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Abstract

COVID-19 can lead to acute respiratory syndrome, which can be due to dysregulated immune signal-
ing. We analyze the distribution of CpG dinucleotides, a pathogen-associated molecular pattern, in the
SARS-CoV-2 genome. We find that the CpG content, which we characterize by a force parameter that
accounts for statistical constraints acting on the genome at the nucleotidic and amino-acid levels, is, on
average, low compared to other pathogenic betacoronaviruses. However, the CpG force widely fluctuates
along the genome, with a particularly low value, comparable to the circulating seasonal HKU1, in the
spike coding region and a greater value, comparable to SARS and MERS, in the highly expressed nucle-
ocapside coding region (N ORF), whose transcripts are relatively abundant in the cytoplasm of infected
cells and present in the 3’UTRs of all subgenomic RNA. This dual nature of CpG content could confer
to SARS-CoV-2 the ability to avoid triggering pattern recognition receptors upon entry, while eliciting a
stronger response during replication. We then investigate the evolution of synonymous mutations since
the outbreak of the COVID-19 pandemic, finding a signature of CpG loss in regions with a greater CpG
force. Sequence motifs preceding the CpG-loss-associated loci in the N ORF match recently identified
binding patterns of the Zinc finger Anti-viral Protein. Using a model of the viral gene evolution under
human host pressure, we find that synonymous mutations seem driven in the SARS-CoV-2 genome, and
particularly in the N ORF, by the viral codon bias, the transition-transversion bias and the pressure to
lower CpG content.

Keywords— ssRNA viruses, SARS-CoV-2, pathogen-associated molecular patterns (PAMPs), pattern recogni-
tion receptors (PRRs), viral host mimicry, CpG motifs, evolution of synonymous mutations

1 Introduction

When a virus enters a new host, it can present pathogen-associated molecular patterns (PAMPs) that are rarely
seen in circulating strains that have adapted to that host’s immune environment over evolutionary timescales. The
emergence of SARS-CoV-2, therefore, provides a rare window into innate immune signaling that may be relevant for
understanding immune-mediated pathologies of SARS-CoV-2, anti-viral treatment strategies, and the evolutionary
dynamics of the virus, where evidence for selective pressures on viral features can reflect what defines “self” in its
new host. As a case in point, the 1918 influenza pandemic was likely caused by a strain that originated in water fowl
and entered the human population after possible evolution in an intermediate host. That viral genome presented
CpG dinucleotides within a context and level of density rarely found in the human genome where they are severely
underrepresented, particularly in a set of genes coding for the proteins associated with antiviral innate immunity
[1, 2, 3, 4]. Over the past century the 1918 H1N1 lineage evolved in a directed manner to lower these motifs and
gain UpA motifs, in a way that could not be explained by its usage of amino-acid codon bias [4, 5]. It has since been
found that these motifs can engage the pattern recognition receptors (PRRs) of the innate immune system [6, 7],
and directly bind the Zinc finger Anti-viral Protein (ZAP) in a CpG-dependent manner [8, 9, 10, 11]. Hence, the
interrogation of emergent viruses from this perspective can predict novel host virus interactions.

COVID-19 presents, thus far, a different pathology than that associated with the 1918 H1N1, which was dispro-
portionately fatal in healthy young adults. It has been characterized by a large heterogeneity in the immune response
to the virus [12, 13, 14] and likely dysregulated type-I interferon (IFN) signaling [15, 16, 17, 18]. Various treatments
to attenuate inflammatory responses have been proposed and are currently under analysis or being clinically tested
[19, 20]. It is therefore essential to quantify pathogen-associated patterns in the SARS-CoV-2 genome for multiple
reasons. The first is to better understand the pathways engaged by innate immune system and the specific agonists
to help build better antiviral therapies. Another is to better predict the evolution of motif content in synonymous
mutations in SARS-CoV-2, as it will help understand the process and timescales of attenuation in humans. Third is to
offer a principled approach for optimizing vaccine strategy for designed strains [21, 22] to better reflect human-genome
features.

In this work we will use the computational framework developed in [4] to carry out a study of non-self associated
dinucleotide usage in SARS-CoV-2 genomes. The statistical physics framework is based on the idea of identifying the
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abundance or scarcity of dinucleotides given their expected usage based on host features. It generalizes the standard
dinucleotide relative abundance introduced in [1], as it can easily incorporate constraints in coding regions coming
from amino-acid content and codon usage. The outcome of the approach are selective forces [4] that characterize
the deviations with respect to the number of dinucleotides which is statistically expected under a set of various
constraints. Such formalism has further been applied to identify non-coding RNA from repetitive elements in the
human genome expressed in cancer that engage PRRs [23], to characterize the CpG evolution through synonymous
mutations in H1N1 [4], and to characterize local and non-local forces on dinucleotides across RNA viruses [7].

We perform an analysis of the landscape of CpG motifs and associated selective forces in SARS-CoV-2 in com-
parison with other ssRNA viruses and other genomes in the coronavirus family in order to understand specific PAMP
features in the new SARS-CoV-2 strains. We also focus on the heterogeneity of CpG motif usage along the SARS-
CoV-2 genome (Sec. 2.2 and Sec. 2.3). Finally we use a model of viral genome evolution under human host pressure
from the CpG force to study synonymous mutations, and in particular those which change CpG content, observed
since the SARS-CoV-2 entered the human population (Sec. 2.4), and study sequence motifs preceding CpG loss
loci (Sec. 2.5). The model is used to score all possible synonymous mutations from an ancestral sequence sampled
in Wuhan at the beginning of the COVID-19 pandemic (GISAID ID: EPI ISL 406798) and is validated on single
nucleotide variants observed in the sequence data collected so far (Sec. 2.6). This approach points out at hotspots
where new mutations will likely attenuate the virus, while evolving in contact with the human host.

2 Results

2.1 Definition of coding and non-coding CpG forces

To characterize CpG dinucleotide usage on SARS-CoV-2 genome we have computed the CpG forces following the
approach introduced in [4] and described in Methods (4.1, 4.2). CpG forces are intensive parameters that characterize
the abundance or scarcity of CpG dinucleotides in a DNA or RNA sequence with respect to their expected usage
relative to a reference nucleotide distribution. We propose two frameworks to define these reference distribution,
schematically represented in Fig. 1. In the non-coding framework, nucleotides are randomly drawn according to a
fixed nucleotide bias, while in the coding framework the amino-acid sequence is fixed, and the codon bias defines the
reference distribution.

… AAUGCACCCCGCAUUACGUUUGGUGGACCC … 

…   N     A      P     R     I     T      F     G     G     P   … 

q(A)=q(U)=0.29	
q(C)=q(G)=0.21	

… AUGUAAGCUUGCAUUAGCGCACAAUCAUUG … 

… UGCAAUAUUCGAGAAUGCCAUACCUGUAGC … 

GAU	

GAC	

GCU	 GCG	

GCA	

GCC	

CCU	 CCG	

CCA	

CCC	

GGU	 GGC	

GGA	
GGG	

… GACGCGCCCAGAAUCACUUUCGGAGGGCCU … 

… GAUGCCCCAAGGAUCACGUUUGGGGGCCCC … 

Figure 1: Schematic definitions of CpG non-coding and coding forces. The natural DNA (or RNA)
sequence to be analyzed is shown in black, with CpG dinucleotide motifs in red. The force is computed
by comparing the occurrences number of CpG with ensembles of random sequences fulfilling some of the
constraints acting on the natural sequence, see Methods for details. Top, non-coding framework, in green:
sequences of the same lengths can be generated by randomly drawing nucleotides according to prescribed
frequencies, here taken from the human genome. Bottom: when the sequence under consideration codes
for a protein (sequence of amino acids in black letters), random sequences (violet letters) can be generated
in a coding framework as follows. For each amino acid, a licit codon is randomly chosen according to
prescribed codon usage (here, computed from the coding regions in the human genome). Notice that the
above computational frameworks are not restricted to CpG, and can be applied to other dinucleotidic motifs.

Non-coding forces. The CpG non-coding force relative to the sequence nucleotide bias essentially captures the same
information as the relative abundance index, I = q(CG)

q(C)q(G)
, where q(CG), q(C), q(G) are, respectively, the frequencies

of CpG dinucleotides and of C, G nucleotides in the sequence [1]. The CpG non-coding force is well approximated
by the logarithm of the relative abundance index: f ≈ log I (see Suppl. Sec. SI.3 and Fig. SI.12). Positive and
negative forces correspond therefore to, respectively, excess and scarcity of dinucleotides with respect to their expected
occurrences determined by the nucleotide bias.

Table 1 shows that the CpG non-coding forces for human coding [4] and non-coding RNA [23] (relative to the
human nucleotide bias) are negative, and particularly low for type-I IFN transcripts involved in the innate immune
system [4], confirming that CpG motifs are overall scarce in the human genome [1, 2, 3, 4]. As shown in Table 1
strongly pathogenic viruses in humans, such as Ebola, the Spanish flu H1N1 (1918) and the avian flu H5N1 (2005),
are characterized by large CpG forces compared to the average force on human RNAs. The CpG forces value can
then be used as an indicator for the propensity of a viral sequence to be sensed by PRRs as non-self and engage the
human innate immune response [4, 7, 23]. A comparative analysis for non-coding force in the Coronaviridae family
will be discussed in the following Sections.
Coding forces. The CpG coding force is based on the comparison of CpG occurrences in a coding RNA (or DNA)
sequence and random synonymous sequences (associated to the same amino acids) drawn according to prescribed
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non-coding CpG force (± std dev)
Ebola 2015 -0.52
H5N1 2005 -0.57 (±0.27)
H1N1 1918 -0.65 (±0.19)
human coding RNA -0.66 (±0.95)
H1N1 2009 -0.78 (±0.23)
human non-coding RNA -1.17 (±1.42)
Influenza B virus -1.19 (±0.34)
HIV-1 2020 -1.57
type-I IFNs -2.07 (±0.83)
type-I IFNs (coding force) -2.89 (±0.61)

Table 1: Global non-coding CpG forces for some ssRNA viruses, compared to human RNAs. The
distribution of forces are computed from all genomic segments and their averages and standard deviations
are given (with segment contribution weighted by segment length). All forces are computed with respect to
human nucleotide bias. Data used: human cDNA and ncRNA as annotated in HG38 assembly, transcripts
coding for type-I IFN’s genes as annotated as annotated in HG38. Viral ssRNAs were obtained from NCBI
[24] Virus database (strains used: H5N1: A/Anhui/1/2005, H1N1: A/Aalborg/INS132/2009 and A/Brevig
Mission/1/1918, Ebola: COD/1995/Kikwit-9510623, Influenza B virus: B/Massachusetts/07/2020, HIV-1:
HK JIDLNBL S003).

CpG force (± std dev)
non-coding coding

MERS -0.59 -1.13
SARS -0.82 -1.38
SARS-CoV-2 -1.10 -1.71
hCoVs (229E, HKU1, OC43, NL63) -1.17 (±0.19) -1.79 (±0.18)

Table 2: Global non-coding and coding CpG forces for Coronaviridae family viruses. All forces
are computed with respect to human nucleotide (non-coding forces) or codon bias (coding forces).

codon usage, cf. Figure 1. The computation of coding forces relative to the human codon usage for SARS-CoV-2
will be discussed in Sec. 2.3 and in Sec. 2.4 it will be used to characterize the evolution of SARS-CoV-2 sequences
through synonymous mutations, under the pressure of the human host. To allow for easy comparison and later access
we list in Table 2 all CpG coding forces for the Coronaviridae family, as well as their non-coding counterparts.

2.2 The landscape of CpG forces in SARS-CoV-2 is strongly heterogeneous

We first computed the global non-coding force on CpG dinucleotides for SARS-CoV-2, a variety of other ssRNA
viruses, and other viruses from Coronaviridae family affecting humans or other mammals (Fig. 2a).

The value ' −1.1 of the global non-coding force for SARS-CoV-2 is comparable to the one for human non-coding
RNA and lower than other strongly pathogenic viruses in humans, such as H1N1, H5N1, Ebola (see Table 1). Among
the coronaviruses (see Fig. 2a and Table 2) MERS shows the highest CpG force followed by SARS, while some bat
coronaviruses have even strongest CpG force. SARS-CoV-2 is among the viruses with lower global CpG force; its
value is median among the hCoV that circulate in humans with less pathogenicity, between HKU1 with a smaller
CpG force and OC43 with a larger one (See Suppl. Fig. SI.4a for a comparison with other hCOVs). The absence of a
straightforward correlation between global CpG force and the pathology of a coronavirus in humans calls for a finer,
local analysis of CpG forces we report below.

Figure 2b compares the forces1 acting on CpG and UpA motifs within the Coronaviridae family, with a particular
emphasis on the genera Alphacoronavirus and Betacoronavirus, and on those viruses which infect humans [25]; for
other dinucleotides, see Suppl. Fig. SI.1. We observe an anti-correlation between UpA and CpG forces (Correlation
Coefficient R-Squared r2 = 0.48). UpA is the CpG complementary motif corresponding to the two nucleotidic
substitutions more likely to occur in terms of mutations, as transitions have larger probability with respect to
transversions and are less likely to result in amino-acid substitutions. Such anti-correlations are not observed with
motifs that are one mutation away from CpG (r2 = 0.2 for CpA versus CpG and r2 = 0.01 for UpG versus CpG,
Suppl. Fig. SI.3).

To go beyond the global analysis we study the local non-coding forces acting on CpG in fixed-length windows
along the genome. Results for SARS, MERS, SARS-CoV-2, hCoV-HKU1 and two representative sequences of bat
and pangolin coronaviruses, chosen for their closeness to SARS-CoV-2, are reported in Fig. 2c. SARS-CoV-2 shows a
strong heterogeneity of CpG forces along its genome: in some genomic regions, especially at the 5’ and 3’ extremities,
SARS-CoV-2, SARS and MERS (together with the bat and pangolin viruses) have a peak in CpG forces, which is
absent in the hCoV-HKU1 (as well as in the other hCoVs, see Suppl. Fig. SI.4). The heterogeneous CpG content in
SARS-CoV-2 has been also pointed out in [26].

The high CpG forces at the extremities could have an important effect on the activation of the immune response
via sensing, as the life cycle of the virus is such that the initial and final part of the genome are those involved in
the subgenomic transcription needed for viral replication [27, 28]. During the infection many more RNA fragments
from these regions are present in the cytoplasm than from the other parts of the viral genome. Consequently, despite
the relatively low CpG content of SARS-CoV-2 compared to other coronaviruses, there can be high concentrations
of CpG-rich RNA due to the higher transcription of these regions.

The similarity between the high values of the maximum local forces of SARS-CoV-2 and those of SARS, bat
and pangolin coronaviruses shown in Fig. 2a confirms this pattern: MERS and SARS, viruses that are likely less
well adapted to a human host, have the highest local peaks in CpG content, followed by SARS-CoV-2 and then by
seasonal strains that circulate in humans. It is interesting to notice that high and very high levels of proinflammatory
cytokines/chemokines (such as IL-6 and TNF-α) have been observed in, respectively, SARS and MERS and, at times,

1Comparisons based on dinucleotide number rather than force give qualitatively similar results, see Suppl. Fig. SI.2.
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SARS-CoV-2 infection [12, 18, 29, 30]. These results are qualitatively corroborated by the simpler analysis of CpG
motif density (Suppl. Fig. SI.2).
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Figure 2: CpG and UpA non-coding forces, and local fluctuations in the genomes of the Coro-
naviridae family. (a): Non-coding forces on CpG dinucleotides for SARS-CoV-2 and other coronaviruses.
The central thick lines show global forces over the whole genomes, while bars span from the minimal to the
maximal values of the local forces computed on sliding windows along the sequence of 3kb (narrowed up
to 1.5 kb at the edges), smoothed through a Gaussian average. (b): UpA vs. CpG global forces. Species
are well clustered, due to the large similarity of the sampled sequences, except for viruses circulating in
bats composed of several diverse strains. Notice the anticorrelation between CpG and UpA forces (Pearson
r = −0.69, with a p-value of ' 2 · 10−77, and r2 = 0.48). (c): Local CpG force analysis in sliding windows
of 3 kb along the genome for some coronaviruses, smoothed through a Gaussian average; Horizontal lines
correspond to the global forces shown in panel (b). Boxes on top of the panel show protein-coding domains.
The force is highly variable along the genome, with much larger values in certain regions (such as the N
ORF) than in others (e. g. S ORF). The maximum value of the local CpG force hints at the similarity of
SARS-CoV-2 with the most pathogenic viruses, see Table 2. Data from VIPR [31] and GISAID [32], see
Methods Sec. 4.6 and Suppl. Sec. SI.1 for details on data analysis.

2.3 Forces acting on coding regions widely vary across structural proteins

We now restrict our analysis to the coding regions of SARS-CoV-2 and, in particular, on two structural proteins, N
(nucleocapside) and S (spike) [21, 33, 34]. As stressed in Sec. 2.1 the computation of the force in such coding regions
account for the extra constraints on the amino-acid content and takes the human codon bias as reference background,
see Methods Sec. 4.1 and Sec. 4.2.

The landscape of coding CpG forces with respect to the human codon bias is shown, restricted to the coding
regions of SARS-CoV-2 genome, in Fig. 3a, and compared to the non-coding forces from Fig. 2, with respect to the
human nucleotide bias (dashed red lines). The two curves are similar apart from a global shift towards lower forces
for the coding forces. Notice that this shift essentially vanishes if the non-coding force is computed with respect to
the nucleotide bias computed on human coding RNAs only [35] (Fig. 3a). Apart from this global shift, the strongly
heterogeneous landscape of the CpG coding forces along the SARS-CoV-2 genome does not substantially differ from
the findings of Fig. 2c. In particular the peak of high CpG density and force is still present at the 5’ and the 3’ ends
of the genome, including the N ORF, the envelope E ORF and membrane glycoprotein M ORF regions. In the S
ORF region the coding CpG force remains small. Detailed results for the S and N ORFs are shown in, respectively,
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Figs. 3b and 3c. These structural proteins are present and quite similar across the Coronaviridae family, and allow us
to compare several strains of coronaviruses. In the S ORF, SARS-CoV-2 shows the lowest global CpG force among
the human-infecting betacoronaviruses, see Fig. 3c. The CpG force is much higher for protein N in SARS-CoV-2,
immediately below the level of SARS and above that of MERS, see comparison with human-infecting members of the
Coronaviridae family presented in Fig. 3b. The comparative analysis of forces in the E ORF (Suppl. Fig. SI.5b) gives
results similar to the N ORF, while smaller differences in CpG force among coronaviruses that circulate in humans
are observed for the M ORF (Suppl. Fig. SI.5c).
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Figure 3: CpG local coding forces on SARS-CoV-2 coding regions. (a): Local forces, over sliding
windows ranging of 3kb (narrowed up to 1.5kb at the edges), in the the coding regions of SARS-CoV-2 (pre-
processed to ensure the correct reading frame). Full, thick red curve shows coding forces. The dashed and
dotted lines show non-coding forces obtained by using nucleotide frequencies computed from, respectively,
all human genome (including non coding RNA and coding RNA) and only coding human RNAs. Horizontal
lines locate global forces. The black dashed line shows the relative abundance of CpG computed on the
same sliding windows, with the same nucleotide frequency used for the dashed red line. Boxes on top of
the panel show protein-coding domains. (b) and (c): global forces for structural proteins (S and N) in the
Coronaviridae family. This values were averaged on 4 to 20 sequences from VIPR [31] and GISAID [32], see
Methods Sec. 4.6 and Suppl. Sec. SI.1 for details on data analysis.

2.4 Force-based model accounts for early evolution of synonymous CpG-related
mutations in SARS-CoV-2

We now assess the ability of our CpG force model to predict biases in the synonymous mutations already detectable
across the few months of evolution following the first sequencing of SARS-CoV-2 (data from GISAID [32]; Wuhan
ancestral strain has GISAID ID: EPI ISL 406798, collected in Wuhan on 26 Dec 2019; last updated sequence 29 Sept
2020; see Methods Sec. 4.6). Barring confounding effects, we expect that high-force regions, such as N ORF, will be
driven by the host immune system pressure towards a lower number of CpG motifs. Other regions, such as S ORF,
already have low CpG content and would feel no pressure to decrease the CpG content, so random mutation would
likely leave their CpG number unaffected or increase it. We define in the following Synonymous Single Nucleotide
Variants (Syn-SNV) as nucleotide synonymous substitution with respect to the Wuhan ancestral strain, observed at
least in 5 collected sequences (0.01% of the sample)2.

2Such cutoff removes very rare mutations which may be due to sequencing errors effect.
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Figure 4a (bottom and middle panels) shows that many Syn-SNV that decrease the number of CpG are located
at the 5’ and 3’-end of the sequence, in correspondence with the high peak in CpG local force, notably in the N
ORF region and at the 5’ extremity of the genome. Conversely Syn-SNV that increase the number of CpG are more
uniformly spread along the sequence. The behaviors of the local CpG force and of the local density of CpG decreasing
Syn-SNV, computed on the same sliding windows along the sequence, show strong similarities, see middle panels in
Fig. 4a.

To better explain this CpG mutational trend along the sequence we define a putative equilibrium CpG force of the
SARS-CoV-2 genome in human host, as the average CpG force of hCoVs in Table 2: hCoVs have long been circulated
in humans and are, therefore, supposed to be close to equilibrium with their host. Other choices for equilibrium force
will be discussed later. Regions with a CpG force much larger than the equilibrium one are predicted to be under
strong evolutionary pressure to decrease their CpG content. This prediction is confirmed by the fact that CpG–
decreasing syn-SNV are much more frequent than CpG–increasing ones, see Fig. 4a, middle. Conversely, in regions
with forces slightly smaller than the equilibrium force value, the presence of a small evolutionary pressure to increase
CpG is confirmed by the fact that CpG–increasing syn-SNV are slightly more frequent than CpG–decreasing ones.
The scatter plot of the local forces and densities of CpG–increasing (blue) and –decreasing (red) syn-SNV along
the SARS-CoV-2 Wuhan ancestral strain is shown in Fig. 4b. The correlation coefficient is much larger for CpG–
decreasing syn-SNV (r2 = 0.85) than for CpG–increasing mutations (r2 = 0.16). The two scatter plots cross at a
local CpG force f ' −1.8± 0.2, very close to the equilibrium force, feq = −1.79. This result supports our choice of
the equilibrium force. The global force of SARS-Cov-2 (f = −1.71) is also compatible with this crossing point. On
the contrary, other possible choices for the equilibrium force, such as the coding force computed on human type-I
IFNs, f = −2.89, would not match the crossing point. The results above suggest to introduce, as will be done in
Sec. 2.6, the CpG drive defined as the difference between the CpG local force and the equilibrium CpG force. Table 3
complements Fig. 4 with a detailed description of CpG–decreasing and –increasing Syn-SNV along the ORFs and
the 5’ and 3’ untranslated regions (UTRs) of SARS-CoV-2 genome. The regions with high negative CpG drive have
a large density of CpG removing mutations, see for instance 5’UTR, 3’UTR, N ORF, and M ORF. Importantly,
Syn-SNV are in many loci across the sequence (Fig. 4a), and taking into account Syn-SNV counts in the sequence
data or considering unique Syn-SNV does not qualitatively affect our conclusions. Focusing on N ORF, remarkably
21% (47% with count) of Syn-SNV remove a CpG motif. Such percentage represents a fraction of 75% (94% with
counts), among the total number of Syn-SNV affecting a CpG. On the opposite, the regions with a small negative or
positive drive such as ORF1a, ORF1b and S ORF have a low density of CpG affecting mutations and among Syn-SNV
affecting CpG motifs the percentage for Syn-SNV adding a CpG motif or removing a CpG motif are comparable.
For S ORF, having the largest positive drive, the large majority of synonymous variants, 85% (92% with counts),
leaves the CpG content unchanged with only few, 7% (4% with counts), Syn-SNV affecting a CpG motif. Among
Syn-SNV affecting CpG, a slight predominance of CpG increasing Syn-SNV is observed with 53% (56% with counts)
CpG increasing against 47% (44% with counts) CpG decreasing Syn-SNV. Last of all, Fig. 4c shows that, in N ORF,
a rapid accumulation of CpG removing Syn-SNV is observed in the sampled sequences as a function of the delay
between the time of collection and the beginning of the COVID-19 pandemic. This increase is much steeper that the
gradual rise of Syn-SNV increasing CpG occurrences. In the S region, on the contrary, a gradual rise of Syn-SNV is
observed both for CpG–increasing and –decreasing mutations, with a slight predominance of CpG–increasing ones.

2.5 Analysis of synonymous mutations in N ORF suggests implication of ZAP
in progressive loss of CpG

We have then studied the nucleotidic patterns preceding, along the viral sequence, the CpG dinucleotides lost in
Syn-SNV encountered so far. In N ORF, the ORF with largest density of CpG decreasing syn-SNV as shown in
Table 3, 24 syn-SNV removing one CpG have been found. The nucleotide motifs preceding these loci are listed in the
top 19 lines of Table 4 (for some loci, more than one syn-SNV removed the same CpG), together with their positions
along N ORF of SARS-CoV-2 and their number of occurrences in the sequence data. 7 out of 19 of these loci, which
represent 71% of total syn-SNV removing a CpG (1587 out of the 2239), correspond to a motif of the type CnxGxCG,
where nx is a spacer of n nucleotides and were identified as ZAP binding patterns in [9]. The binding affinity of ZAP
to the motifs was shown to depend on the spacer length, n, with top affinity for n = 7 [9] (see Table 4). Notice that
43% (3 out of the 7) of the CpG-suppression related motifs in SARS-CoV-2 correspond to n = 7. Other motifs of
the type CnxGcCG are also present in SARS-CoV-2, but their CpG is not lost in sequence data, see last 5 lines of
Table 4; the dissociation constants associated to their spacer lengths are on average larger than the ones of the motifs
showing CpG loss.

From the spacer-length dependent binding affinity given in [9] (see Table 4) we have computed a score, which we
call ZAP affinity score (ZAS), which is related to the probability of having at least one ZAP bound to such motif
(see Methods Sec. 4.4). The ZAS computed in sliding windows across the genome, is presented in Fig. 4a (top plot),
from which it is apparent that N ORF is the richest region in motifs of the form CnxGxCG, with the largest ZAS.
Our analysis is confirmed in Table 5, which reports all syn-SNV removing CpG following an extended sequence motif.
Even if N ORF represents only 4% of the total sequence length, 18% of extended motifs CnxGxCG and 26% (58%
with counts) of syn-SNV removing a CpG on an extended motif are on this region. In contrast, only 2 extended
motifs of type CnxGxCG were found in 5’UTR even if many repeated CpG at short interspace were present, see
Suppl. Table SI.1.

N ORF and M ORF show a similar CpG force (see Table 3), but have a large difference in CnxGxCG-like
motif content, as shown in Table 5. Remarkably, when taking counts under account, the number of CpG-decreasing
mutations occurring in N ORF, out of which 71% are on CnxGxCG-like motifs, is 10-fold more than that occurring
in M ORF. These results support the existence of early selection pressure to lower CnxGxCG-like motifs in N ORF,
where they are particularly concentrated.

2.6 Model is able to discriminate observed and non-observed single nucleotide
variants among early synonymous mutations

Our model can be further used to predict the odds of synonymous mutations, either implying CpG or not, from
the ancestral SARS-CoV-2 (GISAID ID: EPI ISL 406798) sequence. For this purpose, we introduce a synonymous
mutation score (SMS), defined in Methods Sec. 4.3, whose value expresses how likely a mutation is to appear under the
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Figure 4: Analysis of synonymous mutations in the early evolution (up to October 2020) of
SARS-CoV-2 genome, CpG drive and ZAP binding motifs. (a): Bottom: Counts of syn-SNV that
increased (red) and decreased (blue) the CpG content. Middle: sliding average of syn-SNV increasing (red)
and decreasing (blue) CpG with windows of 3 kb and a Gaussian smoothing; black line: local coding CpG
force with same sliding average and smoothing, dashed black line: putative equilibrium force (-1.79) for
SARS-CoV-2 coding regions. The area between the local CpG force and the equilibrium CpG force is filled
in blue/red for local CpG force larger/smaller than the equilibrium one. Upper sub-panel: The local ZAP
affinity score (ZAS), computed on sliding windows of 3 kb; blue crosses mark SNV removing CpG motifs
in a CnxGxCG patterns. Boxes on top of the panel show protein-coding domains. (b): scatter plot of the
local CpG force (black curve in panel (a), without smoothing procedure) versus the local density of CpG
decreasing (blue points) or increasing (red points) Syn-SNV. Dashed vertical line: putative equilibrium force.
(c): fraction of sequences in the data with at least one Syn-SNV decreasing (blue curve) or increasing (red
curve) the CpG content in the N ORF (left) and S ORF (right), as function of time. To reduce noise, for
each point we considered all the sequences collected in a temporal sliding window of 100 days centered on the
point. Data from GISAID [32], see Methods Sec. 4.6 (last update 05 Oct 2020) for details on data analysis.
Ancestral genome: GISAID ID: EPI ISL 406798 (Wuhan, 26-12-2019).
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Figure 5: Synonymous Mutational Score (SMS) differentiates Syn-SNV from unobserved Syn-
SNV. (a), (b): Synonymous Mutational Score (SMS) for Syn-SNV with the full model including codon bias
(cb), CpG force (f) and transition-transversion bias (ttb) in the N and S ORFs. Blue, red, gray bars denote
mutations decreasing, increasing or leaving unchanged the CpG content. The area of circles, shown on SNV
observed more than 20 times in the dataset, is proportional to the SNV count. Green, horizontal lines are
the average SMS of the Syn-SNV with (dark green) and without (light green) counts. (c), (d): histograms
of SMS distribution for observed (green) and unobserved (orange) Syn-SNV in the N and S ORFs with the
full model (cb+f+ttb). The corresponding ROC curve is given as an inset, together with the AUROC. (e),
(f): Average SMS for Syn-SNV (dark green), Syn-SNV with SNV-counts (light green), and for unobserved
Syn-SNV (orange), computed with the full model and all possible reduced models. In the null model (Null)
all synonymous mutations are equiprobable. Models are ranked according to the difference of average SMS
for observed and unobserved Syn-SNV. Data from GISAID [32], see Methods Sec. 4.6 for details on data
analysis (last update 05 Oct 2020). Wuhan ancestral genome has GISAID ID: EPI ISL 406798. SNV with
less than 5 counts are considered as unobserved Syn-SNV.
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CpG CpG↓SNV CpG↑SNV
L CpG drive SNV tot /SNV /CpGSNV tot /SNV /CpGSNV

3’-UTR 162 5 -0.87 81 18 22% 90% 2 2% 10%
with counts: 6020 1597 27% 99% 20 0.3% 1%

5’-UTR 211 13 -1.67 56 19 34% 95% 1 2% 5%
with counts: 48806 47446 97% 99% 328 1% 1%

N 1260 39 -0.95 115 24 21% 75% 8 7% 25%
with counts: 4745 2239 47% 94% 146 3% 6%

M 669 20 -1.00 58 12 21% 86% 2 4% 14%
with counts: 5508 245 5% 45% 302 6% 55%

ORF10 117 5 -2.01 6 2 33% 100% 0 0% 0%
with counts: 233 14 60% 100% 0 0% 0%

ORF7a 366 7 -0.61 23 5 22% 56% 4 17% 44%
with counts: 544 243 45% 88% 33 6% 12%

ORF8 366 8 -0.82 25 5 20% 63% 3 12% 38%
with counts: 2146 107 5% 86% 17 1% 14%

ORF3a 828 17 -0.62 54 10 19% 67% 5 9% 33%
with counts: 1530 244 16% 87% 36 2% 13%

ORF1a 13203 160 0.05 848 86 10% 52% 81 10% 49%
with counts: 79937 3930 5% 72% 1560 2% 28%

ORF1b 8088 115 0.003 432 47 11% 48% 52 12% 53%
with counts: 33788 7342 22% 84% 1434 4% 26%

E 228 11 -1.84 10 1 10% 100% 0 0% 0%
with counts: 311 69 22% 100% 0 0% 0%

S 3822 29 0.61 223 16 7% 47% 18 8% 53%
with counts: 14540 571 4% 44% 729 5% 56%

ORF6 186 1 0.18 10 0 0% 0% 2 20% 100%
with counts: 275 0 0% 0% 40 15% 100%

ORF7b 132 1 -0.28 9 0 0% 0% 2 22% 100%
with counts: 406 0 0% 0% 14 4% 100%

Table 3: CpG drives and analysis of synonymous SNV changing CpG along the SARS-CoV-2
genome. The table gives, for all the ORFs and the 5’ and 3’ UTRs of SARS-CoV-2 ancestral genome, the
length of the region (L), the number of CpG motifs (CpG), the CpG drive (feq − f), the syn-SNV and the
total numbers and percentages of syn-SNV removing a CpG motif (CG↓) or adding it (CG↑), with respect
to total number of syn-SNV (/SNV) or to the total number of syn-SNV affecting CpG (/CpGSNV). For the
non-coding 5’ and 3’-UTRs all SNV are taken into account with no restriction to syn-SNV and the non-
coding forces are used; the equilibrium force is -1.16 (and not -1.79 as for ORFs) releasing such constraint.
UTRs and ORFs and are sorted according to the density of CpG removing SNV (CG↓ SNV/L). The regions
underlined in bold are the most reliable for statistical analysis as they present at least 20 syn-SNV. Numbers
and percentages of SNV are given with and without taking into account SNV counts. Data from GISAID
[32], see Methods Sec. 4.6 for details on data analysis (last update 05 Oct 2020). Ancestral genome GISAID
ID: EPI ISL 406798. SNV with less than 5 counts are excluded from the data.

joint actions of the CpG force, the codon bias (cb)3, and the transition-transversion bias (ttb)[36]4. For synonymous
mutations that do not affect CpG the only mutational driving factors in our model are the codon bias, and the
transition-transversion bias, which are global drives on the genome. Synonymous mutations changing CpG are also
driven by the local force to increase or decrease CpG content depending on the CpG mutational drive in the region
under consideration (see Fig. 4a and Table 3).

Figures 5a and 5b show SMS along, respectively, the N and S ORF, for all the observed syn-SNV lowering (blue),
increasing (red), or leaving unchanged (gray) CpG content, along with their counts in the sequence sample. In N
ORF as in S ORF the majority of syn-SNV have high SMS, validating the model predictions. The sign and amplitude
of the SMS for CpG–affecting syn-SNV in Figs. 5a, 5b result from the interplay between the virus codon bias with
the CpG drive in the model: the virus codon bias, computed on the whole genome which is globally low in CpG
content, already favours synonymous mutations removing CpG. Due to the codon bias, both in N ORF and S ORF,
syn-SNV removing CpG tend to have a positive SMS while syn-SNV adding CpG tend to have a negative SMS (see
Suppl. Fig. SI.11 for SMS computed without CpG drive along N ORF and S ORF).

The large and negative CpG drive in N ORF adds to the codon bias trend. As shown in Fig. 5a, it further raises
the SMS of CpG-removing syn-SNV, and further decreases the negative SMS of CpG-adding syn-SNV, in agreement
with the data. The resulting SMS amplitude for CpG affecting mutations is generally larger than for mutations non
affecting CpG. On the opposite, in S ORF, as shown in Fig. 5b (see also Suppl. Figs. SI.11c and SI.11d), the positive
drive acts against the codon-bias trend, reducing or raising the SMS for, respectively, CpG-decreasing or -increasing
syn-SNVs. In some loci, the CpG drives is strong enough to reverse the sign of the SMS for CpG-increasing syn-SMS,
and the SMS become positive. The resulting SMS amplitude for CpG–affecting mutations is generally smaller than
for mutations leaving CpG content unchanged, in agreement with the observation than CpG–affecting syn-SNV are
rare in S ORF.

To make our arguments more quantitative, we tested the ability of our model to discriminate between observed
and non–observed syn-SNV in sequence data collected so far. For the sake of clarity, non–observed syn-SNV refers to
the set of possible synonymous mutations that have been not observed so far in the sequence data (or observed very
rarely, i.e. with less than 5 counts). In Figs. 5c and 5d we show that the distribution of SMS for Syn-SNV is shifted

3We consider here the virus codon bias, calculated on the Wuhan ancestral strain, rather than the human codon bias, as
SARS-CoV-2 is likely not in equilibrium with its host yet. This choice will be justified later.

4We consider the canonical ratio 4:1 here, see Methods Sec. 4.3.1 for details.
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Motif n Position CpG↓ Syn-SNV ZAS
of CpG with counts

CAUUGGCCG 4 905 509 3.03
CGGAAUGUCG 5 953 607 2.19
CAUAUUGACG 5 1074 13 2.04

CGCAGUGGGGCG 7 104 54 8.48
CUAACAAAGACG 7 384 385 8.33
CUGGCAAUGGCG 7 642 9 8.33

CGAGGACAAGGCG 8 213 10 1.71

CCCCGCAUUACG - 47 35 0.30
AAUAAUACUGCG - 149 5 0.15
CUUGGUUCACCG - 162 17 0.15
AUGCUGCAAUCG - 471 34 0.15
AGAAGGGAGGCG - 534 6 0.15
CACAAGCUUUCG - 822 194 0.15
UUGCCCCCAGCG - 930 15 0.15
AGCGCUUCAGCG - 938 21 0.30
CAGCGUUCUUCG - 945 45 0.30
GUCACACCUUCG - 980 104 0.15
CCUUCGGGAACG - 986 55 0.30
CAAGCCUUACCG - 1148 121 0.15

CGGCAGACG 4 829 0 3.18
CUACCAGACG 5 277 0 2.04
CACGUAGUCG 5 571 0 2.19

CAAAACAACGUCG 8 121 0 1.71
CGUGGUGGUGACG 8 294 0 1.71

Table 4: Analysis of nucleotidic motifs preceding CpG in the N ORF and their ZAP affin-
ity score. The top 7 lines show subsequences of N ORF (of the Wuhan ancestral strain, GISAID ID:
EPI ISL 406798) of the type CnxGxCG, where the spacer nx (highlighted in red) includes n = 4, 5, 7 or
8 nucleotides, for which the CpG dinucleotide was lost in one or more of the syn-SNV. These motifs were
shown to be binding patterns for the ZAP protein in [9]; the dissociation constants were measured for re-
peated A spacers, with values (in µM) Kd(4) = 0.33 ± 0.05, Kd(5) = 0.49 ± 0.10, Kd(7) = 0.12 ± 0.04,
Kd(8) = 0.64± 0.14, [9]. The next 12 lines show the other CpG lost through mutations and their 10 preced-
ing nucleotides, which do not correspond to motifs tested in [9]. The last 5 lines show other subsequences
in the N protein corresponding to ZAP binding motifs [9], but for which no loss of CpG is observed in the
sequence data. The column ZAS gives the score associated to the subsequence considered, computed from
the above dissociation constants (see Methods for technical details). Data from GISAID [32], see Methods
Sec. 4.6 for details on data analysis (last update 05 Oct 2020).

to higher values compared to its counterpart for non observed Syn-SNV, both in N ORF and S ORF. Hence, our
model is able to statistically discriminate between Syn-SNV and non observed Syn-SNV (ANOVA F-test: 1085 for N,
5590 for S). Moreover, when ranking all possible synonymous mutations in decreasing order according to their SMS
and considering them as true predictions if they have been observed in sampled sequences so far, and thus correspond
to a Syn-SNV, or false predictions if the have not been observed in the collected sequences, we obtained very good
classification performances (AUROC=0.82 for N, 0.84 for S). As a complementary test we give in Suppl. Fig. SI.8 the
positive predicted value (PPV) as a function of the number of predictions showing that about 85% of the top scored
90 and 150 possible mutations, in N ORF and S ORF respectively, are Syn-SNV.

To identify what ingredient in the model is responsible for correctly distinguishing between observed and non-
observed synonymous mutations, we compare the discriminatory performances of the full model (including the codon
bias, the transversion-transition bias and the CpG drive) with all model variations obtained removing one ingredient
at the time, up to a null model in which all synonymous mutations are equally likely and all have zero SMS. In
Figs. 5e and 5f we compare, for the different models, the average SMS for syn-SNV, obtained both with and without
their counts in the sequence sample (see horizontal light and dark green lines in Fig. 5a and Fig. 5b), with the average
SMS for the non observed syn-SNV. The models are ranked by the difference of average SMS between observed and
non–observed syn-SNV. As expected the null model is unable to distinguish between the two sets, assigning vanishing
average SMS to both. The gap between the average SMS of observed and non–observed syn-SNV progressively
increases when introducing back the different ingredient of the model, up to the full one.

We have checked that the choice of the viral codon bias is important for such discriminatory ability. When using
the human codon bias instead of the viral one the model based only on the human codon bias behaves similarly
to the uniform bias model; the full model is again the best model but with a smaller difference in averages SMS
(Suppl. Fig. SI.6). Classification performances are, on the contrary, unaffected when changing the equilibrium force
to the values already discussed, such as the the global force SARS-CoV-2 or the average force computed on transcripts
encoding human type-I IFNs (Supplementary Fig. SI.7). It is worth noticing that models based on viral codon and
transition-transversion biases alone (without the force) already provide good discriminatory performances in terms of
classification of SNV (AUROC and F-score). This result is expected from the predominance of Syn-SNV not affecting
CpG occurences, especially in S ORF. In addition, as the viral sequence has low global CpG content, the viral codon
bias favors synonymous mutations that lower CpG, in agreement with Figs. 5e and 5f.

Table 6 gives the average SMS and differences, as well as AUROC and ANOVA tests, for all ORFs and 5’ and
3’UTR. We consistently find that the full model is always a good model to describe syn-SNV observed in the early
evolution of SARS-CoV-2. There is a clear separation between observed and unobserved syn-SNV average SMS with
large AUROC for all the ORFs and UTRs (≥ 0.68 for all the ORFs and UTRs and ≥ 0.71 for the regions with a
better mutational statistics, with at least 20 syn-SNV) and a large ANOVA F value (≥ 3 for all the ORFs and UTRs
and ≥ 13 among regions with at least 20 syn-SNV); the ORF1a, S ORF and ORF7b are the only regions for which
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CpGext CpGext↓SNV
L num /L ZAS/L num /CpG↓SNV

5’-UTR 211 2 1.4% 2% 3 16%
with counts: 88 0.2%

N 1260 12 1.0% 4% 10 42%
with counts: 1587 71%

ORF7a 336 2 0.6% 3% 1 20%
with counts: 17 7%

ORF1a 13203 25 0.2% 1% 15 17%
with counts: 726 18%

ORF1b 8088 16 0.2% 1% 9 19%
with counts: 317 4%

S 3822 3 0.1% 0.3% 1 6%
with counts: 25 4%

ORF3a 828 4 0.5% 2% 0 0%
with counts: 0 0%

M 669 2 0.3% 2% 0 0%
with counts: 0 0%

Table 5: ZAP affinity score and Syn-SNV removing CpG dinucleotides preceded by ZAP binding
motifs across the SARS-CoV-2 genome. The table gives for each region with at least one motif of the
form CnxGxCG with n = 4, 5, 6, 7 or 8 (CpGext) the length L, the number of CpGext and their number
per unit length, the ZAS for unit length (ZAS/L), the number of syn-SNV removing a CpG preceding by
an extended motif (CpGext↓SNV), and their fraction with respect the total number of CpG–decreasing
syn-SNV. Additional information are given in Suppl. Table SI.2. Numbers and percentage of CpGext↓SNV
are given with and without taking into account SNV counts. ORFs are sorted according to the density of
CpGext removing SNV (CpGext↓SNV/L). On 5’ and 3’-UTRs there are no synonymous restriction on SNV.

the average difference between SMS of observed and non-observed syn-SNV computed with no CpG force is slightly
larger. This again suggests that, for the S ORF, Syn-SNV are only marginally affecting CpG motifs and are mainly
driven by codon bias and transversion-transition bias.

Remarkably, the ranking of models and their discriminatory performances are essentially the same when taking
into account or not the counts of the Syn-SNV, even if a net increase in the average Syn-SNV SMS score is present
for models with the CpG drive in the N ORF, when counts are considered. On the one hand, ignoring counts leads to
conservative estimates of the SMS, as mutations which are fixing in the population are not weighted more than less
frequent mutations. On the other hand, SMS based on sequence counts better discriminate observed and unobserved
Syn-SNV in most of ORFs and UTRsAs (Supp. Table SI.4), but are likely plagued with phylogenetic and sampling
biases. We expect that SMS, when deriving mutational fitness from phylogeny [37] and correcting for sampling bias,
will lie in between the two limit-case SMS discussed above. Finally, we checked the consistency of our results at
different times since our first analysis (dated 05 May 2020, see Suppl. Fig. SI.10).

3 Discussion

The present work reports analysis of dinucleotide motif usage, particularly CpG, in the early evolution of SARS-CoV-
2 genomes up to October 2020. First, a comparative analysis with other genomes shows that the overall CpG force,
and the associated CpG content are not as large as for highly pathogenic viruses in humans (such as H1N1, H5N1,
Ebola and SARS and MERS in the Coronaviridae family). However, the CpG force, when computed locally, displays
large fluctuations along the genome. This strong heterogeneity is compatible with viral recombination, in agreement
with the hypothesis stated in [38]. The degree to which this heterogeneity in any way reflects zoonotic origins should
be further worked out using phylogenetic analysis. In particular, the segment coding for the Spike protein has a much
lower CpG force. The S protein has to bind ACE2 human receptors and TMPRSS2 [18, 34]. A fascinating reason that
could explain the low CpG force on this coding region is that it may come (at least in part) from other coronaviruses
that better bind human entry receptors [38, 39]. Other regions, in particular the initial and final part of the genome
including the 5’ and 3’ UTR and N ORF, are characterized by a larger density of CpG motifs (and corresponding CpG
force), which are comparable to what is found in SARS and MERS viruses in the Betacoronavirus genus. Interestingly
the initial and final part of the genome are implied in the full-genome and subgenomic viral replication. In particular,
the coding region of the N protein and its RNA sequence, present in the 3’UTRs of all SARS-CoV-2 subgenomic
RNAs, has been shown in [28] to be the most abundant transcript in the cytoplasm. The high concentration of N
transcripts in the cytoplasm could contribute to a dysregulated innate immune response. A mechanism generating
different densities of PAMPs being presented to the immune system at different points in the viral life cycle can
affect immune recognition and regulation. The precise way this can contribute to immuno-pathologies associated
with COVID-19 and how this is related to the cytokine signaling dysfunction associated with severe cases [17], needs
further experimental investigation.

The analysis of the evolution of synonymous mutations since the outbreak of COVID-19 shows that mutations
lowering the number of CpG have taken place in regions with higher CpG content, at the 5’ and 3’ ends of the
sequence, and in particular in the N protein coding region. The sequence motifs preceding the loci of the CpG
removed by mutations match, especially in N ORF, some of the strongly binding patterns of the ZAP protein [9].
Natural sequence evolution seems to be compatible for protein N with our model, in which synonymous mutations are
driven by the virus codon bias and the CpG forces leading to a progressive loss in CpG. These losses are expected to
lower the CpG forces, until they reach their equilibrium values in human host, as is seen in coronaviruses commonly
circulating in human population [40]. More data, collected at an unprecedented pace [31, 32, 41], and on a longer
evolutionary time are needed to confirm these hypothesis. Since the data collected are likely affected by relevant
sampling biases, a more precise analysis of synonymous mutations could be carried out using the available phylogenetic
reconstruction of viral evolution [42]. Nevertheless our results seem robust, since they are consistent both considering
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CpG Average SMS ANOVA F-test
drive SNV u-SNV diff diff (cb+ttb) AUROC F num items

3’-UTR -0.87 0.51 -0.49 1.00 0.73 0.80 101.2 81 + 405
5’-UTR -1.67 1.11 -0.37 1.48 0.91 0.84 88.8 56 + 577
N -0.95 1.15 -0.99 2.14 1.83 0.82 153.5 114 + 977
M -1.00 1.29 -0.84 2.13 1.81 0.84 90.8 58 + 557
ORF10 -2.01 2.04 -0.63 2.67 1.89 0.82 9.1 6 + 87
ORF7a -0.61 0.33 -0.87 1.22 1.08 0.71 12.7 23 + 289
ORF8 -0.82 0.84 -0.98 1.82 1.62 0.80 33.6 25 + 266
ORF3a -0.62 1.12 -0.90 2.01 1.86 0.84 90.7 54 + 642
ORF1a 0.05 0.93 -0.88 1.82 1.83 0.86 1584.4 848 + 9966
ORF1a (no CpG drive) 0.93 -0.89 1.83 - 0.86 1580.3 848 + 9966
ORF1b 0.003 0.78 -0.86 1.63 1.63 0.82 625.0 432 + 6026
E -1.84 0.53 -0.64 1.17 0.91 0.68 3.0 10 + 217
S 0.61 0.85 -0.75 1.61 1.75 0.84 361.6 223 + 2924
S (no CpG drive) 0.85 -0.90 1.75 - 0.84 375.2 223 + 2924
ORF6 0.18 0.39 -0.54 0.93 0.91 0.71 5.8 10 + 127
ORF7b -0.28 0.64 -0.43 1.07 1.11 0.74 5.4 9 + 98
ORF7b (no CpG drive) 0.70 -0.41 1.11 - 0.77 6.1 9 + 98

Table 6: Model performance in predicting SNV on SARS-CoV-2 UTRs and ORFs. The table
gives for the SARS-CoV-2 UTR and ORFs the CpG drive (feq − f), the average Synonymous Mutational
Score (SMS) for Syn-SNV and unobserved Syn-SNV (u-SNV) in the data collected so far (SNV with less
than 5 counts are considered as unobserved), with the full model including codon bias (cb), CpG drive (f)
and transition-transversion bias (ttb) in the N and S ORFs, the average SMS difference (diff) between the
syn-SNV and the unobserved syn-SNV. To assess the role of the force in the model, we also provide difference
in averaged SMS for the model not taking into account the CpG drive (diff (cb+ttb)). For ORF1a, S and
ORF7b the presence of the CpG drive slightly decreases the average SMS difference, hence we provide the
AUROC and ANOVA F-test results also with the model without CpG drive (see Suppl. Table SI.3 for all
ORFs and UTRs). All ANOVA F values are significant (p-value < 0.05) at exception for E ORF (p-value=
0.06). The number of items (num items) in the two sets to compute F are the Syn-SNV + all the possible
unobserved Syn-SNV. SNV on 5’ and 3’-UTRs have not the synonymous restriction.

unique mutations and all collected synonymous variants. They coherently point to the presence of putative mutational
hotspots in the viral evolution. While the results presented here are preliminary due to the early genomics of this
emerging virus, they have been confirmed by incoming sequence data since our first analysis (dated 05 May 2020, see
Suppl. Fig. SI.10) and they point to interesting future directions to identifying the drivers of SARS-CoV-2 evolution
and building better antiviral therapies. In this work we focused on synonymous mutations, but it would interesting to
extend our fixed amino-acid model for viral evolution to take into account non-synonymous mutations and to further
model transmission and mutations (in the presence of a proofreading mechanism [43]) processes in SARS-CoV-2 to
predict the time scale at which natural evolution driven by host mimicry would bring the virus to an equilibrium
with its host [4, 5].

After our work was posted on the bioRxiv, R. Nchioua and colleagues have shown the importance of ZAP in controlling
the response against SARS-CoV-2 [44] by demonstrating that a knock-out of this protein increases SARS-CoV-
2 replication. The interaction between SARS-CoV-2 and ZAP has also been observed with unbiased methods in
another recent work [45]. This finding supports our prediction that recognition of SARS-CoV-2 by ZAP imposes a
significant fitness cost on the virus, as demonstrated by its early evolution to remove ZAP recognition motifs. Two
other recent theoretical works [46, 47], corroborate our results showing that at the single nucleotide level there is a
net prevalence of C→U synonymous mutations (the most common nucleotide mutation which may cause a CpG loss)
in the early evolution of SARS-CoV-2. Moreover a recent analysis of the immune profile of patients with moderate
and severe disease revealed an association between early, elevated cytokines and worse disease outcomes identifying
a maladapted immune response profile associated with severe COVID-19 outcome [48].
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4 Material and Methods

4.1 CpG density versus local and global forces

Throughout this work we used CpG forces to quantify the CpG content of a given sequence. Here we want to compare
this approach with the simple count of CpG motifs in the sequence. In Suppl. Fig. SI.2 we show that some of our
results, such as the large fluctuations of the CpG content across the SARS-CoV-2 genome, are also apparent from
a simple motif density analysis. However, this counting strategy is not suitable to make comparisons among viruses
of different families, mainly because of the different lengths and usage biases of viral genomes. Moreover, without
the statistical framework at the basis of the CpG force, it is very difficult to take into account the many constraints
acting on a genetic sequence, notably the constraint on the amino acids that have to be coded for in the sequence.
The force formalism is, therefore, much more flexible and allows us to introduce in a theoretically grounded way the
synonymous mutation score (see Sec. 4.3) which we used to characterize mutations which are likely to happen. The
drawback of such a formalism is the quite large number of extra choices that have to be done, and which can influence
the result. These choices are discussed in the following section.

4.2 Force computation

The technique at the core of many of the analyses made here is taken from [4]. Here we briefly review this technique,
starting from its non-coding version which takes as reference bias the nucleotide bias and then describing the coding
version which take as reference bias the codon bias at fixed amino-acid sequence.
Force computation in non-coding case: Given a motif m and a sequence s0 = {s1, . . . , sN} of length N , we
consider the ensemble of all sequences with length N , which we denote with S, and we suppose the probability of
observing s out of this ensemble to be

p(s) =
1

Z

(
N∏
i=1

q(si)

)
efncNm(s). (1)

Here, q(si) is the nucleotide bias, that is the probability of the i-th nucleotide being si (for example, we always used
in this work the human frequency of nucleotides as q(si)), fnc is the force we want to compute (the subscript nc
stands for non-coding), and Nm is the number of times the motif m appears in the sequence. Z is the normalization
constant, that is

Z =
∑
s∈S

(
N∏
i=1

q(si)

)
efncNm(s). (2)

Therefore the force fnc is a parameter which quantifies the lack (if negative) or abundance (if positive) of occurrences
of m with respect to the number of occurrences due to the local probabilities q(si). We can fix fnc by requiring that
the number of motifs in the observed sequence, Nm(s0) = n0, is equal to the average number of motifs computed
with the probability Eq. 1, 〈n〉, that is

〈n〉 =
1

Z

∑
s∈S

(
N∏
i=1

q(si)

)
Nm(s) efncNm(s). (3)

Notice that this is equivalent to the request that fnc is so that probability of having observed s0 is maximum.
Let us focus now on the specific case of a dinucleotide motif, that is our motif m consists of the pair ab, where a
and b are two consecutive nucleotides (for example, a = C and b = G for the CpG motif). In this case, within an
approximation discussed in the SI, Suppl. Sec. SI.3, the force computed as above turns out to be the logarithm of
the relative abundance index, that is

fnc ' log

(
q(ab)

q(a)q(b)

)
, (4)

where q(ab) is the number of motifs ab divided by the total length of the sequence N . In Suppl. Fig. SI.12 we tested
the accuracy of this approximation in our specific case. As it is clear from Eq. (4), the choice of the nucleotide bias
q(C) affects the absolute value of the forces but not the difference between forces computed on different viral genomes
using the same reference bias. We have chosen as reference nucleotide bias the human nucleotide bias (computed on
all the genome, or on the coding DNA only). This choice can be then replaced by any other reference bias (possible
choices include the codon bias computed on the ancestral SARS-CoV-2 sequence, or other human Coronavirus viral
sequences or the one computed on RNA transcripts of human type-I IFNs, at the core of of innate immune response)
and will shift the values of the forces without affecting the ranking of the force on different viral sequences, see Fig. 2
and Table 1.
Force computation in the coding case: Our technique can be generalized to coding sequences at fixed amino
acid sequence and codon bias. In this case, we write each sequence s as a series of codons, and its probability is
defined as

p(s) =
1

Z

N/3∏
i=1

q(ci)

 efcNm(s), (5)

where now the bias takes the form of a codon usage bias, and the normalization constant Z changes accordingly into
a sum over all possible synonymous sequences. The subscript c stands for coding, and differentiates this force from
the non-coding one. The force fc can be computed, analogously with the procedure for the simpler case, by requiring
that the number of motifs observed in s0 is equal to the statistical average performed with Eq. 5, as described in
detail in [4]. As shown in Fig. 3a, the CpG force at fixed amino acids are roughly comparable to the one at fixed
nucleotide bias when computing the nucleotide bias on human coding sequences.
The force computed in the coding (or non-coding case) is an useful tool to determine the content of a given dinucleotide,
while taking into account a number of constraints.

4.3 Definition of synonymous mutation score

We use the ideas introduced above in Sec. 4.2 to introduce a model in order to assign a score, which we call synonymous
mutation score (SMS), to each possible single-codon synonymous mutation of an ancestral sequence. We consider a
system evolving for a small time scale, and a mutation which changes the i-th codon ci into a synonymous c′i. The
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transition probability, that is the probability of observing the mutation, for such evolution can be decomposed in
the product of two evolution operators: The first T (NCG → N ′CG) representing the change in the number of CpG
motifs in the mutated sequence, and the second T (ci → c′i) representing the gain in mutating the particular codon
in position i.

The first operator can be computed from the dynamical equation introduced in [4] for the evolution of the CpG
number NCG of a sequence under a initial force5 f through a equilibrium force feq:

τ
dNCG
dt

= (feq − f). (6)

The equilibrium force can be computed on a viral strain which is supposed to be to the equilibrium with the human
innate immune system, because it has evolved in the human host since a long time. Eq. 6 was used in [4] to describe
the evolution of the CpG numpber in H1N1, taking as the equilibrium force the one of the Influenza B strain. In
analogy with this approach we take here as feq the average force calculated on coding regions of the seasonal hCoVs
(that is hCoV-229E, hCoV-NL63, hCoV-HKU1, hCoV-OC43). Other possible choices are discussed in Sec. 4.5 (see
also Suppl. Fig. SI.7). τ is a parameter determining the characteristic time scale for synonymous mutations. Based
on Eq. (6) we define the transition operator for CpG number as

T (NCG → N ′CG) ∝ e(feq−f)∆NCG , (7)

where ∆NCG = N ′CG −NCG. Notice that for all the synonymous mutations leaving unchanged the CpG number the
above operator is one. The codon mutational operator is

T (ci → c′i) ∝
(
q(c′i)

q(ci)

)
, (8)

where q(ci) is the frequency of codon ci from the chosen codon usage bias. Putting together these two terms allows
us to estimate how likely a specific synonymous mutation is to happen. The synonymous mutation score (SMS)
accompanying a mutation is defined as the logarithm of this quantity,

SMS = (feq − f)∆NCG + log

(
q(c′i)

q(ci)

)
. (9)

To conclude, we remark that different models can be used in the SMS computation, where a model is specified by
giving the choice of including or not the force term, the choice of the equilibrium force to be used, the choice of
including or not the codon bias term, and choice of the reference codon bias to be used.

4.3.1 Adding transition-transversion bias to SMS

It is well known that transversions (i. e. mutations of purines in pyrimidines and vice-versa) are suppressed with
respect to transitions (i. e. mutations of purines in purines or pyrimidines in pyrimidines).
We introduce here a simple way to account for transition-transversion bias in the model used to assign the SMS. We
suppose that a mutation with n transversions happens 4 times less than a mutation with n − 1 transversions. This
probability ratio, which is a standard value in the literature [36], has been recently shown to be close to the observed
value for SARS-CoV-2 [49]. To include that in our model, consider mutating a codon c to c′, one of its synonymous
codons. Let us suppose that the SMS for this event, computed with a given model, is SMS(c, c′). We then count the
number of transitions, ntrn, and the number of transversions, ntrv, and modify the SMS into SMS’, so that

SMS′(c, c′) = SMS(c, c′) + ntrn log(2)− ntrv log(2). (10)

This choice is motivated by mainly two considerations: (i) in this way, a dynamical model where mutation probabilities
are proportional to the exponential of SMS (as the one considered in Sec. 4.3 to justify the SMS itself) correctly gives
a 4-fold probability to a transition than a tranversion (if the two mutations have the same SMS without this new
term); (ii) the splitting on the extra term in a positive weight for transitions and a negative weight for transversions
ensures that the average SMS before and after adding this term is comparable.

4.4 ZAP Affinity Score

We introduce the ZAP Affinity Score (ZAS) to roughly quantify a priori the likelihood of ZAP biding to a given
region of RNA. ZAS is based on the dissociation constants obtained in vitro in [9]. Let us consider the case of a single
motif (be it CG, or CnxGxCG, with n=4, 5, 6, 7 or 8), M, with dissociation constant Kd. The association constant
is then defined as

Ka =
[ZAP +M]

[M] [ZAP ]
, (11)

where [ZAP +M] is the concentration of complexes, [ZAP] and [M] are the concentration of free molecules. Let us
denote by [ZAP ]0 and [M]0 the total concentration of molecules (bound and unbound). If we suppose that only a
small part of the available molecules form a complex, that is more specifically that Ka[ZAP ]0 � 1 and Ka[M]0 � 1,

then Ka[ZAP ]0 ' Ka[ZAP ] is the probability of binding. If we have n sites with association constants K
(1)
a , . . . ,K

(n)
a ,

the probability of observing at least one ZAP bound to the RNA is

p = 1−
n∏
i=1

(1−K(i)
a [ZAP ]) ' [ZAP ]

n∑
i=1

K(i)
a , (12)

where we also used that n is sufficiently small so that [ZAP ]
∑n
i=1 K

(i)
a � 1. Finally, ZAS is defined as

ZAS =

n∑
i=1

K(i)
a , (13)

that is p/[ZAP ]. While ZAS itself does not depend on [ZAP ], its interpretation (and in particular its connection with

the probability of binding) does, as it requires K
(i)
a [ZAP ]0 � 1, K

(i)
a [M]0 � 1, and [ZAP ]0

∑n
i=1 K

(i)
a � 1. The

K
(i)
a used here range from about 105 (for the simple CpG motif) to 107 (for C7xGxCG) mol/L. It is more difficult

to estimate [M]0 and [ZAP ]0 during the infection. However, we hypothesize that these requirements are fulfilled in
cells, and that our interpretation in terms of binding probability is acceptable.

5Here we drop the subscripts nc and c used in the previous section to identify non-coding and coding forces, since the SMS
is defined for a generic force.
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4.5 Robustness of analysis with respect to choice of parameters

We discuss here how force values and SMS scores change by changing model parameters.
Parameters affecting the force values:
(i) Nucleotide, codon bias choices: the most relevant effect due to this choice is a global shift of the force, as we show
in Fig. 3a for the non-coding case, which does not change the ranking of forces when comparing different sequences
using the same reference bias.
(ii) Choice of the length of the segment to compute the force: the force is an intensive parameter. However, here
we use the force to quantify the content of CpG motifs, which are quite rare. For this reasons, computing forces on
small segments can lead to large negative values (the force is −∞ when no CpG motif is present), and to unnatural
fluctuations. For this reasons, to compute local force we fix large sliding windows of 3 kb, and we use Gaussian sliding
averages to smooth the resulting curves. The effect of Gaussian smoothing and changing sliding window on the force
are presented in Fig. SI.9.
Parameters affecting the SMS:
(i) The codon bias (or nucleotide bias for mutations in 5’ and 3’-UTRs): it is both present as a reference bias in
the force computations for the CpG drive term, and directly used as a more generic evolutionary driver for the
synonymous mutations. For the computation of forces in the CpG drive we have used the human codon or nucleotide
bias as reference usage, but such choice is actually irrelevant because the drive is a difference of the segment force and
the equilibrium one. The choice of bias is, on the opposite, very relevant for the choice of the synonymous mutations
driver. Indeed, in Figs. 5e and 5f it is apparent that the virus codon bias alone gives to the model a certain ability
to discriminate between observed an unobserved syn-SNV. We tested also the human codon bias which gives bad
performances (see Suppl. Fig. SI.6).
(ii) Choice of equilibrium force: this choice is arbitrary to a certain degree. We use as equilibrium force (computed
with the human codon bias) -1.79 which is the average coding force hCoVs (229E, NL63, HKU1, OC43), since these
viruses are well adapted to the human environment so likely a good equilibrium point for SARS-CoV-2. To check the
effects of other choices of equilibrium forces, in Fig. SI.7 we performed the same analysis shown in Figs. 5e and 5f
with other two possible choices of equilibrium forces: the global force of SARS-CoV-2 (-1.71, which is quite low, but
slightly higher than the average of the seasonal hCoVs), and the average global force of INF-I transcripts (-2.89 which
is much lower than that of seasonal hCoVs), see also Tables 1 and 2. While the SMS assigned to the mutations are
in general different, especially when taking into account the counts in syn-SNV, and so the average SMS in figures,
the ranking of the various model in term of average SMS difference (syn-SNV versus unobserved syn-SNV) is quite
robust.
(iii) Presence of transition-transversion bias: we observe that the presence of this term always increases the difference
between the average SMS in observed and unobserved synonymous SNV. Two choices are needed to fix this term: the
value the probability ratio of a transition with respect to a transversion (here we considered this ratio to be 4), and
the specific way of realizing this bias by adding a bonus/penalty term to transitions and trasnversions. The latter
choice is almost irrelevant when considering the differences of average SMS between observed and unobserved SNV.

4.6 Data Analysis

SARS-CoV-2 sequences are taken from GISAID [32]. We collected each sequence present in the database on 05 Oct
2020 (the most recent sequence was collected on 29 Sept 2020). Before any of our analyses, we discarded all the
sequences where one or more nucleotides were wrongly read (other characters than A, C, G, T, U). This left us
with 56045 SARS-CoV-2 sequences. To obtain Fig. 2 we considered, in addition to the SARS-CoV-2 sequences are
taken from GISAID, other Alphacoronavirus and Betacoronavirus sequences (whole genomes and genes) which have
been obtained from VIPR [31]. The pre-processing consisted again of discarding all the sequences with one error or
more. After this process we collected 341 SARS, 48 MERS, 20 hCoV-229E, 48 hCoV-NL63, 14 hCoV-HKU1, 124
hCoV-NL63, 166 bat-CoVs and 5 pangolin-CoVs whole genomes. For Fig. 2b we used the largest number possible of
sequences, up to a maximum of 100. For Fig. 2a (viral sequences) and Fig. 2c we chose a single sequence for each
species. However, we checked that the result is qualitatively the same if we use other sequences from the same species
for human coronaviruses. The curves in Fig. 2c are smoothed through a Gaussian sliding average (on windows of
3 kb, the Gaussian being centered in the window, normalized, with a standard deviation of 300 b). The ancestral
SARS-CoV-2 sequence used throughout the work has been collected on 26-12-2019 (ID: EPI ISL 406798).
In Fig. 3a the SARS-CoV-2 sequence has been processed to ensure the correct reading frame. Therefore the ORF1ab
gene is read in the standard frame up to the ribosomal shifting site, and it is read in the shifted frame from that site
up to the end of the polyprotein. Moreover, the small non-coding parts between successive proteins have been cut,
resulting in a loss of 634 nucleotides (including the 5’-UTR and 3’-UTR). A Gaussian smoothing has been performed
to obtain the plotted CpG forces (as in Fig. 2c). To produce the bar plots in Figs. 3c and 3b we collected genes data
on VIPR. Then we discarded as usual all the sequences with one or more errors, and we computed for each gene an
average of up to 20 different sequences (coming from the same species). For some structural proteins we did not find
20 different genes but in any case the standard deviation of the averages of Figs. 3c and 3b is smaller than 0.02 (and,
for most of the viruses, much smaller). In particular, we used 20 sequences of SARS-CoV-2, MERS, hCoV-NL63,
hCoV-OC43 proteins, 14 sequences for hCoV-229E, 13 for hCoV-HKU1 and 4 for SARS. More detailed information
about the genomes used in this work are given in Suppl. Sec. SI.1.
The mutations used for Figs. 4 and 5, have been collected by extracting ORFs from the SARS-CoV-2 sequence
dataset, and comparing them with the Wuhan ancestral strain. ORFs with mutations too close to the start or end
codon are not considered, together with ORFs with insertion/deletion, this filtering procedure leaving us with 48511
sequences to obtain mutation data. Mutations with less than 5 counts in different sequences are discarded. All
curves in Fig. 4a are smoothed with the same Gaussian average used in Figs. 2 and 3. Finally, to get the mutation
data in 5’UTR and 3’UTR we considered the UTRs of the Wuhan ancestral strain, and we compared them with
those of other sequences. The number of nucleotides of the Wuhan ancestral considered part of 5’UTR and 3’UTR
for the search for mutations in other sequences is given in Table 3. This length is chose so that a large number
of uploaded sequences (about 50000) have a UTR of the same length or longer. In the UTR analysis, all observed
mutations are considered “synonymous”. The code used to compute coding and non-coding forces is publicly available
at https://github.com/adigioacchino/dinucleotide_forces.
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SI.1 Genomes analyzed

Here we report some additional information about the genomes used in this work. The SARS-CoV-2 sequence used
in Fig. 2 has GISAID accession ID: EPI ISL 420793. The other GenBank accession numbers for the specific genomes
used in Figs. 2 are: AY427439 (SARS), NC 038294 (MERS), MF542265 (hCoV-229E), JX524171 (hCoV-NL63),
KT779555 (hCoV-HKU1) and KF923918 (hCoV-OC43). For these figures, we choose the bat and pangolin sequences
closest to the SARS-CoV-2 points in Fig. 2b (these two sequences are also known to be very similar to the SARS-CoV-
2 genome from previous works [38]). These sequences have GISAID accession IDs EPI ISL 402131 (bat coronavirus
sequence known with the name RaTG13) and EPI ISL 410721 (pangolin coronavirus sequence collected in 2019 in
Guangdong).
The SARS-CoV-2 ancestral sequence, which has been collected in Wuhan on 26-12-2019, has GISAID accession
ID: EPI ISL 406798. This sequence has been used as reference in Figs. 3, 4 and 5. For Figs. 3b and 3c we
used specific sequences, with the following GenBank accession numbers: MT300186:28249-29508 (SARS-CoV-2),
AY291315:28120-29388 (SARS), NC 038294:28565-29800 (MERS) and KT779555:28281-29606 (hCoV-HKU1) for the
N protein; MT300186:21538-25359 (SARS-CoV-2), AY291315:21492-25259 (SARS), NC 038294:21455-25516 (MERS)
and KT779555:22903-26973 (hCoV-HKU1) for the S protein.

SI.2 Supplementary Figures
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Figure SI.1: All dinucleotide non-coding forces computed on the whole SARS-CoV-2 genome. The CpG
motif is the one with the largest non-coding force in absolute value, and the second one is UpG, which is
one transition away from CpG.
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Figure SI.2: The same analysis performed in Fig. 2, but here we used CpG densities (CpG dinucleotides
divided by the total number of dinucleotides), instead of CpG forces. The results obtained are qualitatively
similar.
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Figure SI.3: CpG versus CpA (left) and UpG (right) non-coding forces. Differently from the CpG versus
UpA case (Fig. 2b), no clear correlations (r2 equal to 0.2 and 0.01, respectively, for the left and right plots)
are found.

19



0 5000 10000 15000 20000 25000 30000
Sliding window position

(a)

2.0

1.5

1.0

0.5

0.0

Lo
ca

l n
on

-c
od

in
g 

Cp
G 

fo
rc

e

ORF1a ORF1b S EM N

SARS-2
229E

NL63
HKU1

OC43

0 5000 10000 15000 20000 25000 30000
Sliding window position

(b)

0.00

0.02

0.04

0.06

0.08

Lo
ca

l C
pG

 d
en

sit
y

ORF1a ORF1b S EM N

SARS-2
229E

NL63
HKU1

OC43

Figure SI.4: Supplement to Fig. 2 and Suppl. Fig. SI.2, where all the coronaviruses associated with circulating
human strains are compared with SARS-CoV-2 in terms of CpG non-coding force (panel (a)) or number in
fixed-length windows (panel (b)). Again, even though the final regions of the hCoVs has relatively high CpG
force with respect to the other parts of their sequences, SARS-CoV-2 has a 3’ CpG force peak well above
the final region of hCoV virus.
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Figure SI.5: Extension of the comparison performed in Fig. 3. In panel (a) the CpG coding forces computed
on the genome coding for polyprotein ORF1ab is compared among several coronaviruses and in panels (b)
and (c) the structural proteins E (envelope) and M (membrane) are considered. Notice that, due to the
small size of proteins E and M, only one window is used so the boxes collapse in one line corresponding to
the global CpG force on the protein, computed as an average over 4 to 20 viral genomes.
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Figure SI.6: Supplementary information for Figs. 5e and 5f, where the model with human codon bias (Hb),
with or without force and transition-transversion bias, is compared to the null model and the the model with
virus codon bias (cb), force and transition-transversion bias, in terms of average SMS assigned to synonymous
SNV in N and S ORFs.
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Figure SI.7: Same of Figs. 5e and 5f, for different choices of equilibrium force. (a), (b): the equilibrium force
chosen is -1.71, that is the global coding force on SARS-CoV-2 (computed with the human codon bias as
background). (c), (d): the equilibrium force chosen is -2.89, that is the average global non-coding force of
human type-I IFNs (computed with the coding human nucleotides as background).
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Figure SI.8: Positive Predictive Value for the model with virus codon bias, CpG force and transition-
transversion bias, for N and S ORFs, as a function of the number of correctly predicted synonymous SNV.
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Figure SI.9: (a) Forces computed on SARS-CoV-2 ancestral genome, with different choices of sliding windows
(upper subpanel), or without Gaussian smoothing (lower subpanel). The sliding windows used in panel (a)
are: 3000 nt, 1500 nt (short sliding window), or 6000 nt (long sliding window). In panels (b), (c) we replicate
the analysis performed for Fig. 4b with the short and long windows, to show that the results are qualitatively
similar. The slightly lowest performance of the short sliding window is due to the high sensitivity of the
short windows for local details of the sequence, while the large window analysis is plagued by finite size
effects (right side of panel (c)), due to the fact that the size is too close to the total size of the sequence,
together with the presence of many CpG motifs at the beginning and end of the sequence.
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Figure SI.10: Same analysis performed in Figs. 5c and 5d, for sequences submitted to GISAID up to 5
May 2020 (panels (a), (b)) and up to 5 August 2020 (panels (c), (d)). The model cb+f+ttb can distin-
guish with large AUROCs (≥ 0.8), since 05 May 2020, observed Syn-SNV from conserved Syn-nt, and the
model performance (intended here as AUROC) improves with time. Cutoffs for considering Syn-SNV are
at 1 count for panels (a), (b), and at 2 counts for panels (c) and (d) (that is, approximately at 0.01% of
the total number of collected sequences, as in main text for the full dataset). Other detailed analysis on
sequences collected at previous times can be found in the several past versions of this manuscript on bioRxiv
(https://www.biorxiv.org/content/10.1101/2020.05.06.074039v3.article-info).
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Figure SI.11: The SMS of all observed syn-SNV is given for N and S ORFs, with and without CpG drive.
Bars colored in blue (red) correspond to CpG decreasing (increasing) syn-SNV. Circles on top of bars are
drawn when the number of counts of the corresponding SNV is larger than 20, the size of the circle being
proportional to the number of counts. Green (dark, light) horizontal lines give the average SMS (without or
with counts).
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Motif n Position CpG↓ Syn-SNV ZAS
of CpG with counts

CGUGUUGCAGCCG 8 163 83 1.71

GGCUGUCACUCG - 46 7 0.15
AGUGCACUCACG - 68 19 0.15
ACGAGUAACUCG - 118 61 0.30
CUUACGGUUUCG - 148 1122 0.30
CGGUUUCGUCCG - 152 21 0.45
AUCUAGGUUUCG - 186 46095 0.15
AGGUUUCGUCCG - 190 31 0.30
CGGGUGUGACCG - 200 7 0.30

CUAAUUACUGUCG 8 96 0 1.56

Table SI.1: Analysis of CpG extended motifs of the form CnxGxCG with n = 4, 5, 6, 7 or 8 nucleotides
in the 5’-UTR. The position is given with respect to the start of the 5’-UTR in the ancestral sequence, see
Methods 4.6. All SNV happening in UTRs are considered synonymous. SNV observed with less than 5
counts are excluded from this analysis.

CpGext CpGext↓SNV
num with counts

n = 4 5 6 7 8 4 5 6 7 8 4 5 6 7 8
5’-UTR 0 0 0 0 2 0 0 0 0 2 0 0 0 0 83
N 2 4 0 3 3 1 3 0 5 1 509 620 0 448 10
M 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
ORF7a 1 0 0 1 0 0 0 0 1 0 0 0 17 0 0
ORF3a 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0
ORF1a 2 7 5 7 4 1 5 1 6 2 7 230 8 338 143
ORF1b 3 2 5 4 2 2 1 4 1 1 19 113 68 98 19
S 0 1 2 0 0 0 0 1 0 0 0 0 25 0 0

Table SI.2: Supplementary information for Table 5. Only motifs of the form CnxGxCG with n = 4, 5, 6, 7 or
8 (CpGext) are considered and they are only characterized by the spacer lenght n. The number of CpGext
motifs and of syn-SNV removing them is given for each value of n for each ORF or UTR (with at least 1
CpGext).

Average SMS ANOVA F-test
SNV u-SNV diff AUROC F num items

3’-UTR 0.33 -0.39 0.73 0.77 72.2 81 + 405
5’-UTR 0.57 -0.34 0.91 0.83 81.9 56 + 577
N 1.02 -0.81 1.83 0.83 162.0 114 + 977
M 1.12 -0.70 1.81 0.85 94.5 58 + 557
ORF10 1.37 -0.51 1.89 0.84 9.8 6 + 87
ORF7a 0.30 -0.77 1.08 0.71 12.4 23 + 289
ORF8 0.77 -0.84 1.62 0.83 36.8 25 + 266
ORF3a 1.06 -0.80 1.86 0.85 96.9 54 + 642
ORF1a 0.93 -0.89 1.83 0.86 1580.3 848 + 9966
ORF1b 0.78 -0.87 1.63 0.82 624.9 432 + 6026
E 0.35 -0.56 0.91 0.68 3.6 10 + 217
S 0.85 -0.90 1.75 0.84 375.2 223 + 2924
ORF6 0.35 -0.56 0.91 0.70 5.3 10 + 127
ORF7b 0.70 -0.41 1.11 0.77 6.1 9 + 98

Table SI.3: Supplementary information for Table 6, where all the quantities are computed through the model
cb+ttb (without CpG drive).
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ave SMS diff AUROC
model: cb+ttb cb+f+ttb cb+ttb cb+f+ttb

3’-UTR 0.75 1.08 0.79 0.84
5’-UTR 1.54 3.18 0.97 0.99
N 2.13 2.73 0.88 0.89
M 0.95 1.08 0.68 0.68
ORF10 1.44 1.67 0.79 0.76
ORF7a 1.75 2.10 0.84 0.85
ORF8 1.72 1.89 0.85 0.85
ORF3a 2.19 2.38 0.91 0.91
ORF1a 2.17 2.16 0.91 0.91
ORF1b 1.92 1.92 0.90 0.90
E 1.10 1.59 0.76 0.76
S 2.28 2.14 0.91 0.92
ORF6 0.72 0.73 0.69 0.69
ORF7b 1.29 1.30 0.84 0.84

Table SI.4: Supplementary information for Table 6, where ave SMS diff and AUROC are given for the models
cb+ttb and cb+f+ttb while taking into account syn-SNV counts for the computation. In both cases, counts
are used to weight observed syn-SNV. Notice that taking counts into account can lead to strong bias effects
if few mutations are observed extremely more often than all others. For instance, in ORF1a the mutation
observed more often has alone more than 50% of the total number of counts for the ORF, hence it strongly
influences all indicators in this table. Similar effects are seen for M, ORF8 and 5’-UTR.
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SI.3 From CpG force to CpG relative abundance

We want to show in which limit the CpG force (without codon constraints) is equivalent to the relative dinucleotide
abundance [1], Eq. 4. We start from the partition function:

Z =
∑

s1,...,sN

(
N∏
i=1

f(si)

)
N−1∏
i=1

exδ(si,a)δ(si+1,b), (SI.1)

where δ denotes the Kroneker delta function. In the spirit of a cluster expansion, we write

exδ(si,a)δ(si+1,b) = 1 + gi,i+1, (SI.2)

where
gi,i+1 = (ex − 1) δ(si, a) δ(si+1, b). (SI.3)

Inserting back this into Eq. (SI.1), we obtain

Z =
∑

s1,...,sN

(
N∏
i=1

f(si)

)
N−1∏
i=1

(1 + gi,i+1)

=
∑

s1,...,sN

(
N∏
i=1

f(si)

)[
1 +

∑
i

gi,i+1 +
∑
i<j

gi,i+1 gj,j+1 + . . .

]
.

(SI.4)

Now we can compute each term in the cluster expansion, and we get for the k-th term (for a 6= b, as in the CpG case)

∑
s1,...,sN

(
N∏
i=1

f(si)

) ∑
i1<···<ik

gi1,i1+1 . . . gik,ik+1 =

(
N − k
k

)
((ex − 1) f(a) f(b))k =

(
N − k
k

)
gk. (SI.5)

where we defined g = (ex − 1) f(a) f(b). Now we suppose N = 2m, that is N is even (however, we will consider soon
the large-N limit, where this request is not necessary anymore). Therefore, we have

Z =

m∑
k=0

(
2m− k
k

)
gk =

(1 + 2g −
√

1 + 4g)m(
√

1 + 4g − 1) + (1 + 2g +
√

1 + 4g)m(
√

1 + 4g + 1)

2m+1
√

1 + 4g
. (SI.6)

To proceed further, we can consider the case where g � 1. This is a good approximation when x ' 0, and it is also
fairly good as long as x is lower than 0, but it is less good for the most negative forces observed here (see Fig. 3a).
Under this hypothesis, we have

Z = (1 + g) e(m−1)2g ' eN(ex−1) f(a) f(b), (SI.7)

where in the last step we used also that N � 1. From this, by using that 〈n〉 = ∂x logZ and requesting 〈n〉 = n0 =
Nf(ab), we obtain Eq. 4. Fig. SI.12 shows the correlation between the CpG force with the nucleotide bias and the
CpG relative abundance.
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Figure SI.12: Comparison between the CpG force and the CpG relative abundance index. As discussed in
Sec. SI.3, these two quantities are almost identical when the genome is long and the force is not too large
in absolute value. Here 10 different genomes for several coronavirus species are used to compute these two
quantities, and the dashed black line is a linear fit of the resulting points.
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