05 .040±.004 .09±.01 .061±.006 .58±.06 3.85±.36 .47±.05 1.43±.15 .10±.01
	KRLS+Oneto .028±.003 .19±.02 .046±.004 .05±.01 .066±.007 .06±.01 4.07±.39 .18±.02 1.46±.13 .04±.01
	KRLS+Perez .033±.003 .25±.02 .048±.005 .04±.01 .065±.007 .08±.01 3.97±.38 .14±.02 1.50±.15 .06±.01
	KRLS+Ours .034±.004 .09±.01 .056±.005 .01±.01 .081±.008 .03±.01 4.46±.43 .03±.01 1.71±.16 .02±.01
	RF	.020±.002 .45±.04 .046±.005 .11±.01 .055±.006 .55±.06 3.59±.39 .45±.05 1.31±.13 .10±.01
	RF+Raff	.030±.003 .21±.02 .058±.006 .06±.01 .066±.006 .08±.01 4.28±.40 .09±.01 1.38±.12 .02±.01
	RF+Agar	.029±.003 .13±.01 .050±.005 .04±.01 .065±.006 .07±.01 3.87±.41 .07±.01 1.40±.13 .02±.01
	RF+Ours	.033±.003 .08±.01 .064±.006 .02±.01 .070±.007 .03±.01 4.18±.38 .02±.01 1.49±.14 .01±.01

the company does not have access to the applicants' academic scores. We set as target the person's GPA (normalized to [0, 1]), with race as sensitive attribute Student Performance (STUD), approaches 649 students achievement (final grade) in secondary

  s)+ε} is distributed uniformly on {0, . . . , |I s

	13.1]), so that			1 |} (see e.g., [40, Lemma
		P F f |s f (X s , s) + ε ≤ t =	k s (t) |I s 1 | + 1	.
	Repeating the same argument for s and recalling that |I s 1 | = N s /2 and |I s 1 | = N s /2, we get
	sup t∈R	P(ĝ(X s , s) ≤ t) -P(ĝ(X s , s ) ≤ t) ≤ sup t∈(0,1)

  Let us first recall the assumptions that we require in order to prove Theorem 4.4. Assumption 4.2. For each s ∈ S the univariate measure ν f * |s admits a density q s , which is lower bounded by λ s > 0 and upper-bounded by λ s ≥ λ s . Assumption 4.3. There exist positive constants c and C independent from n, N , N 1 , . . . , N |S| , and a positive sequence b n : N → R + such that for all δ > 0 it holds thatP |f * (x, s) -f (x, s)| ≥ δ ≤ c exp -Cb n δ 2 for almost all (x, s) w.r.t. P X,S .The next simple result states that Assumption 4.3 yields a bound in L 1 -norm between f * and f . Lemma C.1. Let Assumption 4.3 be satisfied, then for all s ∈ S it holds that

	C Proof of Theorem 4.4
	1, condition-
	ally on L.

  2EW 1 (ν 0 f * |s , ν0 f |s ) ≤ 2E f * (X, S) -f (X, S) S = sSecond term (a 2 ss ): Note that under Assumption 4.2, the Lipschitz constant of Q f * |s is upper bounded by λ -1 s . Then, taking supremum and using Definition C.2 we apply Theorem C.4 to get a 2 ss ≤ EW ∞ ν f * |s , ν0

	almost surely. Since {X s i } i∈I s 0 {|f * (X s i , s) -f (X s i , s )|} i∈I s are i.i.d. from P X|S=s , then conditionally on L the random variables 0 are i.i.d. . Furthermore, using Lemma C.1 we can write
	a 1 ss ≤ Lemma C.1 ≤	2Ab -1/2 n	. (20)

f * |s

Since we are ready to sacrifice a factor

in our bounds, this assumption is without loss of generality.

It is assumed in this discussion that the time complexity to evaluate f is O(1).

One can achieve it by splitting the labeled dataset L artificially augmenting the unlabeled one, which ensures that N > n. In this case if b -1/2 n = O(n -1/2 ), then the first term is always dominant in the derived bound.

The source of our method can be found at https://www.link-anonymous.link.

We thank the authors for sharing a prototype of their code.