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Abstract. In the context of statistical supervised learning, the noiseless linear model assumes
that there exists a deterministic linear relation Y = 〈θ∗,Φ(U)〉 between the random output Y
and the random feature vector Φ(U), a potentially non-linear transformation of the inputs U .
We analyze the convergence of single-pass, fixed step-size stochastic gradient descent on the
least-square risk under this model. The convergence of the iterates to the optimum θ∗ and the
decay of the generalization error follow polynomial convergence rates with exponents that both
depend on the regularities of the optimum θ∗ and of the feature vectors Φ(U). We interpret our
result in the reproducing kernel Hilbert space framework; as a special case, we analyze an online
algorithm for estimating a real function on the unit interval from the noiseless observation of its
value at randomly sampled points. The convergence depends on the Sobolev smoothness of the
function and of a chosen kernel. Finally, we apply our analysis beyond the supervised learning
setting to obtain convergence rates for the averaging process (a.k.a. gossip algorithm) on a graph
depending on its spectral dimension.

1. Introduction

Linear regression is widely used in statistical supervised learning, sometimes in the implicit form
of kernel regression. A large theory describes the performance (reconstruction and generalization
errors) of various algorithms (penalized least-squares, stochastic gradient descent, . . . ) under various
data models (e.g., noisy or noiseless linear model) and the corresponding minimax bounds. In
nonparametric estimation theory, one seeks bounds independent of the dimension of the underlying
feature space [16, 30]: these bounds describe best the observed behavior in many modern linear
regressions, where the data are inherently high-dimensional or where a kernel associated to a high-
dimensional feature map is used. In this paper, we provide nonparametric bounds for stochastic
gradient descent under the noiseless linear model and under small perturbations of this model.

Under the noiseless linear model, we assume that there exists a ground-truth linear relation
Y = 〈θ∗, X〉 between the feature vector X and the output Y ∈ R. The feature vector X may
be itself a non-linear transformation of the inputs U , explicitly computed through a feature map
X = Φ(U) or implicitly defined through a positive-definite kernel k(U,U ′) [17]. The noiseless
linear model assumes that there exists a linear predictor in feature space with zero generalization
error. The difficulty to approximate this optimal prediction rule θ∗ from independent identically
distributed (i.i.d.) samples (X1, Y1), . . . , (Xn, Yn) depends on some measure of the complexity of
θ∗. The noiseless assumption is relevant for some basic vision or sound recognition tasks, where
there is no ambiguity of the output given the input. Note that in the noiseless model, there is
still the randomness of the sampling of X1, . . . , Xn, sometimes called multiplicative noise because
algorithms end up multiplying random matrices. Given those inputs, the outputs Y1, . . . , Yn are
deterministic: there is no additive noise, and thus the noiseless linear model we consider in this
paper is a simplification of problems with low additive noise.
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2 NONPARAMETRIC CONVERGENCE RATES FOR SGD UNDER THE NOISELESS LINEAR MODEL

The large dimension and number of samples in modern datasets motivate the use of first-order
online methods [8, 7]. We study the archetype of these methods: single-pass, constant step-size
stochastic gradient descent with no regularization, referred to as simply “SGD” in the following.

Our theoretical results and simulation agree to the following: under the noiseless linear model,
the iterates of SGD converge to the optimum θ∗ and the generalization error of SGD vanishes as the
number of samples increases. Moreover, the convergence rate of SGD is determined by the minimum
of two parameters: the regularity of the optimum θ∗ and the regularity of the feature vectors X,
where regularities are measured in terms of power norms of the covariance matrix Σ = E[X ⊗X],
see Section 2 for precise definitions and statements. Our analysis of the convergence is tight as
we prove upper and lower bounds on the performance of SGD that almost match. Thus SGD
shows some adaptivity to the complexity of the problem. In Section 4, we study the robustness
of our results when the noiseless linear assumption does not hold, but the generalization error of
the optimal linear regression is small. We prove that the asymptotic generalization error of SGD
deteriorates by a constant factor, proportional to this optimal generalization error.

Two extensions of our results are studied. First, in Section 3.1, the extension to kernel regression
is derived, with, as a special case, the application to the interpolation of a real function f∗ on
[0, 1]d from the observation of its value at randomly uniformly sampled points. We show that the
rate of convergence depends on the Sobolev smoothness of the function f∗ and of the interpolating
kernel. Second, beyond supervised learning, our abstract result can be seen as a result on products
of i.i.d. linear operators on a Hilbert space. In Section 3.2, we use this result to study of a
linear stochastic process, the averaging process on a graph, which models a key algorithmic step
in decentralized optimization, the gossip algorithm [28, 24]. We prove polynomial convergence
rates depending on the spectral dimension of the graph. Finally, in Section 3.3, a toy application
instantiates our results in the special case of Gaussian features.

Comparison to the existing literature on linear / kernel regression. There is an
extensive research on the performance of different estimators in nonparametric supervised learning,
however almost all of them do not consider the special case of the noiseless linear model [16, 9, 30, 15].
The difference is significant; for instance, rates faster than O(n−1) for the least-square risk are
impossible with additive noise, while in this paper we prove that SGD can converge with arbitrarily
fast polynomial rates. Some of these works analyse the performance of SGD [34, 4, 29, 26, 12, 13,
20, 25, 23]. However, because of the additive noise of the data, convergence requires averaging or
decaying step sizes. As a notable exception, [18] studies a variant of kernel regularized least-squares
and notices that the rate of convergence improves on noiseless data compared to noisy data. However,
their rates are not directly comparable to ours as they assume that the optimal predictor is outside
of the kernel space while we focus in Section 3.1 on the attainable case where the optimal predictor
is in this space.

While our work focuses on the test error, a recent trend studies the ability of SGD to reach zero
training error in the so-called “interpolation regime”, that is in over-parametrized models where a
perfect fit on the training data is possible [27, 21, 10]. Even with a fixed step size, SGD is shown
to achieve zero-training error. However, these results are significantly different from ours: zero
training error does not give any information on the generalization ability of the learned models,
and the “interpolation regime” does not imply the noiseless model. The authors of [31] study a
mixed framework that includes both the interpolation regime and the noiseless model, depending on
whether SGD is seen as a stochastic algorithm minimizing the generalization error or the training
error. An acceleration of SGD is studied, depending on the convexity property of the loss, but not
on the nonparametric regularity of the problem.

The field of scattered data approximation [33] studies the estimation of a function from the
observation of its values at (possibly random) points, considered in Section 3.1. Again, most
of the work focuses on the case where the observation of the values is noisy. We found two
exceptions that consider the noiseless case. In [5], a minimax rate of Ω((log n/n)p/d) is shown for
estimating a p-smooth function on [0, 1]d in L∞ norm using n independent uniformly distributed
points; the minimax rate is reached with a spline estimate. In [19], a minimax rate of Ω(1/np)
in shown for the same problem, but in the special case of d = 1 and estimation in L1 norm; the
minimax rate is reached with some nearest neighbor polynomial interpolation. Our results are not
rigorously comparable with these as we consider the approximation in L2 norm and a definition of
smoothness different from theirs. However, roughly speaking, our convergence rate in Section 3.1 of
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Ω(1/n1−d/(2p+d)) when p > d/2 is much slower than theirs. Note that previous estimators could not
be computed in an online fashion, and thus have a significantly larger running time. But in general,
this suggests that SGD does not achieve the nonparametric minimax rates under the noiseless linear
model.

2. Linear regression

2.1. Setting and main results. We consider the regression problem of learning the linear
relationship between a random feature variable X ∈ H and a random output variable Y ∈ R.
The feature space H is assumed to be a Hilbert space with scalar product 〈., .〉 and norm ‖.‖.
We assume a noiseless linear model: there exists θ∗ ∈ H such that Y = 〈θ∗, X〉 almost surely
(a.s.). In the online regression setting, we learn θ∗ from i.i.d. observations (X1, Y1), (X2, Y2), . . . of
(X,Y ). SGD proceeds as follows: it starts with the non-informative initialization θ1 = 0 and at
iteration n, with current estimate θn−1, it estimates the risk function on the observation (Xn, Yn),
Rn(θ) = (〈θ,Xn〉 − Yn)

2
/2 and it performs one step of gradient descent on Rn:

θn = θn−1 − γ∇Rn(θn−1) = θn−1 − γ (〈θn−1, Xn〉 − Yn)Xn

= θn−1 − γ 〈θn−1 − θ∗, Xn〉Xn . (1)

The risk Rn(θ) is an unbiased estimate of the population risk, also called generalization error,

R(θ) =
1

2
E
[
(〈θ,X〉 − Y )

2
]

=
1

2
E
[
〈θ − θ∗, X〉2

]
.

We assume the feature variable to be bounded a.s., namely

R0 = ess sup ‖X‖2 <∞ . (2)

We can then define the covariance operator Σ = E [X ⊗X] of X whose operator norm will be
denoted as ‖Σ‖H→H. Finally, note that,

R(θ) =
1

2
〈θ − θ∗,Σ (θ − θ∗)〉 .

We do not assume that the linear operator Σ is inversible as this is incompatible in infinite
dimension with the boundedness assumption in Eq. (2). Throughout this paper, we use the
following convenient notation: if α is a positive real and θ a vector,

∥∥Σ−α/2θ
∥∥2

= 〈θ,Σ−αθ〉 :=

inf
{
‖θ′‖2

∣∣ θ′ such that θ = Σα/2θ′
}
, with the convention that it is equal to ∞ when θ /∈ Σα/2(H).

We have two theorems (upper and lower bounds) showing tight convergence rates for SGD.

Theorem 1 (upper bound). Assume that there exists a non-negative real number α such that
(a) (regularity of the optimum) θ∗ ∈ Σα/2(H), i.e., ‖Σ−α/2θ∗‖ <∞, and
(b) (regularity of the feature vector) X ∈ Σα/2(H) a.s., and there exists a constant Rα <∞

such that ‖Σ−α/2X‖2 6 Rα a.s.
Assume further 0 < γ 6 1/R0. The iterates (θn)n>1 of SGD with step-size γ satisfy for all n > 1,

(1) (reconstruction error) E
[
‖θn − θ∗‖2

]
6

C

nα
,

(2) (generalization error) min
k=1,...,n

E [R(θk)] 6
C ′

nα+1
,

for some constants C and C ′ that depend explicitly on α, γ, ‖Σ‖H→H, R0, Rα and ‖Σ−α/2θ∗‖.

Assumption (a) is classical in the non-parametric kernel literature [9]: it is often called complexity
of the optimum, or source condition. Assumption (b) is made in [25]. It implies that Tr(Σ1−α) =
E[Tr(XXTΣ1−α)] = E[XTΣ1−αX] 6 Rα. This last condition, called capacity condition [25] is
sometimes stated under the form of a given decay of the eigenvalues of Σ; it is related to the
effective dimension of the problem [9].

Theorem 2 (lower bound). Assume that there exists a positive real number α such that one of the
two following conditions holds:

(a) (irregularity of the optimum) θ∗ /∈ Σα/2(H), i.e., ‖Σ−α/2θ∗‖ =∞, or
(b) (irregularity of the feature vector) with positive probability, X /∈ Σα/2(H) and 〈X, θ∗〉 6= 0.

Assume further 0 < γ 6 1/R0. The iterates (θn)n>1 of SGD with step-size γ satisfy for all ε > 0,
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(1) (reconstruction error) E
[
‖θn − θ∗‖2

]
is not asymptotically dominated by 1/nα+ε,

(2) (generalization error) E [R(θn)] is not asymptotically dominated by 1/nα+1+ε.

The take-home message of Theorems 1, 2 is that the convergence rate of SGD is governed by
two real numbers: the regularity α1 of the optimum, that is the supremum of all α such that
θ∗ ∈ Σα/2(H), and the regularity α2 of the features, that is the supremum of all α such that
X ∈ Σα/2(H) almost surely. The polynomial convergence rate of SGD is roughly of the order of
n−α for the reconstruction error and n−α−1 for the generalization error with α = min(α1, α2): one
of the two regularities is a bottleneck for fast convergence. See Section 3.1 for an application to the
optimal choice of a reproducing kernel Hilbert space. The exponent α1 corresponds to the decay of
the errors of the gradient descent on the population risk R. However, due to the multiplicative
noise, the convergence of SGD is slowed down by the irregularity of the feature vectors if α2 < α1.

In the case α = 0, where no regularity assumption is made on the optimum or the features (apart
from being bounded), we upper-bound mink=1,...,n E [R(θk)] by O(n−1). A similar result was shown
in [4]: the excess risk for averaged constant-step size SGD is asymptotically dominated by n−1 on
any least-squares problem–not necessarily a noiseless one. It is remarkable that under the noiseless
linear setting, no averaging or decay of the step-size is needed to obtain the same convergence rate.

In the theorems, the constraint 0 < γ 6 1/R0 is independent of the time horizon n and of
the regularities α1, α2. Thus fixed step-size SGD shows some adaptivity to the regularity of the
problem.

In Section 3, we give extensive numerical evidence that the polynomial rates n−α and n−(α+1) in
the bounds are indeed sharp in describing convergence rate of SGD. However, to clarify the proof,
we chose not to seek for the best constants C and C ′. The interested reader can easily improve
on those constants by building over the structure of proof in this paper, at the cost of greater
technicalities.

Remark 1. Our upper bound and lower bound on the generalization errors do not match exactly.
Indeed, we prove an upper bound on the minimum risk of the past iterates, where we prove a lower
bound on a larger quantity, the risk of the last iterate. To the best of our knowledge, it is an open
question whether one can prove an upper bound for the last iterate under our assumptions: more
precisely, does E [R(θn)] 6 C ′′/nα+1 hold for some constant C ′′?

Remark 2. The theorems stated above stay true if one weakens the assumptions in the following
way, where 4 denotes the semi-definite order:

• assume E
[
‖X‖2X ⊗X

]
4 R0Σ instead of ‖X‖2 6 R0 a.s. (taking R0 minimal with these

properties), and
• assume E [〈X,Σ−αX〉X ⊗X] 4 RαΣ instead of 〈X,Σ−αX〉 6 Rα a.s.

This weaker set of assumptions is useful in the case of non-bounded features, like the Gaussian
features of Section 3.3. We thus take special care in using only these weaker assumptions in the
proofs of Theorems 1, 2, 3 and 4. However we prefer stating results with the stronger assumptions
for the sake of clarity.

Theorems 1 and 2 follow straightforwardly from generalizations that we present in the next
section. The generalization of Theorem 1 beyond the noiseless linear model is exposed in Section 4.
The reader interested mostly by applications of Theorems 1 and 2 can jump directly to Section 3.

2.2. Regularity functions and general results. The main difficulty in the proof of Theorems 1
and 2 is that the expected reconstruction and generalization errors do not satisfy closed recurrence
relations. In this paper, we propose to study the norm of θn − θ∗ associated to different powers of
the covariance Σ. More precisely, define

ϕn(β) = ‖Σ‖βH→HE
[〈
θn − θ∗,Σ−β (θn − θ∗)

〉]
∈ [0,∞] , β ∈ R .

We call ϕn the regularity function at iteration n. In particular,

ϕn(0) = E[‖θn − θ∗‖2] and ϕn(−1) = 2‖Σ‖−1
H→HE[R(θn)] .

The sequence of regularity functions ϕn, n > 1 satisfies a closed recurrence inequality (Property 3
in Appendix A) which is central to our proof strategy. This leads to the following two general
theorems that prove bounds for the regularity functions ϕn(β) on the full interval β ∈ [−1, α]. They
generalize Theorems 1 and 2 respectively (see proofs in Appendices A and B respectively).
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Theorem 3 (upper bound). Under the assumptions of Theorem 1, we have for all n > 1,

(1) for all β ∈ [0, α], ϕn(β) 6
C(β)

nα−β
, where

C(β) = max(α,1)α−β

2α−βγα−β

(
1 + ‖Σ‖αH→H

Rα
R0

)α−β+1

‖Σ‖βH→H‖Σ−α/2θ∗‖2 ,

(2) for all β ∈ [−1, 0), min
k=1,...,n

ϕk(β) 6
C ′(β)

nα−β
, where

C ′(β) = e1/e max(α,1)α−1(α−β)α−β

2αγα−β

(
1 + ‖Σ‖αH→H

Rα
R0

)max(α,1)

‖Σ‖βH→H‖Σ−α/2θ∗‖2 .

Theorem 4 (lower bounds). Under the assumptions of Theorem 2, for all β ∈ [−1, α], for all
ε > 0, ϕn(β) is not asymptotically dominated by 1/nα−β+ε.

3. Applications

3.1. Kernel methods and interpolation in Sobolev spaces. A main case of application of
our results is the reproducing kernel Hilbert space (RKHS) setting [17]. In this setting, the space H
is typically large or infinite-dimensional, and we do not have a direct access to the feature variable
X ∈ H. Instead, we have access to some random input variable U ∈ U such that X = Φ(U) for
some fixed feature map Φ : U → H. It is then natural to associate a vector θ ∈ H with the function
fθ ∈ L2(U) defined by

fθ(u) = 〈θ,Φ(u)〉 .
If the positive-definite kernel k(u, u′) = 〈Φ(u),Φ(u′)〉 can be computed efficiently, SGD can be
“kernelized” [34, 29, 26, 12], i.e., the iteration can be written directly in terms of fn := fθn :

fn = fn−1 − γ(fn−1(Un)− Yn)k(Un, .) = fn−1 − γ(fn−1 − f∗)(Un)k(Un, .)

where Xn = Φ(Un) and f∗(u) := fθ∗(u) = 〈θ∗,Φ(u)〉. Note that in the kernel literature, the
mapping θ 7→ fθ is used to identify H with a subspace of L2(U); indeed, if Σ = E [Φ(U)⊗ Φ(U)]
has dense range, the mapping is injective. Using this identification, Theorems 1 and 2 can be
applied to obtain bounds in the “attainable” case, meaning that the optimal predictor f∗ ∈ L2(U)
is in the RKHS H. This gives decay rates for the RKHS norm ‖fn − f∗‖ := ‖θn − θ∗‖ which is
inherited from H, but also for the population risk R(θn) which is reinterpreted as the half squared
L2-distance between the associated fn and the optimal predictor f∗. Indeed,

R(θn) =
1

2
E
[
〈θn − θ∗,Φ(U)〉2

]
=

1

2
E
[
(fn(U)− f∗(U))

2
]

=
1

2
‖fn − f‖2L2(U) .

Application: interpolation in Sobolev spaces. To illustrate our results, we consider the
case where U is the torus [0, 1]d, U is uniformly distributed on U and k is a translation-invariant
kernel: k(u, u′) = t(u− u′) where t is a square-integrable 1-periodic function on [0, 1]d. The kernel
k is positive-definite if and only if the Fourier transform of t is positive [32]. This imposes, in
particular, that t is maximal at 0. Thus the update rule

fn = fn−1 − γ (fn−1(Un)− f∗(Un)) t(.− Un) (3)

corrects fn so that the value fn(Un) is closer to the observed value f∗(Un) than fn−1(Un). Points
near Un are also updated in the same direction, thus the algorithm should converge rapidly if
the function f∗ is smooth. Our work derives the polynomial convergence rate as a function of
the smoothness of f∗ and t. The smoothness of functions is measured with the Sobolev spaces
Hs

per. A function f with Fourier serie f̂ belongs to Hs
per if ‖f‖2Hsper

=
∑
k∈Zd |f̂(k)|2

(
1 + |k|2

)s
<∞.

Assume that the Fourier serie of t satisfies a power-law decay: there exists c, C > 0 such that:

c
(
1 + |k|2

)−s/2−d/4
6 t̂(k) 6 C

(
1 + |k|2

)−s/2−d/4
, k ∈ Zd .

This condition is satisfied, for instance, by the Wendland functions [33, Theorem 10.35], or in
dimension d = 1 by the kernels corresponding to splines of order s, see [32] or [25]. The latter can
be computed using the polylogarithm or–for special values of s–the Bernoulli polynomials.
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Figure 1. Interpolation of a function of smoothness r = 2 using SGD with
kernels of smoothness s = 1 (left), s = 2 (middle) and s = 3 (right). Each plot
represents one realization of the algorithm (3). The blue crosses represent the
square L2 norms ‖fn − f∗‖2L2 as a function of the number of iterations n and the
orange lines represent the predicted polynomials rates C/nα∗+1.

We have t ∈ Hs′

per if and only if s′ < s, thus s measures the Sobolev smoothness of k. The
operator Σ is the convolution with t and thus

‖f‖2 =
〈
f,Σ−1f

〉
L2 �

∑
k∈Zd

|f̂(k)|2
(
1 + |k|2

)s/2+d/4
= ‖f‖2

H
s/2+d/4
per

, (4)

where � denotes the equality up to positive multiplicative constants. To predict the convergence
rate of (3), we check the assumptions of Theorems 1, 2. Computations similar to (4) give

(a) (regularity of the optimum)〈
f∗,Σ

−αf∗
〉
�
〈
f∗,Σ

−α−1f∗
〉
L2 � ‖f∗‖2H(s/2+d/4)(α+1)

per
.

Assume f∗ ∈ Hr
per. We have 〈f∗,Σ−αf∗〉 <∞ if α 6 2r

s+d/2 − 1.
(b) (regularity of the feature vector)〈

k(u, .),Σ−αk(u, .)
〉

= ‖k(u, .)‖2
H

(s/2+d/4)(α+1)
per

= ‖ts‖2H(s/2+d/4)(α+1)
per

=
∑
k∈Zd

(1 + k2)(s/2+d/4)(α−1) .

Thus 〈k(u, .),Σ−αk(u, .)〉 <∞ if and only if α < 1− d
s+d/2 .

The regularities of the optimum and of the feature vector are non-negative if the smoothness s
of the kernel t satisfies d/2 < s 6 2r − d/2, where r is the smoothness of f∗. In this case the
polynomial rate of decay of the algorithm is given by the exponent

α∗ = min

(
2r

s+ d/2
− 1, 1− d

s+ d/2

)
. (5)

Note that, given a function f∗, this rate is maximal when r = s, i.e., the smoothness of the kernel
coincides with the smoothness of the function, in which case α∗ = 1− d

r+d/2 . Theorems 1, 2 gives
the convergence rates in terms of L2 norm and RKHS norm, which happens to be a Sobolev norm.
The more general Theorems 3 and 4 gives convergence rates in terms of a continuity of fractional
Sobolev norms, some weaker and some stronger than the RKHS norm.

In Figure 1, we show the decay of the L2 norm in the interpolation of a function f∗ on [0, 1]
of smoothness 2 using kernels of smaller, matching and larger smoothness. In each case, the rate
predicted by (5) is sharp, and the convergence is indeed fastest when the smoothnesses match.

3.2. Decay rate of the averaging process. The averaging process is a stochastic process on a
graph, mostly studied as a model for asynchronous gossip algorithms on networks. Gossip algorithms
are subroutines used to diffuse information throughout networks in distributed algorithms [28], in
particular in distributed optimization [24].

Let G be a finite undirected connected graph with vertex set V of cardinality N and edge set E
of cardinality M . The averaging process is a discrete process on functions x : V → R defined as
follows. The initial configuration x1 = ev? : V → R is the indicator function of some distinguished
vertex v? ∈ V, i.e., x1(v?) = 1 and x1(v) = 0 if v 6= v?. At each iteration, we choose a random
edge and replace the values at the ends of the edge by the average of the two current values. In
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equations, at iterations n, given xn−1, sample an edge en = {vn, wn} uniformly at random from E
and independently from the past, and define

xn(vn) = xn(wn) =
xn−1(vn) + xn−1(wn)

2
, xn(v) = xn−1(v) , v 6= vn, wn . (6)

As the graph is connected, all functions values xn(v), v ∈ V converge to 1/N as n→∞. The study
of the averaging process aims at describing how the speed of convergence depends on the graph G.

The averaging process can be seen as a prototype interacting particle system, or finite markov
information-exchange process according to Aldous’s terminology [1]. However, the linear structure
of the updates of the averaging process makes the analysis simpler than in other interacting particle
systems; this property is key in applying the results of Section 2.

In this section, we introduce a quantitive version of the notion of spectral dimension of a graph
(see [3] and references therein for other definitions). We use this quantity to build polynomial
convergence rates for the expected squared `2-distance to optimum E

[∑
v∈V (xn(v)− 1/N)

2 ]
and for the expected energy E

[∑
{v,w}∈E(xn(v) − xn(w))2

]
. The comparison with other known

convergence bounds is made. We add numerical experiments showing that our bounds describe the
observed behavior in some classical large graphs, for an intermediate number of iterations.

Let L =
∑
{v,w}∈E(ev−ew)(ev−ew)> be the Laplacian of the graph. It is a positive semi-definite

operator. The spectral measure of L at a vertex v ∈ V is the unique measure σv such that for all
continuous real function f ,

〈ev, f(L)ev〉 =

∫
dσv(λ)f(λ) .

If 0 = λ0 < λ1 6 . . . 6 λN−1 are the eigenvalues of L and u0 = 1, u1, . . . , uN−1 are the corresponding
normalized eigenvectors, then

σv(dλ) =

N−1∑
i=0

(ui(v))2δλi(dλ) .

We say that G is of spectral dimension d > 0 with constant V > 0 if

∀v ∈ V , ∀E ∈ (0,∞) , σv((0, E]) 6 V −1Ed/2 .

A typical example motivating this definition is the following.

Proposition 1. Let TdL denote the d-dimensional torus of side length L, i.e., the graph with vertex
set V = (Z/LZ)d and edge set E = {{v, w}|v, w ∈ E, ‖v − w‖2 = 1}. The torus TdL is of dimension
d with some constant V (d) that depends on the dimension d but not on the side length L.

This result is proved at the end of this section. Similar results were proved for supercritical
percolation bonds in [22] and for the random geometric graphs in [3].

When the graph is large, the probability of sampling a given edge decays to 0. It is natural
to define a rescaled time t = n/M so that the expected number of times a given edge is sampled
during a unit time interval does not depend on M (and is equal to 1).

Corollary 1 (of Theorem 1). Assume that G is of spectral dimension d with constant V , and
denote δmax the maximal degree of the nodes in the graph. Then, for all t = n/M > 2,

(1) E

[∑
v∈V

(
xMt(v)− 1

N

)2
]
6 D(d, V, δmax)

(log t)d/2+2

td/2
,

(2) min
0<s6t

E

1

2

∑
{v,w}∈E

(xMs(v)− xMs(w))
2

 6 D′(d, V, δmax)
(log t)max(d/2,1)+1

td/2+1
,

where D(d, V, δmax), D′(d, V, δmax) are two constants, depending only on d, V, δmax (not on N or
M), whose expressions are given in the proof.

This corollary is proved at the end of this section. Note that as G is a finite graph, G can be
of any spectral dimension d for some potentially large constant V . However, for many families
of graphs of increasing size, such as the toruses TdL, L > 1, the spectral dimension constant V
corresponding to the dimension d and the maximum degree δmax remain bounded independently of
the size of the graph. In that case, the bounds of Corollary 1 are independent of the size of the
graph.
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Figure 2. Convergence rates on the circle T1
300 (up) and on the two dimensional

torus T2
40 (bottom). The convergence is measured in terms of squared `2-distance

to 1
N 1 (left) and sum of the squared differences along the edges (right). In orange

are the curves of the form C/nd/2 and C ′/nd/2+1 where C and C ′ are constants
chosen to match best the empirical observations.

These bounds should be compared to the known exponential convergence bounds of [2] or [28]:
they are of the form O(exp(−γt)) where γ is the spectral gap of the Laplacian of the graph, the
distance between the two minimal eigenvalues of the Laplacian. Although asymptotically faster,
these bounds are only relevant on the typical scale t & 1/γ. In many graphs of interests, the
spectral gap γ vanishes as the size of the graph increases; for instance, when G = TdL, γ is of the
order of 1/L2. As a consequence, for large graphs and moderate number of iterations, the spectral
dimension based bounds describe the observed behavior where spectral gap based bounds do not
apply. Indeed, in Figure 2, simulations on a large circle T1

300 and on a large torus T2
40 display

polynomial decay rates, with polynomial exponents coinciding with those of the corresponding
bounds of Corollary 1. Note that, if pushed on a longer time scale, the simulations would have
shown the exponential convergence due to finite graph effects. This incapacity of spectral gap
to describe the transient behavior had already motivated the authors of [6] to use the spectral
dimension to describe the behavior and to design accelerations of the gossip algorithm. However,
the analyses of this paper control only the expected process E[xn]: the random sampling of the
edges is averaged out.

While the polynomial exponents are sharp, we expect the logarithmic factors to be an artifact of
the method of proof, and the constants D(d, V, δmax), D′(d, V, δmax) to be suboptimal.

In the case d = 0 and V = 1, where no assumption on the structure of the graph is made, the
fact that the minimal past energy is O(n−1) (neglecting logarithmic factors) has been noticed by
Aldous in [2, Proposition 4]. Aldous leaves as an open problem whether one can prove a bound
without taking a minimum; this is a special case of our Remark 1.

Proof of Corollary 1. We apply Theorem 1 in the following way. Denote θn = xn−x1, θ∗ = x∗−x1,
where x∗ = 1

N 1 is the function identically equal to 1
N . These vectors belong to the Hilbert space

H = `2(V). Denote 〈., .〉 and ‖.‖ the `2(V) scalar product and norm. Denote alsoXn = evn−ewn ∈ H
and γ = 1/2. Note that Σ = E[XnX

>
n ] = 1

ML. The graph is connected thus λ0 = 0 is the unique
zero eigenvalue of L [11, Lemma 1.7]. The corresponding eigenspace is the space of constant
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functions. The vectors θn, Xn, θ∗ are orthogonal to the null space of Σ, thus the quantities of the
form 〈θn,Σ−αθn〉, 〈Xn,Σ

−αXn〉,〈θ∗,Σ−αθ∗〉 are finite.
We have θ1 = 0 and the averaging update step (6) can be written as

θn = θn−1 − γ 〈θn−1 − θ∗, Xn〉Xn .

The last form makes explicit the parallel with Equation (1). To apply Theorem 1, we check that its
assumptions are satisfied. First, ‖Xn‖2 = 2 a.s. thus R0 = 2 and γ = 1/R0. Second, we seek α > 0
such that ‖Σ−α/2θ∗‖ < ∞ and Rα = sup{v,w}∈E 〈ev − ew,Σ−α(ev − ew)〉 < ∞. In the following,
we bound these constants for all α < d/2, thus giving decay rates for the expected squared distance
to optimum of the form n−α for all α < d/2. However, our bounds of the constants ‖Σ−α/2θ∗‖ and
Rα diverge as α→ d/2. Nevertheless, by estimating how fast the bounds diverge as α→ d/2, we
obtain a decay rate of n−d/2 by paying an additional logarithmic factor.

Fix 0 < α < d/2. We check assumptions (a) and (b).
(a)

‖Σ−α/2θ∗‖2 = Mα
〈
x∗ − x1, L

−α(x∗ − x1)
〉

= Mα
N−1∑
i=1

λ−αi 〈x∗ − x1, ui〉2 .

First, as x∗ is a constant vector, 〈x∗, ui〉 is zero for all i > 1. Second, x1 = ev? . Thus

‖Σ−α/2θ∗‖2 = Mα
N−1∑
i=1

λ−αi ui(v?)
2

= Mα

∫
(0,∞)

dσv?(λ)λ−α

= Mα

∫
(0,∞)

dσv?(λ)

∫ ∞
0

ds1{s6λ−α}

= Mα

∫ ∞
0

ds

∫
(0,∞)

dσv?(λ)1{λ6s−1/α}

= Mα

∫ ∞
0

ds σv?((0, s−1/α]) .

The graph G is of spectral dimension d with constant V , thus σv?((0, s−1/α]) 6 V −1s−
d
2α .

However, if s < δ−αmax, it is better to use a more naive bound. As all eigenvalues of L are
smaller or equal than δmax, σv?((0, s−1/α]) 6 σv?((0, δmax]) 6 V −1δ

d/2
max. Then

‖Σ−α/2θ∗‖2 6Mα

[∫ δ−αmax

0

ds V −1δd/2max +

∫ ∞
δ−αmax

ds V −1s−
d
2α

]

= MαV −1δd/2−αmax

d

d− 2α
.

(b) Let {v, w} ∈ E. As ‖Σ−α/2.‖ is a norm, by the triangle inequality,

‖Σ−α/2(ev − ew)‖2 = ‖Σ−α/2 [(x∗ − ew)− (x∗ − ev)] ‖2

6
(
‖Σ−α/2(x∗ − ew)‖+ ‖Σ−α/2(x∗ − ev)‖

)2

6 2
(
‖Σ−α/2(x∗ − ew)‖2 + ‖Σ−α/2(x∗ − ev)‖2

)
.

We bound the two quantities as above. We obtain

Rα = sup
v,w∈E

‖Σ−α/2(ev − ew)‖2 6 2MαV −1δd/2−αmax

d

d− 2α
.

Theorem 1 (using the explicit constant given in Theorem 3) gives

E
[
‖xn − x∗‖2

]
= E

[
‖θn − θ∗‖2

]
6 max

(
d

2
, 1

)d/2(
1 + ‖Σ‖αH→HMαδd/2−αmax V −1 d

d− 2α

)d/2+1

Mαδd/2−αmax V −1 d

d− 2α

1

nα
.
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Note that ‖L‖H→H 6 δmax, thus ‖Σ‖H→H 6 δmaxM
−1, and recall the scaling t = n/M .

E
[
‖xn − x∗‖2

]
= max

(
d

2
, 1

)d/2(
1 + δd/2maxV

−1 d

d− 2α

)d/2+1

δd/2−αmax V −1 d

d− 2α

1

tα
.

This bound is valid for all α < d
2 . Choose α = d

2 −
1

2 log t .

E
[
‖xn − x∗‖2

]
= max

(
d

2
, 1

)d/2 (
1 + δd/2maxV

−1d log t
)d/2+1

δ
1

2 log t
max V −1d log t

e1/2

td/2
.

As we assume t > 2,

1 + 2δd/2maxV
−1d log t 6

(
1

log 2
+ δd/2maxV

−1d

)
log t ,

δ
1

2 log t
max 6 δ

1
2 log 2
max .

Putting these bounds together, we obtain

E
[
‖xn − x∗‖2

]
= D(d, V, δmax)

(log t)d/2+2

td/2

with

D(d, V, δmax) = max

(
d

2
, 1

)d/2(
1

log 2
+ δd/2maxV

−1d

)d/2+1

δ
1

2 log 2
max V −1de1/2 .

This proves conclusion 1. The proof of 2 is similar. Theorem 1 (using the explicit constant given in
Theorem 3) gives

min
0<k6n

E

1

2

∑
{v,w}∈E

(xk(v)− xk(w))
2

 = min
0<k6n

E
[

1

2
〈xk − x∗, L(xk − x∗)〉

]

= M min
0<k6n

E
[

1

2
〈θk − θ∗,Σ(θk − θ∗)〉

]
6 e1/e d

2

(
d

2
+ 1

)
max

(
d

2
, 1

)d/2−1(
1 + δd/2maxV

−1 d

d− 2α

)max(d/2,1)

δd/2−αmax V −1 d

d− 2α

1

tα+1
.

Choose again α = d
2 −

1
2 log t ,

min
0<k6n

E

1

2

∑
{v,w}∈E

(xk(v)− xk(w))
2


6 e1/e d

2

(
d

2
+ 1

)
max

(
d

2
, 1

)d/2−1 (
1 + δd/2maxV

−1 log t
)max(d/2,1)

δ
1

2 log t
max V −1 log t

e1/2

td/2+1
.

Finally, use t > 2 to obtain

min
0<k6n

E

1

2

∑
{v,w}∈E

(xk(v)− xk(w))
2

 6 D′(d, V, δmax)
(log t)

max(d/2,1)+1

td/2+1

with

D′(d, V, δmax) = e1/e+1/2 d

2

(
d

2
+ 1

)
max

(
d

2
, 1

)d/2−1(
1

log 2
+ δd/2maxV

−1d

)max(d/2,1)

δ
1

2 log 2
max V −1d .

�

Proof of Proposition 1. The graph TdL is invariant by translation, thus the spectral measure σv is
the same for all vertices v ∈ V. Thus

|V|σv(dλ) =
∑
w∈V

σw(dλ) =
∑
w∈V

N−1∑
i=0

ui(w)2δλi =

N−1∑
i=0

(∑
w∈V

ui(w)2

)
δλi =

N−1∑
i=0

δλi .

Thus

σv((0, E]) =
1

Ld
|{0 < i 6 N − 1|λi 6 E}| .
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We need to bound the number of eigenvalues of the Laplacian of TdL below some fixed value E. The
eigenvalues of the Laplacian of the circle T1

L are 1− cos
(

2πi
L

)
, i ∈ Z,−L/2 < i 6 L/2 [11, Example

1.5]. As TdL is the Cartesian product T1
L × · · · ×T1

L (with d terms), the eigenvalues of the Laplacian
of the torus TdL are the

1− cos

(
2πi1
L

)
+ · · ·+ 1− cos

(
2πid
L

)
, i1, . . . id ∈ Z, −L

2
< i1, . . . , id 6

L

2
.

For y ∈ [−π, π], 1− cos(y) > 2
π2 y

2. Thus

1− cos

(
2πi1
L

)
+ · · ·+ 1− cos

(
2πid
L

)
6 E ⇒ 2

π2

[(
2πi1
L

)2

+ · · ·+
(

2πid
L

)2
]
6 E

⇔ i21 + · · ·+ i2d 6
EL2

8
.

We need to count the number of integer points in the Euclidean ball centered at 0 and of radius√
E/8L in Rd. This problem is famously known as Gauss circle problem. For our purposes, a crude

estimate suffices: there exists a constant C(d), depending only on the dimension d, such that for all
radius R, the number of integer points in the ball of radius R is smaller than 1 + C(d)Rd. This
leads to the final estimate

σv((0, E]) =
1

Ld

∣∣∣∣{(i1, . . . , id) ∈
(
Z ∩

(
−L

2
,
L

2

])d
\ {0} such that

1− cos

(
2πi1
L

)
+ · · ·+ 1− cos

(
2πid
L

)
6 E

}∣∣∣∣
6

1

Ld

∣∣∣∣{(i1, . . . , id) ∈ Zd\ {0}
∣∣∣∣ i21 + · · ·+ i2d 6

EL2

8

}∣∣∣∣
6

1

Ld
C(d)

(
EL2

8

)d/2
=
C(d)

8d/2
Ed/2 .

This proves the proposition with V (d) = 8d/2/C(d). �

3.3. Linear regression with Gaussian features. In the setting of Section 2.1, we assume X
to be centered Gaussian process of covariance Σ where Σ is a bounded symmetric semidefinite
operator. As X is not bounded a.s., we need to use the weaker set of assumptions given in
Remark 2. We thus need to compute R0 minimal such that E

[
‖X‖2X ⊗X

]
4 R0Σ and α,Rα

such that E [〈X,Σ−αX〉X ⊗X] 4 RαΣ. We show here that these conditions are in fact simple
trace conditions on Σ, sometimes called capacity conditions [25].

Lemma 1. If X ∼ N (0,Σ) and A is a bounded symmetric operator such that Tr(ΣA) <∞,

E [〈X,AX〉X ⊗X] = 2ΣAΣ + Tr(ΣA)Σ 4
(

2‖Σ1/2AΣ1/2‖H→H + Tr(ΣA)
)

Σ .

Proof. Diagonalize Σ =
∑
i>1 λiei ⊗ ei. Then there exists independent standard Gaussian random

variables Xi, i > 0 such that X =
∑
i λ

1/2
i Xiei.

Let i, j > 1.

〈ei,E [〈X,AX〉X ⊗X] ej〉 = E [〈X,AX〉 〈ei, X ⊗Xej〉] = E
[
〈X,AX〉λ1/2

i Xiλ
1/2
j Xj

]
= λ

1/2
i λ

1/2
j

∑
k,l

Ak,lλ
1/2
k λ

1/2
l E [XiXjXkXl] .

As Xi, i > 1 are centered independent random variables, the quantity E [XiXjXkXl] is 0 in many
cases. More precisely,

• if i 6= j, the general term of the sum in non-zero only when k = i and l = j or k = j and
l = i. This gives

〈ei,E [〈X,AX〉X ⊗X] ej〉 = 2Ai,jλiλj .
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• if i = j, the general term of the sum is non-zero only when k = l. This gives

〈ei,E [〈X,AX〉X ⊗X] ei〉 = λi
∑
k

Ak,kλkE
[
X2
iX

2
k

]
= λi

∑
k 6=i

Ak,kλk + 3λ2
iAi,i

= λi
∑
k

Ak,kλk + 2λ2
iAi,i .

In both cases,

〈ei,E [〈X,AX〉X ⊗X] ej〉 = 2λiλjAi,j +

(∑
k

Ak,kλk

)
λi1i=j .

Note that
Tr(AΣ) =

∑
k

〈ek,ΣAek〉 =
∑
k

λkAk,k .

Thus we get

〈ei,E [〈X,AX〉X ⊗X] ej〉 = 2λiλjAi,j + Tr(AΣ)λi1i=j

= 2 〈ei,ΣAΣej〉+ Tr(AΣ) 〈ei,Σej〉
= 〈ei, [2ΣAΣ + Tr(ΣA)Σ] ej〉 .

�

From this lemma with A = Id, we compute R0 = 2‖Σ‖H→H + Tr(Σ), and with A = Σ−α, we
compute Rα = 2‖Σ‖1−αH→H+Tr(Σ1−α). Thus in the Gaussian case, the condition of (weak) regularity
of the features is given by Tr(Σ1−α) <∞.
Simulations. We present simulations in finite but large dimension d = 105, and we check that
dimension-independent bounds describe the observed behavior. We artificially generate regression
problems with different regularities by varying the decay of the eigenvalues of the covariance Σ and
varying the decay of the coefficients of θ∗.

Choose an orthonormal basis e1, . . . , ed of H. We define Σ =
∑d
i=1 i

−βei⊗ ei for some β > 1 and
θ∗ =

∑d
i=1 i

−δei for some δ > 1/2. We now check the condition on α such that the assumptions (a)
and (b) are satisfied.

(a) 〈θ∗,Σ−αθ∗〉 =
∑d
i=1〈θ∗, ei〉2iβα =

∑d
i=1 i

−2δ+αβ , which is bounded independently of the
dimension d if and only if

∑∞
i=1 i

−2δ+αβ <∞⇔ −2δ + αβ < −1⇔ α < 2δ−1
β .

(b) Tr(Σ1−α) =
∑d
i=1 i

−β(1−α), which is bounded independently of the dimension d if and only
if
∑∞
i=1 i

−β(1−α) <∞⇔ −β(1− α) < −1⇔ α < 1− 1/β.
Thus the corollary gives dimension-independent convergence rates for all α < α∗ = min

(
1− 1

β ,
2δ−1
β

)
.

In Figure 3, we show the evolution of ‖θn − θ∗‖2 and R(θn) for two realizations of SGD. We
chose the stepsize γ = 1/R0 = 1/(2‖Σ‖H→H + Tr(Σ)). The two realizations represent two possible
different regimes:

• In the two upper plots, β = 1.4, δ = 1.2. The irregularity of the feature vectors is the
bottleneck for fast convergence. We have α∗ = min

(
1− 1

β ,
2δ−1
β

)
≈ min(0.29, 1) = 0.29.

• In the two lower plots, β = 3.5, δ = 1.5. The irregularity of the optimum is the bottleneck
for fast convergence. We have α∗ = min

(
1− 1

β ,
2δ−1
β

)
≈ min(0.71, 0.57) = 0.57.

We compare with the curves D/nα∗ and D′/nα∗+1 with hand-tuned constants D and D′ to fit
best the data. In both regimes, our theory is sharp in predicting the exponents in the polynomial
rates of convergence of ‖θn − θ∗‖2 and R(θn).

4. Robustness to model mispecification

In this section, we describe how the results of Section 2 are perturbed in the case where a linear
relation Y = 〈θ∗, X〉 a.s. does not hold. Following the statistical learning framework, we assume a
joint law on (X,Y ). We further assume that there exists a minimizer θ∗ ∈ H of the population
risk R(θ):

θ∗ ∈ argmin
θ∈H

{
R(θ) =

1

2
E
[
(Y − 〈θ,X〉)2

]}
.
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Figure 3. In blue +, evolution of ‖θn − θ∗‖2 (left) and R(θn) (right) as functions
of n, for the problems with parameters β = 1.4, δ = 1.2 (up) and β = 3.5, δ = 1.5.
The orange lines represent the curves D/nα∗ (left) and D′/nα∗+1 (right).

This general framework encapsulates two types of perturbations of the noiseless linear model:
• (variance) The output Y can be uncertain given X. For instance, under the noisy linear

model, Y = 〈θ∗, X〉+ Z, where Z is centered and independent of X. In this case, R(θ∗) =
E[Z2] = E[var (Y |X)].

• (bias) Even if Y is deterministic given X, this dependence can be non-linear: Y = ψ(X)
for some non-linear function ψ. Then R(θ∗) is the squared L2 distance of the best linear
approximation to ψ: R(θ∗) = 1

2E
[
(ψ(X)− 〈θ∗, X〉)2

]
.

In the general framework, the optimal population risk is a combination of both sources

R(θ∗) =
1

2
E [var (Y |X)] +

1

2
E
[
(E[Y |X]− 〈θ∗, X〉)2

]
.

Given i.i.d. realizations (X1, Y1), (X2, Y2), . . . of (X,Y ), the SGD iterates are defined as

θ1 = 0 , θn = θn−1 − γ (〈θn−1, Xn〉 − Yn)Xn . (7)

Apart from the new definition of θ∗, we repeat the same assumptions as in Section 2: denote
R0 = ess sup ‖X‖2 <∞, Σ = E[X ⊗X] and ϕn(β) = ‖Σ‖βH→HE

[〈
θn − θ∗,Σ−β (θn − θ∗)

〉]
.

Theorem 5. Under the assumptions of Theorem 1,

min
k=1,...,n

E [R(θk)−R(θ∗)] 6 2
C ′

nα+1
+ 2R0γR(θ∗) ,

where C ′ is the same constant as in Theorem 1.

The take-home message is that if we consider the excess risk R(θk) − R(θ∗), we get the
upper bound of the form 2C ′n−(α+1), analog to Theorem 1, but with an additional constant
term 2R0γR(θ∗). This term is small if R(θ∗) is small, that is if the problem is close to the
noiseless linear model, or if the step-size γ is small. In the finite horizon setting setting, one can
optimize γ as a function of the scheduled number of steps n in order to balance both terms in
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Figure 4. In blue +, evolution of ‖θn − θ∗‖2 (left) and R(θn) (right) as functions
of n, for the problems with parameters d = 105, β = 1.4, δ = 1.2. The orange lines
represent the curves D/nα∗ (left) and D′/nα∗+1 (right).

the upper bound. As C ′ ∝ γ−(α+1), the optimal choice is γ ∝ n−(α+1)/(α+2) which gives a rate
mink=1,...,n E [R(θk)−R(θ∗)] = O

(
n−(α+1)/(α+2)

)
.

In the theorem below, we study the SGD iterates θn in terms of the power norms ϕn(β),
β ∈ [−1, α − 1], in particular in term of the reconstruction error ϕn(0) = E[‖θn − θ∗‖2] if α > 1.
Note that the population risk R(θ) is a quadratic with Hessian Σ, minimized at θ∗, thus

E [R(θn)−R(θ∗)] =
1

2
E [〈θn − θ∗,Σ(θn − θ∗)〉] =

1

2
‖Σ‖H→Hϕn(−1) .

Thus the theorem below generalizes Theorem 5.

Theorem 6. Under the assumptions of Theorem 1,
(1) for all β > 0, β 6 α− 1,

ϕn(β) 6 2
C(β)

nα−β
+ E(β)γR(θ∗) ,

(2) for all β ∈ [−1, 0), β 6 α− 1,

min
k=1,...,n

ϕk(β) 6 2
C ′(β)

nα−β
+ E(β)γR(θ∗) ,

where E(β) = 2R
(α−1−β)/α
0 ‖Σ‖βH→HR

(β+1)/α
α

(
1 + ‖Σ‖αH→HRα/R0

2

)(β+1)/α

and C(β), C ′(β) are

the same constants as in Theorem 3.

This theorem is proved at the end of this section. We expect the condition β 6 α − 1 to be
necessary. More precisely, when R(θ∗) is positive, we expect the error θn − θ∗ to diverge under the
norm ‖Σ−β/2 . ‖ if β > α− 1. In particular, this would imply that the reconstruction error diverges
when α < 1.

In Figure 4, we show how the simulations of Section 3.3 are perturbed in the presence of additive
noise. We consider the noisy linear model Y = 〈θ∗, X 〉+σ2Z, where X ∼ N (0,Σ) and Z ∼ N (0, 1)

are independent. As in the previous simulations, we consider the case Σ =
∑d
i=1 i

−βei ⊗ ei and
θ∗ =

∑d
i=1 i

−δei with here d = 105, β = 1.4, δ = 1.2. In the noiseless case σ2 = 0, we have shown
that the rate of convergence was given by the polynomial exponent α∗ = min

(
1− 1

β ,
2δ−1
β

)
. These

predicted rates are represented by the orange lines in the plots. In blue, we show the results of our
simulations with some additive noise with variance σ2 = 2× 10−4. The exponent α∗ still describes
the behavior of SGD in the initial phase, but in the large n asymptotic the population risk R(θn)
stagnates around the order of σ2. Both of these qualitative behaviors are predicted by Theorem 5.
Moreover, the reconstruction error ‖θn − θ∗‖ diverges for large n.

5. Conclusion and research directions

In this paper, we give a sharp description of the convergence of SGD under the noiseless linear
model and made connexions with the interpolation of a real function and the averaging process.
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The behavior of SGD is surprisingly different in the absence of additive noise: it converges without
any averaging or decay of the step-sizes. To some extent, SGD adapts to the regularity of the
problem thanks to the implicit regularization ensured by the initialization at zero and the single
pass on the data. However, by comparing with some known estimators for the interpolation of
functions [5, 19] (see the end of Section 1), we conjecture that the convergence rate of SGD is
suboptimal. What are the minimax rates under the noiseless linear model? Can they be reached
with some accelerated online algorithm?
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Appendix A. Proof of Theorem 3

A.1. Properties of the regularity functions. We derive here properties of the sequence of
regularity functions ϕn, n > 1 that are useful for the proof of Theorem 3. We now assume the
assumptions of Theorem 3 to be satisfied.

Property 1. For all n, the function β 7→ ϕn(β) is increasing.

Proof. Let β1 6 β2. As Σ−β1 = Σβ2−β1Σ−β2 4 ‖Σ‖β2−β1

H→HΣ−β2 ,

ϕn(β1) = ‖Σ‖β1

H→HE
[〈
θn − θ∗,Σ−β1 (θn − θ∗)

〉]
6 ‖Σ‖β1

H→H‖Σ‖
β2−β1

H→HE
[〈
θn − θ∗,Σ−β2 (θn − θ∗)

〉]
= ϕn(β2) .

�

Property 2. For all n, the function ϕn is log-convex, i.e., for all β1, β2 ∈ R, for all λ ∈ [0, 1],

ϕn ((1− λ)β1 + λβ2) 6 ϕn(β1)1−λϕn(β2)λ .

Proof. The proof is based on the following lemma, that we state clearly for another use below.

Lemma 2. Let θ ∈ H. Then for all β1, β2 ∈ R, λ ∈ [0, 1],〈
θ,Σ−[(1−λ)β1+λβ2]θ

〉
6
〈
θ,Σ−β1θ

〉1−λ 〈
θ,Σ−β2θ

〉λ
.

This lemma follows from Hölder’s inequality with p = (1−λ)−1 and q = λ−1. Indeed, diagonalize
Σ =

∑
i µiei ⊗ ei. Then〈

θ,Σ−[(1−λ)β1+λβ2]θ
〉

=
∑
i

µ
−[(1−λ)β1+λβ2]
i 〈θ, ei〉2

=
∑
i

(
µ−β1

i 〈θ, ei〉2
)1−λ (

µ−β2

i 〈θ, ei〉2
)λ

6

(∑
i

µ−β1

i 〈θ, ei〉2
)1−λ(∑

i

µ−β2

i 〈θ, ei〉2
)λ

=
〈
θ,Σ−β1θ

〉1−λ 〈
θ,Σ−β2θ

〉λ
.

We now apply this lemma to prove Property 2.

ϕn((1− λ)β1 + λβ2) = ‖Σ‖(1−λ)β1+λβ2

H→H E
[〈
θn − θ∗,Σ−[(1−λ)β1+λβ2] (θn − θ∗)

〉]
6 ‖Σ‖(1−λ)β1+λβ2

H→H E
[〈
θn − θ∗,Σ−β1 (θn − θ∗)

〉1−λ 〈
θn − θ∗,Σ−β2 (θn − θ∗)

〉λ]
.

Using again Hölder’s inequality, we get

ϕn((1− λ)β1 + λβ2)

6 ‖Σ‖(1−λ)β1+λβ2

H→H E
[〈
θn − θ∗,Σ−β1 (θn − θ∗)

〉]1−λ E [〈θn − θ∗,Σ−β2 (θn − θ∗)
〉]λ

= ϕn(β1)1−λϕn(β2)λ .

�

Property 3. For all n, the function ϕn is finite on (−∞, α], and if 0 6 β 6 α,

ϕn(β) 6 ϕn−1(β)− 2γ‖Σ‖ϕn−1(β − 1) + γ2‖Σ‖β+1R
1−β/α
0 Rβ/αα ϕn−1(−1) .

Proof. By assumption (a), ϕ0(α) = ‖Σ‖α‖Σ−α/2θ∗‖2 is finite. As the function ϕ0 is increasing, this
implies that ϕ0 is finite in (∞, α].

Further, assume that for some n, the function ϕn−1 is finite on (∞, α]. Then we can rewrite the
stochastic gradient iteration (1) as

θn − θ∗ = (Id−γXn ⊗Xn)(θn−1 − θ∗) .
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Substituting this expression in the definition of ϕn and expanding the formula, we get

ϕn(β) = ‖Σ‖βH→HE
[〈
θn − θ∗,Σ−β (θn − θ∗)

〉]
= ‖Σ‖βH→HE

[〈
(Id−γXn ⊗Xn)(θn−1 − θ∗),Σ−β(Id−γXn ⊗Xn)(θn−1 − θ∗)

〉]
= ‖Σ‖βH→H

[
E
[〈
θn−1 − θ∗,Σ−β(θn−1 − θ∗)

〉]
(8)

− 2γE
[〈
θn−1 − θ∗,Σ−βXn ⊗Xn(θn−1 − θ∗)

〉]
(9)

+ γ2E
[〈
θn−1 − θ∗, Xn ⊗XnΣ−βXn ⊗Xn(θn−1 − θ∗)

〉] ]
. (10)

Note that the first term of this sum is ϕn−1(β). Further, θn−1 is computed using only (X1, Y1),
. . . , (Xn−1, Yn−1), thus it is independent of Xn. It follows that

E
[〈
θn−1 − θ∗,Σ−βXn ⊗Xn(θn−1 − θ∗)

〉]
= E

[〈
θn−1 − θ∗,Σ−βE [Xn ⊗Xn] (θn−1 − θ∗)

〉]
= E

[〈
θn−1 − θ∗,Σ−β+1(θn−1 − θ∗)

〉]
= ‖Σ‖−(β−1)

H→H ϕn−1(β − 1) . (11)

Similarly,

E
[〈
θn−1 − θ∗, Xn ⊗XnΣ−βXn ⊗Xn(θn−1 − θ∗)

〉]
(12)

= E
[〈
θn−1 − θ∗,E

[
Xn ⊗XnΣ−βXn ⊗Xn

]
(θn−1 − θ∗)

〉]
(13)

We now assume that 0 6 β 6 α. Thus we can apply Lemma 2 with β1 = 0, β2 = α, λ = β/α:〈
θn−1 − θ∗,E

[
Xn ⊗XnΣ−βXn ⊗Xn

]
(θn−1 − θ∗)

〉
= E

[
〈θn−1 − θ∗, Xn〉2

〈
Xn,Σ

−βXn

〉]
6 E

[
〈θn−1 − θ∗, Xn〉2 ‖Xn‖2(1−β/α)

〈
Xn,Σ

−αXn

〉β/α]
.

Applying Hölder’s inequality, we get〈
θn−1 − θ∗,E

[
Xn ⊗XnΣ−βXn ⊗Xn

]
(θn−1 − θ∗)

〉
6 E

[
〈θn−1 − θ∗, Xn〉2 ‖Xn‖2

]1−β/α
E
[
〈θn−1 − θ∗, Xn〉2

〈
Xn,Σ

−αXn

〉]β/α
=
〈
θn−1 − θ∗,E

[
‖Xn‖2Xn ⊗Xn

]
(θn−1 − θ∗)

〉1−β/α
×
〈
θn−1 − θ∗,E

[〈
Xn,Σ

−αXn

〉
Xn ⊗Xn

]
(θn−1 − θ∗)

〉β/α
6 R1−β/α

0 Rβ/αα 〈θn−1 − θ∗,Σ(θn−1 − θ∗)〉 ,

where in this last step, we use the assumptions that the features X are bounded and regular, in
their weak formulation of Remark 2. Returning to the computation of (12)-(13), we get

E
[〈
θn−1 − θ∗, Xn ⊗XnΣ−βXn ⊗Xn(θn−1 − θ∗)

〉]
6 R1−β/α

0 Rβ/αα E [〈θn−1 − θ∗,Σ(θn−1 − θ∗)〉]

= R
1−β/α
0 Rβ/αα ‖Σ‖H→Hϕn−1(−1) . (14)

The result is obtained by putting together Equations (8)-(10), (11) and (14). �

A.2. Proof of Theorem 3 from the properties of regularity functions. A remarkable
feature of the proof that follows is that only Properties 1-3 of the regularity functions are used to
derive the theorem. In particular, we do not use the definition of the regularity functions ϕn in this
section.

We start with a few preliminary remarks. Using the recurrence Property 3 and that γR0 6 1,

ϕn(0) 6 ϕn−1(0)− γ‖Σ‖H→H (2− γR0)ϕn−1(−1)

6 ϕn−1(0)− γ‖Σ‖H→Hϕn−1(−1) .

Thus the sequence (ϕn(0))n>1 decreases, and

γ‖Σ‖H→Hϕn−1(−1) 6 ϕn−1(0)− ϕn(0) . (15)
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By summing this inequality over n > 2, we get

γ‖Σ‖H→H
∞∑
n=1

ϕn(−1) 6 ϕ1(0) . (16)

At this point, we can prove the theorem in the case α = 0. Conclusion 1 follows from the inequality
ϕn(0) 6 ϕ1(0) = ‖θ∗‖. In order to prove conclusion 2, we use (16):

γ‖Σ‖H→Hnϕn(−1) 6 γ‖Σ‖H→H
n∑
k=1

ϕk(−1) 6 γ‖Σ‖H→H
∞∑
k=1

ϕk(−1) 6 ϕ1(0) .

To finish, for β ∈ [−1, 0), we use the log-convexity of the function ϕn (Property 2):

ϕn(β) 6 ϕn(−1)−βϕn(0)1+β 6

(
ϕ1(0)

γ‖Σ‖H→Hn

)−β
ϕ1(0)1+β =

‖θ∗‖2

γ−β‖Σ‖−βH→H

1

n−β
.

This shows conclusion 2. In the rest of this proof, we assume α > 0. Using again the recurrence
Property 3,

ϕk(α) 6 ϕk−1(α)− 2γ‖Σ‖H→Hϕk−1(α) + γ2‖Σ‖α+1
H→HRαϕk−1(−1) (17)

6 ϕk−1(α) + γ2‖Σ‖α+1
H→HRαϕk−1(−1) .

By summing for k = 2, . . . , n,

ϕn(α) 6 ϕ1(α) + γ2‖Σ‖α+1
H→HRα

n−1∑
k=1

ϕk(−1) .

Using the bound (16), we obtain

ϕn(α) 6 ϕ1(α) + γ‖Σ‖αH→HRαϕ1(0) 6 ϕ1(α) + ‖Σ‖αH→H
Rα
R0

ϕ1(0) .

We now define D = 1 + ‖Σ‖αH→HRα/R0. Using that ϕ1 is increasing (Property 1), the bound above
can be simplified into

ϕn(α) 6 Dϕ1(α) . (18)

Further, Equation (17) gives

2γ‖Σ‖H→Hϕk−1(α− 1) 6 ϕk−1(α)− ϕk(α) + γ2‖Σ‖α+1
H→HRαϕk−1(−1) .

Thus by summing over k > 2,

2γ‖Σ‖H→H
∞∑
k=1

ϕk(α− 1) 6 ϕ1(α) + γ2‖Σ‖α+1
H→HRα

∞∑
k=1

ϕk(−1)

Using (16), we get
∞∑
k=1

ϕk(α− 1) 6
D

2γ‖Σ‖H→H
ϕ1(α) . (19)

So far we have proved that ϕn(α) is a bounded sequence and that
∑
n ϕn(α− 1) is summable.

The idea of this proof is to repeat a reasoning similar to the steps (17)-(19) in order to get the
summability of

∑
n nϕn(α− 2),

∑
n n

2ϕn(α− 3), etc. The results can then be translated in decay
rates of the quantities ϕn(α− 1), ϕn(α− 2), ϕn(α− 3), etc., and the results can be interpolated to
ϕn(α− β) for non-integer β using the log-convexity of the functions ϕn (Property 2). However, the
possibility that α can be non-integer generates several complications in the formalization of this
intuition. We need to divide the proof along two cases: 0 < α < 1 and α > 1.
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A.2.1. Case 0 < α < 1. In this case, 0 ∈ (α− 1, α). Decomposing 0 = (1− α)α+ α(α− 1) and
using the log-convexity of ϕn (Property 2), we obtain

ϕn(0) 6 ϕn(α)1−αϕn(α− 1)α 6
using (18)

(Dϕ1(α))
1−α

ϕn(α− 1)α .

Thus
∞∑
n=1

ϕn(0)1/α 6 (Dϕ1(α))
1−α
α

∞∑
n=1

ϕn(α− 1) 6
using (19)

1

2γ‖Σ‖H→H
(Dϕ1(α))

1/α
. (20)

Using that the sequence (ϕn(0))n>1 decreases, we get

nϕn(0)1/α 6
n∑
k=1

ϕk(0)1/α 6
∞∑
k=1

ϕk(0)1/α 6
1

2γ‖Σ‖H→H
(Dϕ1(α))

1/α
. (21)

Thus

ϕn(0) 6
1

2αγα‖Σ‖αH→H
Dϕ1(α)

1

nα
.

Using the log-convexity of ϕn (Property 2), we obtain for β ∈ [0, α],

ϕn(β) 6 ϕn(0)1−β/αϕn(α)β/α 6
using (18),(21)

1

2α−βγα−β‖Σ‖α−βH→H
Dϕ1(α)

1

nα−β

Recalling that D = 1 + ‖Σ‖αH→H
Rα
R0

and that ϕ1(α) = ‖Σ‖αH→H‖Σ−α/2θ∗‖2, one can check that
the above bound implies the conclusion 1 of Theorem 3.

We now continue with the proof of the conclusion 2. As the sequence (ϕn(0))n>1 decreases to 0,

∞∑
n=1

ϕn(0)1/α =

∞∑
n=1

∞∑
k=n

[
ϕk(0)1/α − ϕk+1(0)1/α

]
=

∞∑
k=1

k
[
ϕk(0)1/α − ϕk+1(0)1/α

]
.

The function f(ϕ) = ϕ1/α is convex, thus f(ϕ)− f(ϕ′) > f ′(ϕ)(ϕ− ϕ′) = 1
αϕ

1
α−1(ϕ− ϕ′). Thus

∞∑
n=1

ϕn(0)1/α >
1

α

∞∑
k=1

kϕk(0)
1
α−1 [ϕk(0)− ϕk+1(0)]

>
using (15)

γ‖Σ‖H→H
α

∞∑
k=1

kϕk(0)
1
α−1ϕk(−1) . (22)

We then use Hölder’s inequality with parameters p = α, q = α/(α− 1):

∞∑
k=1

k1/αϕk(−1)1/α =

∞∑
k=1

(
k1/αϕk(−1)1/αϕk(0)

1
α ( 1

α−1)
)
ϕk(0)−

1
α ( 1

α−1)

6

( ∞∑
k=1

kϕk(−1)ϕk(0)
1
α−1

)1/α( ∞∑
k=1

ϕk(0)1/α

)1−1/α

6
using (22)

α1/α

γ1/α‖Σ‖1/αH→H

∞∑
k=1

ϕk(0)1/α . (23)

Further, if −1 6 β 6 0, we use the log-convexity ϕk(β) 6 ϕk(−1)−βϕk(0)1+β (Property 2),

∞∑
k=1

k−β/αϕk(β)1/α 6
∞∑
k=1

k−β/αϕk(−1)−β/αϕk(0)
1+β
α .
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Using Hölder’s inequality with parameters p = −1/β, q = 1/(1 + β),

∞∑
k=1

k−β/αϕk(β)1/α 6

( ∞∑
k=1

k1/αϕk(−1)1/α

)−β ( ∞∑
k=1

ϕk(0)1/α

)1+β

6
using (23)

α−β/α

γ−β/α‖Σ‖−β/αH→H

∞∑
k=1

ϕk(0)1/α

6
using (20)

α−β/α

2γ1−β/α‖Σ‖1−β/αH→H

(Dϕ1(α))
1/α

.

Finally,(
min

k=1,...,n
ϕk(β)

)1/α n∑
k=1

k−β/α 6
n∑
k=1

k−β/αϕk(β)1/α 6
α−β/α

2γ1−β/α‖Σ‖1−β/αH→H

(Dϕ1(α))
1/α

.

As −β/α > 0,
∑n
k=1 k

−β/α >
∫ n

0
x−β/αdx = α

α−βn
− βα+1. Thus

min
k=1,...,n

ϕk(β) 6 α−β
(
α− β
α

)α
1

2αγα−β‖Σ‖α−βH→H
Dϕ1(α)

1

nα−β
. (24)

It is easy to prove that (1/α)α 6 e1/e. Further, as α 6 1, (α − β)α 6 α − β. Finally, recall that
D = 1 + ‖Σ‖αH→H

Rα
R0

and that ϕ1(α) = ‖Σ‖αH→H‖Σ−α/2θ∗‖2. Combining those inequalities, one
derives the conclusion 2 of the theorem from (24).

A.2.2. Case α > 1. In the following,
(
n
k

)
denotes the binomial coefficient

(
n
k

)
= n!

k!(n−k)! and bαc
denotes the integer part of α.

For β ∈ N, 1 6 β 6 bαc+ 1, define

uβ =

∞∑
n=1

(
n+ β − 1

β − 1

)
ϕn(α− β) .

Equation (19) states that u1 6 D
2γ‖Σ‖H→Hϕ1(α). Using the recurrence Property 3, we now show

that for β ∈ N, 1 6 β 6 bαc, uβ+1 6 D
2γ‖Σ‖H→Huβ .

To start with, we note that R0 6 ‖Σ‖αH→HRα. Indeed, ‖X‖2 6 ‖Σ‖αH→H‖Σ−α/2X‖2 a.s. If
one takes the definitions of R0 and Rα given in (2) and assumption (b), it is straightforward that
R0 6 ‖Σ‖αH→HRα. If one uses instead the weaker definitions of R0 and Rα given in Remark 2, we
obtain

E
[
‖X‖2X ⊗X

]
4 ‖Σ‖αH→HE

[
‖Σ−α/2X‖2X ⊗X

]
4 ‖Σ‖αH→HRαΣ ,

which also implies that R0 6 ‖Σ‖αH→HRα.
Next, by the recurrence Property 3,

2γ‖Σ‖H→Hϕn(α− β − 1) 6 ϕn(α− β)− ϕn+1(α− β) + γ2‖Σ‖α−β+1
H→H R

β/α
0 R1−β/α

α ϕn(−1)

6 ϕn(α− β)− ϕn+1(α− β) + γ2‖Σ‖α+1
H→HRαϕn(−1) ,

thus

2γ‖Σ‖H→Huβ+1 =

∞∑
n=1

(
n+ β

β

)
ϕn(α− β − 1)

6
∞∑
n=1

(
n+ β

β

)
(ϕn(α− β)− ϕn+1(α− β)) + γ2‖Σ‖α+1

H→HRα

∞∑
n=1

(
n+ β

β

)
ϕn(−1) . (25)

We now study the two terms of this sum separately.
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• Rearranging terms and using Pascal’s recurrence formula,
∞∑
n=1

(
n+ β

β

)
(ϕn(α− β)− ϕn+1(α− β))

=

∞∑
n=1

[(
n+ β

β

)
−
(
n+ β − 1

β

)]
ϕn(α− β)

=

∞∑
n=1

(
n+ β − 1

β − 1

)
ϕn(α− β)

= uβ

• Using Equation (15) and a similar computation,
∞∑
n=1

(
n+ β

β

)
ϕn(−1) 6

1

γ‖Σ‖H→H

∞∑
n=1

(
n+ β

β

)
(ϕn(0)− ϕn+1(0))

=
1

γ‖Σ‖H→H

∞∑
n=1

(
n+ β − 1

β − 1

)
ϕn(0) .

Using that 0 6 α− β and that ϕn is increasing (Proposition 1),
∞∑
n=1

(
n+ β

β

)
ϕn(−1) =

1

γ‖Σ‖H→H

∞∑
n=1

(
n+ β − 1

β − 1

)
ϕn(α− β) =

1

γ‖Σ‖H→H
uβ .

Back to (25), we get 2γ‖Σ‖H→Huβ+1 6 (1 + γ‖Σ‖αH→HRα)uβ . Combined with the inequality on
u1, we get for β ∈ N, 1 6 β 6 bαc+ 1,

uβ 6

(
D

2γ‖Σ‖H→H

)β
ϕ1(α) .

We now interpolate this result to non-integer β. It is more convenient to work with the quantity
v(β) =

∑∞
n=1 n

β−1ϕn(α− β) where β ∈ R, 1 6 β 6 α+ 1. If β ∈ N,

v(β) 6 (β − 1)!

∞∑
n=1

(n+ β − 1) . . . (n+ 1)

(β − 1)!
ϕn(α− β) = (β − 1)!uβ

6 (β − 1)!

(
D

2γ‖Σ‖H→H

)β
ϕ1(α) 6 αβ−1

(
D

2γ‖Σ‖H→H

)β
ϕ1(α) .

This inequality extends to β ∈ R, 1 6 β 6 bαc + 1. Indeed, if β ∈ R\N, we decompose
β = (1− λ)bβc+ λ(bβc+ 1), where λ is the fractional part of β. Then using the log-convexity of
the functions ϕn (Property 2) and Hölder’s inequality,

v(β) =

∞∑
n=1

nβ−1ϕn(α− β)

6
∞∑
n=1

[(
nbβc−1

)1−λ
ϕn(α− bβc)1−λ

] [(
n(bβc+1)−1

)λ
ϕn(α− (bβc+ 1))λ

]

6

( ∞∑
n=1

nbβc−1ϕn(α− bβc)

)1−λ( ∞∑
n=1

n(bβc+1)−1ϕn(α− (bβc+ 1))

)λ
6 v(bβc)1−λv(bβc+ 1)λ

6

(
αbβc−1

(
D

2γ‖Σ‖H→H

)bβc
ϕ1(α)

)1−λ(
α(bβc+1)−1

(
D

2γ‖Σ‖H→H

)bβc+1

ϕ1(α)

)λ

6 αβ−1

(
D

2γ‖Σ‖H→H

)β
ϕ1(α) .
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In particular, taking β = α and using that the sequence (ϕn(0))n>1 decreases, we obtain for all
n > 1,(

n∑
k=0

kα−1

)
ϕn(0) 6

n∑
k=0

kα−1ϕk(0) 6
∞∑
k=0

kα−1ϕk(0) = v(α) 6 αα−1

(
D

2γ‖Σ‖H→H

)α
ϕ1(α) .

As α > 1,
n∑
k=0

kα−1 >
∫ n

0

xα−1dx =
nα

α
. (26)

Thus

ϕn(0) 6
αα

2αγα‖Σ‖αH→H
Dαϕ1(α)

1

nα
.

Using the log-convexity of the function ϕn (Property 2) and Equation (18), we can interpolate this
result for β ∈ [0, α],

ϕn(β) 6 ϕn(α)β/αϕn(0)1−β/α 6
αα−β

2α−βγα−β‖Σ‖α−βH→H
Dα−β+1ϕ1(α)

1

nα−β
.

Recalling that D = 1 + ‖Σ‖αH→H
Rα
R0

and that ϕ1(α) = ‖Σ‖αH→H‖Σ−α/2θ∗‖2, one can check that
the above bound implies the conclusion 1 of Theorem 3.

We now continue with the proof of the conclusion 2. Equation (15) implies

γ‖Σ‖H→H
∞∑
n=k

ϕn(−1) 6 ϕk(0) .

Thus

v(α) =

∞∑
k=1

kα−1ϕk(0) 6 γ‖Σ‖H→H
∞∑
k=1

kα−1
∞∑
n=k

ϕn(−1)

= γ‖Σ‖H→H
∞∑
n=1

(
n∑
k=1

kα−1

)
ϕn(−1) .

Using again the inequality (26),

v(α+ 1) =

∞∑
n=1

nαϕn(−1) 6 α
∞∑
n=1

(
n∑
k=1

kα−1

)
ϕn(−1) 6

α

γ‖Σ‖H→H
v(α) .

We can use again the log-convexity of the functions ϕn (Property 2) to interpolate between the
bounds for v(α) and v(α+ 1). For β ∈ [−1, 0],

v(α− β) =

∞∑
n=1

nα−β−1ϕn(β) 6
α−β

γ−β‖Σ‖−βH→H
v(α) 6

αα−β−1

2αγα−β‖Σ‖α−βH→H
Dαϕ1(α) .

Finally, proceeding as before,

nα−β

α− β
min

k=1,...,n
ϕk(β) 6

(
n∑
k=1

kα−β−1

)
min

k=1,...,n
ϕk(β) 6

n∑
k=1

kα−β−1ϕk(β) 6 v(α− β)

6
αα−β−1

2αγα−β‖Σ‖α−βH→H
Dαϕ1(α) .

This proves conclusion 2.
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Appendix B. Proof of Theorem 4

We start in the case (a) where the optimum is irregular: θ∗ /∈ Σ−α/2(H). In that case, we give
a lower bound in the convergence rate by studying the expected process θn := E[θn]. Indeed, by
Jensen’s inequality,

ϕn(β) = ‖Σ‖βH→HE
[〈
θn − θ∗,Σ−β (θn − θ∗)

〉]
> ‖Σ‖βH→H

〈
θn − θ∗,Σ−β

(
θn − θ∗

)〉
. (27)

The expectation θn can be interpreted as the (non-stochastic) gradient descent on the true risk
R(θ). Indeed, by taking the expectation in (1), we obtain

θn − θ∗ = (Id−γΣ)(θn−1 − θ∗) = −(Id−γΣ)n−1θ∗ . (28)

Note that as γ 6 1/R0, I − γΣ is a positive definite matrix. Indeed, by the weak definition of R0

in Remark 2,

R0Σ < E
[
‖X‖2X ⊗X

]
= E [(X ⊗X)(X ⊗X)] < E[X ⊗X]2 = Σ2 ,

thus R0 > ‖Σ‖H→H. Thus γΣ 4 1
R0

Σ 4 1
‖Σ‖H→HΣ 4 Id.

In the following, if α ∈ R and k ∈ N,
(
α
k

)
denotes the generalized binomial coefficient:

(
α
k

)
=

α(α−1)···(α−k+1)
k! . Fix now α > 0. We have the (formal) power series

(1 + x)−α =

∞∑
k=0

(
−α
k

)
xk

(1− x)−α =

∞∑
k=0

(
−α
k

)
(−1)kxk =

∞∑
k=0

(
α+ k − 1

k

)
xk

y−α =

∞∑
k=0

(
α+ k − 1

k

)
(1− y)k .

This last equality holds in [0,∞] for y ∈ [0, 1]. In that case, all terms of the serie are positive, thus
the meaning of the sum is unambiguous.

Note that 0 4 γΣ 4 Id, thus we have, formally,

γ−αΣ−α =

∞∑
k=0

(
α+ k − 1

k

)
(Id−γΣ)k .

The rigorous meaning of this equality is that for all θ ∈ H,

γ−α〈θ,Σ−αθ〉 =

∞∑
k=0

(
α+ k − 1

k

)
〈θ, (Id−γΣ)kθ〉 .

Both terms of the equality can be infinite: here we are using the convention stated in Section 2.1
that implies that 〈θ,Σ−αθ〉 =∞⇔ θ /∈ Σα/2(H). In particular, take α = α− β and θ = Σ−β/2θ∗:

∞ = γβ−α
〈
θ∗,Σ

−αθ∗
〉

=

∞∑
k=0

(
α− β + k − 1

k

)〈
θ∗,Σ

−β(Id−γΣ)kθ∗
〉

=

∞∑
n=0

[(
α− β + 2n− 1

2n

)〈
θ∗,Σ

−β(Id−γΣ)2nθ∗
〉

+

(
α− β + 2n

2n+ 1

)〈
θ∗,Σ

−β(Id−γΣ)2n+1θ∗
〉 ]

.
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Using that
(
α−β+2n−1

2n

)
6
(
α−β+2n

2n+1

)
and

〈
θ∗,Σ

−β(Id−γΣ)2nθ∗
〉
>
〈
θ∗,Σ

−β(Id−γΣ)2n+1θ∗
〉
and

then (28), (27),

∞ 6 2

∞∑
n=0

(
α− β + 2n

2n+ 1

)〈
θ∗,Σ

−β(Id−γΣ)2nθ∗
〉

= 2

∞∑
n=0

(
α− β + 2n

2n+ 1

)〈
θn − θ∗,Σ−β(θn − θ∗)

〉
6 2‖Σ‖−βH→H

∞∑
n=0

(
α− β + 2n

2n+ 1

)
ϕn(β) .

From [14, Equation 5.8.1], we have the formula Γ(z) = limk→∞
k!kz

z(z+1)···(z+k) where Γ denotes the
Gamma function. Thus as n→∞(

α− β + 2n

2n+ 1

)
=

(α− β)(α− β + 1) · · · (α− β + 2n)

(2n+ 1)(2n)!
∼ (2n)α−β

(2n+ 1)Γ(α− β)
.

As a consequence, the serie
∑
n n

α−β−1ϕn(β) diverges. The criteria for the convergence of Riemann
series implies that ϕn(β) can not be asymptotically dominated by 1/nα−β+ε for ε > 0.

We now turn to the case (b) where the features are irregular: with positive probability p > 0,
X /∈ Σα/2(H) and 〈X, θ∗〉 6= 0. With probability p, the second iterate θ2 = −γ〈X2, θ∗〉X2 is
irregular, i.e., θ2 /∈ Σα/2(H). By a simple shift of the iterates, we show that the effect of the
irregularity of the initial condition for this iteration started from θ2 has an effect equivalent to the
irregularity of the optimum, thus we can apply the result above to lower bound the convergence
rate. More precisely, consider the iterates θ̃n = θn+1 − θ2 and θ̃∗ = θ∗ − θ2. The iteration (1) can
be rewritten as θ̃n = θ̃n−1 − γ〈θ̃n−1 − θ̃∗, Xn〉Xn and θ̃1 = 0, thus the new sequence θ̃n satisfies our
framework. We can assume that (a) is satisfied, i.e., θ∗ ∈ Σα/2(H). In that case, with probability p,
θ̃∗ = θ∗ − θ2 /∈ Σα/2(H). Thus by the case above,

ϕn(β) = ‖Σ‖βH→HE
[〈
θn − θ∗,Σ−β (θn − θ∗)

〉]
= ‖Σ‖βH→HE

[〈
θ̃n−1 − θ̃∗,Σ−β

(
θ̃n−1 − θ̃∗

)〉]
is not asymptotically dominated by 1/nα−β+ε, for ε > 0.

Appendix C. Proof of Theorem 6

Note that in this proof, we use the strong assumptions of regularity of the feature vector X.
We do not know whether it is possible to prove the same result under the weak assumptions of
Remark 2.

Our proof stategy is the following: we decompose the SGD iterates sequence θn as a sum of
sequences θn = νn +

∑n
l=2 η

(l)
n , where each of the auxiliary sequences is interpreted as the iterates

of some SGD iteration under a noiseless linear model. We thus apply the results of Section 2 to
control these auxiliary sequences and obtain the presented bound.

Define εn = Yn − 〈θ∗, Xn〉, the error of the best linear estimator. Then Equation (7) can be
rewritten as

θ1 = 0 , θn = θn−1 − γ〈θn−1 − θ∗, Xn〉Xn + γεnXn .

We see this iteration as an additively perturbed version of the iteration

ν1 = 0 , νn = νn−1 − γ〈νn−1 − θ∗, Xn〉Xn ,

studied in Section 2. To understand the effect of the additive noise, define for all l > 2,

η
(l)
l = γεlXl , η(l)

n = η
(l)
n−1 − γ〈η

(l)
n−1, Xn〉Xn , n > l .

Then

θn = νn +

n∑
l=2

η(l)
n . (29)
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Indeed, this last equation is checked by induction: θ1 = 0 = ν1, and if the equation is satisfied for
some n > 1,

θn+1 = θn − γ〈θn − θ∗, Xn+1〉Xn+1 + γεn+1Xn+1

= νn +

n∑
l=2

η(l)
n − γ

〈
νn +

n∑
l=2

η(l)
n − θ∗, Xn+1

〉
Xn+1 + η

(n+1)
n+1

= [νn − γ〈νn − θ∗, Xn+1〉Xn+1] +

n∑
l=2

[
η(l)
n − γ〈η(l)

n , Xn+1〉Xn+1

]
+ η

(n+1)
n+1

= νn+1 +

n∑
l=2

η
(l)
n+1 + η

(n+1)
n+1 .

We use the decomposition (29) to study ϕn(β). Using the triangle inequality,

ϕn(β) = ‖Σ‖βH→HE

∥∥∥∥∥Σ−β/2

(
νn +

n∑
l=2

η(l)
n

)∥∥∥∥∥
2


6 ‖Σ‖βH→HE

(∥∥∥Σ−β/2νn

∥∥∥+

∥∥∥∥∥Σ−β/2
n∑
l=2

η(l)
n

∥∥∥∥∥
)2


6 2‖Σ‖βH→HE
[∥∥∥Σ−β/2νn

∥∥∥2
]

+ 2‖Σ‖βH→HE

∥∥∥∥∥Σ−β/2
n∑
l=2

η(l)
n

∥∥∥∥∥
2
 (30)

The first term is studied in Section 2. We detail the analysis of the second term. Note that

η(l)
n = (I − γXn ⊗Xn)η

(l)
n−1 = · · · = (I − γXn ⊗Xn) · · · (I − γXl+1 ⊗Xl+1)η

(l)
l

= (I − γXn ⊗Xn) · · · (I − γXl+1 ⊗Xl+1)γεlXl . (31)

This if l < l′,

E
[〈
η(l)
n ,Σ−βη(l′)

n

〉]
= E

[〈
E
[
η(l)
n

∣∣∣Xl+1, . . . , Xn

]
,Σ−βη(l′)

n

〉]
= E

[〈
(I − γXn ⊗Xn) · · · (I − γXl+1 ⊗Xl+1)γE[εlXl],Σ

−βη(l′)
n

〉]
Note that by definition of θ∗, 0 = ∇R(θ∗) = −E [(Yl − 〈θ∗, Xl〉)Xl] = −E [εlXl] thus we obtain that
the cross products E

[〈
η

(l)
n ,Σ−βη

(l′)
n

〉]
are zero. This gives

E

∥∥∥∥∥Σ−β/2
n∑
l=2

η(l)
n

∥∥∥∥∥
2
 =

n∑
l=2

E
[∥∥∥Σ−β/2η(l)

n

∥∥∥2
]
.

Note that from Equation (31), η(l)
n and η(2)

n−l+2 are equal in law. Thus

E

∥∥∥∥∥Σ−β/2
n∑
l=2

η(l)
n

∥∥∥∥∥
2
 =

n∑
l=2

E
[∥∥∥Σ−β/2η

(2)
n−l+2

∥∥∥2
]

=

n∑
l=2

E
[∥∥∥Σ−β/2η

(2)
l

∥∥∥2
]
. (32)

This last quantity is the sum of the expected squared power norms

ϕ′k(β) := ‖Σ‖βH→HE
[∥∥∥Σ−β/2η

(2)
l

∥∥∥2
]

of the SGD iterates η(2)
l , l > 2 on a noiseless linear model, with initialization γε2X2. In the proof of

Theorem 3, we control the sum when β 6 α− 1, which is assumed here. More precisely, decompose
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β = (1− λ)(−1) + λ(α− 1) with λ = (β + 1)/α.
n∑
l=2

ϕ′l(β) 6
∞∑
l=2

ϕ′l(β) 6
(Property 2)

∞∑
l=2

ϕ′l(−1)1−λϕ′l(α− 1)λ

6
(Hölder inequality)

( ∞∑
l=2

ϕ′l(−1)

)1−λ( ∞∑
l=2

ϕ′l(α− 1)

)λ

6
(Eqs. (16), (19))

(
ϕ′2(0)

γ‖Σ‖H→H

)1−λ(1 + ‖Σ‖αH→HRα/R0

2γ‖Σ‖H→H
ϕ′2(α)

)λ
=

1

γ‖Σ‖H→H
ϕ′2(0)

1−λ
(

1 + ‖Σ‖αH→HRα/R0

2
ϕ′2(α)

)λ
.

Using the strong assumption of regularity of the feature vectors,

ϕ1(0) = E
[
‖γε2X2‖2

]
6 γ2R0E

[
ε2

2

]
= γ2R0R(θ∗) ,

ϕ1(α) = ‖Σ‖αH→HE
[∥∥∥Σ−α/2γε2

2X
∥∥∥2
]
6 γ2‖Σ‖αH→HRαE

[
ε2

2

]
= γ2‖Σ‖αH→HRαR(θ∗) .

Thus
n∑
l=2

ϕ′n(β) 6 γR1−λ
0 ‖Σ‖λα−1

H→HR
λ
α

(
1 + ‖Σ‖αH→HRα/R0

2

)λ
R(θ∗)

= γR
(α−1−β)/α
0 ‖Σ‖βH→HR

(β+1)/α
α

(
1 + ‖Σ‖αH→HRα/R0

2

)(β+1)/α

R(θ∗) (33)

=
1

2
E(β)γR(θ∗) . (34)

Putting back together Equations (30), (32) and (34), we obtain

ϕn(β) 6 2‖Σ‖βH→HE
[∥∥∥Σ−β/2νn

∥∥∥2
]

+ E(β)γR(θ∗)

The theorem follows the application of Theorem 3 to the sequence νn in order to control the first
term.
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